xref: /netbsd-src/sys/netinet/tcp_input.c (revision 17dd36da8292193180754d5047c0926dbb56818c)
1 /*	$NetBSD: tcp_input.c,v 1.123 2001/03/20 20:07:51 thorpej Exp $	*/
2 
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
13 
14 */
15 
16 /*
17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18  * All rights reserved.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the project nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 /*-
46  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47  * All rights reserved.
48  *
49  * This code is derived from software contributed to The NetBSD Foundation
50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51  * Facility, NASA Ames Research Center.
52  *
53  * Redistribution and use in source and binary forms, with or without
54  * modification, are permitted provided that the following conditions
55  * are met:
56  * 1. Redistributions of source code must retain the above copyright
57  *    notice, this list of conditions and the following disclaimer.
58  * 2. Redistributions in binary form must reproduce the above copyright
59  *    notice, this list of conditions and the following disclaimer in the
60  *    documentation and/or other materials provided with the distribution.
61  * 3. All advertising materials mentioning features or use of this software
62  *    must display the following acknowledgement:
63  *	This product includes software developed by the NetBSD
64  *	Foundation, Inc. and its contributors.
65  * 4. Neither the name of The NetBSD Foundation nor the names of its
66  *    contributors may be used to endorse or promote products derived
67  *    from this software without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79  * POSSIBILITY OF SUCH DAMAGE.
80  */
81 
82 /*
83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84  *	The Regents of the University of California.  All rights reserved.
85  *
86  * Redistribution and use in source and binary forms, with or without
87  * modification, are permitted provided that the following conditions
88  * are met:
89  * 1. Redistributions of source code must retain the above copyright
90  *    notice, this list of conditions and the following disclaimer.
91  * 2. Redistributions in binary form must reproduce the above copyright
92  *    notice, this list of conditions and the following disclaimer in the
93  *    documentation and/or other materials provided with the distribution.
94  * 3. All advertising materials mentioning features or use of this software
95  *    must display the following acknowledgement:
96  *	This product includes software developed by the University of
97  *	California, Berkeley and its contributors.
98  * 4. Neither the name of the University nor the names of its contributors
99  *    may be used to endorse or promote products derived from this software
100  *    without specific prior written permission.
101  *
102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112  * SUCH DAMAGE.
113  *
114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
115  */
116 
117 /*
118  *	TODO list for SYN cache stuff:
119  *
120  *	Find room for a "state" field, which is needed to keep a
121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
122  *	that this is fairly important for very high-volume web and
123  *	mail servers, which use a large number of short-lived
124  *	connections.
125  */
126 
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/protosw.h>
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/errno.h>
138 #include <sys/syslog.h>
139 #include <sys/pool.h>
140 #include <sys/domain.h>
141 
142 #include <net/if.h>
143 #include <net/route.h>
144 #include <net/if_types.h>
145 
146 #include <netinet/in.h>
147 #include <netinet/in_systm.h>
148 #include <netinet/ip.h>
149 #include <netinet/in_pcb.h>
150 #include <netinet/ip_var.h>
151 
152 #ifdef INET6
153 #ifndef INET
154 #include <netinet/in.h>
155 #endif
156 #include <netinet/ip6.h>
157 #include <netinet6/ip6_var.h>
158 #include <netinet6/in6_pcb.h>
159 #include <netinet6/ip6_var.h>
160 #include <netinet6/in6_var.h>
161 #include <netinet/icmp6.h>
162 #include <netinet6/nd6.h>
163 #endif
164 
165 #ifdef PULLDOWN_TEST
166 #ifndef INET6
167 /* always need ip6.h for IP6_EXTHDR_GET */
168 #include <netinet/ip6.h>
169 #endif
170 #endif
171 
172 #include <netinet/tcp.h>
173 #include <netinet/tcp_fsm.h>
174 #include <netinet/tcp_seq.h>
175 #include <netinet/tcp_timer.h>
176 #include <netinet/tcp_var.h>
177 #include <netinet/tcpip.h>
178 #include <netinet/tcp_debug.h>
179 
180 #include <machine/stdarg.h>
181 
182 #ifdef IPSEC
183 #include <netinet6/ipsec.h>
184 #include <netkey/key.h>
185 #endif /*IPSEC*/
186 #ifdef INET6
187 #include "faith.h"
188 #endif
189 
190 int	tcprexmtthresh = 3;
191 int	tcp_log_refused;
192 
193 static int tcp_rst_ppslim_count = 0;
194 static struct timeval tcp_rst_ppslim_last;
195 
196 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
197 
198 /* for modulo comparisons of timestamps */
199 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
200 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
201 
202 /*
203  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
204  */
205 #ifdef INET6
206 #define ND6_HINT(tp) \
207 do { \
208 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
209 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
210 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
211 	} \
212 } while (0)
213 #else
214 #define ND6_HINT(tp)
215 #endif
216 
217 /*
218  * Macro to compute ACK transmission behavior.  Delay the ACK unless
219  * we have already delayed an ACK (must send an ACK every two segments).
220  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
221  * option is enabled.
222  */
223 #define	TCP_SETUP_ACK(tp, th) \
224 do { \
225 	if ((tp)->t_flags & TF_DELACK || \
226 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
227 		tp->t_flags |= TF_ACKNOW; \
228 	else \
229 		TCP_SET_DELACK(tp); \
230 } while (0)
231 
232 /*
233  * Convert TCP protocol fields to host order for easier processing.
234  */
235 #define	TCP_FIELDS_TO_HOST(th)						\
236 do {									\
237 	NTOHL((th)->th_seq);						\
238 	NTOHL((th)->th_ack);						\
239 	NTOHS((th)->th_win);						\
240 	NTOHS((th)->th_urp);						\
241 } while (0)
242 
243 int
244 tcp_reass(tp, th, m, tlen)
245 	struct tcpcb *tp;
246 	struct tcphdr *th;
247 	struct mbuf *m;
248 	int *tlen;
249 {
250 	struct ipqent *p, *q, *nq, *tiqe = NULL;
251 	struct socket *so = NULL;
252 	int pkt_flags;
253 	tcp_seq pkt_seq;
254 	unsigned pkt_len;
255 	u_long rcvpartdupbyte = 0;
256 	u_long rcvoobyte;
257 
258 	if (tp->t_inpcb)
259 		so = tp->t_inpcb->inp_socket;
260 #ifdef INET6
261 	else if (tp->t_in6pcb)
262 		so = tp->t_in6pcb->in6p_socket;
263 #endif
264 
265 	TCP_REASS_LOCK_CHECK(tp);
266 
267 	/*
268 	 * Call with th==0 after become established to
269 	 * force pre-ESTABLISHED data up to user socket.
270 	 */
271 	if (th == 0)
272 		goto present;
273 
274 	rcvoobyte = *tlen;
275 	/*
276 	 * Copy these to local variables because the tcpiphdr
277 	 * gets munged while we are collapsing mbufs.
278 	 */
279 	pkt_seq = th->th_seq;
280 	pkt_len = *tlen;
281 	pkt_flags = th->th_flags;
282 	/*
283 	 * Find a segment which begins after this one does.
284 	 */
285 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
286 		nq = q->ipqe_q.le_next;
287 		/*
288 		 * If the received segment is just right after this
289 		 * fragment, merge the two together and then check
290 		 * for further overlaps.
291 		 */
292 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
293 #ifdef TCPREASS_DEBUG
294 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
295 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
296 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
297 #endif
298 			pkt_len += q->ipqe_len;
299 			pkt_flags |= q->ipqe_flags;
300 			pkt_seq = q->ipqe_seq;
301 			m_cat(q->ipqe_m, m);
302 			m = q->ipqe_m;
303 			goto free_ipqe;
304 		}
305 		/*
306 		 * If the received segment is completely past this
307 		 * fragment, we need to go the next fragment.
308 		 */
309 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
310 			p = q;
311 			continue;
312 		}
313 		/*
314 		 * If the fragment is past the received segment,
315 		 * it (or any following) can't be concatenated.
316 		 */
317 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
318 			break;
319 		/*
320 		 * We've received all the data in this segment before.
321 		 * mark it as a duplicate and return.
322 		 */
323 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
324 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
325 			tcpstat.tcps_rcvduppack++;
326 			tcpstat.tcps_rcvdupbyte += pkt_len;
327 			m_freem(m);
328 			if (tiqe != NULL)
329 				pool_put(&ipqent_pool, tiqe);
330 			return (0);
331 		}
332 		/*
333 		 * Received segment completely overlaps this fragment
334 		 * so we drop the fragment (this keeps the temporal
335 		 * ordering of segments correct).
336 		 */
337 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
338 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
339 			rcvpartdupbyte += q->ipqe_len;
340 			m_freem(q->ipqe_m);
341 			goto free_ipqe;
342 		}
343 		/*
344 		 * RX'ed segment extends past the end of the
345 		 * fragment.  Drop the overlapping bytes.  Then
346 		 * merge the fragment and segment then treat as
347 		 * a longer received packet.
348 		 */
349 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
350 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
351 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
352 #ifdef TCPREASS_DEBUG
353 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
354 			       tp, overlap,
355 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
356 #endif
357 			m_adj(m, overlap);
358 			rcvpartdupbyte += overlap;
359 			m_cat(q->ipqe_m, m);
360 			m = q->ipqe_m;
361 			pkt_seq = q->ipqe_seq;
362 			pkt_len += q->ipqe_len - overlap;
363 			rcvoobyte -= overlap;
364 			goto free_ipqe;
365 		}
366 		/*
367 		 * RX'ed segment extends past the front of the
368 		 * fragment.  Drop the overlapping bytes on the
369 		 * received packet.  The packet will then be
370 		 * contatentated with this fragment a bit later.
371 		 */
372 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
373 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
374 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
375 #ifdef TCPREASS_DEBUG
376 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
377 			       tp, overlap,
378 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
379 #endif
380 			m_adj(m, -overlap);
381 			pkt_len -= overlap;
382 			rcvpartdupbyte += overlap;
383 			rcvoobyte -= overlap;
384 		}
385 		/*
386 		 * If the received segment immediates precedes this
387 		 * fragment then tack the fragment onto this segment
388 		 * and reinsert the data.
389 		 */
390 		if (q->ipqe_seq == pkt_seq + pkt_len) {
391 #ifdef TCPREASS_DEBUG
392 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
393 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
394 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
395 #endif
396 			pkt_len += q->ipqe_len;
397 			pkt_flags |= q->ipqe_flags;
398 			m_cat(m, q->ipqe_m);
399 			LIST_REMOVE(q, ipqe_q);
400 			LIST_REMOVE(q, ipqe_timeq);
401 			if (tiqe == NULL) {
402 			    tiqe = q;
403 			} else {
404 			    pool_put(&ipqent_pool, q);
405 			}
406 			break;
407 		}
408 		/*
409 		 * If the fragment is before the segment, remember it.
410 		 * When this loop is terminated, p will contain the
411 		 * pointer to fragment that is right before the received
412 		 * segment.
413 		 */
414 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
415 			p = q;
416 
417 		continue;
418 
419 		/*
420 		 * This is a common operation.  It also will allow
421 		 * to save doing a malloc/free in most instances.
422 		 */
423 	  free_ipqe:
424 		LIST_REMOVE(q, ipqe_q);
425 		LIST_REMOVE(q, ipqe_timeq);
426 		if (tiqe == NULL) {
427 		    tiqe = q;
428 		} else {
429 		    pool_put(&ipqent_pool, q);
430 		}
431 	}
432 
433 	/*
434 	 * Allocate a new queue entry since the received segment did not
435 	 * collapse onto any other out-of-order block; thus we are allocating
436 	 * a new block.  If it had collapsed, tiqe would not be NULL and
437 	 * we would be reusing it.
438 	 * XXX If we can't, just drop the packet.  XXX
439 	 */
440 	if (tiqe == NULL) {
441 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
442 		if (tiqe == NULL) {
443 			tcpstat.tcps_rcvmemdrop++;
444 			m_freem(m);
445 			return (0);
446 		}
447 	}
448 
449 	/*
450 	 * Update the counters.
451 	 */
452 	tcpstat.tcps_rcvoopack++;
453 	tcpstat.tcps_rcvoobyte += rcvoobyte;
454 	if (rcvpartdupbyte) {
455 	    tcpstat.tcps_rcvpartduppack++;
456 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
457 	}
458 
459 	/*
460 	 * Insert the new fragment queue entry into both queues.
461 	 */
462 	tiqe->ipqe_m = m;
463 	tiqe->ipqe_seq = pkt_seq;
464 	tiqe->ipqe_len = pkt_len;
465 	tiqe->ipqe_flags = pkt_flags;
466 	if (p == NULL) {
467 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
468 #ifdef TCPREASS_DEBUG
469 		if (tiqe->ipqe_seq != tp->rcv_nxt)
470 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
471 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
472 #endif
473 	} else {
474 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
475 #ifdef TCPREASS_DEBUG
476 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
477 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
478 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
479 #endif
480 	}
481 
482 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
483 
484 present:
485 	/*
486 	 * Present data to user, advancing rcv_nxt through
487 	 * completed sequence space.
488 	 */
489 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
490 		return (0);
491 	q = tp->segq.lh_first;
492 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
493 		return (0);
494 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
495 		return (0);
496 
497 	tp->rcv_nxt += q->ipqe_len;
498 	pkt_flags = q->ipqe_flags & TH_FIN;
499 	ND6_HINT(tp);
500 
501 	LIST_REMOVE(q, ipqe_q);
502 	LIST_REMOVE(q, ipqe_timeq);
503 	if (so->so_state & SS_CANTRCVMORE)
504 		m_freem(q->ipqe_m);
505 	else
506 		sbappend(&so->so_rcv, q->ipqe_m);
507 	pool_put(&ipqent_pool, q);
508 	sorwakeup(so);
509 	return (pkt_flags);
510 }
511 
512 #ifdef INET6
513 int
514 tcp6_input(mp, offp, proto)
515 	struct mbuf **mp;
516 	int *offp, proto;
517 {
518 	struct mbuf *m = *mp;
519 
520 	/*
521 	 * draft-itojun-ipv6-tcp-to-anycast
522 	 * better place to put this in?
523 	 */
524 	if (m->m_flags & M_ANYCAST6) {
525 		struct ip6_hdr *ip6;
526 		if (m->m_len < sizeof(struct ip6_hdr)) {
527 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
528 				tcpstat.tcps_rcvshort++;
529 				return IPPROTO_DONE;
530 			}
531 		}
532 		ip6 = mtod(m, struct ip6_hdr *);
533 		icmp6_error(m, ICMP6_DST_UNREACH,
534 			ICMP6_DST_UNREACH_ADDR,
535 			(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
536 		return IPPROTO_DONE;
537 	}
538 
539 	tcp_input(m, *offp, proto);
540 	return IPPROTO_DONE;
541 }
542 #endif
543 
544 /*
545  * TCP input routine, follows pages 65-76 of the
546  * protocol specification dated September, 1981 very closely.
547  */
548 void
549 #if __STDC__
550 tcp_input(struct mbuf *m, ...)
551 #else
552 tcp_input(m, va_alist)
553 	struct mbuf *m;
554 #endif
555 {
556 	int proto;
557 	struct tcphdr *th;
558 	struct ip *ip;
559 	struct inpcb *inp;
560 #ifdef INET6
561 	struct ip6_hdr *ip6;
562 	struct in6pcb *in6p;
563 #endif
564 	caddr_t optp = NULL;
565 	int optlen = 0;
566 	int len, tlen, toff, hdroptlen = 0;
567 	struct tcpcb *tp = 0;
568 	int tiflags;
569 	struct socket *so = NULL;
570 	int todrop, acked, ourfinisacked, needoutput = 0;
571 	short ostate = 0;
572 	int iss = 0;
573 	u_long tiwin;
574 	struct tcp_opt_info opti;
575 	int off, iphlen;
576 	va_list ap;
577 	int af;		/* af on the wire */
578 	struct mbuf *tcp_saveti = NULL;
579 
580 	va_start(ap, m);
581 	toff = va_arg(ap, int);
582 	proto = va_arg(ap, int);
583 	va_end(ap);
584 
585 	tcpstat.tcps_rcvtotal++;
586 
587 	bzero(&opti, sizeof(opti));
588 	opti.ts_present = 0;
589 	opti.maxseg = 0;
590 
591 	/*
592 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
593 	 *
594 	 * TCP is, by definition, unicast, so we reject all
595 	 * multicast outright.
596 	 *
597 	 * Note, there are additional src/dst address checks in
598 	 * the AF-specific code below.
599 	 */
600 	if (m->m_flags & (M_BCAST|M_MCAST)) {
601 		/* XXX stat */
602 		goto drop;
603 	}
604 #ifdef INET6
605 	if (m->m_flags & M_ANYCAST6) {
606 		/* XXX stat */
607 		goto drop;
608 	}
609 #endif
610 
611 	/*
612 	 * Get IP and TCP header together in first mbuf.
613 	 * Note: IP leaves IP header in first mbuf.
614 	 */
615 	ip = mtod(m, struct ip *);
616 #ifdef INET6
617 	ip6 = NULL;
618 #endif
619 	switch (ip->ip_v) {
620 #ifdef INET
621 	case 4:
622 		af = AF_INET;
623 		iphlen = sizeof(struct ip);
624 #ifndef PULLDOWN_TEST
625 		/* would like to get rid of this... */
626 		if (toff > sizeof (struct ip)) {
627 			ip_stripoptions(m, (struct mbuf *)0);
628 			toff = sizeof(struct ip);
629 		}
630 		if (m->m_len < toff + sizeof (struct tcphdr)) {
631 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
632 				tcpstat.tcps_rcvshort++;
633 				return;
634 			}
635 		}
636 		ip = mtod(m, struct ip *);
637 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
638 #else
639 		ip = mtod(m, struct ip *);
640 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
641 			sizeof(struct tcphdr));
642 		if (th == NULL) {
643 			tcpstat.tcps_rcvshort++;
644 			return;
645 		}
646 #endif
647 
648 		/*
649 		 * Make sure destination address is not multicast.
650 		 * Source address checked in ip_input().
651 		 */
652 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
653 			/* XXX stat */
654 			goto drop;
655 		}
656 
657 		/* We do the checksum after PCB lookup... */
658 		len = ip->ip_len;
659 		tlen = len - toff;
660 		break;
661 #endif
662 #ifdef INET6
663 	case 6:
664 		ip = NULL;
665 		iphlen = sizeof(struct ip6_hdr);
666 		af = AF_INET6;
667 #ifndef PULLDOWN_TEST
668 		if (m->m_len < toff + sizeof(struct tcphdr)) {
669 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
670 			if (m == NULL) {
671 				tcpstat.tcps_rcvshort++;
672 				return;
673 			}
674 		}
675 		ip6 = mtod(m, struct ip6_hdr *);
676 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
677 #else
678 		ip6 = mtod(m, struct ip6_hdr *);
679 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
680 			sizeof(struct tcphdr));
681 		if (th == NULL) {
682 			tcpstat.tcps_rcvshort++;
683 			return;
684 		}
685 #endif
686 
687 		/* Be proactive about malicious use of IPv4 mapped address */
688 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
689 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
690 			/* XXX stat */
691 			goto drop;
692 		}
693 
694 		/*
695 		 * Be proactive about unspecified IPv6 address in source.
696 		 * As we use all-zero to indicate unbounded/unconnected pcb,
697 		 * unspecified IPv6 address can be used to confuse us.
698 		 *
699 		 * Note that packets with unspecified IPv6 destination is
700 		 * already dropped in ip6_input.
701 		 */
702 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
703 			/* XXX stat */
704 			goto drop;
705 		}
706 
707 		/*
708 		 * Make sure destination address is not multicast.
709 		 * Source address checked in ip6_input().
710 		 */
711 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
712 			/* XXX stat */
713 			goto drop;
714 		}
715 
716 		/* We do the checksum after PCB lookup... */
717 		len = m->m_pkthdr.len;
718 		tlen = len - toff;
719 		break;
720 #endif
721 	default:
722 		m_freem(m);
723 		return;
724 	}
725 
726 	/*
727 	 * Check that TCP offset makes sense,
728 	 * pull out TCP options and adjust length.		XXX
729 	 */
730 	off = th->th_off << 2;
731 	if (off < sizeof (struct tcphdr) || off > tlen) {
732 		tcpstat.tcps_rcvbadoff++;
733 		goto drop;
734 	}
735 	tlen -= off;
736 
737 	/*
738 	 * tcp_input() has been modified to use tlen to mean the TCP data
739 	 * length throughout the function.  Other functions can use
740 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
741 	 * rja
742 	 */
743 
744 	if (off > sizeof (struct tcphdr)) {
745 #ifndef PULLDOWN_TEST
746 		if (m->m_len < toff + off) {
747 			if ((m = m_pullup(m, toff + off)) == 0) {
748 				tcpstat.tcps_rcvshort++;
749 				return;
750 			}
751 			switch (af) {
752 #ifdef INET
753 			case AF_INET:
754 				ip = mtod(m, struct ip *);
755 				break;
756 #endif
757 #ifdef INET6
758 			case AF_INET6:
759 				ip6 = mtod(m, struct ip6_hdr *);
760 				break;
761 #endif
762 			}
763 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
764 		}
765 #else
766 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
767 		if (th == NULL) {
768 			tcpstat.tcps_rcvshort++;
769 			return;
770 		}
771 		/*
772 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
773 		 * (as they're before toff) and we don't need to update those.
774 		 */
775 #endif
776 		optlen = off - sizeof (struct tcphdr);
777 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
778 		/*
779 		 * Do quick retrieval of timestamp options ("options
780 		 * prediction?").  If timestamp is the only option and it's
781 		 * formatted as recommended in RFC 1323 appendix A, we
782 		 * quickly get the values now and not bother calling
783 		 * tcp_dooptions(), etc.
784 		 */
785 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
786 		     (optlen > TCPOLEN_TSTAMP_APPA &&
787 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
788 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
789 		     (th->th_flags & TH_SYN) == 0) {
790 			opti.ts_present = 1;
791 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
792 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
793 			optp = NULL;	/* we've parsed the options */
794 		}
795 	}
796 	tiflags = th->th_flags;
797 
798 	/*
799 	 * Locate pcb for segment.
800 	 */
801 findpcb:
802 	inp = NULL;
803 #ifdef INET6
804 	in6p = NULL;
805 #endif
806 	switch (af) {
807 #ifdef INET
808 	case AF_INET:
809 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
810 		    ip->ip_dst, th->th_dport);
811 		if (inp == 0) {
812 			++tcpstat.tcps_pcbhashmiss;
813 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
814 		}
815 #ifdef INET6
816 		if (inp == 0) {
817 			struct in6_addr s, d;
818 
819 			/* mapped addr case */
820 			bzero(&s, sizeof(s));
821 			s.s6_addr16[5] = htons(0xffff);
822 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
823 			bzero(&d, sizeof(d));
824 			d.s6_addr16[5] = htons(0xffff);
825 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
826 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
827 				&d, th->th_dport, 0);
828 			if (in6p == 0) {
829 				++tcpstat.tcps_pcbhashmiss;
830 				in6p = in6_pcblookup_bind(&tcb6, &d,
831 					th->th_dport, 0);
832 			}
833 		}
834 #endif
835 #ifndef INET6
836 		if (inp == 0)
837 #else
838 		if (inp == 0 && in6p == 0)
839 #endif
840 		{
841 			++tcpstat.tcps_noport;
842 			if (tcp_log_refused && (tiflags & TH_SYN)) {
843 #ifndef INET6
844 				char src[4*sizeof "123"];
845 				char dst[4*sizeof "123"];
846 #else
847 				char src[INET6_ADDRSTRLEN];
848 				char dst[INET6_ADDRSTRLEN];
849 #endif
850 				if (ip) {
851 					strcpy(src, inet_ntoa(ip->ip_src));
852 					strcpy(dst, inet_ntoa(ip->ip_dst));
853 				}
854 #ifdef INET6
855 				else if (ip6) {
856 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
857 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
858 				}
859 #endif
860 				else {
861 					strcpy(src, "(unknown)");
862 					strcpy(dst, "(unknown)");
863 				}
864 				log(LOG_INFO,
865 				    "Connection attempt to TCP %s:%d from %s:%d\n",
866 				    dst, ntohs(th->th_dport),
867 				    src, ntohs(th->th_sport));
868 			}
869 			TCP_FIELDS_TO_HOST(th);
870 			goto dropwithreset_ratelim;
871 		}
872 #ifdef IPSEC
873 		if (inp && ipsec4_in_reject(m, inp)) {
874 			ipsecstat.in_polvio++;
875 			goto drop;
876 		}
877 #ifdef INET6
878 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
879 			ipsecstat.in_polvio++;
880 			goto drop;
881 		}
882 #endif
883 #endif /*IPSEC*/
884 		break;
885 #endif /*INET*/
886 #ifdef INET6
887 	case AF_INET6:
888 	    {
889 		int faith;
890 
891 #if defined(NFAITH) && NFAITH > 0
892 		if (m->m_pkthdr.rcvif
893 		 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
894 			faith = 1;
895 		} else
896 			faith = 0;
897 #else
898 		faith = 0;
899 #endif
900 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
901 			&ip6->ip6_dst, th->th_dport, faith);
902 		if (in6p == NULL) {
903 			++tcpstat.tcps_pcbhashmiss;
904 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
905 				th->th_dport, faith);
906 		}
907 		if (in6p == NULL) {
908 			++tcpstat.tcps_noport;
909 			TCP_FIELDS_TO_HOST(th);
910 			goto dropwithreset_ratelim;
911 		}
912 #ifdef IPSEC
913 		if (ipsec6_in_reject(m, in6p)) {
914 			ipsec6stat.in_polvio++;
915 			goto drop;
916 		}
917 #endif /*IPSEC*/
918 		break;
919 	    }
920 #endif
921 	}
922 
923 	/*
924 	 * If the state is CLOSED (i.e., TCB does not exist) then
925 	 * all data in the incoming segment is discarded.
926 	 * If the TCB exists but is in CLOSED state, it is embryonic,
927 	 * but should either do a listen or a connect soon.
928 	 */
929 	tp = NULL;
930 	so = NULL;
931 	if (inp) {
932 		tp = intotcpcb(inp);
933 		so = inp->inp_socket;
934 	}
935 #ifdef INET6
936 	else if (in6p) {
937 		tp = in6totcpcb(in6p);
938 		so = in6p->in6p_socket;
939 	}
940 #endif
941 	if (tp == 0) {
942 		TCP_FIELDS_TO_HOST(th);
943 		goto dropwithreset_ratelim;
944 	}
945 	if (tp->t_state == TCPS_CLOSED)
946 		goto drop;
947 
948 	/*
949 	 * Checksum extended TCP header and data.
950 	 */
951 	switch (af) {
952 #ifdef INET
953 	case AF_INET:
954 #ifndef PULLDOWN_TEST
955 	    {
956 		struct ipovly *ipov;
957 		ipov = (struct ipovly *)ip;
958 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
959 		ipov->ih_len = htons(tlen + off);
960 
961 		if (in_cksum(m, len) != 0) {
962 			tcpstat.tcps_rcvbadsum++;
963 			goto drop;
964 		}
965 	    }
966 #else
967 		if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
968 			tcpstat.tcps_rcvbadsum++;
969 			goto drop;
970 		}
971 #endif
972 		break;
973 #endif
974 
975 #ifdef INET6
976 	case AF_INET6:
977 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0) {
978 			tcpstat.tcps_rcvbadsum++;
979 			goto drop;
980 		}
981 		break;
982 #endif
983 	}
984 
985 	TCP_FIELDS_TO_HOST(th);
986 
987 	/* Unscale the window into a 32-bit value. */
988 	if ((tiflags & TH_SYN) == 0)
989 		tiwin = th->th_win << tp->snd_scale;
990 	else
991 		tiwin = th->th_win;
992 
993 #ifdef INET6
994 	/* save packet options if user wanted */
995 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
996 		if (in6p->in6p_options) {
997 			m_freem(in6p->in6p_options);
998 			in6p->in6p_options = 0;
999 		}
1000 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1001 	}
1002 #endif
1003 
1004 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1005 		union syn_cache_sa src;
1006 		union syn_cache_sa dst;
1007 
1008 		bzero(&src, sizeof(src));
1009 		bzero(&dst, sizeof(dst));
1010 		switch (af) {
1011 #ifdef INET
1012 		case AF_INET:
1013 			src.sin.sin_len = sizeof(struct sockaddr_in);
1014 			src.sin.sin_family = AF_INET;
1015 			src.sin.sin_addr = ip->ip_src;
1016 			src.sin.sin_port = th->th_sport;
1017 
1018 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1019 			dst.sin.sin_family = AF_INET;
1020 			dst.sin.sin_addr = ip->ip_dst;
1021 			dst.sin.sin_port = th->th_dport;
1022 			break;
1023 #endif
1024 #ifdef INET6
1025 		case AF_INET6:
1026 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1027 			src.sin6.sin6_family = AF_INET6;
1028 			src.sin6.sin6_addr = ip6->ip6_src;
1029 			src.sin6.sin6_port = th->th_sport;
1030 
1031 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1032 			dst.sin6.sin6_family = AF_INET6;
1033 			dst.sin6.sin6_addr = ip6->ip6_dst;
1034 			dst.sin6.sin6_port = th->th_dport;
1035 			break;
1036 #endif /* INET6 */
1037 		default:
1038 			goto badsyn;	/*sanity*/
1039 		}
1040 
1041 		if (so->so_options & SO_DEBUG) {
1042 			ostate = tp->t_state;
1043 
1044 			tcp_saveti = NULL;
1045 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1046 				goto nosave;
1047 
1048 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1049 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1050 				if (!tcp_saveti)
1051 					goto nosave;
1052 			} else {
1053 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1054 				if (!tcp_saveti)
1055 					goto nosave;
1056 				tcp_saveti->m_len = iphlen;
1057 				m_copydata(m, 0, iphlen,
1058 				    mtod(tcp_saveti, caddr_t));
1059 			}
1060 
1061 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1062 				m_freem(tcp_saveti);
1063 				tcp_saveti = NULL;
1064 			} else {
1065 				tcp_saveti->m_len += sizeof(struct tcphdr);
1066 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1067 				    sizeof(struct tcphdr));
1068 			}
1069 			if (tcp_saveti) {
1070 				/*
1071 				 * need to recover version # field, which was
1072 				 * overwritten on ip_cksum computation.
1073 				 */
1074 				struct ip *sip;
1075 				sip = mtod(tcp_saveti, struct ip *);
1076 				switch (af) {
1077 #ifdef INET
1078 				case AF_INET:
1079 					sip->ip_v = 4;
1080 					break;
1081 #endif
1082 #ifdef INET6
1083 				case AF_INET6:
1084 					sip->ip_v = 6;
1085 					break;
1086 #endif
1087 				}
1088 			}
1089 	nosave:;
1090 		}
1091 		if (so->so_options & SO_ACCEPTCONN) {
1092   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1093 				if (tiflags & TH_RST) {
1094 					syn_cache_reset(&src.sa, &dst.sa, th);
1095 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1096 				    (TH_ACK|TH_SYN)) {
1097 					/*
1098 					 * Received a SYN,ACK.  This should
1099 					 * never happen while we are in
1100 					 * LISTEN.  Send an RST.
1101 					 */
1102 					goto badsyn;
1103 				} else if (tiflags & TH_ACK) {
1104 					so = syn_cache_get(&src.sa, &dst.sa,
1105 						th, toff, tlen, so, m);
1106 					if (so == NULL) {
1107 						/*
1108 						 * We don't have a SYN for
1109 						 * this ACK; send an RST.
1110 						 */
1111 						goto badsyn;
1112 					} else if (so ==
1113 					    (struct socket *)(-1)) {
1114 						/*
1115 						 * We were unable to create
1116 						 * the connection.  If the
1117 						 * 3-way handshake was
1118 						 * completed, and RST has
1119 						 * been sent to the peer.
1120 						 * Since the mbuf might be
1121 						 * in use for the reply,
1122 						 * do not free it.
1123 						 */
1124 						m = NULL;
1125 					} else {
1126 						/*
1127 						 * We have created a
1128 						 * full-blown connection.
1129 						 */
1130 						tp = NULL;
1131 						inp = NULL;
1132 #ifdef INET6
1133 						in6p = NULL;
1134 #endif
1135 						switch (so->so_proto->pr_domain->dom_family) {
1136 #ifdef INET
1137 						case AF_INET:
1138 							inp = sotoinpcb(so);
1139 							tp = intotcpcb(inp);
1140 							break;
1141 #endif
1142 #ifdef INET6
1143 						case AF_INET6:
1144 							in6p = sotoin6pcb(so);
1145 							tp = in6totcpcb(in6p);
1146 							break;
1147 #endif
1148 						}
1149 						if (tp == NULL)
1150 							goto badsyn;	/*XXX*/
1151 						tiwin <<= tp->snd_scale;
1152 						goto after_listen;
1153 					}
1154   				} else {
1155 					/*
1156 					 * None of RST, SYN or ACK was set.
1157 					 * This is an invalid packet for a
1158 					 * TCB in LISTEN state.  Send a RST.
1159 					 */
1160 					goto badsyn;
1161 				}
1162   			} else {
1163 				/*
1164 				 * Received a SYN.
1165 				 */
1166 
1167 				/*
1168 				 * LISTEN socket received a SYN
1169 				 * from itself?  This can't possibly
1170 				 * be valid; drop the packet.
1171 				 */
1172 				if (th->th_sport == th->th_dport) {
1173 					int i;
1174 
1175 					switch (af) {
1176 #ifdef INET
1177 					case AF_INET:
1178 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1179 						break;
1180 #endif
1181 #ifdef INET6
1182 					case AF_INET6:
1183 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1184 						break;
1185 #endif
1186 					default:
1187 						i = 1;
1188 					}
1189 					if (i) {
1190 						tcpstat.tcps_badsyn++;
1191 						goto drop;
1192 					}
1193 				}
1194 
1195 				/*
1196 				 * SYN looks ok; create compressed TCP
1197 				 * state for it.
1198 				 */
1199 				if (so->so_qlen <= so->so_qlimit &&
1200 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1201 						so, m, optp, optlen, &opti))
1202 					m = NULL;
1203 			}
1204 			goto drop;
1205 		}
1206 	}
1207 
1208 after_listen:
1209 #ifdef DIAGNOSTIC
1210 	/*
1211 	 * Should not happen now that all embryonic connections
1212 	 * are handled with compressed state.
1213 	 */
1214 	if (tp->t_state == TCPS_LISTEN)
1215 		panic("tcp_input: TCPS_LISTEN");
1216 #endif
1217 
1218 	/*
1219 	 * Segment received on connection.
1220 	 * Reset idle time and keep-alive timer.
1221 	 */
1222 	tp->t_idle = 0;
1223 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1224 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1225 
1226 	/*
1227 	 * Process options.
1228 	 */
1229 	if (optp)
1230 		tcp_dooptions(tp, optp, optlen, th, &opti);
1231 
1232 	/*
1233 	 * Header prediction: check for the two common cases
1234 	 * of a uni-directional data xfer.  If the packet has
1235 	 * no control flags, is in-sequence, the window didn't
1236 	 * change and we're not retransmitting, it's a
1237 	 * candidate.  If the length is zero and the ack moved
1238 	 * forward, we're the sender side of the xfer.  Just
1239 	 * free the data acked & wake any higher level process
1240 	 * that was blocked waiting for space.  If the length
1241 	 * is non-zero and the ack didn't move, we're the
1242 	 * receiver side.  If we're getting packets in-order
1243 	 * (the reassembly queue is empty), add the data to
1244 	 * the socket buffer and note that we need a delayed ack.
1245 	 */
1246 	if (tp->t_state == TCPS_ESTABLISHED &&
1247 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1248 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1249 	    th->th_seq == tp->rcv_nxt &&
1250 	    tiwin && tiwin == tp->snd_wnd &&
1251 	    tp->snd_nxt == tp->snd_max) {
1252 
1253 		/*
1254 		 * If last ACK falls within this segment's sequence numbers,
1255 		 *  record the timestamp.
1256 		 */
1257 		if (opti.ts_present &&
1258 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1259 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1260 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1261 			tp->ts_recent = opti.ts_val;
1262 		}
1263 
1264 		if (tlen == 0) {
1265 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1266 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1267 			    tp->snd_cwnd >= tp->snd_wnd &&
1268 			    tp->t_dupacks < tcprexmtthresh) {
1269 				/*
1270 				 * this is a pure ack for outstanding data.
1271 				 */
1272 				++tcpstat.tcps_predack;
1273 				if (opti.ts_present && opti.ts_ecr)
1274 					tcp_xmit_timer(tp,
1275 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1276 				else if (tp->t_rtt &&
1277 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1278 					tcp_xmit_timer(tp, tp->t_rtt);
1279 				acked = th->th_ack - tp->snd_una;
1280 				tcpstat.tcps_rcvackpack++;
1281 				tcpstat.tcps_rcvackbyte += acked;
1282 				ND6_HINT(tp);
1283 				sbdrop(&so->so_snd, acked);
1284 				/*
1285 				 * We want snd_recover to track snd_una to
1286 				 * avoid sequence wraparound problems for
1287 				 * very large transfers.
1288 				 */
1289 				tp->snd_una = tp->snd_recover = th->th_ack;
1290 				m_freem(m);
1291 
1292 				/*
1293 				 * If all outstanding data are acked, stop
1294 				 * retransmit timer, otherwise restart timer
1295 				 * using current (possibly backed-off) value.
1296 				 * If process is waiting for space,
1297 				 * wakeup/selwakeup/signal.  If data
1298 				 * are ready to send, let tcp_output
1299 				 * decide between more output or persist.
1300 				 */
1301 				if (tp->snd_una == tp->snd_max)
1302 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1303 				else if (TCP_TIMER_ISARMED(tp,
1304 				    TCPT_PERSIST) == 0)
1305 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1306 					    tp->t_rxtcur);
1307 
1308 				sowwakeup(so);
1309 				if (so->so_snd.sb_cc)
1310 					(void) tcp_output(tp);
1311 				if (tcp_saveti)
1312 					m_freem(tcp_saveti);
1313 				return;
1314 			}
1315 		} else if (th->th_ack == tp->snd_una &&
1316 		    tp->segq.lh_first == NULL &&
1317 		    tlen <= sbspace(&so->so_rcv)) {
1318 			/*
1319 			 * this is a pure, in-sequence data packet
1320 			 * with nothing on the reassembly queue and
1321 			 * we have enough buffer space to take it.
1322 			 */
1323 			++tcpstat.tcps_preddat;
1324 			tp->rcv_nxt += tlen;
1325 			tcpstat.tcps_rcvpack++;
1326 			tcpstat.tcps_rcvbyte += tlen;
1327 			ND6_HINT(tp);
1328 			/*
1329 			 * Drop TCP, IP headers and TCP options then add data
1330 			 * to socket buffer.
1331 			 */
1332 			m_adj(m, toff + off);
1333 			sbappend(&so->so_rcv, m);
1334 			sorwakeup(so);
1335 			TCP_SETUP_ACK(tp, th);
1336 			if (tp->t_flags & TF_ACKNOW)
1337 				(void) tcp_output(tp);
1338 			if (tcp_saveti)
1339 				m_freem(tcp_saveti);
1340 			return;
1341 		}
1342 	}
1343 
1344 	/*
1345 	 * Compute mbuf offset to TCP data segment.
1346 	 */
1347 	hdroptlen = toff + off;
1348 
1349 	/*
1350 	 * Calculate amount of space in receive window,
1351 	 * and then do TCP input processing.
1352 	 * Receive window is amount of space in rcv queue,
1353 	 * but not less than advertised window.
1354 	 */
1355 	{ int win;
1356 
1357 	win = sbspace(&so->so_rcv);
1358 	if (win < 0)
1359 		win = 0;
1360 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1361 	}
1362 
1363 	switch (tp->t_state) {
1364 
1365 	/*
1366 	 * If the state is SYN_SENT:
1367 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1368 	 *	if seg contains a RST, then drop the connection.
1369 	 *	if seg does not contain SYN, then drop it.
1370 	 * Otherwise this is an acceptable SYN segment
1371 	 *	initialize tp->rcv_nxt and tp->irs
1372 	 *	if seg contains ack then advance tp->snd_una
1373 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1374 	 *	arrange for segment to be acked (eventually)
1375 	 *	continue processing rest of data/controls, beginning with URG
1376 	 */
1377 	case TCPS_SYN_SENT:
1378 		if ((tiflags & TH_ACK) &&
1379 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1380 		     SEQ_GT(th->th_ack, tp->snd_max)))
1381 			goto dropwithreset;
1382 		if (tiflags & TH_RST) {
1383 			if (tiflags & TH_ACK)
1384 				tp = tcp_drop(tp, ECONNREFUSED);
1385 			goto drop;
1386 		}
1387 		if ((tiflags & TH_SYN) == 0)
1388 			goto drop;
1389 		if (tiflags & TH_ACK) {
1390 			tp->snd_una = tp->snd_recover = th->th_ack;
1391 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1392 				tp->snd_nxt = tp->snd_una;
1393 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1394 		}
1395 		tp->irs = th->th_seq;
1396 		tcp_rcvseqinit(tp);
1397 		tp->t_flags |= TF_ACKNOW;
1398 		tcp_mss_from_peer(tp, opti.maxseg);
1399 
1400 		/*
1401 		 * Initialize the initial congestion window.  If we
1402 		 * had to retransmit the SYN, we must initialize cwnd
1403 		 * to 1 segment (i.e. the Loss Window).
1404 		 */
1405 		if (tp->t_flags & TF_SYN_REXMT)
1406 			tp->snd_cwnd = tp->t_peermss;
1407 		else
1408 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1409 			    tp->t_peermss);
1410 
1411 		tcp_rmx_rtt(tp);
1412 		if (tiflags & TH_ACK) {
1413 			tcpstat.tcps_connects++;
1414 			soisconnected(so);
1415 			tcp_established(tp);
1416 			/* Do window scaling on this connection? */
1417 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1418 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1419 				tp->snd_scale = tp->requested_s_scale;
1420 				tp->rcv_scale = tp->request_r_scale;
1421 			}
1422 			TCP_REASS_LOCK(tp);
1423 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1424 			TCP_REASS_UNLOCK(tp);
1425 			/*
1426 			 * if we didn't have to retransmit the SYN,
1427 			 * use its rtt as our initial srtt & rtt var.
1428 			 */
1429 			if (tp->t_rtt)
1430 				tcp_xmit_timer(tp, tp->t_rtt);
1431 		} else
1432 			tp->t_state = TCPS_SYN_RECEIVED;
1433 
1434 		/*
1435 		 * Advance th->th_seq to correspond to first data byte.
1436 		 * If data, trim to stay within window,
1437 		 * dropping FIN if necessary.
1438 		 */
1439 		th->th_seq++;
1440 		if (tlen > tp->rcv_wnd) {
1441 			todrop = tlen - tp->rcv_wnd;
1442 			m_adj(m, -todrop);
1443 			tlen = tp->rcv_wnd;
1444 			tiflags &= ~TH_FIN;
1445 			tcpstat.tcps_rcvpackafterwin++;
1446 			tcpstat.tcps_rcvbyteafterwin += todrop;
1447 		}
1448 		tp->snd_wl1 = th->th_seq - 1;
1449 		tp->rcv_up = th->th_seq;
1450 		goto step6;
1451 
1452 	/*
1453 	 * If the state is SYN_RECEIVED:
1454 	 *	If seg contains an ACK, but not for our SYN, drop the input
1455 	 *	and generate an RST.  See page 36, rfc793
1456 	 */
1457 	case TCPS_SYN_RECEIVED:
1458 		if ((tiflags & TH_ACK) &&
1459 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1460 		     SEQ_GT(th->th_ack, tp->snd_max)))
1461 			goto dropwithreset;
1462 		break;
1463 	}
1464 
1465 	/*
1466 	 * States other than LISTEN or SYN_SENT.
1467 	 * First check timestamp, if present.
1468 	 * Then check that at least some bytes of segment are within
1469 	 * receive window.  If segment begins before rcv_nxt,
1470 	 * drop leading data (and SYN); if nothing left, just ack.
1471 	 *
1472 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1473 	 * and it's less than ts_recent, drop it.
1474 	 */
1475 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1476 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1477 
1478 		/* Check to see if ts_recent is over 24 days old.  */
1479 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1480 		    TCP_PAWS_IDLE) {
1481 			/*
1482 			 * Invalidate ts_recent.  If this segment updates
1483 			 * ts_recent, the age will be reset later and ts_recent
1484 			 * will get a valid value.  If it does not, setting
1485 			 * ts_recent to zero will at least satisfy the
1486 			 * requirement that zero be placed in the timestamp
1487 			 * echo reply when ts_recent isn't valid.  The
1488 			 * age isn't reset until we get a valid ts_recent
1489 			 * because we don't want out-of-order segments to be
1490 			 * dropped when ts_recent is old.
1491 			 */
1492 			tp->ts_recent = 0;
1493 		} else {
1494 			tcpstat.tcps_rcvduppack++;
1495 			tcpstat.tcps_rcvdupbyte += tlen;
1496 			tcpstat.tcps_pawsdrop++;
1497 			goto dropafterack;
1498 		}
1499 	}
1500 
1501 	todrop = tp->rcv_nxt - th->th_seq;
1502 	if (todrop > 0) {
1503 		if (tiflags & TH_SYN) {
1504 			tiflags &= ~TH_SYN;
1505 			th->th_seq++;
1506 			if (th->th_urp > 1)
1507 				th->th_urp--;
1508 			else {
1509 				tiflags &= ~TH_URG;
1510 				th->th_urp = 0;
1511 			}
1512 			todrop--;
1513 		}
1514 		if (todrop > tlen ||
1515 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1516 			/*
1517 			 * Any valid FIN must be to the left of the window.
1518 			 * At this point the FIN must be a duplicate or
1519 			 * out of sequence; drop it.
1520 			 */
1521 			tiflags &= ~TH_FIN;
1522 			/*
1523 			 * Send an ACK to resynchronize and drop any data.
1524 			 * But keep on processing for RST or ACK.
1525 			 */
1526 			tp->t_flags |= TF_ACKNOW;
1527 			todrop = tlen;
1528 			tcpstat.tcps_rcvdupbyte += todrop;
1529 			tcpstat.tcps_rcvduppack++;
1530 		} else {
1531 			tcpstat.tcps_rcvpartduppack++;
1532 			tcpstat.tcps_rcvpartdupbyte += todrop;
1533 		}
1534 		hdroptlen += todrop;	/*drop from head afterwards*/
1535 		th->th_seq += todrop;
1536 		tlen -= todrop;
1537 		if (th->th_urp > todrop)
1538 			th->th_urp -= todrop;
1539 		else {
1540 			tiflags &= ~TH_URG;
1541 			th->th_urp = 0;
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * If new data are received on a connection after the
1547 	 * user processes are gone, then RST the other end.
1548 	 */
1549 	if ((so->so_state & SS_NOFDREF) &&
1550 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1551 		tp = tcp_close(tp);
1552 		tcpstat.tcps_rcvafterclose++;
1553 		goto dropwithreset;
1554 	}
1555 
1556 	/*
1557 	 * If segment ends after window, drop trailing data
1558 	 * (and PUSH and FIN); if nothing left, just ACK.
1559 	 */
1560 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1561 	if (todrop > 0) {
1562 		tcpstat.tcps_rcvpackafterwin++;
1563 		if (todrop >= tlen) {
1564 			tcpstat.tcps_rcvbyteafterwin += tlen;
1565 			/*
1566 			 * If a new connection request is received
1567 			 * while in TIME_WAIT, drop the old connection
1568 			 * and start over if the sequence numbers
1569 			 * are above the previous ones.
1570 			 */
1571 			if (tiflags & TH_SYN &&
1572 			    tp->t_state == TCPS_TIME_WAIT &&
1573 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1574 				iss = tcp_new_iss(tp, tp->snd_nxt);
1575 				tp = tcp_close(tp);
1576 				goto findpcb;
1577 			}
1578 			/*
1579 			 * If window is closed can only take segments at
1580 			 * window edge, and have to drop data and PUSH from
1581 			 * incoming segments.  Continue processing, but
1582 			 * remember to ack.  Otherwise, drop segment
1583 			 * and ack.
1584 			 */
1585 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1586 				tp->t_flags |= TF_ACKNOW;
1587 				tcpstat.tcps_rcvwinprobe++;
1588 			} else
1589 				goto dropafterack;
1590 		} else
1591 			tcpstat.tcps_rcvbyteafterwin += todrop;
1592 		m_adj(m, -todrop);
1593 		tlen -= todrop;
1594 		tiflags &= ~(TH_PUSH|TH_FIN);
1595 	}
1596 
1597 	/*
1598 	 * If last ACK falls within this segment's sequence numbers,
1599 	 * and the timestamp is newer, record it.
1600 	 */
1601 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1602 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1603 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1604 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1605 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1606 		tp->ts_recent = opti.ts_val;
1607 	}
1608 
1609 	/*
1610 	 * If the RST bit is set examine the state:
1611 	 *    SYN_RECEIVED STATE:
1612 	 *	If passive open, return to LISTEN state.
1613 	 *	If active open, inform user that connection was refused.
1614 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1615 	 *	Inform user that connection was reset, and close tcb.
1616 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1617 	 *	Close the tcb.
1618 	 */
1619 	if (tiflags&TH_RST) switch (tp->t_state) {
1620 
1621 	case TCPS_SYN_RECEIVED:
1622 		so->so_error = ECONNREFUSED;
1623 		goto close;
1624 
1625 	case TCPS_ESTABLISHED:
1626 	case TCPS_FIN_WAIT_1:
1627 	case TCPS_FIN_WAIT_2:
1628 	case TCPS_CLOSE_WAIT:
1629 		so->so_error = ECONNRESET;
1630 	close:
1631 		tp->t_state = TCPS_CLOSED;
1632 		tcpstat.tcps_drops++;
1633 		tp = tcp_close(tp);
1634 		goto drop;
1635 
1636 	case TCPS_CLOSING:
1637 	case TCPS_LAST_ACK:
1638 	case TCPS_TIME_WAIT:
1639 		tp = tcp_close(tp);
1640 		goto drop;
1641 	}
1642 
1643 	/*
1644 	 * If a SYN is in the window, then this is an
1645 	 * error and we send an RST and drop the connection.
1646 	 */
1647 	if (tiflags & TH_SYN) {
1648 		tp = tcp_drop(tp, ECONNRESET);
1649 		goto dropwithreset;
1650 	}
1651 
1652 	/*
1653 	 * If the ACK bit is off we drop the segment and return.
1654 	 */
1655 	if ((tiflags & TH_ACK) == 0) {
1656 		if (tp->t_flags & TF_ACKNOW)
1657 			goto dropafterack;
1658 		else
1659 			goto drop;
1660 	}
1661 
1662 	/*
1663 	 * Ack processing.
1664 	 */
1665 	switch (tp->t_state) {
1666 
1667 	/*
1668 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1669 	 * ESTABLISHED state and continue processing, otherwise
1670 	 * send an RST.
1671 	 */
1672 	case TCPS_SYN_RECEIVED:
1673 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1674 		    SEQ_GT(th->th_ack, tp->snd_max))
1675 			goto dropwithreset;
1676 		tcpstat.tcps_connects++;
1677 		soisconnected(so);
1678 		tcp_established(tp);
1679 		/* Do window scaling? */
1680 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1681 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1682 			tp->snd_scale = tp->requested_s_scale;
1683 			tp->rcv_scale = tp->request_r_scale;
1684 		}
1685 		TCP_REASS_LOCK(tp);
1686 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1687 		TCP_REASS_UNLOCK(tp);
1688 		tp->snd_wl1 = th->th_seq - 1;
1689 		/* fall into ... */
1690 
1691 	/*
1692 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1693 	 * ACKs.  If the ack is in the range
1694 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1695 	 * then advance tp->snd_una to th->th_ack and drop
1696 	 * data from the retransmission queue.  If this ACK reflects
1697 	 * more up to date window information we update our window information.
1698 	 */
1699 	case TCPS_ESTABLISHED:
1700 	case TCPS_FIN_WAIT_1:
1701 	case TCPS_FIN_WAIT_2:
1702 	case TCPS_CLOSE_WAIT:
1703 	case TCPS_CLOSING:
1704 	case TCPS_LAST_ACK:
1705 	case TCPS_TIME_WAIT:
1706 
1707 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1708 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1709 				tcpstat.tcps_rcvdupack++;
1710 				/*
1711 				 * If we have outstanding data (other than
1712 				 * a window probe), this is a completely
1713 				 * duplicate ack (ie, window info didn't
1714 				 * change), the ack is the biggest we've
1715 				 * seen and we've seen exactly our rexmt
1716 				 * threshhold of them, assume a packet
1717 				 * has been dropped and retransmit it.
1718 				 * Kludge snd_nxt & the congestion
1719 				 * window so we send only this one
1720 				 * packet.
1721 				 *
1722 				 * We know we're losing at the current
1723 				 * window size so do congestion avoidance
1724 				 * (set ssthresh to half the current window
1725 				 * and pull our congestion window back to
1726 				 * the new ssthresh).
1727 				 *
1728 				 * Dup acks mean that packets have left the
1729 				 * network (they're now cached at the receiver)
1730 				 * so bump cwnd by the amount in the receiver
1731 				 * to keep a constant cwnd packets in the
1732 				 * network.
1733 				 */
1734 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1735 				    th->th_ack != tp->snd_una)
1736 					tp->t_dupacks = 0;
1737 				else if (++tp->t_dupacks == tcprexmtthresh) {
1738 					tcp_seq onxt = tp->snd_nxt;
1739 					u_int win =
1740 					    min(tp->snd_wnd, tp->snd_cwnd) /
1741 					    2 /	tp->t_segsz;
1742 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1743 					    tp->snd_recover)) {
1744 						/*
1745 						 * False fast retransmit after
1746 						 * timeout.  Do not cut window.
1747 						 */
1748 						tp->snd_cwnd += tp->t_segsz;
1749 						tp->t_dupacks = 0;
1750 						(void) tcp_output(tp);
1751 						goto drop;
1752 					}
1753 
1754 					if (win < 2)
1755 						win = 2;
1756 					tp->snd_ssthresh = win * tp->t_segsz;
1757 					tp->snd_recover = tp->snd_max;
1758 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1759 					tp->t_rtt = 0;
1760 					tp->snd_nxt = th->th_ack;
1761 					tp->snd_cwnd = tp->t_segsz;
1762 					(void) tcp_output(tp);
1763 					tp->snd_cwnd = tp->snd_ssthresh +
1764 					       tp->t_segsz * tp->t_dupacks;
1765 					if (SEQ_GT(onxt, tp->snd_nxt))
1766 						tp->snd_nxt = onxt;
1767 					goto drop;
1768 				} else if (tp->t_dupacks > tcprexmtthresh) {
1769 					tp->snd_cwnd += tp->t_segsz;
1770 					(void) tcp_output(tp);
1771 					goto drop;
1772 				}
1773 			} else
1774 				tp->t_dupacks = 0;
1775 			break;
1776 		}
1777 		/*
1778 		 * If the congestion window was inflated to account
1779 		 * for the other side's cached packets, retract it.
1780 		 */
1781 		if (tcp_do_newreno == 0) {
1782 			if (tp->t_dupacks >= tcprexmtthresh &&
1783 			    tp->snd_cwnd > tp->snd_ssthresh)
1784 				tp->snd_cwnd = tp->snd_ssthresh;
1785 			tp->t_dupacks = 0;
1786 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1787 			   tcp_newreno(tp, th) == 0) {
1788 			tp->snd_cwnd = tp->snd_ssthresh;
1789 			/*
1790 			 * Window inflation should have left us with approx.
1791 			 * snd_ssthresh outstanding data.  But in case we
1792 			 * would be inclined to send a burst, better to do
1793 			 * it via the slow start mechanism.
1794 			 */
1795 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1796 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1797 				    + tp->t_segsz;
1798 			tp->t_dupacks = 0;
1799 		}
1800 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1801 			tcpstat.tcps_rcvacktoomuch++;
1802 			goto dropafterack;
1803 		}
1804 		acked = th->th_ack - tp->snd_una;
1805 		tcpstat.tcps_rcvackpack++;
1806 		tcpstat.tcps_rcvackbyte += acked;
1807 
1808 		/*
1809 		 * If we have a timestamp reply, update smoothed
1810 		 * round trip time.  If no timestamp is present but
1811 		 * transmit timer is running and timed sequence
1812 		 * number was acked, update smoothed round trip time.
1813 		 * Since we now have an rtt measurement, cancel the
1814 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1815 		 * Recompute the initial retransmit timer.
1816 		 */
1817 		if (opti.ts_present && opti.ts_ecr)
1818 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1819 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1820 			tcp_xmit_timer(tp,tp->t_rtt);
1821 
1822 		/*
1823 		 * If all outstanding data is acked, stop retransmit
1824 		 * timer and remember to restart (more output or persist).
1825 		 * If there is more data to be acked, restart retransmit
1826 		 * timer, using current (possibly backed-off) value.
1827 		 */
1828 		if (th->th_ack == tp->snd_max) {
1829 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1830 			needoutput = 1;
1831 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1832 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1833 		/*
1834 		 * When new data is acked, open the congestion window.
1835 		 * If the window gives us less than ssthresh packets
1836 		 * in flight, open exponentially (segsz per packet).
1837 		 * Otherwise open linearly: segsz per window
1838 		 * (segsz^2 / cwnd per packet), plus a constant
1839 		 * fraction of a packet (segsz/8) to help larger windows
1840 		 * open quickly enough.
1841 		 */
1842 		{
1843 		u_int cw = tp->snd_cwnd;
1844 		u_int incr = tp->t_segsz;
1845 
1846 		if (cw > tp->snd_ssthresh)
1847 			incr = incr * incr / cw;
1848 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1849 			tp->snd_cwnd = min(cw + incr,
1850 			    TCP_MAXWIN << tp->snd_scale);
1851 		}
1852 		ND6_HINT(tp);
1853 		if (acked > so->so_snd.sb_cc) {
1854 			tp->snd_wnd -= so->so_snd.sb_cc;
1855 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1856 			ourfinisacked = 1;
1857 		} else {
1858 			sbdrop(&so->so_snd, acked);
1859 			tp->snd_wnd -= acked;
1860 			ourfinisacked = 0;
1861 		}
1862 		sowwakeup(so);
1863 		/*
1864 		 * We want snd_recover to track snd_una to
1865 		 * avoid sequence wraparound problems for
1866 		 * very large transfers.
1867 		 */
1868 		tp->snd_una = tp->snd_recover = th->th_ack;
1869 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1870 			tp->snd_nxt = tp->snd_una;
1871 
1872 		switch (tp->t_state) {
1873 
1874 		/*
1875 		 * In FIN_WAIT_1 STATE in addition to the processing
1876 		 * for the ESTABLISHED state if our FIN is now acknowledged
1877 		 * then enter FIN_WAIT_2.
1878 		 */
1879 		case TCPS_FIN_WAIT_1:
1880 			if (ourfinisacked) {
1881 				/*
1882 				 * If we can't receive any more
1883 				 * data, then closing user can proceed.
1884 				 * Starting the timer is contrary to the
1885 				 * specification, but if we don't get a FIN
1886 				 * we'll hang forever.
1887 				 */
1888 				if (so->so_state & SS_CANTRCVMORE) {
1889 					soisdisconnected(so);
1890 					if (tcp_maxidle > 0)
1891 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1892 						    tcp_maxidle);
1893 				}
1894 				tp->t_state = TCPS_FIN_WAIT_2;
1895 			}
1896 			break;
1897 
1898 	 	/*
1899 		 * In CLOSING STATE in addition to the processing for
1900 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1901 		 * then enter the TIME-WAIT state, otherwise ignore
1902 		 * the segment.
1903 		 */
1904 		case TCPS_CLOSING:
1905 			if (ourfinisacked) {
1906 				tp->t_state = TCPS_TIME_WAIT;
1907 				tcp_canceltimers(tp);
1908 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1909 				soisdisconnected(so);
1910 			}
1911 			break;
1912 
1913 		/*
1914 		 * In LAST_ACK, we may still be waiting for data to drain
1915 		 * and/or to be acked, as well as for the ack of our FIN.
1916 		 * If our FIN is now acknowledged, delete the TCB,
1917 		 * enter the closed state and return.
1918 		 */
1919 		case TCPS_LAST_ACK:
1920 			if (ourfinisacked) {
1921 				tp = tcp_close(tp);
1922 				goto drop;
1923 			}
1924 			break;
1925 
1926 		/*
1927 		 * In TIME_WAIT state the only thing that should arrive
1928 		 * is a retransmission of the remote FIN.  Acknowledge
1929 		 * it and restart the finack timer.
1930 		 */
1931 		case TCPS_TIME_WAIT:
1932 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1933 			goto dropafterack;
1934 		}
1935 	}
1936 
1937 step6:
1938 	/*
1939 	 * Update window information.
1940 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1941 	 */
1942 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1943 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1944 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1945 		/* keep track of pure window updates */
1946 		if (tlen == 0 &&
1947 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1948 			tcpstat.tcps_rcvwinupd++;
1949 		tp->snd_wnd = tiwin;
1950 		tp->snd_wl1 = th->th_seq;
1951 		tp->snd_wl2 = th->th_ack;
1952 		if (tp->snd_wnd > tp->max_sndwnd)
1953 			tp->max_sndwnd = tp->snd_wnd;
1954 		needoutput = 1;
1955 	}
1956 
1957 	/*
1958 	 * Process segments with URG.
1959 	 */
1960 	if ((tiflags & TH_URG) && th->th_urp &&
1961 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1962 		/*
1963 		 * This is a kludge, but if we receive and accept
1964 		 * random urgent pointers, we'll crash in
1965 		 * soreceive.  It's hard to imagine someone
1966 		 * actually wanting to send this much urgent data.
1967 		 */
1968 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1969 			th->th_urp = 0;			/* XXX */
1970 			tiflags &= ~TH_URG;		/* XXX */
1971 			goto dodata;			/* XXX */
1972 		}
1973 		/*
1974 		 * If this segment advances the known urgent pointer,
1975 		 * then mark the data stream.  This should not happen
1976 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1977 		 * a FIN has been received from the remote side.
1978 		 * In these states we ignore the URG.
1979 		 *
1980 		 * According to RFC961 (Assigned Protocols),
1981 		 * the urgent pointer points to the last octet
1982 		 * of urgent data.  We continue, however,
1983 		 * to consider it to indicate the first octet
1984 		 * of data past the urgent section as the original
1985 		 * spec states (in one of two places).
1986 		 */
1987 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1988 			tp->rcv_up = th->th_seq + th->th_urp;
1989 			so->so_oobmark = so->so_rcv.sb_cc +
1990 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1991 			if (so->so_oobmark == 0)
1992 				so->so_state |= SS_RCVATMARK;
1993 			sohasoutofband(so);
1994 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1995 		}
1996 		/*
1997 		 * Remove out of band data so doesn't get presented to user.
1998 		 * This can happen independent of advancing the URG pointer,
1999 		 * but if two URG's are pending at once, some out-of-band
2000 		 * data may creep in... ick.
2001 		 */
2002 		if (th->th_urp <= (u_int16_t) tlen
2003 #ifdef SO_OOBINLINE
2004 		     && (so->so_options & SO_OOBINLINE) == 0
2005 #endif
2006 		     )
2007 			tcp_pulloutofband(so, th, m, hdroptlen);
2008 	} else
2009 		/*
2010 		 * If no out of band data is expected,
2011 		 * pull receive urgent pointer along
2012 		 * with the receive window.
2013 		 */
2014 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2015 			tp->rcv_up = tp->rcv_nxt;
2016 dodata:							/* XXX */
2017 
2018 	/*
2019 	 * Process the segment text, merging it into the TCP sequencing queue,
2020 	 * and arranging for acknowledgement of receipt if necessary.
2021 	 * This process logically involves adjusting tp->rcv_wnd as data
2022 	 * is presented to the user (this happens in tcp_usrreq.c,
2023 	 * case PRU_RCVD).  If a FIN has already been received on this
2024 	 * connection then we just ignore the text.
2025 	 */
2026 	if ((tlen || (tiflags & TH_FIN)) &&
2027 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2028 		/*
2029 		 * Insert segment ti into reassembly queue of tcp with
2030 		 * control block tp.  Return TH_FIN if reassembly now includes
2031 		 * a segment with FIN.  The macro form does the common case
2032 		 * inline (segment is the next to be received on an
2033 		 * established connection, and the queue is empty),
2034 		 * avoiding linkage into and removal from the queue and
2035 		 * repetition of various conversions.
2036 		 * Set DELACK for segments received in order, but ack
2037 		 * immediately when segments are out of order
2038 		 * (so fast retransmit can work).
2039 		 */
2040 		/* NOTE: this was TCP_REASS() macro, but used only once */
2041 		TCP_REASS_LOCK(tp);
2042 		if (th->th_seq == tp->rcv_nxt &&
2043 		    tp->segq.lh_first == NULL &&
2044 		    tp->t_state == TCPS_ESTABLISHED) {
2045 			TCP_SETUP_ACK(tp, th);
2046 			tp->rcv_nxt += tlen;
2047 			tiflags = th->th_flags & TH_FIN;
2048 			tcpstat.tcps_rcvpack++;
2049 			tcpstat.tcps_rcvbyte += tlen;
2050 			ND6_HINT(tp);
2051 			m_adj(m, hdroptlen);
2052 			sbappend(&(so)->so_rcv, m);
2053 			sorwakeup(so);
2054 		} else {
2055 			m_adj(m, hdroptlen);
2056 			tiflags = tcp_reass(tp, th, m, &tlen);
2057 			tp->t_flags |= TF_ACKNOW;
2058 		}
2059 		TCP_REASS_UNLOCK(tp);
2060 
2061 		/*
2062 		 * Note the amount of data that peer has sent into
2063 		 * our window, in order to estimate the sender's
2064 		 * buffer size.
2065 		 */
2066 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2067 	} else {
2068 		m_freem(m);
2069 		m = NULL;
2070 		tiflags &= ~TH_FIN;
2071 	}
2072 
2073 	/*
2074 	 * If FIN is received ACK the FIN and let the user know
2075 	 * that the connection is closing.  Ignore a FIN received before
2076 	 * the connection is fully established.
2077 	 */
2078 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2079 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2080 			socantrcvmore(so);
2081 			tp->t_flags |= TF_ACKNOW;
2082 			tp->rcv_nxt++;
2083 		}
2084 		switch (tp->t_state) {
2085 
2086 	 	/*
2087 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2088 		 */
2089 		case TCPS_ESTABLISHED:
2090 			tp->t_state = TCPS_CLOSE_WAIT;
2091 			break;
2092 
2093 	 	/*
2094 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2095 		 * enter the CLOSING state.
2096 		 */
2097 		case TCPS_FIN_WAIT_1:
2098 			tp->t_state = TCPS_CLOSING;
2099 			break;
2100 
2101 	 	/*
2102 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2103 		 * starting the time-wait timer, turning off the other
2104 		 * standard timers.
2105 		 */
2106 		case TCPS_FIN_WAIT_2:
2107 			tp->t_state = TCPS_TIME_WAIT;
2108 			tcp_canceltimers(tp);
2109 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2110 			soisdisconnected(so);
2111 			break;
2112 
2113 		/*
2114 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2115 		 */
2116 		case TCPS_TIME_WAIT:
2117 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2118 			break;
2119 		}
2120 	}
2121 	if (so->so_options & SO_DEBUG) {
2122 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2123 	}
2124 
2125 	/*
2126 	 * Return any desired output.
2127 	 */
2128 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2129 		(void) tcp_output(tp);
2130 	if (tcp_saveti)
2131 		m_freem(tcp_saveti);
2132 	return;
2133 
2134 badsyn:
2135 	/*
2136 	 * Received a bad SYN.  Increment counters and dropwithreset.
2137 	 */
2138 	tcpstat.tcps_badsyn++;
2139 	tp = NULL;
2140 	goto dropwithreset;
2141 
2142 dropafterack:
2143 	/*
2144 	 * Generate an ACK dropping incoming segment if it occupies
2145 	 * sequence space, where the ACK reflects our state.
2146 	 */
2147 	if (tiflags & TH_RST)
2148 		goto drop;
2149 	m_freem(m);
2150 	tp->t_flags |= TF_ACKNOW;
2151 	(void) tcp_output(tp);
2152 	if (tcp_saveti)
2153 		m_freem(tcp_saveti);
2154 	return;
2155 
2156 dropwithreset_ratelim:
2157 	/*
2158 	 * We may want to rate-limit RSTs in certain situations,
2159 	 * particularly if we are sending an RST in response to
2160 	 * an attempt to connect to or otherwise communicate with
2161 	 * a port for which we have no socket.
2162 	 */
2163 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2164 	    tcp_rst_ppslim) == 0) {
2165 		/* XXX stat */
2166 		goto drop;
2167 	}
2168 	/* ...fall into dropwithreset... */
2169 
2170 dropwithreset:
2171 	/*
2172 	 * Generate a RST, dropping incoming segment.
2173 	 * Make ACK acceptable to originator of segment.
2174 	 */
2175 	if (tiflags & TH_RST)
2176 		goto drop;
2177     {
2178 	/*
2179 	 * need to recover version # field, which was overwritten on
2180 	 * ip_cksum computation.
2181 	 */
2182 	struct ip *sip;
2183 	sip = mtod(m, struct ip *);
2184 	switch (af) {
2185 #ifdef INET
2186 	case AF_INET:
2187 		sip->ip_v = 4;
2188 		break;
2189 #endif
2190 #ifdef INET6
2191 	case AF_INET6:
2192 		sip->ip_v = 6;
2193 		break;
2194 #endif
2195 	}
2196     }
2197 	if (tiflags & TH_ACK)
2198 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2199 	else {
2200 		if (tiflags & TH_SYN)
2201 			tlen++;
2202 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2203 		    TH_RST|TH_ACK);
2204 	}
2205 	if (tcp_saveti)
2206 		m_freem(tcp_saveti);
2207 	return;
2208 
2209 drop:
2210 	/*
2211 	 * Drop space held by incoming segment and return.
2212 	 */
2213 	if (tp) {
2214 		if (tp->t_inpcb)
2215 			so = tp->t_inpcb->inp_socket;
2216 #ifdef INET6
2217 		else if (tp->t_in6pcb)
2218 			so = tp->t_in6pcb->in6p_socket;
2219 #endif
2220 		else
2221 			so = NULL;
2222 		if (so && (so->so_options & SO_DEBUG) != 0)
2223 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2224 	}
2225 	if (tcp_saveti)
2226 		m_freem(tcp_saveti);
2227 	m_freem(m);
2228 	return;
2229 }
2230 
2231 void
2232 tcp_dooptions(tp, cp, cnt, th, oi)
2233 	struct tcpcb *tp;
2234 	u_char *cp;
2235 	int cnt;
2236 	struct tcphdr *th;
2237 	struct tcp_opt_info *oi;
2238 {
2239 	u_int16_t mss;
2240 	int opt, optlen;
2241 
2242 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2243 		opt = cp[0];
2244 		if (opt == TCPOPT_EOL)
2245 			break;
2246 		if (opt == TCPOPT_NOP)
2247 			optlen = 1;
2248 		else {
2249 			if (cnt < 2)
2250 				break;
2251 			optlen = cp[1];
2252 			if (optlen < 2 || optlen > cnt)
2253 				break;
2254 		}
2255 		switch (opt) {
2256 
2257 		default:
2258 			continue;
2259 
2260 		case TCPOPT_MAXSEG:
2261 			if (optlen != TCPOLEN_MAXSEG)
2262 				continue;
2263 			if (!(th->th_flags & TH_SYN))
2264 				continue;
2265 			bcopy(cp + 2, &mss, sizeof(mss));
2266 			oi->maxseg = ntohs(mss);
2267 			break;
2268 
2269 		case TCPOPT_WINDOW:
2270 			if (optlen != TCPOLEN_WINDOW)
2271 				continue;
2272 			if (!(th->th_flags & TH_SYN))
2273 				continue;
2274 			tp->t_flags |= TF_RCVD_SCALE;
2275 			tp->requested_s_scale = cp[2];
2276 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2277 #if 0	/*XXX*/
2278 				char *p;
2279 
2280 				if (ip)
2281 					p = ntohl(ip->ip_src);
2282 #ifdef INET6
2283 				else if (ip6)
2284 					p = ip6_sprintf(&ip6->ip6_src);
2285 #endif
2286 				else
2287 					p = "(unknown)";
2288 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2289 				    "assuming %d\n",
2290 				    tp->requested_s_scale, p,
2291 				    TCP_MAX_WINSHIFT);
2292 #else
2293 				log(LOG_ERR, "TCP: invalid wscale %d, "
2294 				    "assuming %d\n",
2295 				    tp->requested_s_scale,
2296 				    TCP_MAX_WINSHIFT);
2297 #endif
2298 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2299 			}
2300 			break;
2301 
2302 		case TCPOPT_TIMESTAMP:
2303 			if (optlen != TCPOLEN_TIMESTAMP)
2304 				continue;
2305 			oi->ts_present = 1;
2306 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2307 			NTOHL(oi->ts_val);
2308 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2309 			NTOHL(oi->ts_ecr);
2310 
2311 			/*
2312 			 * A timestamp received in a SYN makes
2313 			 * it ok to send timestamp requests and replies.
2314 			 */
2315 			if (th->th_flags & TH_SYN) {
2316 				tp->t_flags |= TF_RCVD_TSTMP;
2317 				tp->ts_recent = oi->ts_val;
2318 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2319 			}
2320 			break;
2321 		case TCPOPT_SACK_PERMITTED:
2322 			if (optlen != TCPOLEN_SACK_PERMITTED)
2323 				continue;
2324 			if (!(th->th_flags & TH_SYN))
2325 				continue;
2326 			tp->t_flags &= ~TF_CANT_TXSACK;
2327 			break;
2328 
2329 		case TCPOPT_SACK:
2330 			if (tp->t_flags & TF_IGNR_RXSACK)
2331 				continue;
2332 			if (optlen % 8 != 2 || optlen < 10)
2333 				continue;
2334 			cp += 2;
2335 			optlen -= 2;
2336 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2337 				tcp_seq lwe, rwe;
2338 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2339 				NTOHL(lwe);
2340 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2341 				NTOHL(rwe);
2342 				/* tcp_mark_sacked(tp, lwe, rwe); */
2343 			}
2344 			break;
2345 		}
2346 	}
2347 }
2348 
2349 /*
2350  * Pull out of band byte out of a segment so
2351  * it doesn't appear in the user's data queue.
2352  * It is still reflected in the segment length for
2353  * sequencing purposes.
2354  */
2355 void
2356 tcp_pulloutofband(so, th, m, off)
2357 	struct socket *so;
2358 	struct tcphdr *th;
2359 	struct mbuf *m;
2360 	int off;
2361 {
2362 	int cnt = off + th->th_urp - 1;
2363 
2364 	while (cnt >= 0) {
2365 		if (m->m_len > cnt) {
2366 			char *cp = mtod(m, caddr_t) + cnt;
2367 			struct tcpcb *tp = sototcpcb(so);
2368 
2369 			tp->t_iobc = *cp;
2370 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2371 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2372 			m->m_len--;
2373 			return;
2374 		}
2375 		cnt -= m->m_len;
2376 		m = m->m_next;
2377 		if (m == 0)
2378 			break;
2379 	}
2380 	panic("tcp_pulloutofband");
2381 }
2382 
2383 /*
2384  * Collect new round-trip time estimate
2385  * and update averages and current timeout.
2386  */
2387 void
2388 tcp_xmit_timer(tp, rtt)
2389 	struct tcpcb *tp;
2390 	short rtt;
2391 {
2392 	short delta;
2393 	short rttmin;
2394 
2395 	tcpstat.tcps_rttupdated++;
2396 	--rtt;
2397 	if (tp->t_srtt != 0) {
2398 		/*
2399 		 * srtt is stored as fixed point with 3 bits after the
2400 		 * binary point (i.e., scaled by 8).  The following magic
2401 		 * is equivalent to the smoothing algorithm in rfc793 with
2402 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2403 		 * point).  Adjust rtt to origin 0.
2404 		 */
2405 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2406 		if ((tp->t_srtt += delta) <= 0)
2407 			tp->t_srtt = 1 << 2;
2408 		/*
2409 		 * We accumulate a smoothed rtt variance (actually, a
2410 		 * smoothed mean difference), then set the retransmit
2411 		 * timer to smoothed rtt + 4 times the smoothed variance.
2412 		 * rttvar is stored as fixed point with 2 bits after the
2413 		 * binary point (scaled by 4).  The following is
2414 		 * equivalent to rfc793 smoothing with an alpha of .75
2415 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2416 		 * rfc793's wired-in beta.
2417 		 */
2418 		if (delta < 0)
2419 			delta = -delta;
2420 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2421 		if ((tp->t_rttvar += delta) <= 0)
2422 			tp->t_rttvar = 1 << 2;
2423 	} else {
2424 		/*
2425 		 * No rtt measurement yet - use the unsmoothed rtt.
2426 		 * Set the variance to half the rtt (so our first
2427 		 * retransmit happens at 3*rtt).
2428 		 */
2429 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2430 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2431 	}
2432 	tp->t_rtt = 0;
2433 	tp->t_rxtshift = 0;
2434 
2435 	/*
2436 	 * the retransmit should happen at rtt + 4 * rttvar.
2437 	 * Because of the way we do the smoothing, srtt and rttvar
2438 	 * will each average +1/2 tick of bias.  When we compute
2439 	 * the retransmit timer, we want 1/2 tick of rounding and
2440 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2441 	 * firing of the timer.  The bias will give us exactly the
2442 	 * 1.5 tick we need.  But, because the bias is
2443 	 * statistical, we have to test that we don't drop below
2444 	 * the minimum feasible timer (which is 2 ticks).
2445 	 */
2446 	if (tp->t_rttmin > rtt + 2)
2447 		rttmin = tp->t_rttmin;
2448 	else
2449 		rttmin = rtt + 2;
2450 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2451 
2452 	/*
2453 	 * We received an ack for a packet that wasn't retransmitted;
2454 	 * it is probably safe to discard any error indications we've
2455 	 * received recently.  This isn't quite right, but close enough
2456 	 * for now (a route might have failed after we sent a segment,
2457 	 * and the return path might not be symmetrical).
2458 	 */
2459 	tp->t_softerror = 0;
2460 }
2461 
2462 /*
2463  * Checks for partial ack.  If partial ack arrives, force the retransmission
2464  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2465  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2466  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2467  */
2468 int
2469 tcp_newreno(tp, th)
2470 	struct tcpcb *tp;
2471 	struct tcphdr *th;
2472 {
2473 	tcp_seq onxt = tp->snd_nxt;
2474 	u_long ocwnd = tp->snd_cwnd;
2475 
2476 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2477 		/*
2478 		 * snd_una has not yet been updated and the socket's send
2479 		 * buffer has not yet drained off the ACK'd data, so we
2480 		 * have to leave snd_una as it was to get the correct data
2481 		 * offset in tcp_output().
2482 		 */
2483 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2484 	        tp->t_rtt = 0;
2485 	        tp->snd_nxt = th->th_ack;
2486 		/*
2487 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2488 		 * is not yet updated when we're called.
2489 		 */
2490 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2491 	        (void) tcp_output(tp);
2492 	        tp->snd_cwnd = ocwnd;
2493 	        if (SEQ_GT(onxt, tp->snd_nxt))
2494 	                tp->snd_nxt = onxt;
2495 	        /*
2496 	         * Partial window deflation.  Relies on fact that tp->snd_una
2497 	         * not updated yet.
2498 	         */
2499 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2500 	        return 1;
2501 	}
2502 	return 0;
2503 }
2504 
2505 
2506 /*
2507  * TCP compressed state engine.  Currently used to hold compressed
2508  * state for SYN_RECEIVED.
2509  */
2510 
2511 u_long	syn_cache_count;
2512 u_int32_t syn_hash1, syn_hash2;
2513 
2514 #define SYN_HASH(sa, sp, dp) \
2515 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2516 				     ((u_int32_t)(sp)))^syn_hash2)))
2517 #ifndef INET6
2518 #define	SYN_HASHALL(hash, src, dst) \
2519 do {									\
2520 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2521 		((struct sockaddr_in *)(src))->sin_port,		\
2522 		((struct sockaddr_in *)(dst))->sin_port);		\
2523 } while (0)
2524 #else
2525 #define SYN_HASH6(sa, sp, dp) \
2526 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2527 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2528 	 & 0x7fffffff)
2529 
2530 #define SYN_HASHALL(hash, src, dst) \
2531 do {									\
2532 	switch ((src)->sa_family) {					\
2533 	case AF_INET:							\
2534 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2535 			((struct sockaddr_in *)(src))->sin_port,	\
2536 			((struct sockaddr_in *)(dst))->sin_port);	\
2537 		break;							\
2538 	case AF_INET6:							\
2539 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2540 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2541 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2542 		break;							\
2543 	default:							\
2544 		hash = 0;						\
2545 	}								\
2546 } while (0)
2547 #endif /* INET6 */
2548 
2549 #define	SYN_CACHE_RM(sc)						\
2550 do {									\
2551 	LIST_REMOVE((sc), sc_bucketq);					\
2552 	(sc)->sc_tp = NULL;						\
2553 	LIST_REMOVE((sc), sc_tpq);					\
2554 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2555 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2556 	syn_cache_count--;						\
2557 } while (0)
2558 
2559 #define	SYN_CACHE_PUT(sc)						\
2560 do {									\
2561 	if ((sc)->sc_ipopts)						\
2562 		(void) m_free((sc)->sc_ipopts);				\
2563 	if ((sc)->sc_route4.ro_rt != NULL)				\
2564 		RTFREE((sc)->sc_route4.ro_rt);				\
2565 	pool_put(&syn_cache_pool, (sc));				\
2566 } while (0)
2567 
2568 struct pool syn_cache_pool;
2569 
2570 /*
2571  * We don't estimate RTT with SYNs, so each packet starts with the default
2572  * RTT and each timer queue has a fixed timeout value.  This allows us to
2573  * optimize the timer queues somewhat.
2574  */
2575 #define	SYN_CACHE_TIMER_ARM(sc)						\
2576 do {									\
2577 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2578 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2579 	    TCPTV_REXMTMAX);						\
2580 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
2581 } while (0)
2582 
2583 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2584 
2585 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
2586 
2587 void
2588 syn_cache_init()
2589 {
2590 	int i;
2591 
2592 	/* Initialize the hash buckets. */
2593 	for (i = 0; i < tcp_syn_cache_size; i++)
2594 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2595 
2596 	/* Initialize the timer queues. */
2597 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2598 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2599 
2600 	/* Initialize the syn cache pool. */
2601 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2602 	    "synpl", 0, NULL, NULL, M_PCB);
2603 }
2604 
2605 void
2606 syn_cache_insert(sc, tp)
2607 	struct syn_cache *sc;
2608 	struct tcpcb *tp;
2609 {
2610 	struct syn_cache_head *scp;
2611 	struct syn_cache *sc2;
2612 	int s, i;
2613 
2614 	/*
2615 	 * If there are no entries in the hash table, reinitialize
2616 	 * the hash secrets.
2617 	 */
2618 	if (syn_cache_count == 0) {
2619 		struct timeval tv;
2620 		microtime(&tv);
2621 		syn_hash1 = random() ^ (u_long)&sc;
2622 		syn_hash2 = random() ^ tv.tv_usec;
2623 	}
2624 
2625 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2626 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2627 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2628 
2629 	/*
2630 	 * Make sure that we don't overflow the per-bucket
2631 	 * limit or the total cache size limit.
2632 	 */
2633 	s = splsoftnet();
2634 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2635 		tcpstat.tcps_sc_bucketoverflow++;
2636 		/*
2637 		 * The bucket is full.  Toss the oldest element in the
2638 		 * bucket.  This will be the entry with our bucket
2639 		 * index closest to the front of the timer queue with
2640 		 * the largest timeout value.
2641 		 *
2642 		 * Note: This timer queue traversal may be expensive, so
2643 		 * we hope that this doesn't happen very often.  It is
2644 		 * much more likely that we'll overflow the entire
2645 		 * cache, which is much easier to handle; see below.
2646 		 */
2647 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2648 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2649 			     sc2 != NULL;
2650 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2651 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2652 					SYN_CACHE_RM(sc2);
2653 					SYN_CACHE_PUT(sc2);
2654 					goto insert;	/* 2 level break */
2655 				}
2656 			}
2657 		}
2658 #ifdef DIAGNOSTIC
2659 		/*
2660 		 * This should never happen; we should always find an
2661 		 * entry in our bucket.
2662 		 */
2663 		panic("syn_cache_insert: bucketoverflow: impossible");
2664 #endif
2665 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2666 		tcpstat.tcps_sc_overflowed++;
2667 		/*
2668 		 * The cache is full.  Toss the oldest entry in the
2669 		 * entire cache.  This is the front entry in the
2670 		 * first non-empty timer queue with the largest
2671 		 * timeout value.
2672 		 */
2673 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2674 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2675 			if (sc2 == NULL)
2676 				continue;
2677 			SYN_CACHE_RM(sc2);
2678 			SYN_CACHE_PUT(sc2);
2679 			goto insert;		/* symmetry with above */
2680 		}
2681 #ifdef DIAGNOSTIC
2682 		/*
2683 		 * This should never happen; we should always find an
2684 		 * entry in the cache.
2685 		 */
2686 		panic("syn_cache_insert: cache overflow: impossible");
2687 #endif
2688 	}
2689 
2690  insert:
2691 	/*
2692 	 * Initialize the entry's timer.
2693 	 */
2694 	sc->sc_rxttot = 0;
2695 	sc->sc_rxtshift = 0;
2696 	SYN_CACHE_TIMER_ARM(sc);
2697 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2698 
2699 	/* Link it from tcpcb entry */
2700 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2701 
2702 	/* Put it into the bucket. */
2703 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2704 	scp->sch_length++;
2705 	syn_cache_count++;
2706 
2707 	tcpstat.tcps_sc_added++;
2708 	splx(s);
2709 }
2710 
2711 /*
2712  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2713  * If we have retransmitted an entry the maximum number of times, expire
2714  * that entry.
2715  */
2716 void
2717 syn_cache_timer()
2718 {
2719 	struct syn_cache *sc, *nsc;
2720 	int i, s;
2721 
2722 	s = splsoftnet();
2723 
2724 	/*
2725 	 * First, get all the entries that need to be retransmitted, or
2726 	 * must be expired due to exceeding the initial keepalive time.
2727 	 */
2728 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2729 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2730 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2731 		     sc = nsc) {
2732 			nsc = TAILQ_NEXT(sc, sc_timeq);
2733 
2734 			/*
2735 			 * Compute the total amount of time this entry has
2736 			 * been on a queue.  If this entry has been on longer
2737 			 * than the keep alive timer would allow, expire it.
2738 			 */
2739 			sc->sc_rxttot += sc->sc_rxtcur;
2740 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2741 				tcpstat.tcps_sc_timed_out++;
2742 				SYN_CACHE_RM(sc);
2743 				SYN_CACHE_PUT(sc);
2744 				continue;
2745 			}
2746 
2747 			tcpstat.tcps_sc_retransmitted++;
2748 			(void) syn_cache_respond(sc, NULL);
2749 
2750 			/* Advance this entry onto the next timer queue. */
2751 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2752 			sc->sc_rxtshift = i + 1;
2753 			SYN_CACHE_TIMER_ARM(sc);
2754 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2755 			    sc, sc_timeq);
2756 		}
2757 	}
2758 
2759 	/*
2760 	 * Now get all the entries that are expired due to too many
2761 	 * retransmissions.
2762 	 */
2763 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2764 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2765 	     sc = nsc) {
2766 		nsc = TAILQ_NEXT(sc, sc_timeq);
2767 		tcpstat.tcps_sc_timed_out++;
2768 		SYN_CACHE_RM(sc);
2769 		SYN_CACHE_PUT(sc);
2770 	}
2771 	splx(s);
2772 }
2773 
2774 /*
2775  * Remove syn cache created by the specified tcb entry,
2776  * because this does not make sense to keep them
2777  * (if there's no tcb entry, syn cache entry will never be used)
2778  */
2779 void
2780 syn_cache_cleanup(tp)
2781 	struct tcpcb *tp;
2782 {
2783 	struct syn_cache *sc, *nsc;
2784 	int s;
2785 
2786 	s = splsoftnet();
2787 
2788 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2789 		nsc = LIST_NEXT(sc, sc_tpq);
2790 
2791 #ifdef DIAGNOSTIC
2792 		if (sc->sc_tp != tp)
2793 			panic("invalid sc_tp in syn_cache_cleanup");
2794 #endif
2795 		SYN_CACHE_RM(sc);
2796 		SYN_CACHE_PUT(sc);
2797 	}
2798 	/* just for safety */
2799 	LIST_INIT(&tp->t_sc);
2800 
2801 	splx(s);
2802 }
2803 
2804 /*
2805  * Find an entry in the syn cache.
2806  */
2807 struct syn_cache *
2808 syn_cache_lookup(src, dst, headp)
2809 	struct sockaddr *src;
2810 	struct sockaddr *dst;
2811 	struct syn_cache_head **headp;
2812 {
2813 	struct syn_cache *sc;
2814 	struct syn_cache_head *scp;
2815 	u_int32_t hash;
2816 	int s;
2817 
2818 	SYN_HASHALL(hash, src, dst);
2819 
2820 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2821 	*headp = scp;
2822 	s = splsoftnet();
2823 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2824 	     sc = LIST_NEXT(sc, sc_bucketq)) {
2825 		if (sc->sc_hash != hash)
2826 			continue;
2827 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2828 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2829 			splx(s);
2830 			return (sc);
2831 		}
2832 	}
2833 	splx(s);
2834 	return (NULL);
2835 }
2836 
2837 /*
2838  * This function gets called when we receive an ACK for a
2839  * socket in the LISTEN state.  We look up the connection
2840  * in the syn cache, and if its there, we pull it out of
2841  * the cache and turn it into a full-blown connection in
2842  * the SYN-RECEIVED state.
2843  *
2844  * The return values may not be immediately obvious, and their effects
2845  * can be subtle, so here they are:
2846  *
2847  *	NULL	SYN was not found in cache; caller should drop the
2848  *		packet and send an RST.
2849  *
2850  *	-1	We were unable to create the new connection, and are
2851  *		aborting it.  An ACK,RST is being sent to the peer
2852  *		(unless we got screwey sequence numbners; see below),
2853  *		because the 3-way handshake has been completed.  Caller
2854  *		should not free the mbuf, since we may be using it.  If
2855  *		we are not, we will free it.
2856  *
2857  *	Otherwise, the return value is a pointer to the new socket
2858  *	associated with the connection.
2859  */
2860 struct socket *
2861 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2862 	struct sockaddr *src;
2863 	struct sockaddr *dst;
2864 	struct tcphdr *th;
2865 	unsigned int hlen, tlen;
2866 	struct socket *so;
2867 	struct mbuf *m;
2868 {
2869 	struct syn_cache *sc;
2870 	struct syn_cache_head *scp;
2871 	struct inpcb *inp = NULL;
2872 #ifdef INET6
2873 	struct in6pcb *in6p = NULL;
2874 #endif
2875 	struct tcpcb *tp = 0;
2876 	struct mbuf *am;
2877 	int s;
2878 	struct socket *oso;
2879 
2880 	s = splsoftnet();
2881 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2882 		splx(s);
2883 		return (NULL);
2884 	}
2885 
2886 	/*
2887 	 * Verify the sequence and ack numbers.  Try getting the correct
2888 	 * response again.
2889 	 */
2890 	if ((th->th_ack != sc->sc_iss + 1) ||
2891 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2892 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2893 		(void) syn_cache_respond(sc, m);
2894 		splx(s);
2895 		return ((struct socket *)(-1));
2896 	}
2897 
2898 	/* Remove this cache entry */
2899 	SYN_CACHE_RM(sc);
2900 	splx(s);
2901 
2902 	/*
2903 	 * Ok, create the full blown connection, and set things up
2904 	 * as they would have been set up if we had created the
2905 	 * connection when the SYN arrived.  If we can't create
2906 	 * the connection, abort it.
2907 	 */
2908 	/*
2909 	 * inp still has the OLD in_pcb stuff, set the
2910 	 * v6-related flags on the new guy, too.   This is
2911 	 * done particularly for the case where an AF_INET6
2912 	 * socket is bound only to a port, and a v4 connection
2913 	 * comes in on that port.
2914 	 * we also copy the flowinfo from the original pcb
2915 	 * to the new one.
2916 	 */
2917     {
2918 	struct inpcb *parentinpcb;
2919 
2920 	parentinpcb = (struct inpcb *)so->so_pcb;
2921 
2922 	oso = so;
2923 	so = sonewconn(so, SS_ISCONNECTED);
2924 	if (so == NULL)
2925 		goto resetandabort;
2926 
2927 	switch (so->so_proto->pr_domain->dom_family) {
2928 #ifdef INET
2929 	case AF_INET:
2930 		inp = sotoinpcb(so);
2931 		break;
2932 #endif
2933 #ifdef INET6
2934 	case AF_INET6:
2935 		in6p = sotoin6pcb(so);
2936 		break;
2937 #endif
2938 	}
2939     }
2940 	switch (src->sa_family) {
2941 #ifdef INET
2942 	case AF_INET:
2943 		if (inp) {
2944 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2945 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2946 			inp->inp_options = ip_srcroute();
2947 			in_pcbstate(inp, INP_BOUND);
2948 			if (inp->inp_options == NULL) {
2949 				inp->inp_options = sc->sc_ipopts;
2950 				sc->sc_ipopts = NULL;
2951 			}
2952 		}
2953 #ifdef INET6
2954 		else if (in6p) {
2955 			/* IPv4 packet to AF_INET6 socket */
2956 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2957 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2958 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2959 				&in6p->in6p_laddr.s6_addr32[3],
2960 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2961 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2962 			in6totcpcb(in6p)->t_family = AF_INET;
2963 		}
2964 #endif
2965 		break;
2966 #endif
2967 #ifdef INET6
2968 	case AF_INET6:
2969 		if (in6p) {
2970 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
2971 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
2972 #if 0
2973 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
2974 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
2975 #endif
2976 		}
2977 		break;
2978 #endif
2979 	}
2980 #ifdef INET6
2981 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
2982 		struct in6pcb *oin6p = sotoin6pcb(oso);
2983 		/* inherit socket options from the listening socket */
2984 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
2985 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
2986 			m_freem(in6p->in6p_options);
2987 			in6p->in6p_options = 0;
2988 		}
2989 		ip6_savecontrol(in6p, &in6p->in6p_options,
2990 			mtod(m, struct ip6_hdr *), m);
2991 	}
2992 #endif
2993 
2994 #ifdef IPSEC
2995 	/*
2996 	 * we make a copy of policy, instead of sharing the policy,
2997 	 * for better behavior in terms of SA lookup and dead SA removal.
2998 	 */
2999 	if (inp) {
3000 		/* copy old policy into new socket's */
3001 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3002 			printf("tcp_input: could not copy policy\n");
3003 	}
3004 #ifdef INET6
3005 	else if (in6p) {
3006 		/* copy old policy into new socket's */
3007 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3008 			printf("tcp_input: could not copy policy\n");
3009 	}
3010 #endif
3011 #endif
3012 
3013 	/*
3014 	 * Give the new socket our cached route reference.
3015 	 */
3016 	if (inp)
3017 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3018 #ifdef INET6
3019 	else
3020 		in6p->in6p_route = sc->sc_route6;
3021 #endif
3022 	sc->sc_route4.ro_rt = NULL;
3023 
3024 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3025 	if (am == NULL)
3026 		goto resetandabort;
3027 	am->m_len = src->sa_len;
3028 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3029 	if (inp) {
3030 		if (in_pcbconnect(inp, am)) {
3031 			(void) m_free(am);
3032 			goto resetandabort;
3033 		}
3034 	}
3035 #ifdef INET6
3036 	else if (in6p) {
3037 		if (src->sa_family == AF_INET) {
3038 			/* IPv4 packet to AF_INET6 socket */
3039 			struct sockaddr_in6 *sin6;
3040 			sin6 = mtod(am, struct sockaddr_in6 *);
3041 			am->m_len = sizeof(*sin6);
3042 			bzero(sin6, sizeof(*sin6));
3043 			sin6->sin6_family = AF_INET6;
3044 			sin6->sin6_len = sizeof(*sin6);
3045 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3046 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3047 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3048 				&sin6->sin6_addr.s6_addr32[3],
3049 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3050 		}
3051 		if (in6_pcbconnect(in6p, am)) {
3052 			(void) m_free(am);
3053 			goto resetandabort;
3054 		}
3055 	}
3056 #endif
3057 	else {
3058 		(void) m_free(am);
3059 		goto resetandabort;
3060 	}
3061 	(void) m_free(am);
3062 
3063 	if (inp)
3064 		tp = intotcpcb(inp);
3065 #ifdef INET6
3066 	else if (in6p)
3067 		tp = in6totcpcb(in6p);
3068 #endif
3069 	else
3070 		tp = NULL;
3071 	if (sc->sc_request_r_scale != 15) {
3072 		tp->requested_s_scale = sc->sc_requested_s_scale;
3073 		tp->request_r_scale = sc->sc_request_r_scale;
3074 		tp->snd_scale = sc->sc_requested_s_scale;
3075 		tp->rcv_scale = sc->sc_request_r_scale;
3076 		tp->t_flags |= TF_RCVD_SCALE;
3077 	}
3078 	if (sc->sc_flags & SCF_TIMESTAMP)
3079 		tp->t_flags |= TF_RCVD_TSTMP;
3080 	tp->ts_timebase = sc->sc_timebase;
3081 
3082 	tp->t_template = tcp_template(tp);
3083 	if (tp->t_template == 0) {
3084 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3085 		so = NULL;
3086 		m_freem(m);
3087 		goto abort;
3088 	}
3089 
3090 	tp->iss = sc->sc_iss;
3091 	tp->irs = sc->sc_irs;
3092 	tcp_sendseqinit(tp);
3093 	tcp_rcvseqinit(tp);
3094 	tp->t_state = TCPS_SYN_RECEIVED;
3095 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3096 	tcpstat.tcps_accepts++;
3097 
3098 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3099 	tp->t_ourmss = sc->sc_ourmaxseg;
3100 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3101 
3102 	/*
3103 	 * Initialize the initial congestion window.  If we
3104 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3105 	 * to 1 segment (i.e. the Loss Window).
3106 	 */
3107 	if (sc->sc_rxtshift)
3108 		tp->snd_cwnd = tp->t_peermss;
3109 	else
3110 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3111 
3112 	tcp_rmx_rtt(tp);
3113 	tp->snd_wl1 = sc->sc_irs;
3114 	tp->rcv_up = sc->sc_irs + 1;
3115 
3116 	/*
3117 	 * This is what whould have happened in tcp_ouput() when
3118 	 * the SYN,ACK was sent.
3119 	 */
3120 	tp->snd_up = tp->snd_una;
3121 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3122 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3123 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3124 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3125 	tp->last_ack_sent = tp->rcv_nxt;
3126 
3127 	tcpstat.tcps_sc_completed++;
3128 	SYN_CACHE_PUT(sc);
3129 	return (so);
3130 
3131 resetandabort:
3132 	(void) tcp_respond(NULL, m, m, th,
3133 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3134 abort:
3135 	if (so != NULL)
3136 		(void) soabort(so);
3137 	SYN_CACHE_PUT(sc);
3138 	tcpstat.tcps_sc_aborted++;
3139 	return ((struct socket *)(-1));
3140 }
3141 
3142 /*
3143  * This function is called when we get a RST for a
3144  * non-existant connection, so that we can see if the
3145  * connection is in the syn cache.  If it is, zap it.
3146  */
3147 
3148 void
3149 syn_cache_reset(src, dst, th)
3150 	struct sockaddr *src;
3151 	struct sockaddr *dst;
3152 	struct tcphdr *th;
3153 {
3154 	struct syn_cache *sc;
3155 	struct syn_cache_head *scp;
3156 	int s = splsoftnet();
3157 
3158 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3159 		splx(s);
3160 		return;
3161 	}
3162 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3163 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3164 		splx(s);
3165 		return;
3166 	}
3167 	SYN_CACHE_RM(sc);
3168 	splx(s);
3169 	tcpstat.tcps_sc_reset++;
3170 	SYN_CACHE_PUT(sc);
3171 }
3172 
3173 void
3174 syn_cache_unreach(src, dst, th)
3175 	struct sockaddr *src;
3176 	struct sockaddr *dst;
3177 	struct tcphdr *th;
3178 {
3179 	struct syn_cache *sc;
3180 	struct syn_cache_head *scp;
3181 	int s;
3182 
3183 	s = splsoftnet();
3184 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3185 		splx(s);
3186 		return;
3187 	}
3188 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3189 	if (ntohl (th->th_seq) != sc->sc_iss) {
3190 		splx(s);
3191 		return;
3192 	}
3193 
3194 	/*
3195 	 * If we've rertransmitted 3 times and this is our second error,
3196 	 * we remove the entry.  Otherwise, we allow it to continue on.
3197 	 * This prevents us from incorrectly nuking an entry during a
3198 	 * spurious network outage.
3199 	 *
3200 	 * See tcp_notify().
3201 	 */
3202 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3203 		sc->sc_flags |= SCF_UNREACH;
3204 		splx(s);
3205 		return;
3206 	}
3207 
3208 	SYN_CACHE_RM(sc);
3209 	splx(s);
3210 	tcpstat.tcps_sc_unreach++;
3211 	SYN_CACHE_PUT(sc);
3212 }
3213 
3214 /*
3215  * Given a LISTEN socket and an inbound SYN request, add
3216  * this to the syn cache, and send back a segment:
3217  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3218  * to the source.
3219  *
3220  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3221  * Doing so would require that we hold onto the data and deliver it
3222  * to the application.  However, if we are the target of a SYN-flood
3223  * DoS attack, an attacker could send data which would eventually
3224  * consume all available buffer space if it were ACKed.  By not ACKing
3225  * the data, we avoid this DoS scenario.
3226  */
3227 
3228 int
3229 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3230 	struct sockaddr *src;
3231 	struct sockaddr *dst;
3232 	struct tcphdr *th;
3233 	unsigned int hlen;
3234 	struct socket *so;
3235 	struct mbuf *m;
3236 	u_char *optp;
3237 	int optlen;
3238 	struct tcp_opt_info *oi;
3239 {
3240 	struct tcpcb tb, *tp;
3241 	long win;
3242 	struct syn_cache *sc;
3243 	struct syn_cache_head *scp;
3244 	struct mbuf *ipopts;
3245 
3246 	tp = sototcpcb(so);
3247 
3248 	/*
3249 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3250 	 *
3251 	 * Note this check is performed in tcp_input() very early on.
3252 	 */
3253 
3254 	/*
3255 	 * Initialize some local state.
3256 	 */
3257 	win = sbspace(&so->so_rcv);
3258 	if (win > TCP_MAXWIN)
3259 		win = TCP_MAXWIN;
3260 
3261 	switch (src->sa_family) {
3262 #ifdef INET
3263 	case AF_INET:
3264 		/*
3265 		 * Remember the IP options, if any.
3266 		 */
3267 		ipopts = ip_srcroute();
3268 		break;
3269 #endif
3270 	default:
3271 		ipopts = NULL;
3272 	}
3273 
3274 	if (optp) {
3275 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3276 		tcp_dooptions(&tb, optp, optlen, th, oi);
3277 	} else
3278 		tb.t_flags = 0;
3279 
3280 	/*
3281 	 * See if we already have an entry for this connection.
3282 	 * If we do, resend the SYN,ACK.  We do not count this
3283 	 * as a retransmission (XXX though maybe we should).
3284 	 */
3285 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3286 		tcpstat.tcps_sc_dupesyn++;
3287 		if (ipopts) {
3288 			/*
3289 			 * If we were remembering a previous source route,
3290 			 * forget it and use the new one we've been given.
3291 			 */
3292 			if (sc->sc_ipopts)
3293 				(void) m_free(sc->sc_ipopts);
3294 			sc->sc_ipopts = ipopts;
3295 		}
3296 		sc->sc_timestamp = tb.ts_recent;
3297 		if (syn_cache_respond(sc, m) == 0) {
3298 			tcpstat.tcps_sndacks++;
3299 			tcpstat.tcps_sndtotal++;
3300 		}
3301 		return (1);
3302 	}
3303 
3304 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3305 	if (sc == NULL) {
3306 		if (ipopts)
3307 			(void) m_free(ipopts);
3308 		return (0);
3309 	}
3310 
3311 	/*
3312 	 * Fill in the cache, and put the necessary IP and TCP
3313 	 * options into the reply.
3314 	 */
3315 	bzero(sc, sizeof(struct syn_cache));
3316 	bcopy(src, &sc->sc_src, src->sa_len);
3317 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3318 	sc->sc_flags = 0;
3319 	sc->sc_ipopts = ipopts;
3320 	sc->sc_irs = th->th_seq;
3321 	switch (src->sa_family) {
3322 #ifdef INET
3323 	case AF_INET:
3324 	    {
3325 		struct sockaddr_in *srcin = (void *) src;
3326 		struct sockaddr_in *dstin = (void *) dst;
3327 
3328 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3329 		    &srcin->sin_addr, dstin->sin_port,
3330 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3331 		break;
3332 	    }
3333 #endif /* INET */
3334 #ifdef INET6
3335 	case AF_INET6:
3336 	    {
3337 		struct sockaddr_in6 *srcin6 = (void *) src;
3338 		struct sockaddr_in6 *dstin6 = (void *) dst;
3339 
3340 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3341 		    &srcin6->sin6_addr, dstin6->sin6_port,
3342 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3343 		break;
3344 	    }
3345 #endif /* INET6 */
3346 	}
3347 	sc->sc_peermaxseg = oi->maxseg;
3348 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3349 						m->m_pkthdr.rcvif : NULL,
3350 						sc->sc_src.sa.sa_family);
3351 	sc->sc_win = win;
3352 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3353 	sc->sc_timestamp = tb.ts_recent;
3354 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3355 		sc->sc_flags |= SCF_TIMESTAMP;
3356 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3357 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3358 		sc->sc_requested_s_scale = tb.requested_s_scale;
3359 		sc->sc_request_r_scale = 0;
3360 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3361 		    TCP_MAXWIN << sc->sc_request_r_scale <
3362 		    so->so_rcv.sb_hiwat)
3363 			sc->sc_request_r_scale++;
3364 	} else {
3365 		sc->sc_requested_s_scale = 15;
3366 		sc->sc_request_r_scale = 15;
3367 	}
3368 	sc->sc_tp = tp;
3369 	if (syn_cache_respond(sc, m) == 0) {
3370 		syn_cache_insert(sc, tp);
3371 		tcpstat.tcps_sndacks++;
3372 		tcpstat.tcps_sndtotal++;
3373 	} else {
3374 		SYN_CACHE_PUT(sc);
3375 		tcpstat.tcps_sc_dropped++;
3376 	}
3377 	return (1);
3378 }
3379 
3380 int
3381 syn_cache_respond(sc, m)
3382 	struct syn_cache *sc;
3383 	struct mbuf *m;
3384 {
3385 	struct route *ro;
3386 	u_int8_t *optp;
3387 	int optlen, error;
3388 	u_int16_t tlen;
3389 	struct ip *ip = NULL;
3390 #ifdef INET6
3391 	struct ip6_hdr *ip6 = NULL;
3392 #endif
3393 	struct tcphdr *th;
3394 	u_int hlen;
3395 
3396 	switch (sc->sc_src.sa.sa_family) {
3397 	case AF_INET:
3398 		hlen = sizeof(struct ip);
3399 		ro = &sc->sc_route4;
3400 		break;
3401 #ifdef INET6
3402 	case AF_INET6:
3403 		hlen = sizeof(struct ip6_hdr);
3404 		ro = (struct route *)&sc->sc_route6;
3405 		break;
3406 #endif
3407 	default:
3408 		if (m)
3409 			m_freem(m);
3410 		return EAFNOSUPPORT;
3411 	}
3412 
3413 	/* Compute the size of the TCP options. */
3414 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3415 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3416 
3417 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3418 
3419 	/*
3420 	 * Create the IP+TCP header from scratch.
3421 	 */
3422 	if (m)
3423 		m_freem(m);
3424 #ifdef DIAGNOSTIC
3425 	if (max_linkhdr + tlen > MCLBYTES)
3426 		return (ENOBUFS);
3427 #endif
3428 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3429 	if (m && tlen > MHLEN) {
3430 		MCLGET(m, M_DONTWAIT);
3431 		if ((m->m_flags & M_EXT) == 0) {
3432 			m_freem(m);
3433 			m = NULL;
3434 		}
3435 	}
3436 	if (m == NULL)
3437 		return (ENOBUFS);
3438 
3439 	/* Fixup the mbuf. */
3440 	m->m_data += max_linkhdr;
3441 	m->m_len = m->m_pkthdr.len = tlen;
3442 #ifdef IPSEC
3443 	if (sc->sc_tp) {
3444 		struct tcpcb *tp;
3445 		struct socket *so;
3446 
3447 		tp = sc->sc_tp;
3448 		if (tp->t_inpcb)
3449 			so = tp->t_inpcb->inp_socket;
3450 #ifdef INET6
3451 		else if (tp->t_in6pcb)
3452 			so = tp->t_in6pcb->in6p_socket;
3453 #endif
3454 		else
3455 			so = NULL;
3456 		/* use IPsec policy on listening socket, on SYN ACK */
3457 		if (ipsec_setsocket(m, so) != 0) {
3458 			m_freem(m);
3459 			return ENOBUFS;
3460 		}
3461 	}
3462 #endif
3463 	m->m_pkthdr.rcvif = NULL;
3464 	memset(mtod(m, u_char *), 0, tlen);
3465 
3466 	switch (sc->sc_src.sa.sa_family) {
3467 	case AF_INET:
3468 		ip = mtod(m, struct ip *);
3469 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3470 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3471 		ip->ip_p = IPPROTO_TCP;
3472 		th = (struct tcphdr *)(ip + 1);
3473 		th->th_dport = sc->sc_src.sin.sin_port;
3474 		th->th_sport = sc->sc_dst.sin.sin_port;
3475 		break;
3476 #ifdef INET6
3477 	case AF_INET6:
3478 		ip6 = mtod(m, struct ip6_hdr *);
3479 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3480 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3481 		ip6->ip6_nxt = IPPROTO_TCP;
3482 		/* ip6_plen will be updated in ip6_output() */
3483 		th = (struct tcphdr *)(ip6 + 1);
3484 		th->th_dport = sc->sc_src.sin6.sin6_port;
3485 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3486 		break;
3487 #endif
3488 	default:
3489 		th = NULL;
3490 	}
3491 
3492 	th->th_seq = htonl(sc->sc_iss);
3493 	th->th_ack = htonl(sc->sc_irs + 1);
3494 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3495 	th->th_flags = TH_SYN|TH_ACK;
3496 	th->th_win = htons(sc->sc_win);
3497 	/* th_sum already 0 */
3498 	/* th_urp already 0 */
3499 
3500 	/* Tack on the TCP options. */
3501 	optp = (u_int8_t *)(th + 1);
3502 	*optp++ = TCPOPT_MAXSEG;
3503 	*optp++ = 4;
3504 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3505 	*optp++ = sc->sc_ourmaxseg & 0xff;
3506 
3507 	if (sc->sc_request_r_scale != 15) {
3508 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3509 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3510 		    sc->sc_request_r_scale);
3511 		optp += 4;
3512 	}
3513 
3514 	if (sc->sc_flags & SCF_TIMESTAMP) {
3515 		u_int32_t *lp = (u_int32_t *)(optp);
3516 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3517 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3518 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3519 		*lp   = htonl(sc->sc_timestamp);
3520 		optp += TCPOLEN_TSTAMP_APPA;
3521 	}
3522 
3523 	/* Compute the packet's checksum. */
3524 	switch (sc->sc_src.sa.sa_family) {
3525 	case AF_INET:
3526 		ip->ip_len = htons(tlen - hlen);
3527 		th->th_sum = 0;
3528 		th->th_sum = in_cksum(m, tlen);
3529 		break;
3530 #ifdef INET6
3531 	case AF_INET6:
3532 		ip6->ip6_plen = htons(tlen - hlen);
3533 		th->th_sum = 0;
3534 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3535 		break;
3536 #endif
3537 	}
3538 
3539 	/*
3540 	 * Fill in some straggling IP bits.  Note the stack expects
3541 	 * ip_len to be in host order, for convenience.
3542 	 */
3543 	switch (sc->sc_src.sa.sa_family) {
3544 #ifdef INET
3545 	case AF_INET:
3546 		ip->ip_len = tlen;
3547 		ip->ip_ttl = ip_defttl;
3548 		/* XXX tos? */
3549 		break;
3550 #endif
3551 #ifdef INET6
3552 	case AF_INET6:
3553 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3554 		ip6->ip6_vfc |= IPV6_VERSION;
3555 		ip6->ip6_plen = htons(tlen - hlen);
3556 		/* ip6_hlim will be initialized afterwards */
3557 		/* XXX flowlabel? */
3558 		break;
3559 #endif
3560 	}
3561 
3562 	switch (sc->sc_src.sa.sa_family) {
3563 #ifdef INET
3564 	case AF_INET:
3565 		error = ip_output(m, sc->sc_ipopts, ro,
3566 		    (ip_mtudisc ? IP_MTUDISC : 0),
3567 		    NULL);
3568 		break;
3569 #endif
3570 #ifdef INET6
3571 	case AF_INET6:
3572 		ip6->ip6_hlim = in6_selecthlim(NULL,
3573 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3574 
3575 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3576 			0, NULL, NULL);
3577 		break;
3578 #endif
3579 	default:
3580 		error = EAFNOSUPPORT;
3581 		break;
3582 	}
3583 	return (error);
3584 }
3585