xref: /netbsd-src/sys/netinet/tcp_input.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: tcp_input.c,v 1.209 2004/09/15 09:21:22 yamt Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
34  *
35  * NRL grants permission for redistribution and use in source and binary
36  * forms, with or without modification, of the software and documentation
37  * created at NRL provided that the following conditions are met:
38  *
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgements:
46  *      This product includes software developed by the University of
47  *      California, Berkeley and its contributors.
48  *      This product includes software developed at the Information
49  *      Technology Division, US Naval Research Laboratory.
50  * 4. Neither the name of the NRL nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * The views and conclusions contained in the software and documentation
67  * are those of the authors and should not be interpreted as representing
68  * official policies, either expressed or implied, of the US Naval
69  * Research Laboratory (NRL).
70  */
71 
72 /*-
73  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74  * All rights reserved.
75  *
76  * This code is derived from software contributed to The NetBSD Foundation
77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78  * Facility, NASA Ames Research Center.
79  *
80  * Redistribution and use in source and binary forms, with or without
81  * modification, are permitted provided that the following conditions
82  * are met:
83  * 1. Redistributions of source code must retain the above copyright
84  *    notice, this list of conditions and the following disclaimer.
85  * 2. Redistributions in binary form must reproduce the above copyright
86  *    notice, this list of conditions and the following disclaimer in the
87  *    documentation and/or other materials provided with the distribution.
88  * 3. All advertising materials mentioning features or use of this software
89  *    must display the following acknowledgement:
90  *	This product includes software developed by the NetBSD
91  *	Foundation, Inc. and its contributors.
92  * 4. Neither the name of The NetBSD Foundation nor the names of its
93  *    contributors may be used to endorse or promote products derived
94  *    from this software without specific prior written permission.
95  *
96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106  * POSSIBILITY OF SUCH DAMAGE.
107  */
108 
109 /*
110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111  *	The Regents of the University of California.  All rights reserved.
112  *
113  * Redistribution and use in source and binary forms, with or without
114  * modification, are permitted provided that the following conditions
115  * are met:
116  * 1. Redistributions of source code must retain the above copyright
117  *    notice, this list of conditions and the following disclaimer.
118  * 2. Redistributions in binary form must reproduce the above copyright
119  *    notice, this list of conditions and the following disclaimer in the
120  *    documentation and/or other materials provided with the distribution.
121  * 3. Neither the name of the University nor the names of its contributors
122  *    may be used to endorse or promote products derived from this software
123  *    without specific prior written permission.
124  *
125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135  * SUCH DAMAGE.
136  *
137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
138  */
139 
140 /*
141  *	TODO list for SYN cache stuff:
142  *
143  *	Find room for a "state" field, which is needed to keep a
144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
145  *	that this is fairly important for very high-volume web and
146  *	mail servers, which use a large number of short-lived
147  *	connections.
148  */
149 
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.209 2004/09/15 09:21:22 yamt Exp $");
152 
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157 
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173 
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177 
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184 
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197 
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202 
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210 
211 #include <machine/stdarg.h>
212 
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif	/* IPSEC */
223 
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif	/* FAST_IPSEC*/
232 
233 int	tcprexmtthresh = 3;
234 int	tcp_log_refused;
235 
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240 
241 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
242 
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
246 
247 /*
248  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249  */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 	    tp->t_in6pcb->in6p_route.ro_rt) { \
255 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 	} \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261 
262 /*
263  * Macro to compute ACK transmission behavior.  Delay the ACK unless
264  * we have already delayed an ACK (must send an ACK every two segments).
265  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266  * option is enabled.
267  */
268 #define	TCP_SETUP_ACK(tp, th) \
269 do { \
270 	if ((tp)->t_flags & TF_DELACK || \
271 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 		tp->t_flags |= TF_ACKNOW; \
273 	else \
274 		TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276 
277 /*
278  * Convert TCP protocol fields to host order for easier processing.
279  */
280 #define	TCP_FIELDS_TO_HOST(th)						\
281 do {									\
282 	NTOHL((th)->th_seq);						\
283 	NTOHL((th)->th_ack);						\
284 	NTOHS((th)->th_win);						\
285 	NTOHS((th)->th_urp);						\
286 } while (/*CONSTCOND*/ 0)
287 
288 /*
289  * ... and reverse the above.
290  */
291 #define	TCP_FIELDS_TO_NET(th)						\
292 do {									\
293 	HTONL((th)->th_seq);						\
294 	HTONL((th)->th_ack);						\
295 	HTONS((th)->th_win);						\
296 	HTONS((th)->th_urp);						\
297 } while (/*CONSTCOND*/ 0)
298 
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301 
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306 
307 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
308 
309 #else
310 
311 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
312 
313 #endif /* TCP_CSUM_COUNTERS */
314 
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317 
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331 
332 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
333 
334 #else
335 
336 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
337 
338 #endif /* TCP_REASS_COUNTERS */
339 
340 #ifdef INET
341 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused
345     __P((const struct ip6_hdr *, const struct tcphdr *));
346 #endif
347 
348 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
349 
350 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
351 
352 int
353 tcp_reass(tp, th, m, tlen)
354 	struct tcpcb *tp;
355 	struct tcphdr *th;
356 	struct mbuf *m;
357 	int *tlen;
358 {
359 	struct ipqent *p, *q, *nq, *tiqe = NULL;
360 	struct socket *so = NULL;
361 	int pkt_flags;
362 	tcp_seq pkt_seq;
363 	unsigned pkt_len;
364 	u_long rcvpartdupbyte = 0;
365 	u_long rcvoobyte;
366 #ifdef TCP_REASS_COUNTERS
367 	u_int count = 0;
368 #endif
369 
370 	if (tp->t_inpcb)
371 		so = tp->t_inpcb->inp_socket;
372 #ifdef INET6
373 	else if (tp->t_in6pcb)
374 		so = tp->t_in6pcb->in6p_socket;
375 #endif
376 
377 	TCP_REASS_LOCK_CHECK(tp);
378 
379 	/*
380 	 * Call with th==0 after become established to
381 	 * force pre-ESTABLISHED data up to user socket.
382 	 */
383 	if (th == 0)
384 		goto present;
385 
386 	rcvoobyte = *tlen;
387 	/*
388 	 * Copy these to local variables because the tcpiphdr
389 	 * gets munged while we are collapsing mbufs.
390 	 */
391 	pkt_seq = th->th_seq;
392 	pkt_len = *tlen;
393 	pkt_flags = th->th_flags;
394 
395 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
396 
397 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
398 		/*
399 		 * When we miss a packet, the vast majority of time we get
400 		 * packets that follow it in order.  So optimize for that.
401 		 */
402 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
403 			p->ipqe_len += pkt_len;
404 			p->ipqe_flags |= pkt_flags;
405 			m_cat(p->ipre_mlast, m);
406 			TRAVERSE(p->ipre_mlast);
407 			m = NULL;
408 			tiqe = p;
409 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
410 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
411 			goto skip_replacement;
412 		}
413 		/*
414 		 * While we're here, if the pkt is completely beyond
415 		 * anything we have, just insert it at the tail.
416 		 */
417 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
418 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
419 			goto insert_it;
420 		}
421 	}
422 
423 	q = TAILQ_FIRST(&tp->segq);
424 
425 	if (q != NULL) {
426 		/*
427 		 * If this segment immediately precedes the first out-of-order
428 		 * block, simply slap the segment in front of it and (mostly)
429 		 * skip the complicated logic.
430 		 */
431 		if (pkt_seq + pkt_len == q->ipqe_seq) {
432 			q->ipqe_seq = pkt_seq;
433 			q->ipqe_len += pkt_len;
434 			q->ipqe_flags |= pkt_flags;
435 			m_cat(m, q->ipqe_m);
436 			q->ipqe_m = m;
437 			q->ipre_mlast = m; /* last mbuf may have changed */
438 			TRAVERSE(q->ipre_mlast);
439 			tiqe = q;
440 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
441 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
442 			goto skip_replacement;
443 		}
444 	} else {
445 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
446 	}
447 
448 	/*
449 	 * Find a segment which begins after this one does.
450 	 */
451 	for (p = NULL; q != NULL; q = nq) {
452 		nq = TAILQ_NEXT(q, ipqe_q);
453 #ifdef TCP_REASS_COUNTERS
454 		count++;
455 #endif
456 		/*
457 		 * If the received segment is just right after this
458 		 * fragment, merge the two together and then check
459 		 * for further overlaps.
460 		 */
461 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
462 #ifdef TCPREASS_DEBUG
463 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
464 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
465 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
466 #endif
467 			pkt_len += q->ipqe_len;
468 			pkt_flags |= q->ipqe_flags;
469 			pkt_seq = q->ipqe_seq;
470 			m_cat(q->ipre_mlast, m);
471 			TRAVERSE(q->ipre_mlast);
472 			m = q->ipqe_m;
473 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
474 			goto free_ipqe;
475 		}
476 		/*
477 		 * If the received segment is completely past this
478 		 * fragment, we need to go the next fragment.
479 		 */
480 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
481 			p = q;
482 			continue;
483 		}
484 		/*
485 		 * If the fragment is past the received segment,
486 		 * it (or any following) can't be concatenated.
487 		 */
488 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
489 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
490 			break;
491 		}
492 
493 		/*
494 		 * We've received all the data in this segment before.
495 		 * mark it as a duplicate and return.
496 		 */
497 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
498 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
499 			tcpstat.tcps_rcvduppack++;
500 			tcpstat.tcps_rcvdupbyte += pkt_len;
501 			m_freem(m);
502 			if (tiqe != NULL)
503 				pool_put(&tcpipqent_pool, tiqe);
504 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
505 			return (0);
506 		}
507 		/*
508 		 * Received segment completely overlaps this fragment
509 		 * so we drop the fragment (this keeps the temporal
510 		 * ordering of segments correct).
511 		 */
512 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
513 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
514 			rcvpartdupbyte += q->ipqe_len;
515 			m_freem(q->ipqe_m);
516 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
517 			goto free_ipqe;
518 		}
519 		/*
520 		 * RX'ed segment extends past the end of the
521 		 * fragment.  Drop the overlapping bytes.  Then
522 		 * merge the fragment and segment then treat as
523 		 * a longer received packet.
524 		 */
525 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
526 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
527 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
528 #ifdef TCPREASS_DEBUG
529 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
530 			       tp, overlap,
531 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
532 #endif
533 			m_adj(m, overlap);
534 			rcvpartdupbyte += overlap;
535 			m_cat(q->ipre_mlast, m);
536 			TRAVERSE(q->ipre_mlast);
537 			m = q->ipqe_m;
538 			pkt_seq = q->ipqe_seq;
539 			pkt_len += q->ipqe_len - overlap;
540 			rcvoobyte -= overlap;
541 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
542 			goto free_ipqe;
543 		}
544 		/*
545 		 * RX'ed segment extends past the front of the
546 		 * fragment.  Drop the overlapping bytes on the
547 		 * received packet.  The packet will then be
548 		 * contatentated with this fragment a bit later.
549 		 */
550 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
551 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
552 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
553 #ifdef TCPREASS_DEBUG
554 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
555 			       tp, overlap,
556 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
557 #endif
558 			m_adj(m, -overlap);
559 			pkt_len -= overlap;
560 			rcvpartdupbyte += overlap;
561 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
562 			rcvoobyte -= overlap;
563 		}
564 		/*
565 		 * If the received segment immediates precedes this
566 		 * fragment then tack the fragment onto this segment
567 		 * and reinsert the data.
568 		 */
569 		if (q->ipqe_seq == pkt_seq + pkt_len) {
570 #ifdef TCPREASS_DEBUG
571 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
572 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
573 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
574 #endif
575 			pkt_len += q->ipqe_len;
576 			pkt_flags |= q->ipqe_flags;
577 			m_cat(m, q->ipqe_m);
578 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
579 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
580 			if (tiqe == NULL)
581 				tiqe = q;
582 			else
583 				pool_put(&tcpipqent_pool, q);
584 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
585 			break;
586 		}
587 		/*
588 		 * If the fragment is before the segment, remember it.
589 		 * When this loop is terminated, p will contain the
590 		 * pointer to fragment that is right before the received
591 		 * segment.
592 		 */
593 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
594 			p = q;
595 
596 		continue;
597 
598 		/*
599 		 * This is a common operation.  It also will allow
600 		 * to save doing a malloc/free in most instances.
601 		 */
602 	  free_ipqe:
603 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
604 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
605 		if (tiqe == NULL)
606 			tiqe = q;
607 		else
608 			pool_put(&tcpipqent_pool, q);
609 	}
610 
611 #ifdef TCP_REASS_COUNTERS
612 	if (count > 7)
613 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
614 	else if (count > 0)
615 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
616 #endif
617 
618     insert_it:
619 
620 	/*
621 	 * Allocate a new queue entry since the received segment did not
622 	 * collapse onto any other out-of-order block; thus we are allocating
623 	 * a new block.  If it had collapsed, tiqe would not be NULL and
624 	 * we would be reusing it.
625 	 * XXX If we can't, just drop the packet.  XXX
626 	 */
627 	if (tiqe == NULL) {
628 		tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
629 		if (tiqe == NULL) {
630 			tcpstat.tcps_rcvmemdrop++;
631 			m_freem(m);
632 			return (0);
633 		}
634 	}
635 
636 	/*
637 	 * Update the counters.
638 	 */
639 	tcpstat.tcps_rcvoopack++;
640 	tcpstat.tcps_rcvoobyte += rcvoobyte;
641 	if (rcvpartdupbyte) {
642 	    tcpstat.tcps_rcvpartduppack++;
643 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
644 	}
645 
646 	/*
647 	 * Insert the new fragment queue entry into both queues.
648 	 */
649 	tiqe->ipqe_m = m;
650 	tiqe->ipre_mlast = m;
651 	tiqe->ipqe_seq = pkt_seq;
652 	tiqe->ipqe_len = pkt_len;
653 	tiqe->ipqe_flags = pkt_flags;
654 	if (p == NULL) {
655 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
656 #ifdef TCPREASS_DEBUG
657 		if (tiqe->ipqe_seq != tp->rcv_nxt)
658 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
659 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
660 #endif
661 	} else {
662 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
663 #ifdef TCPREASS_DEBUG
664 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
665 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
666 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
667 #endif
668 	}
669 
670 skip_replacement:
671 
672 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
673 
674 present:
675 	/*
676 	 * Present data to user, advancing rcv_nxt through
677 	 * completed sequence space.
678 	 */
679 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
680 		return (0);
681 	q = TAILQ_FIRST(&tp->segq);
682 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
683 		return (0);
684 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
685 		return (0);
686 
687 	tp->rcv_nxt += q->ipqe_len;
688 	pkt_flags = q->ipqe_flags & TH_FIN;
689 	ND6_HINT(tp);
690 
691 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
692 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
693 	if (so->so_state & SS_CANTRCVMORE)
694 		m_freem(q->ipqe_m);
695 	else
696 		sbappendstream(&so->so_rcv, q->ipqe_m);
697 	pool_put(&tcpipqent_pool, q);
698 	sorwakeup(so);
699 	return (pkt_flags);
700 }
701 
702 #ifdef INET6
703 int
704 tcp6_input(mp, offp, proto)
705 	struct mbuf **mp;
706 	int *offp, proto;
707 {
708 	struct mbuf *m = *mp;
709 
710 	/*
711 	 * draft-itojun-ipv6-tcp-to-anycast
712 	 * better place to put this in?
713 	 */
714 	if (m->m_flags & M_ANYCAST6) {
715 		struct ip6_hdr *ip6;
716 		if (m->m_len < sizeof(struct ip6_hdr)) {
717 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
718 				tcpstat.tcps_rcvshort++;
719 				return IPPROTO_DONE;
720 			}
721 		}
722 		ip6 = mtod(m, struct ip6_hdr *);
723 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
724 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
725 		return IPPROTO_DONE;
726 	}
727 
728 	tcp_input(m, *offp, proto);
729 	return IPPROTO_DONE;
730 }
731 #endif
732 
733 #ifdef INET
734 static void
735 tcp4_log_refused(ip, th)
736 	const struct ip *ip;
737 	const struct tcphdr *th;
738 {
739 	char src[4*sizeof "123"];
740 	char dst[4*sizeof "123"];
741 
742 	if (ip) {
743 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
744 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
745 	}
746 	else {
747 		strlcpy(src, "(unknown)", sizeof(src));
748 		strlcpy(dst, "(unknown)", sizeof(dst));
749 	}
750 	log(LOG_INFO,
751 	    "Connection attempt to TCP %s:%d from %s:%d\n",
752 	    dst, ntohs(th->th_dport),
753 	    src, ntohs(th->th_sport));
754 }
755 #endif
756 
757 #ifdef INET6
758 static void
759 tcp6_log_refused(ip6, th)
760 	const struct ip6_hdr *ip6;
761 	const struct tcphdr *th;
762 {
763 	char src[INET6_ADDRSTRLEN];
764 	char dst[INET6_ADDRSTRLEN];
765 
766 	if (ip6) {
767 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
768 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
769 	}
770 	else {
771 		strlcpy(src, "(unknown v6)", sizeof(src));
772 		strlcpy(dst, "(unknown v6)", sizeof(dst));
773 	}
774 	log(LOG_INFO,
775 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
776 	    dst, ntohs(th->th_dport),
777 	    src, ntohs(th->th_sport));
778 }
779 #endif
780 
781 /*
782  * TCP input routine, follows pages 65-76 of the
783  * protocol specification dated September, 1981 very closely.
784  */
785 void
786 tcp_input(struct mbuf *m, ...)
787 {
788 	struct tcphdr *th;
789 	struct ip *ip;
790 	struct inpcb *inp;
791 #ifdef INET6
792 	struct ip6_hdr *ip6;
793 	struct in6pcb *in6p;
794 #endif
795 	u_int8_t *optp = NULL;
796 	int optlen = 0;
797 	int len, tlen, toff, hdroptlen = 0;
798 	struct tcpcb *tp = 0;
799 	int tiflags;
800 	struct socket *so = NULL;
801 	int todrop, acked, ourfinisacked, needoutput = 0;
802 #ifdef TCP_DEBUG
803 	short ostate = 0;
804 #endif
805 	int iss = 0;
806 	u_long tiwin;
807 	struct tcp_opt_info opti;
808 	int off, iphlen;
809 	va_list ap;
810 	int af;		/* af on the wire */
811 	struct mbuf *tcp_saveti = NULL;
812 
813 	MCLAIM(m, &tcp_rx_mowner);
814 	va_start(ap, m);
815 	toff = va_arg(ap, int);
816 	(void)va_arg(ap, int);		/* ignore value, advance ap */
817 	va_end(ap);
818 
819 	tcpstat.tcps_rcvtotal++;
820 
821 	bzero(&opti, sizeof(opti));
822 	opti.ts_present = 0;
823 	opti.maxseg = 0;
824 
825 	/*
826 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
827 	 *
828 	 * TCP is, by definition, unicast, so we reject all
829 	 * multicast outright.
830 	 *
831 	 * Note, there are additional src/dst address checks in
832 	 * the AF-specific code below.
833 	 */
834 	if (m->m_flags & (M_BCAST|M_MCAST)) {
835 		/* XXX stat */
836 		goto drop;
837 	}
838 #ifdef INET6
839 	if (m->m_flags & M_ANYCAST6) {
840 		/* XXX stat */
841 		goto drop;
842 	}
843 #endif
844 
845 	/*
846 	 * Get IP and TCP header.
847 	 * Note: IP leaves IP header in first mbuf.
848 	 */
849 	ip = mtod(m, struct ip *);
850 #ifdef INET6
851 	ip6 = NULL;
852 #endif
853 	switch (ip->ip_v) {
854 #ifdef INET
855 	case 4:
856 		af = AF_INET;
857 		iphlen = sizeof(struct ip);
858 		ip = mtod(m, struct ip *);
859 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
860 			sizeof(struct tcphdr));
861 		if (th == NULL) {
862 			tcpstat.tcps_rcvshort++;
863 			return;
864 		}
865 		/* We do the checksum after PCB lookup... */
866 		len = ntohs(ip->ip_len);
867 		tlen = len - toff;
868 		break;
869 #endif
870 #ifdef INET6
871 	case 6:
872 		ip = NULL;
873 		iphlen = sizeof(struct ip6_hdr);
874 		af = AF_INET6;
875 		ip6 = mtod(m, struct ip6_hdr *);
876 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
877 			sizeof(struct tcphdr));
878 		if (th == NULL) {
879 			tcpstat.tcps_rcvshort++;
880 			return;
881 		}
882 
883 		/* Be proactive about malicious use of IPv4 mapped address */
884 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
885 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
886 			/* XXX stat */
887 			goto drop;
888 		}
889 
890 		/*
891 		 * Be proactive about unspecified IPv6 address in source.
892 		 * As we use all-zero to indicate unbounded/unconnected pcb,
893 		 * unspecified IPv6 address can be used to confuse us.
894 		 *
895 		 * Note that packets with unspecified IPv6 destination is
896 		 * already dropped in ip6_input.
897 		 */
898 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
899 			/* XXX stat */
900 			goto drop;
901 		}
902 
903 		/*
904 		 * Make sure destination address is not multicast.
905 		 * Source address checked in ip6_input().
906 		 */
907 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
908 			/* XXX stat */
909 			goto drop;
910 		}
911 
912 		/* We do the checksum after PCB lookup... */
913 		len = m->m_pkthdr.len;
914 		tlen = len - toff;
915 		break;
916 #endif
917 	default:
918 		m_freem(m);
919 		return;
920 	}
921 
922 	KASSERT(TCP_HDR_ALIGNED_P(th));
923 
924 	/*
925 	 * Check that TCP offset makes sense,
926 	 * pull out TCP options and adjust length.		XXX
927 	 */
928 	off = th->th_off << 2;
929 	if (off < sizeof (struct tcphdr) || off > tlen) {
930 		tcpstat.tcps_rcvbadoff++;
931 		goto drop;
932 	}
933 	tlen -= off;
934 
935 	/*
936 	 * tcp_input() has been modified to use tlen to mean the TCP data
937 	 * length throughout the function.  Other functions can use
938 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
939 	 * rja
940 	 */
941 
942 	if (off > sizeof (struct tcphdr)) {
943 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
944 		if (th == NULL) {
945 			tcpstat.tcps_rcvshort++;
946 			return;
947 		}
948 		/*
949 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
950 		 * (as they're before toff) and we don't need to update those.
951 		 */
952 		KASSERT(TCP_HDR_ALIGNED_P(th));
953 		optlen = off - sizeof (struct tcphdr);
954 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
955 		/*
956 		 * Do quick retrieval of timestamp options ("options
957 		 * prediction?").  If timestamp is the only option and it's
958 		 * formatted as recommended in RFC 1323 appendix A, we
959 		 * quickly get the values now and not bother calling
960 		 * tcp_dooptions(), etc.
961 		 */
962 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
963 		     (optlen > TCPOLEN_TSTAMP_APPA &&
964 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
965 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
966 		     (th->th_flags & TH_SYN) == 0) {
967 			opti.ts_present = 1;
968 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
969 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
970 			optp = NULL;	/* we've parsed the options */
971 		}
972 	}
973 	tiflags = th->th_flags;
974 
975 	/*
976 	 * Locate pcb for segment.
977 	 */
978 findpcb:
979 	inp = NULL;
980 #ifdef INET6
981 	in6p = NULL;
982 #endif
983 	switch (af) {
984 #ifdef INET
985 	case AF_INET:
986 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
987 		    ip->ip_dst, th->th_dport);
988 		if (inp == 0) {
989 			++tcpstat.tcps_pcbhashmiss;
990 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
991 		}
992 #ifdef INET6
993 		if (inp == 0) {
994 			struct in6_addr s, d;
995 
996 			/* mapped addr case */
997 			bzero(&s, sizeof(s));
998 			s.s6_addr16[5] = htons(0xffff);
999 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1000 			bzero(&d, sizeof(d));
1001 			d.s6_addr16[5] = htons(0xffff);
1002 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1003 			in6p = in6_pcblookup_connect(&tcbtable, &s,
1004 			    th->th_sport, &d, th->th_dport, 0);
1005 			if (in6p == 0) {
1006 				++tcpstat.tcps_pcbhashmiss;
1007 				in6p = in6_pcblookup_bind(&tcbtable, &d,
1008 				    th->th_dport, 0);
1009 			}
1010 		}
1011 #endif
1012 #ifndef INET6
1013 		if (inp == 0)
1014 #else
1015 		if (inp == 0 && in6p == 0)
1016 #endif
1017 		{
1018 			++tcpstat.tcps_noport;
1019 			if (tcp_log_refused &&
1020 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1021 				tcp4_log_refused(ip, th);
1022 			}
1023 			TCP_FIELDS_TO_HOST(th);
1024 			goto dropwithreset_ratelim;
1025 		}
1026 #if defined(IPSEC) || defined(FAST_IPSEC)
1027 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1028 		    ipsec4_in_reject(m, inp)) {
1029 			ipsecstat.in_polvio++;
1030 			goto drop;
1031 		}
1032 #ifdef INET6
1033 		else if (in6p &&
1034 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1035 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1036 			ipsecstat.in_polvio++;
1037 			goto drop;
1038 		}
1039 #endif
1040 #endif /*IPSEC*/
1041 		break;
1042 #endif /*INET*/
1043 #ifdef INET6
1044 	case AF_INET6:
1045 	    {
1046 		int faith;
1047 
1048 #if defined(NFAITH) && NFAITH > 0
1049 		faith = faithprefix(&ip6->ip6_dst);
1050 #else
1051 		faith = 0;
1052 #endif
1053 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1054 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1055 		if (in6p == NULL) {
1056 			++tcpstat.tcps_pcbhashmiss;
1057 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1058 				th->th_dport, faith);
1059 		}
1060 		if (in6p == NULL) {
1061 			++tcpstat.tcps_noport;
1062 			if (tcp_log_refused &&
1063 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1064 				tcp6_log_refused(ip6, th);
1065 			}
1066 			TCP_FIELDS_TO_HOST(th);
1067 			goto dropwithreset_ratelim;
1068 		}
1069 #if defined(IPSEC) || defined(FAST_IPSEC)
1070 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1071 		    ipsec6_in_reject(m, in6p)) {
1072 			ipsec6stat.in_polvio++;
1073 			goto drop;
1074 		}
1075 #endif /*IPSEC*/
1076 		break;
1077 	    }
1078 #endif
1079 	}
1080 
1081 	/*
1082 	 * If the state is CLOSED (i.e., TCB does not exist) then
1083 	 * all data in the incoming segment is discarded.
1084 	 * If the TCB exists but is in CLOSED state, it is embryonic,
1085 	 * but should either do a listen or a connect soon.
1086 	 */
1087 	tp = NULL;
1088 	so = NULL;
1089 	if (inp) {
1090 		tp = intotcpcb(inp);
1091 		so = inp->inp_socket;
1092 	}
1093 #ifdef INET6
1094 	else if (in6p) {
1095 		tp = in6totcpcb(in6p);
1096 		so = in6p->in6p_socket;
1097 	}
1098 #endif
1099 	if (tp == 0) {
1100 		TCP_FIELDS_TO_HOST(th);
1101 		goto dropwithreset_ratelim;
1102 	}
1103 	if (tp->t_state == TCPS_CLOSED)
1104 		goto drop;
1105 
1106 	/*
1107 	 * Checksum extended TCP header and data.
1108 	 */
1109 	switch (af) {
1110 #ifdef INET
1111 	case AF_INET:
1112 		switch (m->m_pkthdr.csum_flags &
1113 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
1114 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
1115 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
1116 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
1117 			goto badcsum;
1118 
1119 		case M_CSUM_TCPv4|M_CSUM_DATA: {
1120 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
1121 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
1122 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
1123 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
1124 				    ip->ip_dst.s_addr,
1125 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
1126 			}
1127 			if ((hw_csum ^ 0xffff) != 0)
1128 				goto badcsum;
1129 			break;
1130 		}
1131 
1132 		case M_CSUM_TCPv4:
1133 			/* Checksum was okay. */
1134 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
1135 			break;
1136 
1137 		default:
1138 			/* Must compute it ourselves. */
1139 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
1140 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1141 				goto badcsum;
1142 			break;
1143 		}
1144 		break;
1145 #endif /* INET4 */
1146 
1147 #ifdef INET6
1148 	case AF_INET6:
1149 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1150 			goto badcsum;
1151 		break;
1152 #endif /* INET6 */
1153 	}
1154 
1155 	TCP_FIELDS_TO_HOST(th);
1156 
1157 	/* Unscale the window into a 32-bit value. */
1158 	if ((tiflags & TH_SYN) == 0)
1159 		tiwin = th->th_win << tp->snd_scale;
1160 	else
1161 		tiwin = th->th_win;
1162 
1163 #ifdef INET6
1164 	/* save packet options if user wanted */
1165 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1166 		if (in6p->in6p_options) {
1167 			m_freem(in6p->in6p_options);
1168 			in6p->in6p_options = 0;
1169 		}
1170 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1171 	}
1172 #endif
1173 
1174 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1175 		union syn_cache_sa src;
1176 		union syn_cache_sa dst;
1177 
1178 		bzero(&src, sizeof(src));
1179 		bzero(&dst, sizeof(dst));
1180 		switch (af) {
1181 #ifdef INET
1182 		case AF_INET:
1183 			src.sin.sin_len = sizeof(struct sockaddr_in);
1184 			src.sin.sin_family = AF_INET;
1185 			src.sin.sin_addr = ip->ip_src;
1186 			src.sin.sin_port = th->th_sport;
1187 
1188 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1189 			dst.sin.sin_family = AF_INET;
1190 			dst.sin.sin_addr = ip->ip_dst;
1191 			dst.sin.sin_port = th->th_dport;
1192 			break;
1193 #endif
1194 #ifdef INET6
1195 		case AF_INET6:
1196 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1197 			src.sin6.sin6_family = AF_INET6;
1198 			src.sin6.sin6_addr = ip6->ip6_src;
1199 			src.sin6.sin6_port = th->th_sport;
1200 
1201 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1202 			dst.sin6.sin6_family = AF_INET6;
1203 			dst.sin6.sin6_addr = ip6->ip6_dst;
1204 			dst.sin6.sin6_port = th->th_dport;
1205 			break;
1206 #endif /* INET6 */
1207 		default:
1208 			goto badsyn;	/*sanity*/
1209 		}
1210 
1211 		if (so->so_options & SO_DEBUG) {
1212 #ifdef TCP_DEBUG
1213 			ostate = tp->t_state;
1214 #endif
1215 
1216 			tcp_saveti = NULL;
1217 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1218 				goto nosave;
1219 
1220 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1221 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1222 				if (!tcp_saveti)
1223 					goto nosave;
1224 			} else {
1225 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1226 				if (!tcp_saveti)
1227 					goto nosave;
1228 				MCLAIM(m, &tcp_mowner);
1229 				tcp_saveti->m_len = iphlen;
1230 				m_copydata(m, 0, iphlen,
1231 				    mtod(tcp_saveti, caddr_t));
1232 			}
1233 
1234 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1235 				m_freem(tcp_saveti);
1236 				tcp_saveti = NULL;
1237 			} else {
1238 				tcp_saveti->m_len += sizeof(struct tcphdr);
1239 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1240 				    sizeof(struct tcphdr));
1241 			}
1242 	nosave:;
1243 		}
1244 		if (so->so_options & SO_ACCEPTCONN) {
1245 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1246 				if (tiflags & TH_RST) {
1247 					syn_cache_reset(&src.sa, &dst.sa, th);
1248 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1249 				    (TH_ACK|TH_SYN)) {
1250 					/*
1251 					 * Received a SYN,ACK.  This should
1252 					 * never happen while we are in
1253 					 * LISTEN.  Send an RST.
1254 					 */
1255 					goto badsyn;
1256 				} else if (tiflags & TH_ACK) {
1257 					so = syn_cache_get(&src.sa, &dst.sa,
1258 						th, toff, tlen, so, m);
1259 					if (so == NULL) {
1260 						/*
1261 						 * We don't have a SYN for
1262 						 * this ACK; send an RST.
1263 						 */
1264 						goto badsyn;
1265 					} else if (so ==
1266 					    (struct socket *)(-1)) {
1267 						/*
1268 						 * We were unable to create
1269 						 * the connection.  If the
1270 						 * 3-way handshake was
1271 						 * completed, and RST has
1272 						 * been sent to the peer.
1273 						 * Since the mbuf might be
1274 						 * in use for the reply,
1275 						 * do not free it.
1276 						 */
1277 						m = NULL;
1278 					} else {
1279 						/*
1280 						 * We have created a
1281 						 * full-blown connection.
1282 						 */
1283 						tp = NULL;
1284 						inp = NULL;
1285 #ifdef INET6
1286 						in6p = NULL;
1287 #endif
1288 						switch (so->so_proto->pr_domain->dom_family) {
1289 #ifdef INET
1290 						case AF_INET:
1291 							inp = sotoinpcb(so);
1292 							tp = intotcpcb(inp);
1293 							break;
1294 #endif
1295 #ifdef INET6
1296 						case AF_INET6:
1297 							in6p = sotoin6pcb(so);
1298 							tp = in6totcpcb(in6p);
1299 							break;
1300 #endif
1301 						}
1302 						if (tp == NULL)
1303 							goto badsyn;	/*XXX*/
1304 						tiwin <<= tp->snd_scale;
1305 						goto after_listen;
1306 					}
1307 				} else {
1308 					/*
1309 					 * None of RST, SYN or ACK was set.
1310 					 * This is an invalid packet for a
1311 					 * TCB in LISTEN state.  Send a RST.
1312 					 */
1313 					goto badsyn;
1314 				}
1315 			} else {
1316 				/*
1317 				 * Received a SYN.
1318 				 */
1319 
1320 #ifdef INET6
1321 				/*
1322 				 * If deprecated address is forbidden, we do
1323 				 * not accept SYN to deprecated interface
1324 				 * address to prevent any new inbound
1325 				 * connection from getting established.
1326 				 * When we do not accept SYN, we send a TCP
1327 				 * RST, with deprecated source address (instead
1328 				 * of dropping it).  We compromise it as it is
1329 				 * much better for peer to send a RST, and
1330 				 * RST will be the final packet for the
1331 				 * exchange.
1332 				 *
1333 				 * If we do not forbid deprecated addresses, we
1334 				 * accept the SYN packet.  RFC2462 does not
1335 				 * suggest dropping SYN in this case.
1336 				 * If we decipher RFC2462 5.5.4, it says like
1337 				 * this:
1338 				 * 1. use of deprecated addr with existing
1339 				 *    communication is okay - "SHOULD continue
1340 				 *    to be used"
1341 				 * 2. use of it with new communication:
1342 				 *   (2a) "SHOULD NOT be used if alternate
1343 				 *        address with sufficient scope is
1344 				 *        available"
1345 				 *   (2b) nothing mentioned otherwise.
1346 				 * Here we fall into (2b) case as we have no
1347 				 * choice in our source address selection - we
1348 				 * must obey the peer.
1349 				 *
1350 				 * The wording in RFC2462 is confusing, and
1351 				 * there are multiple description text for
1352 				 * deprecated address handling - worse, they
1353 				 * are not exactly the same.  I believe 5.5.4
1354 				 * is the best one, so we follow 5.5.4.
1355 				 */
1356 				if (af == AF_INET6 && !ip6_use_deprecated) {
1357 					struct in6_ifaddr *ia6;
1358 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1359 					    &ip6->ip6_dst)) &&
1360 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1361 						tp = NULL;
1362 						goto dropwithreset;
1363 					}
1364 				}
1365 #endif
1366 
1367 #ifdef IPSEC
1368 				switch (af) {
1369 #ifdef INET
1370 				case AF_INET:
1371 					if (ipsec4_in_reject_so(m, so)) {
1372 						ipsecstat.in_polvio++;
1373 						tp = NULL;
1374 						goto dropwithreset;
1375 					}
1376 					break;
1377 #endif
1378 #ifdef INET6
1379 				case AF_INET6:
1380 					if (ipsec6_in_reject_so(m, so)) {
1381 						ipsec6stat.in_polvio++;
1382 						tp = NULL;
1383 						goto dropwithreset;
1384 					}
1385 					break;
1386 #endif
1387 				}
1388 #endif
1389 
1390 				/*
1391 				 * LISTEN socket received a SYN
1392 				 * from itself?  This can't possibly
1393 				 * be valid; drop the packet.
1394 				 */
1395 				if (th->th_sport == th->th_dport) {
1396 					int i;
1397 
1398 					switch (af) {
1399 #ifdef INET
1400 					case AF_INET:
1401 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1402 						break;
1403 #endif
1404 #ifdef INET6
1405 					case AF_INET6:
1406 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1407 						break;
1408 #endif
1409 					default:
1410 						i = 1;
1411 					}
1412 					if (i) {
1413 						tcpstat.tcps_badsyn++;
1414 						goto drop;
1415 					}
1416 				}
1417 
1418 				/*
1419 				 * SYN looks ok; create compressed TCP
1420 				 * state for it.
1421 				 */
1422 				if (so->so_qlen <= so->so_qlimit &&
1423 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1424 						so, m, optp, optlen, &opti))
1425 					m = NULL;
1426 			}
1427 			goto drop;
1428 		}
1429 	}
1430 
1431 after_listen:
1432 #ifdef DIAGNOSTIC
1433 	/*
1434 	 * Should not happen now that all embryonic connections
1435 	 * are handled with compressed state.
1436 	 */
1437 	if (tp->t_state == TCPS_LISTEN)
1438 		panic("tcp_input: TCPS_LISTEN");
1439 #endif
1440 
1441 	/*
1442 	 * Segment received on connection.
1443 	 * Reset idle time and keep-alive timer.
1444 	 */
1445 	tp->t_rcvtime = tcp_now;
1446 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1447 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1448 
1449 	/*
1450 	 * Process options.
1451 	 */
1452 #ifdef TCP_SIGNATURE
1453 	if (optp || (tp->t_flags & TF_SIGNATURE))
1454 #else
1455 	if (optp)
1456 #endif
1457 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1458 			goto drop;
1459 
1460 	/*
1461 	 * Header prediction: check for the two common cases
1462 	 * of a uni-directional data xfer.  If the packet has
1463 	 * no control flags, is in-sequence, the window didn't
1464 	 * change and we're not retransmitting, it's a
1465 	 * candidate.  If the length is zero and the ack moved
1466 	 * forward, we're the sender side of the xfer.  Just
1467 	 * free the data acked & wake any higher level process
1468 	 * that was blocked waiting for space.  If the length
1469 	 * is non-zero and the ack didn't move, we're the
1470 	 * receiver side.  If we're getting packets in-order
1471 	 * (the reassembly queue is empty), add the data to
1472 	 * the socket buffer and note that we need a delayed ack.
1473 	 */
1474 	if (tp->t_state == TCPS_ESTABLISHED &&
1475 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1476 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1477 	    th->th_seq == tp->rcv_nxt &&
1478 	    tiwin && tiwin == tp->snd_wnd &&
1479 	    tp->snd_nxt == tp->snd_max) {
1480 
1481 		/*
1482 		 * If last ACK falls within this segment's sequence numbers,
1483 		 *  record the timestamp.
1484 		 */
1485 		if (opti.ts_present &&
1486 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1487 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1488 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1489 			tp->ts_recent = opti.ts_val;
1490 		}
1491 
1492 		if (tlen == 0) {
1493 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1494 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1495 			    tp->snd_cwnd >= tp->snd_wnd &&
1496 			    tp->t_dupacks < tcprexmtthresh) {
1497 				/*
1498 				 * this is a pure ack for outstanding data.
1499 				 */
1500 				++tcpstat.tcps_predack;
1501 				if (opti.ts_present && opti.ts_ecr)
1502 					tcp_xmit_timer(tp,
1503 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1504 				else if (tp->t_rtttime &&
1505 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1506 					tcp_xmit_timer(tp,
1507 					  tcp_now - tp->t_rtttime);
1508 				acked = th->th_ack - tp->snd_una;
1509 				tcpstat.tcps_rcvackpack++;
1510 				tcpstat.tcps_rcvackbyte += acked;
1511 				ND6_HINT(tp);
1512 
1513 				if (acked > (tp->t_lastoff - tp->t_inoff))
1514 					tp->t_lastm = NULL;
1515 				sbdrop(&so->so_snd, acked);
1516 				tp->t_lastoff -= acked;
1517 
1518 				/*
1519 				 * We want snd_recover to track snd_una to
1520 				 * avoid sequence wraparound problems for
1521 				 * very large transfers.
1522 				 */
1523 				tp->snd_una = tp->snd_recover = th->th_ack;
1524 				m_freem(m);
1525 
1526 				/*
1527 				 * If all outstanding data are acked, stop
1528 				 * retransmit timer, otherwise restart timer
1529 				 * using current (possibly backed-off) value.
1530 				 * If process is waiting for space,
1531 				 * wakeup/selwakeup/signal.  If data
1532 				 * are ready to send, let tcp_output
1533 				 * decide between more output or persist.
1534 				 */
1535 				if (tp->snd_una == tp->snd_max)
1536 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1537 				else if (TCP_TIMER_ISARMED(tp,
1538 				    TCPT_PERSIST) == 0)
1539 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1540 					    tp->t_rxtcur);
1541 
1542 				sowwakeup(so);
1543 				if (so->so_snd.sb_cc)
1544 					(void) tcp_output(tp);
1545 				if (tcp_saveti)
1546 					m_freem(tcp_saveti);
1547 				return;
1548 			}
1549 		} else if (th->th_ack == tp->snd_una &&
1550 		    TAILQ_FIRST(&tp->segq) == NULL &&
1551 		    tlen <= sbspace(&so->so_rcv)) {
1552 			/*
1553 			 * this is a pure, in-sequence data packet
1554 			 * with nothing on the reassembly queue and
1555 			 * we have enough buffer space to take it.
1556 			 */
1557 			++tcpstat.tcps_preddat;
1558 			tp->rcv_nxt += tlen;
1559 			tcpstat.tcps_rcvpack++;
1560 			tcpstat.tcps_rcvbyte += tlen;
1561 			ND6_HINT(tp);
1562 			/*
1563 			 * Drop TCP, IP headers and TCP options then add data
1564 			 * to socket buffer.
1565 			 */
1566 			if (so->so_state & SS_CANTRCVMORE)
1567 				m_freem(m);
1568 			else {
1569 				m_adj(m, toff + off);
1570 				sbappendstream(&so->so_rcv, m);
1571 			}
1572 			sorwakeup(so);
1573 			TCP_SETUP_ACK(tp, th);
1574 			if (tp->t_flags & TF_ACKNOW)
1575 				(void) tcp_output(tp);
1576 			if (tcp_saveti)
1577 				m_freem(tcp_saveti);
1578 			return;
1579 		}
1580 	}
1581 
1582 	/*
1583 	 * Compute mbuf offset to TCP data segment.
1584 	 */
1585 	hdroptlen = toff + off;
1586 
1587 	/*
1588 	 * Calculate amount of space in receive window,
1589 	 * and then do TCP input processing.
1590 	 * Receive window is amount of space in rcv queue,
1591 	 * but not less than advertised window.
1592 	 */
1593 	{ int win;
1594 
1595 	win = sbspace(&so->so_rcv);
1596 	if (win < 0)
1597 		win = 0;
1598 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1599 	}
1600 
1601 	switch (tp->t_state) {
1602 	case TCPS_LISTEN:
1603 		/*
1604 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1605 		 */
1606 		if (m->m_flags & (M_BCAST|M_MCAST))
1607 			goto drop;
1608 		switch (af) {
1609 #ifdef INET6
1610 		case AF_INET6:
1611 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1612 				goto drop;
1613 			break;
1614 #endif /* INET6 */
1615 		case AF_INET:
1616 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1617 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1618 				goto drop;
1619 			break;
1620 		}
1621 		break;
1622 
1623 	/*
1624 	 * If the state is SYN_SENT:
1625 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1626 	 *	if seg contains a RST, then drop the connection.
1627 	 *	if seg does not contain SYN, then drop it.
1628 	 * Otherwise this is an acceptable SYN segment
1629 	 *	initialize tp->rcv_nxt and tp->irs
1630 	 *	if seg contains ack then advance tp->snd_una
1631 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1632 	 *	arrange for segment to be acked (eventually)
1633 	 *	continue processing rest of data/controls, beginning with URG
1634 	 */
1635 	case TCPS_SYN_SENT:
1636 		if ((tiflags & TH_ACK) &&
1637 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1638 		     SEQ_GT(th->th_ack, tp->snd_max)))
1639 			goto dropwithreset;
1640 		if (tiflags & TH_RST) {
1641 			if (tiflags & TH_ACK)
1642 				tp = tcp_drop(tp, ECONNREFUSED);
1643 			goto drop;
1644 		}
1645 		if ((tiflags & TH_SYN) == 0)
1646 			goto drop;
1647 		if (tiflags & TH_ACK) {
1648 			tp->snd_una = tp->snd_recover = th->th_ack;
1649 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1650 				tp->snd_nxt = tp->snd_una;
1651 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1652 		}
1653 		tp->irs = th->th_seq;
1654 		tcp_rcvseqinit(tp);
1655 		tp->t_flags |= TF_ACKNOW;
1656 		tcp_mss_from_peer(tp, opti.maxseg);
1657 
1658 		/*
1659 		 * Initialize the initial congestion window.  If we
1660 		 * had to retransmit the SYN, we must initialize cwnd
1661 		 * to 1 segment (i.e. the Loss Window).
1662 		 */
1663 		if (tp->t_flags & TF_SYN_REXMT)
1664 			tp->snd_cwnd = tp->t_peermss;
1665 		else {
1666 			int ss = tcp_init_win;
1667 #ifdef INET
1668 			if (inp != NULL && in_localaddr(inp->inp_faddr))
1669 				ss = tcp_init_win_local;
1670 #endif
1671 #ifdef INET6
1672 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1673 				ss = tcp_init_win_local;
1674 #endif
1675 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1676 		}
1677 
1678 		tcp_rmx_rtt(tp);
1679 		if (tiflags & TH_ACK) {
1680 			tcpstat.tcps_connects++;
1681 			soisconnected(so);
1682 			tcp_established(tp);
1683 			/* Do window scaling on this connection? */
1684 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1685 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1686 				tp->snd_scale = tp->requested_s_scale;
1687 				tp->rcv_scale = tp->request_r_scale;
1688 			}
1689 			TCP_REASS_LOCK(tp);
1690 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1691 			TCP_REASS_UNLOCK(tp);
1692 			/*
1693 			 * if we didn't have to retransmit the SYN,
1694 			 * use its rtt as our initial srtt & rtt var.
1695 			 */
1696 			if (tp->t_rtttime)
1697 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1698 		} else
1699 			tp->t_state = TCPS_SYN_RECEIVED;
1700 
1701 		/*
1702 		 * Advance th->th_seq to correspond to first data byte.
1703 		 * If data, trim to stay within window,
1704 		 * dropping FIN if necessary.
1705 		 */
1706 		th->th_seq++;
1707 		if (tlen > tp->rcv_wnd) {
1708 			todrop = tlen - tp->rcv_wnd;
1709 			m_adj(m, -todrop);
1710 			tlen = tp->rcv_wnd;
1711 			tiflags &= ~TH_FIN;
1712 			tcpstat.tcps_rcvpackafterwin++;
1713 			tcpstat.tcps_rcvbyteafterwin += todrop;
1714 		}
1715 		tp->snd_wl1 = th->th_seq - 1;
1716 		tp->rcv_up = th->th_seq;
1717 		goto step6;
1718 
1719 	/*
1720 	 * If the state is SYN_RECEIVED:
1721 	 *	If seg contains an ACK, but not for our SYN, drop the input
1722 	 *	and generate an RST.  See page 36, rfc793
1723 	 */
1724 	case TCPS_SYN_RECEIVED:
1725 		if ((tiflags & TH_ACK) &&
1726 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1727 		     SEQ_GT(th->th_ack, tp->snd_max)))
1728 			goto dropwithreset;
1729 		break;
1730 	}
1731 
1732 	/*
1733 	 * States other than LISTEN or SYN_SENT.
1734 	 * First check timestamp, if present.
1735 	 * Then check that at least some bytes of segment are within
1736 	 * receive window.  If segment begins before rcv_nxt,
1737 	 * drop leading data (and SYN); if nothing left, just ack.
1738 	 *
1739 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1740 	 * and it's less than ts_recent, drop it.
1741 	 */
1742 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1743 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1744 
1745 		/* Check to see if ts_recent is over 24 days old.  */
1746 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1747 		    TCP_PAWS_IDLE) {
1748 			/*
1749 			 * Invalidate ts_recent.  If this segment updates
1750 			 * ts_recent, the age will be reset later and ts_recent
1751 			 * will get a valid value.  If it does not, setting
1752 			 * ts_recent to zero will at least satisfy the
1753 			 * requirement that zero be placed in the timestamp
1754 			 * echo reply when ts_recent isn't valid.  The
1755 			 * age isn't reset until we get a valid ts_recent
1756 			 * because we don't want out-of-order segments to be
1757 			 * dropped when ts_recent is old.
1758 			 */
1759 			tp->ts_recent = 0;
1760 		} else {
1761 			tcpstat.tcps_rcvduppack++;
1762 			tcpstat.tcps_rcvdupbyte += tlen;
1763 			tcpstat.tcps_pawsdrop++;
1764 			goto dropafterack;
1765 		}
1766 	}
1767 
1768 	todrop = tp->rcv_nxt - th->th_seq;
1769 	if (todrop > 0) {
1770 		if (tiflags & TH_SYN) {
1771 			tiflags &= ~TH_SYN;
1772 			th->th_seq++;
1773 			if (th->th_urp > 1)
1774 				th->th_urp--;
1775 			else {
1776 				tiflags &= ~TH_URG;
1777 				th->th_urp = 0;
1778 			}
1779 			todrop--;
1780 		}
1781 		if (todrop > tlen ||
1782 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1783 			/*
1784 			 * Any valid FIN or RST must be to the left of the
1785 			 * window.  At this point the FIN or RST must be a
1786 			 * duplicate or out of sequence; drop it.
1787 			 */
1788 			if (tiflags & TH_RST)
1789 				goto drop;
1790 			tiflags &= ~(TH_FIN|TH_RST);
1791 			/*
1792 			 * Send an ACK to resynchronize and drop any data.
1793 			 * But keep on processing for RST or ACK.
1794 			 */
1795 			tp->t_flags |= TF_ACKNOW;
1796 			todrop = tlen;
1797 			tcpstat.tcps_rcvdupbyte += todrop;
1798 			tcpstat.tcps_rcvduppack++;
1799 		} else if ((tiflags & TH_RST) &&
1800 			   th->th_seq != tp->last_ack_sent) {
1801 			/*
1802 			 * Test for reset before adjusting the sequence
1803 			 * number for overlapping data.
1804 			 */
1805 			goto dropafterack_ratelim;
1806 		} else {
1807 			tcpstat.tcps_rcvpartduppack++;
1808 			tcpstat.tcps_rcvpartdupbyte += todrop;
1809 		}
1810 		hdroptlen += todrop;	/*drop from head afterwards*/
1811 		th->th_seq += todrop;
1812 		tlen -= todrop;
1813 		if (th->th_urp > todrop)
1814 			th->th_urp -= todrop;
1815 		else {
1816 			tiflags &= ~TH_URG;
1817 			th->th_urp = 0;
1818 		}
1819 	}
1820 
1821 	/*
1822 	 * If new data are received on a connection after the
1823 	 * user processes are gone, then RST the other end.
1824 	 */
1825 	if ((so->so_state & SS_NOFDREF) &&
1826 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1827 		tp = tcp_close(tp);
1828 		tcpstat.tcps_rcvafterclose++;
1829 		goto dropwithreset;
1830 	}
1831 
1832 	/*
1833 	 * If segment ends after window, drop trailing data
1834 	 * (and PUSH and FIN); if nothing left, just ACK.
1835 	 */
1836 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1837 	if (todrop > 0) {
1838 		tcpstat.tcps_rcvpackafterwin++;
1839 		if (todrop >= tlen) {
1840 			/*
1841 			 * The segment actually starts after the window.
1842 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1843 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1844 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1845 			 */
1846 			tcpstat.tcps_rcvbyteafterwin += tlen;
1847 			/*
1848 			 * If a new connection request is received
1849 			 * while in TIME_WAIT, drop the old connection
1850 			 * and start over if the sequence numbers
1851 			 * are above the previous ones.
1852 			 *
1853 			 * NOTE: We will checksum the packet again, and
1854 			 * so we need to put the header fields back into
1855 			 * network order!
1856 			 * XXX This kind of sucks, but we don't expect
1857 			 * XXX this to happen very often, so maybe it
1858 			 * XXX doesn't matter so much.
1859 			 */
1860 			if (tiflags & TH_SYN &&
1861 			    tp->t_state == TCPS_TIME_WAIT &&
1862 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1863 				iss = tcp_new_iss(tp, tp->snd_nxt);
1864 				tp = tcp_close(tp);
1865 				TCP_FIELDS_TO_NET(th);
1866 				goto findpcb;
1867 			}
1868 			/*
1869 			 * If window is closed can only take segments at
1870 			 * window edge, and have to drop data and PUSH from
1871 			 * incoming segments.  Continue processing, but
1872 			 * remember to ack.  Otherwise, drop segment
1873 			 * and (if not RST) ack.
1874 			 */
1875 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1876 				tp->t_flags |= TF_ACKNOW;
1877 				tcpstat.tcps_rcvwinprobe++;
1878 			} else
1879 				goto dropafterack;
1880 		} else
1881 			tcpstat.tcps_rcvbyteafterwin += todrop;
1882 		m_adj(m, -todrop);
1883 		tlen -= todrop;
1884 		tiflags &= ~(TH_PUSH|TH_FIN);
1885 	}
1886 
1887 	/*
1888 	 * If last ACK falls within this segment's sequence numbers,
1889 	 * and the timestamp is newer, record it.
1890 	 */
1891 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1892 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1893 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1894 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1895 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1896 		tp->ts_recent = opti.ts_val;
1897 	}
1898 
1899 	/*
1900 	 * If the RST bit is set examine the state:
1901 	 *    SYN_RECEIVED STATE:
1902 	 *	If passive open, return to LISTEN state.
1903 	 *	If active open, inform user that connection was refused.
1904 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1905 	 *	Inform user that connection was reset, and close tcb.
1906 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1907 	 *	Close the tcb.
1908 	 */
1909 	if (tiflags & TH_RST) {
1910 		if (th->th_seq != tp->last_ack_sent)
1911 			goto dropafterack_ratelim;
1912 
1913 		switch (tp->t_state) {
1914 		case TCPS_SYN_RECEIVED:
1915 			so->so_error = ECONNREFUSED;
1916 			goto close;
1917 
1918 		case TCPS_ESTABLISHED:
1919 		case TCPS_FIN_WAIT_1:
1920 		case TCPS_FIN_WAIT_2:
1921 		case TCPS_CLOSE_WAIT:
1922 			so->so_error = ECONNRESET;
1923 		close:
1924 			tp->t_state = TCPS_CLOSED;
1925 			tcpstat.tcps_drops++;
1926 			tp = tcp_close(tp);
1927 			goto drop;
1928 
1929 		case TCPS_CLOSING:
1930 		case TCPS_LAST_ACK:
1931 		case TCPS_TIME_WAIT:
1932 			tp = tcp_close(tp);
1933 			goto drop;
1934 		}
1935 	}
1936 
1937 	/*
1938 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1939 	 * we must be in a synchronized state.  RFC791 states (under RST
1940 	 * generation) that any unacceptable segment (an out-of-order SYN
1941 	 * qualifies) received in a synchronized state must elicit only an
1942 	 * empty acknowledgment segment ... and the connection remains in
1943 	 * the same state.
1944 	 */
1945 	if (tiflags & TH_SYN) {
1946 		if (tp->rcv_nxt == th->th_seq) {
1947 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1948 			    TH_ACK);
1949 			if (tcp_saveti)
1950 				m_freem(tcp_saveti);
1951 			return;
1952 		}
1953 
1954 		goto dropafterack_ratelim;
1955 	}
1956 
1957 	/*
1958 	 * If the ACK bit is off we drop the segment and return.
1959 	 */
1960 	if ((tiflags & TH_ACK) == 0) {
1961 		if (tp->t_flags & TF_ACKNOW)
1962 			goto dropafterack;
1963 		else
1964 			goto drop;
1965 	}
1966 
1967 	/*
1968 	 * Ack processing.
1969 	 */
1970 	switch (tp->t_state) {
1971 
1972 	/*
1973 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1974 	 * ESTABLISHED state and continue processing, otherwise
1975 	 * send an RST.
1976 	 */
1977 	case TCPS_SYN_RECEIVED:
1978 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1979 		    SEQ_GT(th->th_ack, tp->snd_max))
1980 			goto dropwithreset;
1981 		tcpstat.tcps_connects++;
1982 		soisconnected(so);
1983 		tcp_established(tp);
1984 		/* Do window scaling? */
1985 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1986 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1987 			tp->snd_scale = tp->requested_s_scale;
1988 			tp->rcv_scale = tp->request_r_scale;
1989 		}
1990 		TCP_REASS_LOCK(tp);
1991 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1992 		TCP_REASS_UNLOCK(tp);
1993 		tp->snd_wl1 = th->th_seq - 1;
1994 		/* fall into ... */
1995 
1996 	/*
1997 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1998 	 * ACKs.  If the ack is in the range
1999 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2000 	 * then advance tp->snd_una to th->th_ack and drop
2001 	 * data from the retransmission queue.  If this ACK reflects
2002 	 * more up to date window information we update our window information.
2003 	 */
2004 	case TCPS_ESTABLISHED:
2005 	case TCPS_FIN_WAIT_1:
2006 	case TCPS_FIN_WAIT_2:
2007 	case TCPS_CLOSE_WAIT:
2008 	case TCPS_CLOSING:
2009 	case TCPS_LAST_ACK:
2010 	case TCPS_TIME_WAIT:
2011 
2012 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2013 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2014 				tcpstat.tcps_rcvdupack++;
2015 				/*
2016 				 * If we have outstanding data (other than
2017 				 * a window probe), this is a completely
2018 				 * duplicate ack (ie, window info didn't
2019 				 * change), the ack is the biggest we've
2020 				 * seen and we've seen exactly our rexmt
2021 				 * threshhold of them, assume a packet
2022 				 * has been dropped and retransmit it.
2023 				 * Kludge snd_nxt & the congestion
2024 				 * window so we send only this one
2025 				 * packet.
2026 				 *
2027 				 * We know we're losing at the current
2028 				 * window size so do congestion avoidance
2029 				 * (set ssthresh to half the current window
2030 				 * and pull our congestion window back to
2031 				 * the new ssthresh).
2032 				 *
2033 				 * Dup acks mean that packets have left the
2034 				 * network (they're now cached at the receiver)
2035 				 * so bump cwnd by the amount in the receiver
2036 				 * to keep a constant cwnd packets in the
2037 				 * network.
2038 				 */
2039 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2040 				    th->th_ack != tp->snd_una)
2041 					tp->t_dupacks = 0;
2042 				else if (++tp->t_dupacks == tcprexmtthresh) {
2043 					tcp_seq onxt = tp->snd_nxt;
2044 					u_int win =
2045 					    min(tp->snd_wnd, tp->snd_cwnd) /
2046 					    2 /	tp->t_segsz;
2047 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
2048 					    tp->snd_recover)) {
2049 						/*
2050 						 * False fast retransmit after
2051 						 * timeout.  Do not cut window.
2052 						 */
2053 						tp->snd_cwnd += tp->t_segsz;
2054 						tp->t_dupacks = 0;
2055 						(void) tcp_output(tp);
2056 						goto drop;
2057 					}
2058 
2059 					if (win < 2)
2060 						win = 2;
2061 					tp->snd_ssthresh = win * tp->t_segsz;
2062 					tp->snd_recover = tp->snd_max;
2063 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
2064 					tp->t_rtttime = 0;
2065 					tp->snd_nxt = th->th_ack;
2066 					tp->snd_cwnd = tp->t_segsz;
2067 					(void) tcp_output(tp);
2068 					tp->snd_cwnd = tp->snd_ssthresh +
2069 					       tp->t_segsz * tp->t_dupacks;
2070 					if (SEQ_GT(onxt, tp->snd_nxt))
2071 						tp->snd_nxt = onxt;
2072 					goto drop;
2073 				} else if (tp->t_dupacks > tcprexmtthresh) {
2074 					tp->snd_cwnd += tp->t_segsz;
2075 					(void) tcp_output(tp);
2076 					goto drop;
2077 				}
2078 			} else if (tlen) {
2079 				tp->t_dupacks = 0;	/*XXX*/
2080 				/* drop very old ACKs unless th_seq matches */
2081 				if (th->th_seq != tp->rcv_nxt &&
2082 				    SEQ_LT(th->th_ack,
2083 				    tp->snd_una - tp->max_sndwnd)) {
2084 					goto drop;
2085 				}
2086 				break;
2087 			} else
2088 				tp->t_dupacks = 0;
2089 			break;
2090 		}
2091 		/*
2092 		 * If the congestion window was inflated to account
2093 		 * for the other side's cached packets, retract it.
2094 		 */
2095 		if (tcp_do_newreno == 0) {
2096 			if (tp->t_dupacks >= tcprexmtthresh &&
2097 			    tp->snd_cwnd > tp->snd_ssthresh)
2098 				tp->snd_cwnd = tp->snd_ssthresh;
2099 			tp->t_dupacks = 0;
2100 		} else if (tp->t_dupacks >= tcprexmtthresh &&
2101 			   tcp_newreno(tp, th) == 0) {
2102 			tp->snd_cwnd = tp->snd_ssthresh;
2103 			/*
2104 			 * Window inflation should have left us with approx.
2105 			 * snd_ssthresh outstanding data.  But in case we
2106 			 * would be inclined to send a burst, better to do
2107 			 * it via the slow start mechanism.
2108 			 */
2109 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
2110 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
2111 				    + tp->t_segsz;
2112 			tp->t_dupacks = 0;
2113 		}
2114 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2115 			tcpstat.tcps_rcvacktoomuch++;
2116 			goto dropafterack;
2117 		}
2118 		acked = th->th_ack - tp->snd_una;
2119 		tcpstat.tcps_rcvackpack++;
2120 		tcpstat.tcps_rcvackbyte += acked;
2121 
2122 		/*
2123 		 * If we have a timestamp reply, update smoothed
2124 		 * round trip time.  If no timestamp is present but
2125 		 * transmit timer is running and timed sequence
2126 		 * number was acked, update smoothed round trip time.
2127 		 * Since we now have an rtt measurement, cancel the
2128 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2129 		 * Recompute the initial retransmit timer.
2130 		 */
2131 		if (opti.ts_present && opti.ts_ecr)
2132 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
2133 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2134 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2135 
2136 		/*
2137 		 * If all outstanding data is acked, stop retransmit
2138 		 * timer and remember to restart (more output or persist).
2139 		 * If there is more data to be acked, restart retransmit
2140 		 * timer, using current (possibly backed-off) value.
2141 		 */
2142 		if (th->th_ack == tp->snd_max) {
2143 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
2144 			needoutput = 1;
2145 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2146 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2147 		/*
2148 		 * When new data is acked, open the congestion window.
2149 		 * If the window gives us less than ssthresh packets
2150 		 * in flight, open exponentially (segsz per packet).
2151 		 * Otherwise open linearly: segsz per window
2152 		 * (segsz^2 / cwnd per packet), plus a constant
2153 		 * fraction of a packet (segsz/8) to help larger windows
2154 		 * open quickly enough.
2155 		 */
2156 		{
2157 		u_int cw = tp->snd_cwnd;
2158 		u_int incr = tp->t_segsz;
2159 
2160 		if (cw > tp->snd_ssthresh)
2161 			incr = incr * incr / cw;
2162 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
2163 			tp->snd_cwnd = min(cw + incr,
2164 			    TCP_MAXWIN << tp->snd_scale);
2165 		}
2166 		ND6_HINT(tp);
2167 		if (acked > so->so_snd.sb_cc) {
2168 			tp->snd_wnd -= so->so_snd.sb_cc;
2169 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2170 			ourfinisacked = 1;
2171 		} else {
2172 			if (acked > (tp->t_lastoff - tp->t_inoff))
2173 				tp->t_lastm = NULL;
2174 			sbdrop(&so->so_snd, acked);
2175 			tp->t_lastoff -= acked;
2176 			tp->snd_wnd -= acked;
2177 			ourfinisacked = 0;
2178 		}
2179 		sowwakeup(so);
2180 		/*
2181 		 * We want snd_recover to track snd_una to
2182 		 * avoid sequence wraparound problems for
2183 		 * very large transfers.
2184 		 */
2185 		tp->snd_una = tp->snd_recover = th->th_ack;
2186 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2187 			tp->snd_nxt = tp->snd_una;
2188 
2189 		switch (tp->t_state) {
2190 
2191 		/*
2192 		 * In FIN_WAIT_1 STATE in addition to the processing
2193 		 * for the ESTABLISHED state if our FIN is now acknowledged
2194 		 * then enter FIN_WAIT_2.
2195 		 */
2196 		case TCPS_FIN_WAIT_1:
2197 			if (ourfinisacked) {
2198 				/*
2199 				 * If we can't receive any more
2200 				 * data, then closing user can proceed.
2201 				 * Starting the timer is contrary to the
2202 				 * specification, but if we don't get a FIN
2203 				 * we'll hang forever.
2204 				 */
2205 				if (so->so_state & SS_CANTRCVMORE) {
2206 					soisdisconnected(so);
2207 					if (tcp_maxidle > 0)
2208 						TCP_TIMER_ARM(tp, TCPT_2MSL,
2209 						    tcp_maxidle);
2210 				}
2211 				tp->t_state = TCPS_FIN_WAIT_2;
2212 			}
2213 			break;
2214 
2215 	 	/*
2216 		 * In CLOSING STATE in addition to the processing for
2217 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2218 		 * then enter the TIME-WAIT state, otherwise ignore
2219 		 * the segment.
2220 		 */
2221 		case TCPS_CLOSING:
2222 			if (ourfinisacked) {
2223 				tp->t_state = TCPS_TIME_WAIT;
2224 				tcp_canceltimers(tp);
2225 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2226 				soisdisconnected(so);
2227 			}
2228 			break;
2229 
2230 		/*
2231 		 * In LAST_ACK, we may still be waiting for data to drain
2232 		 * and/or to be acked, as well as for the ack of our FIN.
2233 		 * If our FIN is now acknowledged, delete the TCB,
2234 		 * enter the closed state and return.
2235 		 */
2236 		case TCPS_LAST_ACK:
2237 			if (ourfinisacked) {
2238 				tp = tcp_close(tp);
2239 				goto drop;
2240 			}
2241 			break;
2242 
2243 		/*
2244 		 * In TIME_WAIT state the only thing that should arrive
2245 		 * is a retransmission of the remote FIN.  Acknowledge
2246 		 * it and restart the finack timer.
2247 		 */
2248 		case TCPS_TIME_WAIT:
2249 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2250 			goto dropafterack;
2251 		}
2252 	}
2253 
2254 step6:
2255 	/*
2256 	 * Update window information.
2257 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2258 	 */
2259 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2260 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2261 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2262 		/* keep track of pure window updates */
2263 		if (tlen == 0 &&
2264 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2265 			tcpstat.tcps_rcvwinupd++;
2266 		tp->snd_wnd = tiwin;
2267 		tp->snd_wl1 = th->th_seq;
2268 		tp->snd_wl2 = th->th_ack;
2269 		if (tp->snd_wnd > tp->max_sndwnd)
2270 			tp->max_sndwnd = tp->snd_wnd;
2271 		needoutput = 1;
2272 	}
2273 
2274 	/*
2275 	 * Process segments with URG.
2276 	 */
2277 	if ((tiflags & TH_URG) && th->th_urp &&
2278 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2279 		/*
2280 		 * This is a kludge, but if we receive and accept
2281 		 * random urgent pointers, we'll crash in
2282 		 * soreceive.  It's hard to imagine someone
2283 		 * actually wanting to send this much urgent data.
2284 		 */
2285 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2286 			th->th_urp = 0;			/* XXX */
2287 			tiflags &= ~TH_URG;		/* XXX */
2288 			goto dodata;			/* XXX */
2289 		}
2290 		/*
2291 		 * If this segment advances the known urgent pointer,
2292 		 * then mark the data stream.  This should not happen
2293 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2294 		 * a FIN has been received from the remote side.
2295 		 * In these states we ignore the URG.
2296 		 *
2297 		 * According to RFC961 (Assigned Protocols),
2298 		 * the urgent pointer points to the last octet
2299 		 * of urgent data.  We continue, however,
2300 		 * to consider it to indicate the first octet
2301 		 * of data past the urgent section as the original
2302 		 * spec states (in one of two places).
2303 		 */
2304 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2305 			tp->rcv_up = th->th_seq + th->th_urp;
2306 			so->so_oobmark = so->so_rcv.sb_cc +
2307 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2308 			if (so->so_oobmark == 0)
2309 				so->so_state |= SS_RCVATMARK;
2310 			sohasoutofband(so);
2311 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2312 		}
2313 		/*
2314 		 * Remove out of band data so doesn't get presented to user.
2315 		 * This can happen independent of advancing the URG pointer,
2316 		 * but if two URG's are pending at once, some out-of-band
2317 		 * data may creep in... ick.
2318 		 */
2319 		if (th->th_urp <= (u_int16_t) tlen
2320 #ifdef SO_OOBINLINE
2321 		     && (so->so_options & SO_OOBINLINE) == 0
2322 #endif
2323 		     )
2324 			tcp_pulloutofband(so, th, m, hdroptlen);
2325 	} else
2326 		/*
2327 		 * If no out of band data is expected,
2328 		 * pull receive urgent pointer along
2329 		 * with the receive window.
2330 		 */
2331 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2332 			tp->rcv_up = tp->rcv_nxt;
2333 dodata:							/* XXX */
2334 
2335 	/*
2336 	 * Process the segment text, merging it into the TCP sequencing queue,
2337 	 * and arranging for acknowledgement of receipt if necessary.
2338 	 * This process logically involves adjusting tp->rcv_wnd as data
2339 	 * is presented to the user (this happens in tcp_usrreq.c,
2340 	 * case PRU_RCVD).  If a FIN has already been received on this
2341 	 * connection then we just ignore the text.
2342 	 */
2343 	if ((tlen || (tiflags & TH_FIN)) &&
2344 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2345 		/*
2346 		 * Insert segment ti into reassembly queue of tcp with
2347 		 * control block tp.  Return TH_FIN if reassembly now includes
2348 		 * a segment with FIN.  The macro form does the common case
2349 		 * inline (segment is the next to be received on an
2350 		 * established connection, and the queue is empty),
2351 		 * avoiding linkage into and removal from the queue and
2352 		 * repetition of various conversions.
2353 		 * Set DELACK for segments received in order, but ack
2354 		 * immediately when segments are out of order
2355 		 * (so fast retransmit can work).
2356 		 */
2357 		/* NOTE: this was TCP_REASS() macro, but used only once */
2358 		TCP_REASS_LOCK(tp);
2359 		if (th->th_seq == tp->rcv_nxt &&
2360 		    TAILQ_FIRST(&tp->segq) == NULL &&
2361 		    tp->t_state == TCPS_ESTABLISHED) {
2362 			TCP_SETUP_ACK(tp, th);
2363 			tp->rcv_nxt += tlen;
2364 			tiflags = th->th_flags & TH_FIN;
2365 			tcpstat.tcps_rcvpack++;
2366 			tcpstat.tcps_rcvbyte += tlen;
2367 			ND6_HINT(tp);
2368 			if (so->so_state & SS_CANTRCVMORE)
2369 				m_freem(m);
2370 			else {
2371 				m_adj(m, hdroptlen);
2372 				sbappendstream(&(so)->so_rcv, m);
2373 			}
2374 			sorwakeup(so);
2375 		} else {
2376 			m_adj(m, hdroptlen);
2377 			tiflags = tcp_reass(tp, th, m, &tlen);
2378 			tp->t_flags |= TF_ACKNOW;
2379 		}
2380 		TCP_REASS_UNLOCK(tp);
2381 
2382 		/*
2383 		 * Note the amount of data that peer has sent into
2384 		 * our window, in order to estimate the sender's
2385 		 * buffer size.
2386 		 */
2387 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2388 	} else {
2389 		m_freem(m);
2390 		m = NULL;
2391 		tiflags &= ~TH_FIN;
2392 	}
2393 
2394 	/*
2395 	 * If FIN is received ACK the FIN and let the user know
2396 	 * that the connection is closing.  Ignore a FIN received before
2397 	 * the connection is fully established.
2398 	 */
2399 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2400 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2401 			socantrcvmore(so);
2402 			tp->t_flags |= TF_ACKNOW;
2403 			tp->rcv_nxt++;
2404 		}
2405 		switch (tp->t_state) {
2406 
2407 	 	/*
2408 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2409 		 */
2410 		case TCPS_ESTABLISHED:
2411 			tp->t_state = TCPS_CLOSE_WAIT;
2412 			break;
2413 
2414 	 	/*
2415 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2416 		 * enter the CLOSING state.
2417 		 */
2418 		case TCPS_FIN_WAIT_1:
2419 			tp->t_state = TCPS_CLOSING;
2420 			break;
2421 
2422 	 	/*
2423 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2424 		 * starting the time-wait timer, turning off the other
2425 		 * standard timers.
2426 		 */
2427 		case TCPS_FIN_WAIT_2:
2428 			tp->t_state = TCPS_TIME_WAIT;
2429 			tcp_canceltimers(tp);
2430 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2431 			soisdisconnected(so);
2432 			break;
2433 
2434 		/*
2435 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2436 		 */
2437 		case TCPS_TIME_WAIT:
2438 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2439 			break;
2440 		}
2441 	}
2442 #ifdef TCP_DEBUG
2443 	if (so->so_options & SO_DEBUG)
2444 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2445 #endif
2446 
2447 	/*
2448 	 * Return any desired output.
2449 	 */
2450 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2451 		(void) tcp_output(tp);
2452 	if (tcp_saveti)
2453 		m_freem(tcp_saveti);
2454 	return;
2455 
2456 badsyn:
2457 	/*
2458 	 * Received a bad SYN.  Increment counters and dropwithreset.
2459 	 */
2460 	tcpstat.tcps_badsyn++;
2461 	tp = NULL;
2462 	goto dropwithreset;
2463 
2464 dropafterack:
2465 	/*
2466 	 * Generate an ACK dropping incoming segment if it occupies
2467 	 * sequence space, where the ACK reflects our state.
2468 	 */
2469 	if (tiflags & TH_RST)
2470 		goto drop;
2471 	goto dropafterack2;
2472 
2473 dropafterack_ratelim:
2474 	/*
2475 	 * We may want to rate-limit ACKs against SYN/RST attack.
2476 	 */
2477 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2478 	    tcp_ackdrop_ppslim) == 0) {
2479 		/* XXX stat */
2480 		goto drop;
2481 	}
2482 	/* ...fall into dropafterack2... */
2483 
2484 dropafterack2:
2485 	m_freem(m);
2486 	tp->t_flags |= TF_ACKNOW;
2487 	(void) tcp_output(tp);
2488 	if (tcp_saveti)
2489 		m_freem(tcp_saveti);
2490 	return;
2491 
2492 dropwithreset_ratelim:
2493 	/*
2494 	 * We may want to rate-limit RSTs in certain situations,
2495 	 * particularly if we are sending an RST in response to
2496 	 * an attempt to connect to or otherwise communicate with
2497 	 * a port for which we have no socket.
2498 	 */
2499 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2500 	    tcp_rst_ppslim) == 0) {
2501 		/* XXX stat */
2502 		goto drop;
2503 	}
2504 	/* ...fall into dropwithreset... */
2505 
2506 dropwithreset:
2507 	/*
2508 	 * Generate a RST, dropping incoming segment.
2509 	 * Make ACK acceptable to originator of segment.
2510 	 */
2511 	if (tiflags & TH_RST)
2512 		goto drop;
2513 
2514 	switch (af) {
2515 #ifdef INET6
2516 	case AF_INET6:
2517 		/* For following calls to tcp_respond */
2518 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2519 			goto drop;
2520 		break;
2521 #endif /* INET6 */
2522 	case AF_INET:
2523 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2524 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2525 			goto drop;
2526 	}
2527 
2528 	if (tiflags & TH_ACK)
2529 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2530 	else {
2531 		if (tiflags & TH_SYN)
2532 			tlen++;
2533 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2534 		    TH_RST|TH_ACK);
2535 	}
2536 	if (tcp_saveti)
2537 		m_freem(tcp_saveti);
2538 	return;
2539 
2540 badcsum:
2541 	tcpstat.tcps_rcvbadsum++;
2542 drop:
2543 	/*
2544 	 * Drop space held by incoming segment and return.
2545 	 */
2546 	if (tp) {
2547 		if (tp->t_inpcb)
2548 			so = tp->t_inpcb->inp_socket;
2549 #ifdef INET6
2550 		else if (tp->t_in6pcb)
2551 			so = tp->t_in6pcb->in6p_socket;
2552 #endif
2553 		else
2554 			so = NULL;
2555 #ifdef TCP_DEBUG
2556 		if (so && (so->so_options & SO_DEBUG) != 0)
2557 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2558 #endif
2559 	}
2560 	if (tcp_saveti)
2561 		m_freem(tcp_saveti);
2562 	m_freem(m);
2563 	return;
2564 }
2565 
2566 #ifdef TCP_SIGNATURE
2567 int
2568 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2569 {
2570 
2571 	MD5Update(fstate, (u_char *)data, len);
2572 	return (0);
2573 }
2574 
2575 struct secasvar *
2576 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2577 {
2578 	struct secasvar *sav;
2579 #ifdef FAST_IPSEC
2580 	union sockaddr_union dst;
2581 #endif
2582 	struct ip *ip;
2583 	struct ip6_hdr *ip6;
2584 
2585 	ip = mtod(m, struct ip *);
2586 	switch (ip->ip_v) {
2587 	case 4:
2588 		ip = mtod(m, struct ip *);
2589 		ip6 = NULL;
2590 		break;
2591 	case 6:
2592 		ip = NULL;
2593 		ip6 = mtod(m, struct ip6_hdr *);
2594 		break;
2595 	default:
2596 		return (NULL);
2597 	}
2598 
2599 #ifdef FAST_IPSEC
2600 	/* Extract the destination from the IP header in the mbuf. */
2601 	bzero(&dst, sizeof(union sockaddr_union));
2602 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2603 	dst.sa.sa_family = AF_INET;
2604 	dst.sin.sin_addr = ip->ip_dst;
2605 
2606 	/*
2607 	 * Look up an SADB entry which matches the address of the peer.
2608 	 */
2609 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2610 #else
2611 	if (ip)
2612 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2613 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2614 		    htonl(TCP_SIG_SPI));
2615 	else
2616 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2617 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2618 		    htonl(TCP_SIG_SPI));
2619 #endif
2620 
2621 	return (sav);	/* freesav must be performed by caller */
2622 }
2623 
2624 int
2625 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2626     struct secasvar *sav, char *sig)
2627 {
2628 	MD5_CTX ctx;
2629 	struct ip *ip;
2630 	struct ipovly *ipovly;
2631 	struct ip6_hdr *ip6;
2632 	struct ippseudo ippseudo;
2633 	struct ip6_hdr_pseudo ip6pseudo;
2634 	struct tcphdr th0;
2635 	int l, tcphdrlen;
2636 
2637 	if (sav == NULL)
2638 		return (-1);
2639 
2640 	tcphdrlen = th->th_off * 4;
2641 
2642 	switch (mtod(m, struct ip *)->ip_v) {
2643 	case 4:
2644 		ip = mtod(m, struct ip *);
2645 		ip6 = NULL;
2646 		break;
2647 	case 6:
2648 		ip = NULL;
2649 		ip6 = mtod(m, struct ip6_hdr *);
2650 		break;
2651 	default:
2652 		return (-1);
2653 	}
2654 
2655 	MD5Init(&ctx);
2656 
2657 	if (ip) {
2658 		memset(&ippseudo, 0, sizeof(ippseudo));
2659 		ipovly = (struct ipovly *)ip;
2660 		ippseudo.ippseudo_src = ipovly->ih_src;
2661 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2662 		ippseudo.ippseudo_pad = 0;
2663 		ippseudo.ippseudo_p = IPPROTO_TCP;
2664 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2665 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2666 	} else {
2667 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2668 		ip6pseudo.ip6ph_src = ip6->ip6_src;
2669 		in6_clearscope(&ip6pseudo.ip6ph_src);
2670 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2671 		in6_clearscope(&ip6pseudo.ip6ph_dst);
2672 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2673 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2674 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2675 	}
2676 
2677 	th0 = *th;
2678 	th0.th_sum = 0;
2679 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
2680 
2681 	l = m->m_pkthdr.len - thoff - tcphdrlen;
2682 	if (l > 0)
2683 		m_apply(m, thoff + tcphdrlen,
2684 		    m->m_pkthdr.len - thoff - tcphdrlen,
2685 		    tcp_signature_apply, &ctx);
2686 
2687 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2688 	MD5Final(sig, &ctx);
2689 
2690 	return (0);
2691 }
2692 #endif
2693 
2694 int
2695 tcp_dooptions(tp, cp, cnt, th, m, toff, oi)
2696 	struct tcpcb *tp;
2697 	u_char *cp;
2698 	int cnt;
2699 	struct tcphdr *th;
2700 	struct mbuf *m;
2701 	int toff;
2702 	struct tcp_opt_info *oi;
2703 {
2704 	u_int16_t mss;
2705 	int opt, optlen = 0;
2706 #ifdef TCP_SIGNATURE
2707 	caddr_t sigp = NULL;
2708 	char sigbuf[TCP_SIGLEN];
2709 	struct secasvar *sav = NULL;
2710 #endif
2711 
2712 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2713 		opt = cp[0];
2714 		if (opt == TCPOPT_EOL)
2715 			break;
2716 		if (opt == TCPOPT_NOP)
2717 			optlen = 1;
2718 		else {
2719 			if (cnt < 2)
2720 				break;
2721 			optlen = cp[1];
2722 			if (optlen < 2 || optlen > cnt)
2723 				break;
2724 		}
2725 		switch (opt) {
2726 
2727 		default:
2728 			continue;
2729 
2730 		case TCPOPT_MAXSEG:
2731 			if (optlen != TCPOLEN_MAXSEG)
2732 				continue;
2733 			if (!(th->th_flags & TH_SYN))
2734 				continue;
2735 			bcopy(cp + 2, &mss, sizeof(mss));
2736 			oi->maxseg = ntohs(mss);
2737 			break;
2738 
2739 		case TCPOPT_WINDOW:
2740 			if (optlen != TCPOLEN_WINDOW)
2741 				continue;
2742 			if (!(th->th_flags & TH_SYN))
2743 				continue;
2744 			tp->t_flags |= TF_RCVD_SCALE;
2745 			tp->requested_s_scale = cp[2];
2746 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2747 #if 0	/*XXX*/
2748 				char *p;
2749 
2750 				if (ip)
2751 					p = ntohl(ip->ip_src);
2752 #ifdef INET6
2753 				else if (ip6)
2754 					p = ip6_sprintf(&ip6->ip6_src);
2755 #endif
2756 				else
2757 					p = "(unknown)";
2758 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2759 				    "assuming %d\n",
2760 				    tp->requested_s_scale, p,
2761 				    TCP_MAX_WINSHIFT);
2762 #else
2763 				log(LOG_ERR, "TCP: invalid wscale %d, "
2764 				    "assuming %d\n",
2765 				    tp->requested_s_scale,
2766 				    TCP_MAX_WINSHIFT);
2767 #endif
2768 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2769 			}
2770 			break;
2771 
2772 		case TCPOPT_TIMESTAMP:
2773 			if (optlen != TCPOLEN_TIMESTAMP)
2774 				continue;
2775 			oi->ts_present = 1;
2776 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2777 			NTOHL(oi->ts_val);
2778 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2779 			NTOHL(oi->ts_ecr);
2780 
2781 			/*
2782 			 * A timestamp received in a SYN makes
2783 			 * it ok to send timestamp requests and replies.
2784 			 */
2785 			if (th->th_flags & TH_SYN) {
2786 				tp->t_flags |= TF_RCVD_TSTMP;
2787 				tp->ts_recent = oi->ts_val;
2788 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2789 			}
2790 			break;
2791 		case TCPOPT_SACK_PERMITTED:
2792 			if (optlen != TCPOLEN_SACK_PERMITTED)
2793 				continue;
2794 			if (!(th->th_flags & TH_SYN))
2795 				continue;
2796 			tp->t_flags &= ~TF_CANT_TXSACK;
2797 			break;
2798 
2799 		case TCPOPT_SACK:
2800 			if (tp->t_flags & TF_IGNR_RXSACK)
2801 				continue;
2802 			if (optlen % 8 != 2 || optlen < 10)
2803 				continue;
2804 			cp += 2;
2805 			optlen -= 2;
2806 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2807 				tcp_seq lwe, rwe;
2808 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2809 				NTOHL(lwe);
2810 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2811 				NTOHL(rwe);
2812 				/* tcp_mark_sacked(tp, lwe, rwe); */
2813 			}
2814 			break;
2815 #ifdef TCP_SIGNATURE
2816 		case TCPOPT_SIGNATURE:
2817 			if (optlen != TCPOLEN_SIGNATURE)
2818 				continue;
2819 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2820 				return (-1);
2821 
2822 			sigp = sigbuf;
2823 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2824 			memset(cp + 2, 0, TCP_SIGLEN);
2825 			tp->t_flags |= TF_SIGNATURE;
2826 			break;
2827 #endif
2828 		}
2829 	}
2830 
2831 #ifdef TCP_SIGNATURE
2832 	if (tp->t_flags & TF_SIGNATURE) {
2833 
2834 		sav = tcp_signature_getsav(m, th);
2835 
2836 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
2837 			return (-1);
2838 	}
2839 
2840 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2841 		if (sav == NULL)
2842 			return (-1);
2843 #ifdef FAST_IPSEC
2844 		KEY_FREESAV(&sav);
2845 #else
2846 		key_freesav(sav);
2847 #endif
2848 		return (-1);
2849 	}
2850 
2851 	if (sigp) {
2852 		char sig[TCP_SIGLEN];
2853 
2854 		TCP_FIELDS_TO_NET(th);
2855 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
2856 			TCP_FIELDS_TO_HOST(th);
2857 			if (sav == NULL)
2858 				return (-1);
2859 #ifdef FAST_IPSEC
2860 			KEY_FREESAV(&sav);
2861 #else
2862 			key_freesav(sav);
2863 #endif
2864 			return (-1);
2865 		}
2866 		TCP_FIELDS_TO_HOST(th);
2867 
2868 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
2869 			tcpstat.tcps_badsig++;
2870 			if (sav == NULL)
2871 				return (-1);
2872 #ifdef FAST_IPSEC
2873 			KEY_FREESAV(&sav);
2874 #else
2875 			key_freesav(sav);
2876 #endif
2877 			return (-1);
2878 		} else
2879 			tcpstat.tcps_goodsig++;
2880 
2881 		key_sa_recordxfer(sav, m);
2882 #ifdef FAST_IPSEC
2883 		KEY_FREESAV(&sav);
2884 #else
2885 		key_freesav(sav);
2886 #endif
2887 	}
2888 #endif
2889 
2890 	return (0);
2891 }
2892 
2893 /*
2894  * Pull out of band byte out of a segment so
2895  * it doesn't appear in the user's data queue.
2896  * It is still reflected in the segment length for
2897  * sequencing purposes.
2898  */
2899 void
2900 tcp_pulloutofband(so, th, m, off)
2901 	struct socket *so;
2902 	struct tcphdr *th;
2903 	struct mbuf *m;
2904 	int off;
2905 {
2906 	int cnt = off + th->th_urp - 1;
2907 
2908 	while (cnt >= 0) {
2909 		if (m->m_len > cnt) {
2910 			char *cp = mtod(m, caddr_t) + cnt;
2911 			struct tcpcb *tp = sototcpcb(so);
2912 
2913 			tp->t_iobc = *cp;
2914 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2915 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2916 			m->m_len--;
2917 			return;
2918 		}
2919 		cnt -= m->m_len;
2920 		m = m->m_next;
2921 		if (m == 0)
2922 			break;
2923 	}
2924 	panic("tcp_pulloutofband");
2925 }
2926 
2927 /*
2928  * Collect new round-trip time estimate
2929  * and update averages and current timeout.
2930  */
2931 void
2932 tcp_xmit_timer(tp, rtt)
2933 	struct tcpcb *tp;
2934 	uint32_t rtt;
2935 {
2936 	int32_t delta;
2937 
2938 	tcpstat.tcps_rttupdated++;
2939 	if (tp->t_srtt != 0) {
2940 		/*
2941 		 * srtt is stored as fixed point with 3 bits after the
2942 		 * binary point (i.e., scaled by 8).  The following magic
2943 		 * is equivalent to the smoothing algorithm in rfc793 with
2944 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2945 		 * point).  Adjust rtt to origin 0.
2946 		 */
2947 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2948 		if ((tp->t_srtt += delta) <= 0)
2949 			tp->t_srtt = 1 << 2;
2950 		/*
2951 		 * We accumulate a smoothed rtt variance (actually, a
2952 		 * smoothed mean difference), then set the retransmit
2953 		 * timer to smoothed rtt + 4 times the smoothed variance.
2954 		 * rttvar is stored as fixed point with 2 bits after the
2955 		 * binary point (scaled by 4).  The following is
2956 		 * equivalent to rfc793 smoothing with an alpha of .75
2957 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2958 		 * rfc793's wired-in beta.
2959 		 */
2960 		if (delta < 0)
2961 			delta = -delta;
2962 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2963 		if ((tp->t_rttvar += delta) <= 0)
2964 			tp->t_rttvar = 1 << 2;
2965 	} else {
2966 		/*
2967 		 * No rtt measurement yet - use the unsmoothed rtt.
2968 		 * Set the variance to half the rtt (so our first
2969 		 * retransmit happens at 3*rtt).
2970 		 */
2971 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2972 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2973 	}
2974 	tp->t_rtttime = 0;
2975 	tp->t_rxtshift = 0;
2976 
2977 	/*
2978 	 * the retransmit should happen at rtt + 4 * rttvar.
2979 	 * Because of the way we do the smoothing, srtt and rttvar
2980 	 * will each average +1/2 tick of bias.  When we compute
2981 	 * the retransmit timer, we want 1/2 tick of rounding and
2982 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2983 	 * firing of the timer.  The bias will give us exactly the
2984 	 * 1.5 tick we need.  But, because the bias is
2985 	 * statistical, we have to test that we don't drop below
2986 	 * the minimum feasible timer (which is 2 ticks).
2987 	 */
2988 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2989 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2990 
2991 	/*
2992 	 * We received an ack for a packet that wasn't retransmitted;
2993 	 * it is probably safe to discard any error indications we've
2994 	 * received recently.  This isn't quite right, but close enough
2995 	 * for now (a route might have failed after we sent a segment,
2996 	 * and the return path might not be symmetrical).
2997 	 */
2998 	tp->t_softerror = 0;
2999 }
3000 
3001 /*
3002  * Checks for partial ack.  If partial ack arrives, force the retransmission
3003  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3004  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
3005  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
3006  */
3007 int
3008 tcp_newreno(tp, th)
3009 	struct tcpcb *tp;
3010 	struct tcphdr *th;
3011 {
3012 	tcp_seq onxt = tp->snd_nxt;
3013 	u_long ocwnd = tp->snd_cwnd;
3014 
3015 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3016 		/*
3017 		 * snd_una has not yet been updated and the socket's send
3018 		 * buffer has not yet drained off the ACK'd data, so we
3019 		 * have to leave snd_una as it was to get the correct data
3020 		 * offset in tcp_output().
3021 		 */
3022 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3023 		tp->t_rtttime = 0;
3024 		tp->snd_nxt = th->th_ack;
3025 		/*
3026 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
3027 		 * is not yet updated when we're called.
3028 		 */
3029 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3030 		(void) tcp_output(tp);
3031 		tp->snd_cwnd = ocwnd;
3032 		if (SEQ_GT(onxt, tp->snd_nxt))
3033 			tp->snd_nxt = onxt;
3034 		/*
3035 		 * Partial window deflation.  Relies on fact that tp->snd_una
3036 		 * not updated yet.
3037 		 */
3038 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3039 		return 1;
3040 	}
3041 	return 0;
3042 }
3043 
3044 
3045 /*
3046  * TCP compressed state engine.  Currently used to hold compressed
3047  * state for SYN_RECEIVED.
3048  */
3049 
3050 u_long	syn_cache_count;
3051 u_int32_t syn_hash1, syn_hash2;
3052 
3053 #define SYN_HASH(sa, sp, dp) \
3054 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3055 				     ((u_int32_t)(sp)))^syn_hash2)))
3056 #ifndef INET6
3057 #define	SYN_HASHALL(hash, src, dst) \
3058 do {									\
3059 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3060 		((struct sockaddr_in *)(src))->sin_port,		\
3061 		((struct sockaddr_in *)(dst))->sin_port);		\
3062 } while (/*CONSTCOND*/ 0)
3063 #else
3064 #define SYN_HASH6(sa, sp, dp) \
3065 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3066 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3067 	 & 0x7fffffff)
3068 
3069 #define SYN_HASHALL(hash, src, dst) \
3070 do {									\
3071 	switch ((src)->sa_family) {					\
3072 	case AF_INET:							\
3073 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3074 			((struct sockaddr_in *)(src))->sin_port,	\
3075 			((struct sockaddr_in *)(dst))->sin_port);	\
3076 		break;							\
3077 	case AF_INET6:							\
3078 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3079 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3080 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3081 		break;							\
3082 	default:							\
3083 		hash = 0;						\
3084 	}								\
3085 } while (/*CONSTCOND*/0)
3086 #endif /* INET6 */
3087 
3088 #define	SYN_CACHE_RM(sc)						\
3089 do {									\
3090 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3091 	    (sc), sc_bucketq);						\
3092 	(sc)->sc_tp = NULL;						\
3093 	LIST_REMOVE((sc), sc_tpq);					\
3094 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3095 	callout_stop(&(sc)->sc_timer);					\
3096 	syn_cache_count--;						\
3097 } while (/*CONSTCOND*/0)
3098 
3099 #define	SYN_CACHE_PUT(sc)						\
3100 do {									\
3101 	if ((sc)->sc_ipopts)						\
3102 		(void) m_free((sc)->sc_ipopts);				\
3103 	if ((sc)->sc_route4.ro_rt != NULL)				\
3104 		RTFREE((sc)->sc_route4.ro_rt);				\
3105 	if (callout_invoking(&(sc)->sc_timer))				\
3106 		(sc)->sc_flags |= SCF_DEAD;				\
3107 	else								\
3108 		pool_put(&syn_cache_pool, (sc));			\
3109 } while (/*CONSTCOND*/0)
3110 
3111 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3112 
3113 /*
3114  * We don't estimate RTT with SYNs, so each packet starts with the default
3115  * RTT and each timer step has a fixed timeout value.
3116  */
3117 #define	SYN_CACHE_TIMER_ARM(sc)						\
3118 do {									\
3119 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3120 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3121 	    TCPTV_REXMTMAX);						\
3122 	callout_reset(&(sc)->sc_timer,					\
3123 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
3124 } while (/*CONSTCOND*/0)
3125 
3126 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
3127 
3128 void
3129 syn_cache_init()
3130 {
3131 	int i;
3132 
3133 	/* Initialize the hash buckets. */
3134 	for (i = 0; i < tcp_syn_cache_size; i++)
3135 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3136 }
3137 
3138 void
3139 syn_cache_insert(sc, tp)
3140 	struct syn_cache *sc;
3141 	struct tcpcb *tp;
3142 {
3143 	struct syn_cache_head *scp;
3144 	struct syn_cache *sc2;
3145 	int s;
3146 
3147 	/*
3148 	 * If there are no entries in the hash table, reinitialize
3149 	 * the hash secrets.
3150 	 */
3151 	if (syn_cache_count == 0) {
3152 		syn_hash1 = arc4random();
3153 		syn_hash2 = arc4random();
3154 	}
3155 
3156 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3157 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3158 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3159 
3160 	/*
3161 	 * Make sure that we don't overflow the per-bucket
3162 	 * limit or the total cache size limit.
3163 	 */
3164 	s = splsoftnet();
3165 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3166 		tcpstat.tcps_sc_bucketoverflow++;
3167 		/*
3168 		 * The bucket is full.  Toss the oldest element in the
3169 		 * bucket.  This will be the first entry in the bucket.
3170 		 */
3171 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3172 #ifdef DIAGNOSTIC
3173 		/*
3174 		 * This should never happen; we should always find an
3175 		 * entry in our bucket.
3176 		 */
3177 		if (sc2 == NULL)
3178 			panic("syn_cache_insert: bucketoverflow: impossible");
3179 #endif
3180 		SYN_CACHE_RM(sc2);
3181 		SYN_CACHE_PUT(sc2);
3182 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3183 		struct syn_cache_head *scp2, *sce;
3184 
3185 		tcpstat.tcps_sc_overflowed++;
3186 		/*
3187 		 * The cache is full.  Toss the oldest entry in the
3188 		 * first non-empty bucket we can find.
3189 		 *
3190 		 * XXX We would really like to toss the oldest
3191 		 * entry in the cache, but we hope that this
3192 		 * condition doesn't happen very often.
3193 		 */
3194 		scp2 = scp;
3195 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3196 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3197 			for (++scp2; scp2 != scp; scp2++) {
3198 				if (scp2 >= sce)
3199 					scp2 = &tcp_syn_cache[0];
3200 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3201 					break;
3202 			}
3203 #ifdef DIAGNOSTIC
3204 			/*
3205 			 * This should never happen; we should always find a
3206 			 * non-empty bucket.
3207 			 */
3208 			if (scp2 == scp)
3209 				panic("syn_cache_insert: cacheoverflow: "
3210 				    "impossible");
3211 #endif
3212 		}
3213 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3214 		SYN_CACHE_RM(sc2);
3215 		SYN_CACHE_PUT(sc2);
3216 	}
3217 
3218 	/*
3219 	 * Initialize the entry's timer.
3220 	 */
3221 	sc->sc_rxttot = 0;
3222 	sc->sc_rxtshift = 0;
3223 	SYN_CACHE_TIMER_ARM(sc);
3224 
3225 	/* Link it from tcpcb entry */
3226 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3227 
3228 	/* Put it into the bucket. */
3229 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3230 	scp->sch_length++;
3231 	syn_cache_count++;
3232 
3233 	tcpstat.tcps_sc_added++;
3234 	splx(s);
3235 }
3236 
3237 /*
3238  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3239  * If we have retransmitted an entry the maximum number of times, expire
3240  * that entry.
3241  */
3242 void
3243 syn_cache_timer(void *arg)
3244 {
3245 	struct syn_cache *sc = arg;
3246 	int s;
3247 
3248 	s = splsoftnet();
3249 	callout_ack(&sc->sc_timer);
3250 
3251 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3252 		tcpstat.tcps_sc_delayed_free++;
3253 		pool_put(&syn_cache_pool, sc);
3254 		splx(s);
3255 		return;
3256 	}
3257 
3258 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3259 		/* Drop it -- too many retransmissions. */
3260 		goto dropit;
3261 	}
3262 
3263 	/*
3264 	 * Compute the total amount of time this entry has
3265 	 * been on a queue.  If this entry has been on longer
3266 	 * than the keep alive timer would allow, expire it.
3267 	 */
3268 	sc->sc_rxttot += sc->sc_rxtcur;
3269 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3270 		goto dropit;
3271 
3272 	tcpstat.tcps_sc_retransmitted++;
3273 	(void) syn_cache_respond(sc, NULL);
3274 
3275 	/* Advance the timer back-off. */
3276 	sc->sc_rxtshift++;
3277 	SYN_CACHE_TIMER_ARM(sc);
3278 
3279 	splx(s);
3280 	return;
3281 
3282  dropit:
3283 	tcpstat.tcps_sc_timed_out++;
3284 	SYN_CACHE_RM(sc);
3285 	SYN_CACHE_PUT(sc);
3286 	splx(s);
3287 }
3288 
3289 /*
3290  * Remove syn cache created by the specified tcb entry,
3291  * because this does not make sense to keep them
3292  * (if there's no tcb entry, syn cache entry will never be used)
3293  */
3294 void
3295 syn_cache_cleanup(tp)
3296 	struct tcpcb *tp;
3297 {
3298 	struct syn_cache *sc, *nsc;
3299 	int s;
3300 
3301 	s = splsoftnet();
3302 
3303 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3304 		nsc = LIST_NEXT(sc, sc_tpq);
3305 
3306 #ifdef DIAGNOSTIC
3307 		if (sc->sc_tp != tp)
3308 			panic("invalid sc_tp in syn_cache_cleanup");
3309 #endif
3310 		SYN_CACHE_RM(sc);
3311 		SYN_CACHE_PUT(sc);
3312 	}
3313 	/* just for safety */
3314 	LIST_INIT(&tp->t_sc);
3315 
3316 	splx(s);
3317 }
3318 
3319 /*
3320  * Find an entry in the syn cache.
3321  */
3322 struct syn_cache *
3323 syn_cache_lookup(src, dst, headp)
3324 	struct sockaddr *src;
3325 	struct sockaddr *dst;
3326 	struct syn_cache_head **headp;
3327 {
3328 	struct syn_cache *sc;
3329 	struct syn_cache_head *scp;
3330 	u_int32_t hash;
3331 	int s;
3332 
3333 	SYN_HASHALL(hash, src, dst);
3334 
3335 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3336 	*headp = scp;
3337 	s = splsoftnet();
3338 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3339 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3340 		if (sc->sc_hash != hash)
3341 			continue;
3342 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3343 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3344 			splx(s);
3345 			return (sc);
3346 		}
3347 	}
3348 	splx(s);
3349 	return (NULL);
3350 }
3351 
3352 /*
3353  * This function gets called when we receive an ACK for a
3354  * socket in the LISTEN state.  We look up the connection
3355  * in the syn cache, and if its there, we pull it out of
3356  * the cache and turn it into a full-blown connection in
3357  * the SYN-RECEIVED state.
3358  *
3359  * The return values may not be immediately obvious, and their effects
3360  * can be subtle, so here they are:
3361  *
3362  *	NULL	SYN was not found in cache; caller should drop the
3363  *		packet and send an RST.
3364  *
3365  *	-1	We were unable to create the new connection, and are
3366  *		aborting it.  An ACK,RST is being sent to the peer
3367  *		(unless we got screwey sequence numbners; see below),
3368  *		because the 3-way handshake has been completed.  Caller
3369  *		should not free the mbuf, since we may be using it.  If
3370  *		we are not, we will free it.
3371  *
3372  *	Otherwise, the return value is a pointer to the new socket
3373  *	associated with the connection.
3374  */
3375 struct socket *
3376 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3377 	struct sockaddr *src;
3378 	struct sockaddr *dst;
3379 	struct tcphdr *th;
3380 	unsigned int hlen, tlen;
3381 	struct socket *so;
3382 	struct mbuf *m;
3383 {
3384 	struct syn_cache *sc;
3385 	struct syn_cache_head *scp;
3386 	struct inpcb *inp = NULL;
3387 #ifdef INET6
3388 	struct in6pcb *in6p = NULL;
3389 #endif
3390 	struct tcpcb *tp = 0;
3391 	struct mbuf *am;
3392 	int s;
3393 	struct socket *oso;
3394 
3395 	s = splsoftnet();
3396 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3397 		splx(s);
3398 		return (NULL);
3399 	}
3400 
3401 	/*
3402 	 * Verify the sequence and ack numbers.  Try getting the correct
3403 	 * response again.
3404 	 */
3405 	if ((th->th_ack != sc->sc_iss + 1) ||
3406 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3407 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3408 		(void) syn_cache_respond(sc, m);
3409 		splx(s);
3410 		return ((struct socket *)(-1));
3411 	}
3412 
3413 	/* Remove this cache entry */
3414 	SYN_CACHE_RM(sc);
3415 	splx(s);
3416 
3417 	/*
3418 	 * Ok, create the full blown connection, and set things up
3419 	 * as they would have been set up if we had created the
3420 	 * connection when the SYN arrived.  If we can't create
3421 	 * the connection, abort it.
3422 	 */
3423 	/*
3424 	 * inp still has the OLD in_pcb stuff, set the
3425 	 * v6-related flags on the new guy, too.   This is
3426 	 * done particularly for the case where an AF_INET6
3427 	 * socket is bound only to a port, and a v4 connection
3428 	 * comes in on that port.
3429 	 * we also copy the flowinfo from the original pcb
3430 	 * to the new one.
3431 	 */
3432 	oso = so;
3433 	so = sonewconn(so, SS_ISCONNECTED);
3434 	if (so == NULL)
3435 		goto resetandabort;
3436 
3437 	switch (so->so_proto->pr_domain->dom_family) {
3438 #ifdef INET
3439 	case AF_INET:
3440 		inp = sotoinpcb(so);
3441 		break;
3442 #endif
3443 #ifdef INET6
3444 	case AF_INET6:
3445 		in6p = sotoin6pcb(so);
3446 		break;
3447 #endif
3448 	}
3449 	switch (src->sa_family) {
3450 #ifdef INET
3451 	case AF_INET:
3452 		if (inp) {
3453 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3454 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3455 			inp->inp_options = ip_srcroute();
3456 			in_pcbstate(inp, INP_BOUND);
3457 			if (inp->inp_options == NULL) {
3458 				inp->inp_options = sc->sc_ipopts;
3459 				sc->sc_ipopts = NULL;
3460 			}
3461 		}
3462 #ifdef INET6
3463 		else if (in6p) {
3464 			/* IPv4 packet to AF_INET6 socket */
3465 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3466 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3467 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3468 				&in6p->in6p_laddr.s6_addr32[3],
3469 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
3470 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3471 			in6totcpcb(in6p)->t_family = AF_INET;
3472 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3473 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3474 			else
3475 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3476 			in6_pcbstate(in6p, IN6P_BOUND);
3477 		}
3478 #endif
3479 		break;
3480 #endif
3481 #ifdef INET6
3482 	case AF_INET6:
3483 		if (in6p) {
3484 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3485 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3486 			in6_pcbstate(in6p, IN6P_BOUND);
3487 		}
3488 		break;
3489 #endif
3490 	}
3491 #ifdef INET6
3492 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3493 		struct in6pcb *oin6p = sotoin6pcb(oso);
3494 		/* inherit socket options from the listening socket */
3495 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3496 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3497 			m_freem(in6p->in6p_options);
3498 			in6p->in6p_options = 0;
3499 		}
3500 		ip6_savecontrol(in6p, &in6p->in6p_options,
3501 			mtod(m, struct ip6_hdr *), m);
3502 	}
3503 #endif
3504 
3505 #if defined(IPSEC) || defined(FAST_IPSEC)
3506 	/*
3507 	 * we make a copy of policy, instead of sharing the policy,
3508 	 * for better behavior in terms of SA lookup and dead SA removal.
3509 	 */
3510 	if (inp) {
3511 		/* copy old policy into new socket's */
3512 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3513 			printf("tcp_input: could not copy policy\n");
3514 	}
3515 #ifdef INET6
3516 	else if (in6p) {
3517 		/* copy old policy into new socket's */
3518 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3519 		    in6p->in6p_sp))
3520 			printf("tcp_input: could not copy policy\n");
3521 	}
3522 #endif
3523 #endif
3524 
3525 	/*
3526 	 * Give the new socket our cached route reference.
3527 	 */
3528 	if (inp)
3529 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3530 #ifdef INET6
3531 	else
3532 		in6p->in6p_route = sc->sc_route6;
3533 #endif
3534 	sc->sc_route4.ro_rt = NULL;
3535 
3536 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3537 	if (am == NULL)
3538 		goto resetandabort;
3539 	MCLAIM(am, &tcp_mowner);
3540 	am->m_len = src->sa_len;
3541 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3542 	if (inp) {
3543 		if (in_pcbconnect(inp, am)) {
3544 			(void) m_free(am);
3545 			goto resetandabort;
3546 		}
3547 	}
3548 #ifdef INET6
3549 	else if (in6p) {
3550 		if (src->sa_family == AF_INET) {
3551 			/* IPv4 packet to AF_INET6 socket */
3552 			struct sockaddr_in6 *sin6;
3553 			sin6 = mtod(am, struct sockaddr_in6 *);
3554 			am->m_len = sizeof(*sin6);
3555 			bzero(sin6, sizeof(*sin6));
3556 			sin6->sin6_family = AF_INET6;
3557 			sin6->sin6_len = sizeof(*sin6);
3558 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3559 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3560 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3561 				&sin6->sin6_addr.s6_addr32[3],
3562 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3563 		}
3564 		if (in6_pcbconnect(in6p, am)) {
3565 			(void) m_free(am);
3566 			goto resetandabort;
3567 		}
3568 	}
3569 #endif
3570 	else {
3571 		(void) m_free(am);
3572 		goto resetandabort;
3573 	}
3574 	(void) m_free(am);
3575 
3576 	if (inp)
3577 		tp = intotcpcb(inp);
3578 #ifdef INET6
3579 	else if (in6p)
3580 		tp = in6totcpcb(in6p);
3581 #endif
3582 	else
3583 		tp = NULL;
3584 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3585 	if (sc->sc_request_r_scale != 15) {
3586 		tp->requested_s_scale = sc->sc_requested_s_scale;
3587 		tp->request_r_scale = sc->sc_request_r_scale;
3588 		tp->snd_scale = sc->sc_requested_s_scale;
3589 		tp->rcv_scale = sc->sc_request_r_scale;
3590 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3591 	}
3592 	if (sc->sc_flags & SCF_TIMESTAMP)
3593 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3594 	tp->ts_timebase = sc->sc_timebase;
3595 
3596 	tp->t_template = tcp_template(tp);
3597 	if (tp->t_template == 0) {
3598 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3599 		so = NULL;
3600 		m_freem(m);
3601 		goto abort;
3602 	}
3603 
3604 	tp->iss = sc->sc_iss;
3605 	tp->irs = sc->sc_irs;
3606 	tcp_sendseqinit(tp);
3607 	tcp_rcvseqinit(tp);
3608 	tp->t_state = TCPS_SYN_RECEIVED;
3609 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3610 	tcpstat.tcps_accepts++;
3611 
3612 #ifdef TCP_SIGNATURE
3613 	if (sc->sc_flags & SCF_SIGNATURE)
3614 		tp->t_flags |= TF_SIGNATURE;
3615 #endif
3616 
3617 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3618 	tp->t_ourmss = sc->sc_ourmaxseg;
3619 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3620 
3621 	/*
3622 	 * Initialize the initial congestion window.  If we
3623 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3624 	 * to 1 segment (i.e. the Loss Window).
3625 	 */
3626 	if (sc->sc_rxtshift)
3627 		tp->snd_cwnd = tp->t_peermss;
3628 	else {
3629 		int ss = tcp_init_win;
3630 #ifdef INET
3631 		if (inp != NULL && in_localaddr(inp->inp_faddr))
3632 			ss = tcp_init_win_local;
3633 #endif
3634 #ifdef INET6
3635 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3636 			ss = tcp_init_win_local;
3637 #endif
3638 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3639 	}
3640 
3641 	tcp_rmx_rtt(tp);
3642 	tp->snd_wl1 = sc->sc_irs;
3643 	tp->rcv_up = sc->sc_irs + 1;
3644 
3645 	/*
3646 	 * This is what whould have happened in tcp_output() when
3647 	 * the SYN,ACK was sent.
3648 	 */
3649 	tp->snd_up = tp->snd_una;
3650 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3651 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3652 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3653 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3654 	tp->last_ack_sent = tp->rcv_nxt;
3655 
3656 	tcpstat.tcps_sc_completed++;
3657 	SYN_CACHE_PUT(sc);
3658 	return (so);
3659 
3660 resetandabort:
3661 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3662 abort:
3663 	if (so != NULL)
3664 		(void) soabort(so);
3665 	SYN_CACHE_PUT(sc);
3666 	tcpstat.tcps_sc_aborted++;
3667 	return ((struct socket *)(-1));
3668 }
3669 
3670 /*
3671  * This function is called when we get a RST for a
3672  * non-existent connection, so that we can see if the
3673  * connection is in the syn cache.  If it is, zap it.
3674  */
3675 
3676 void
3677 syn_cache_reset(src, dst, th)
3678 	struct sockaddr *src;
3679 	struct sockaddr *dst;
3680 	struct tcphdr *th;
3681 {
3682 	struct syn_cache *sc;
3683 	struct syn_cache_head *scp;
3684 	int s = splsoftnet();
3685 
3686 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3687 		splx(s);
3688 		return;
3689 	}
3690 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3691 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3692 		splx(s);
3693 		return;
3694 	}
3695 	SYN_CACHE_RM(sc);
3696 	splx(s);
3697 	tcpstat.tcps_sc_reset++;
3698 	SYN_CACHE_PUT(sc);
3699 }
3700 
3701 void
3702 syn_cache_unreach(src, dst, th)
3703 	struct sockaddr *src;
3704 	struct sockaddr *dst;
3705 	struct tcphdr *th;
3706 {
3707 	struct syn_cache *sc;
3708 	struct syn_cache_head *scp;
3709 	int s;
3710 
3711 	s = splsoftnet();
3712 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3713 		splx(s);
3714 		return;
3715 	}
3716 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3717 	if (ntohl (th->th_seq) != sc->sc_iss) {
3718 		splx(s);
3719 		return;
3720 	}
3721 
3722 	/*
3723 	 * If we've retransmitted 3 times and this is our second error,
3724 	 * we remove the entry.  Otherwise, we allow it to continue on.
3725 	 * This prevents us from incorrectly nuking an entry during a
3726 	 * spurious network outage.
3727 	 *
3728 	 * See tcp_notify().
3729 	 */
3730 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3731 		sc->sc_flags |= SCF_UNREACH;
3732 		splx(s);
3733 		return;
3734 	}
3735 
3736 	SYN_CACHE_RM(sc);
3737 	splx(s);
3738 	tcpstat.tcps_sc_unreach++;
3739 	SYN_CACHE_PUT(sc);
3740 }
3741 
3742 /*
3743  * Given a LISTEN socket and an inbound SYN request, add
3744  * this to the syn cache, and send back a segment:
3745  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3746  * to the source.
3747  *
3748  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3749  * Doing so would require that we hold onto the data and deliver it
3750  * to the application.  However, if we are the target of a SYN-flood
3751  * DoS attack, an attacker could send data which would eventually
3752  * consume all available buffer space if it were ACKed.  By not ACKing
3753  * the data, we avoid this DoS scenario.
3754  */
3755 
3756 int
3757 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3758 	struct sockaddr *src;
3759 	struct sockaddr *dst;
3760 	struct tcphdr *th;
3761 	unsigned int hlen;
3762 	struct socket *so;
3763 	struct mbuf *m;
3764 	u_char *optp;
3765 	int optlen;
3766 	struct tcp_opt_info *oi;
3767 {
3768 	struct tcpcb tb, *tp;
3769 	long win;
3770 	struct syn_cache *sc;
3771 	struct syn_cache_head *scp;
3772 	struct mbuf *ipopts;
3773 	struct tcp_opt_info opti;
3774 
3775 	tp = sototcpcb(so);
3776 
3777 	bzero(&opti, sizeof(opti));
3778 
3779 	/*
3780 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3781 	 *
3782 	 * Note this check is performed in tcp_input() very early on.
3783 	 */
3784 
3785 	/*
3786 	 * Initialize some local state.
3787 	 */
3788 	win = sbspace(&so->so_rcv);
3789 	if (win > TCP_MAXWIN)
3790 		win = TCP_MAXWIN;
3791 
3792 	switch (src->sa_family) {
3793 #ifdef INET
3794 	case AF_INET:
3795 		/*
3796 		 * Remember the IP options, if any.
3797 		 */
3798 		ipopts = ip_srcroute();
3799 		break;
3800 #endif
3801 	default:
3802 		ipopts = NULL;
3803 	}
3804 
3805 #ifdef TCP_SIGNATURE
3806 	if (optp || (tp->t_flags & TF_SIGNATURE))
3807 #else
3808 	if (optp)
3809 #endif
3810 	{
3811 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3812 #ifdef TCP_SIGNATURE
3813 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3814 #endif
3815 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3816 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3817 			return (0);
3818 	} else
3819 		tb.t_flags = 0;
3820 
3821 	/*
3822 	 * See if we already have an entry for this connection.
3823 	 * If we do, resend the SYN,ACK.  We do not count this
3824 	 * as a retransmission (XXX though maybe we should).
3825 	 */
3826 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3827 		tcpstat.tcps_sc_dupesyn++;
3828 		if (ipopts) {
3829 			/*
3830 			 * If we were remembering a previous source route,
3831 			 * forget it and use the new one we've been given.
3832 			 */
3833 			if (sc->sc_ipopts)
3834 				(void) m_free(sc->sc_ipopts);
3835 			sc->sc_ipopts = ipopts;
3836 		}
3837 		sc->sc_timestamp = tb.ts_recent;
3838 		if (syn_cache_respond(sc, m) == 0) {
3839 			tcpstat.tcps_sndacks++;
3840 			tcpstat.tcps_sndtotal++;
3841 		}
3842 		return (1);
3843 	}
3844 
3845 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3846 	if (sc == NULL) {
3847 		if (ipopts)
3848 			(void) m_free(ipopts);
3849 		return (0);
3850 	}
3851 
3852 	/*
3853 	 * Fill in the cache, and put the necessary IP and TCP
3854 	 * options into the reply.
3855 	 */
3856 	bzero(sc, sizeof(struct syn_cache));
3857 	callout_init(&sc->sc_timer);
3858 	bcopy(src, &sc->sc_src, src->sa_len);
3859 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3860 	sc->sc_flags = 0;
3861 	sc->sc_ipopts = ipopts;
3862 	sc->sc_irs = th->th_seq;
3863 	switch (src->sa_family) {
3864 #ifdef INET
3865 	case AF_INET:
3866 	    {
3867 		struct sockaddr_in *srcin = (void *) src;
3868 		struct sockaddr_in *dstin = (void *) dst;
3869 
3870 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3871 		    &srcin->sin_addr, dstin->sin_port,
3872 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3873 		break;
3874 	    }
3875 #endif /* INET */
3876 #ifdef INET6
3877 	case AF_INET6:
3878 	    {
3879 		struct sockaddr_in6 *srcin6 = (void *) src;
3880 		struct sockaddr_in6 *dstin6 = (void *) dst;
3881 
3882 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3883 		    &srcin6->sin6_addr, dstin6->sin6_port,
3884 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3885 		break;
3886 	    }
3887 #endif /* INET6 */
3888 	}
3889 	sc->sc_peermaxseg = oi->maxseg;
3890 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3891 						m->m_pkthdr.rcvif : NULL,
3892 						sc->sc_src.sa.sa_family);
3893 	sc->sc_win = win;
3894 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3895 	sc->sc_timestamp = tb.ts_recent;
3896 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3897 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3898 		sc->sc_flags |= SCF_TIMESTAMP;
3899 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3900 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3901 		sc->sc_requested_s_scale = tb.requested_s_scale;
3902 		sc->sc_request_r_scale = 0;
3903 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3904 		    TCP_MAXWIN << sc->sc_request_r_scale <
3905 		    so->so_rcv.sb_hiwat)
3906 			sc->sc_request_r_scale++;
3907 	} else {
3908 		sc->sc_requested_s_scale = 15;
3909 		sc->sc_request_r_scale = 15;
3910 	}
3911 #ifdef TCP_SIGNATURE
3912 	if (tb.t_flags & TF_SIGNATURE)
3913 		sc->sc_flags |= SCF_SIGNATURE;
3914 #endif
3915 	sc->sc_tp = tp;
3916 	if (syn_cache_respond(sc, m) == 0) {
3917 		syn_cache_insert(sc, tp);
3918 		tcpstat.tcps_sndacks++;
3919 		tcpstat.tcps_sndtotal++;
3920 	} else {
3921 		SYN_CACHE_PUT(sc);
3922 		tcpstat.tcps_sc_dropped++;
3923 	}
3924 	return (1);
3925 }
3926 
3927 int
3928 syn_cache_respond(sc, m)
3929 	struct syn_cache *sc;
3930 	struct mbuf *m;
3931 {
3932 	struct route *ro;
3933 	u_int8_t *optp;
3934 	int optlen, error;
3935 	u_int16_t tlen;
3936 	struct ip *ip = NULL;
3937 #ifdef INET6
3938 	struct ip6_hdr *ip6 = NULL;
3939 #endif
3940 	struct tcpcb *tp;
3941 	struct tcphdr *th;
3942 	u_int hlen;
3943 	struct socket *so;
3944 
3945 	switch (sc->sc_src.sa.sa_family) {
3946 	case AF_INET:
3947 		hlen = sizeof(struct ip);
3948 		ro = &sc->sc_route4;
3949 		break;
3950 #ifdef INET6
3951 	case AF_INET6:
3952 		hlen = sizeof(struct ip6_hdr);
3953 		ro = (struct route *)&sc->sc_route6;
3954 		break;
3955 #endif
3956 	default:
3957 		if (m)
3958 			m_freem(m);
3959 		return (EAFNOSUPPORT);
3960 	}
3961 
3962 	/* Compute the size of the TCP options. */
3963 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3964 #ifdef TCP_SIGNATURE
3965 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
3966 #endif
3967 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3968 
3969 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3970 
3971 	/*
3972 	 * Create the IP+TCP header from scratch.
3973 	 */
3974 	if (m)
3975 		m_freem(m);
3976 #ifdef DIAGNOSTIC
3977 	if (max_linkhdr + tlen > MCLBYTES)
3978 		return (ENOBUFS);
3979 #endif
3980 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3981 	if (m && tlen > MHLEN) {
3982 		MCLGET(m, M_DONTWAIT);
3983 		if ((m->m_flags & M_EXT) == 0) {
3984 			m_freem(m);
3985 			m = NULL;
3986 		}
3987 	}
3988 	if (m == NULL)
3989 		return (ENOBUFS);
3990 	MCLAIM(m, &tcp_tx_mowner);
3991 
3992 	/* Fixup the mbuf. */
3993 	m->m_data += max_linkhdr;
3994 	m->m_len = m->m_pkthdr.len = tlen;
3995 	if (sc->sc_tp) {
3996 		tp = sc->sc_tp;
3997 		if (tp->t_inpcb)
3998 			so = tp->t_inpcb->inp_socket;
3999 #ifdef INET6
4000 		else if (tp->t_in6pcb)
4001 			so = tp->t_in6pcb->in6p_socket;
4002 #endif
4003 		else
4004 			so = NULL;
4005 	} else
4006 		so = NULL;
4007 	m->m_pkthdr.rcvif = NULL;
4008 	memset(mtod(m, u_char *), 0, tlen);
4009 
4010 	switch (sc->sc_src.sa.sa_family) {
4011 	case AF_INET:
4012 		ip = mtod(m, struct ip *);
4013 		ip->ip_v = 4;
4014 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4015 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4016 		ip->ip_p = IPPROTO_TCP;
4017 		th = (struct tcphdr *)(ip + 1);
4018 		th->th_dport = sc->sc_src.sin.sin_port;
4019 		th->th_sport = sc->sc_dst.sin.sin_port;
4020 		break;
4021 #ifdef INET6
4022 	case AF_INET6:
4023 		ip6 = mtod(m, struct ip6_hdr *);
4024 		ip6->ip6_vfc = IPV6_VERSION;
4025 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4026 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4027 		ip6->ip6_nxt = IPPROTO_TCP;
4028 		/* ip6_plen will be updated in ip6_output() */
4029 		th = (struct tcphdr *)(ip6 + 1);
4030 		th->th_dport = sc->sc_src.sin6.sin6_port;
4031 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4032 		break;
4033 #endif
4034 	default:
4035 		th = NULL;
4036 	}
4037 
4038 	th->th_seq = htonl(sc->sc_iss);
4039 	th->th_ack = htonl(sc->sc_irs + 1);
4040 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4041 	th->th_flags = TH_SYN|TH_ACK;
4042 	th->th_win = htons(sc->sc_win);
4043 	/* th_sum already 0 */
4044 	/* th_urp already 0 */
4045 
4046 	/* Tack on the TCP options. */
4047 	optp = (u_int8_t *)(th + 1);
4048 	*optp++ = TCPOPT_MAXSEG;
4049 	*optp++ = 4;
4050 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4051 	*optp++ = sc->sc_ourmaxseg & 0xff;
4052 
4053 	if (sc->sc_request_r_scale != 15) {
4054 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4055 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4056 		    sc->sc_request_r_scale);
4057 		optp += 4;
4058 	}
4059 
4060 	if (sc->sc_flags & SCF_TIMESTAMP) {
4061 		u_int32_t *lp = (u_int32_t *)(optp);
4062 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4063 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4064 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4065 		*lp   = htonl(sc->sc_timestamp);
4066 		optp += TCPOLEN_TSTAMP_APPA;
4067 	}
4068 
4069 #ifdef TCP_SIGNATURE
4070 	if (sc->sc_flags & SCF_SIGNATURE) {
4071 		struct secasvar *sav;
4072 		u_int8_t *sigp;
4073 
4074 		sav = tcp_signature_getsav(m, th);
4075 
4076 		if (sav == NULL) {
4077 			if (m)
4078 				m_freem(m);
4079 			return (EPERM);
4080 		}
4081 
4082 		*optp++ = TCPOPT_SIGNATURE;
4083 		*optp++ = TCPOLEN_SIGNATURE;
4084 		sigp = optp;
4085 		bzero(optp, TCP_SIGLEN);
4086 		optp += TCP_SIGLEN;
4087 		*optp++ = TCPOPT_NOP;
4088 		*optp++ = TCPOPT_EOL;
4089 
4090 		(void)tcp_signature(m, th, hlen, sav, sigp);
4091 
4092 		key_sa_recordxfer(sav, m);
4093 #ifdef FAST_IPSEC
4094 		KEY_FREESAV(&sav);
4095 #else
4096 		key_freesav(sav);
4097 #endif
4098 	}
4099 #endif
4100 
4101 	/* Compute the packet's checksum. */
4102 	switch (sc->sc_src.sa.sa_family) {
4103 	case AF_INET:
4104 		ip->ip_len = htons(tlen - hlen);
4105 		th->th_sum = 0;
4106 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4107 		break;
4108 #ifdef INET6
4109 	case AF_INET6:
4110 		ip6->ip6_plen = htons(tlen - hlen);
4111 		th->th_sum = 0;
4112 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4113 		break;
4114 #endif
4115 	}
4116 
4117 	/*
4118 	 * Fill in some straggling IP bits.  Note the stack expects
4119 	 * ip_len to be in host order, for convenience.
4120 	 */
4121 	switch (sc->sc_src.sa.sa_family) {
4122 #ifdef INET
4123 	case AF_INET:
4124 		ip->ip_len = htons(tlen);
4125 		ip->ip_ttl = ip_defttl;
4126 		/* XXX tos? */
4127 		break;
4128 #endif
4129 #ifdef INET6
4130 	case AF_INET6:
4131 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4132 		ip6->ip6_vfc |= IPV6_VERSION;
4133 		ip6->ip6_plen = htons(tlen - hlen);
4134 		/* ip6_hlim will be initialized afterwards */
4135 		/* XXX flowlabel? */
4136 		break;
4137 #endif
4138 	}
4139 
4140 	/* XXX use IPsec policy on listening socket, on SYN ACK */
4141 	tp = sc->sc_tp;
4142 
4143 	switch (sc->sc_src.sa.sa_family) {
4144 #ifdef INET
4145 	case AF_INET:
4146 		error = ip_output(m, sc->sc_ipopts, ro,
4147 		    (ip_mtudisc ? IP_MTUDISC : 0),
4148 		    (struct ip_moptions *)NULL, so);
4149 		break;
4150 #endif
4151 #ifdef INET6
4152 	case AF_INET6:
4153 		ip6->ip6_hlim = in6_selecthlim(NULL,
4154 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4155 
4156 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4157 			(struct ip6_moptions *)0, so, NULL);
4158 		break;
4159 #endif
4160 	default:
4161 		error = EAFNOSUPPORT;
4162 		break;
4163 	}
4164 	return (error);
4165 }
4166