xref: /netbsd-src/sys/netinet/tcp_input.c (revision 17306b8fd0952c7489f93f0230818481e5a1e2c9)
1 /*	$NetBSD: tcp_input.c,v 1.126 2001/06/19 13:42:19 wiz Exp $	*/
2 
3 /*
4 %%% portions-copyright-nrl-95
5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
7 Reserved. All rights under this copyright have been assigned to the US
8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
10 software.
11 You should have received a copy of the license with this software. If you
12 didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
13 
14 */
15 
16 /*
17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
18  * All rights reserved.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the project nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 /*-
46  * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
47  * All rights reserved.
48  *
49  * This code is derived from software contributed to The NetBSD Foundation
50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
51  * Facility, NASA Ames Research Center.
52  *
53  * Redistribution and use in source and binary forms, with or without
54  * modification, are permitted provided that the following conditions
55  * are met:
56  * 1. Redistributions of source code must retain the above copyright
57  *    notice, this list of conditions and the following disclaimer.
58  * 2. Redistributions in binary form must reproduce the above copyright
59  *    notice, this list of conditions and the following disclaimer in the
60  *    documentation and/or other materials provided with the distribution.
61  * 3. All advertising materials mentioning features or use of this software
62  *    must display the following acknowledgement:
63  *	This product includes software developed by the NetBSD
64  *	Foundation, Inc. and its contributors.
65  * 4. Neither the name of The NetBSD Foundation nor the names of its
66  *    contributors may be used to endorse or promote products derived
67  *    from this software without specific prior written permission.
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
79  * POSSIBILITY OF SUCH DAMAGE.
80  */
81 
82 /*
83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
84  *	The Regents of the University of California.  All rights reserved.
85  *
86  * Redistribution and use in source and binary forms, with or without
87  * modification, are permitted provided that the following conditions
88  * are met:
89  * 1. Redistributions of source code must retain the above copyright
90  *    notice, this list of conditions and the following disclaimer.
91  * 2. Redistributions in binary form must reproduce the above copyright
92  *    notice, this list of conditions and the following disclaimer in the
93  *    documentation and/or other materials provided with the distribution.
94  * 3. All advertising materials mentioning features or use of this software
95  *    must display the following acknowledgement:
96  *	This product includes software developed by the University of
97  *	California, Berkeley and its contributors.
98  * 4. Neither the name of the University nor the names of its contributors
99  *    may be used to endorse or promote products derived from this software
100  *    without specific prior written permission.
101  *
102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
112  * SUCH DAMAGE.
113  *
114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
115  */
116 
117 /*
118  *	TODO list for SYN cache stuff:
119  *
120  *	Find room for a "state" field, which is needed to keep a
121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
122  *	that this is fairly important for very high-volume web and
123  *	mail servers, which use a large number of short-lived
124  *	connections.
125  */
126 
127 #include "opt_inet.h"
128 #include "opt_ipsec.h"
129 #include "opt_inet_csum.h"
130 
131 #include <sys/param.h>
132 #include <sys/systm.h>
133 #include <sys/malloc.h>
134 #include <sys/mbuf.h>
135 #include <sys/protosw.h>
136 #include <sys/socket.h>
137 #include <sys/socketvar.h>
138 #include <sys/errno.h>
139 #include <sys/syslog.h>
140 #include <sys/pool.h>
141 #include <sys/domain.h>
142 
143 #include <net/if.h>
144 #include <net/route.h>
145 #include <net/if_types.h>
146 
147 #include <netinet/in.h>
148 #include <netinet/in_systm.h>
149 #include <netinet/ip.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/ip_var.h>
152 
153 #ifdef INET6
154 #ifndef INET
155 #include <netinet/in.h>
156 #endif
157 #include <netinet/ip6.h>
158 #include <netinet6/ip6_var.h>
159 #include <netinet6/in6_pcb.h>
160 #include <netinet6/ip6_var.h>
161 #include <netinet6/in6_var.h>
162 #include <netinet/icmp6.h>
163 #include <netinet6/nd6.h>
164 #endif
165 
166 #ifdef PULLDOWN_TEST
167 #ifndef INET6
168 /* always need ip6.h for IP6_EXTHDR_GET */
169 #include <netinet/ip6.h>
170 #endif
171 #endif
172 
173 #include <netinet/tcp.h>
174 #include <netinet/tcp_fsm.h>
175 #include <netinet/tcp_seq.h>
176 #include <netinet/tcp_timer.h>
177 #include <netinet/tcp_var.h>
178 #include <netinet/tcpip.h>
179 #include <netinet/tcp_debug.h>
180 
181 #include <machine/stdarg.h>
182 
183 #ifdef IPSEC
184 #include <netinet6/ipsec.h>
185 #include <netkey/key.h>
186 #endif /*IPSEC*/
187 #ifdef INET6
188 #include "faith.h"
189 #if defined(NFAITH) && NFAITH > 0
190 #include <net/if_faith.h>
191 #endif
192 #endif
193 
194 int	tcprexmtthresh = 3;
195 int	tcp_log_refused;
196 
197 static int tcp_rst_ppslim_count = 0;
198 static struct timeval tcp_rst_ppslim_last;
199 
200 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
201 
202 /* for modulo comparisons of timestamps */
203 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
204 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
205 
206 /*
207  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
208  */
209 #ifdef INET6
210 #define ND6_HINT(tp) \
211 do { \
212 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
213 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
214 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
215 	} \
216 } while (0)
217 #else
218 #define ND6_HINT(tp)
219 #endif
220 
221 /*
222  * Macro to compute ACK transmission behavior.  Delay the ACK unless
223  * we have already delayed an ACK (must send an ACK every two segments).
224  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
225  * option is enabled.
226  */
227 #define	TCP_SETUP_ACK(tp, th) \
228 do { \
229 	if ((tp)->t_flags & TF_DELACK || \
230 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
231 		tp->t_flags |= TF_ACKNOW; \
232 	else \
233 		TCP_SET_DELACK(tp); \
234 } while (0)
235 
236 /*
237  * Convert TCP protocol fields to host order for easier processing.
238  */
239 #define	TCP_FIELDS_TO_HOST(th)						\
240 do {									\
241 	NTOHL((th)->th_seq);						\
242 	NTOHL((th)->th_ack);						\
243 	NTOHS((th)->th_win);						\
244 	NTOHS((th)->th_urp);						\
245 } while (0)
246 
247 #ifdef TCP_CSUM_COUNTERS
248 #include <sys/device.h>
249 
250 extern struct evcnt tcp_hwcsum_ok;
251 extern struct evcnt tcp_hwcsum_bad;
252 extern struct evcnt tcp_hwcsum_data;
253 extern struct evcnt tcp_swcsum;
254 
255 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
256 
257 #else
258 
259 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
260 
261 #endif /* TCP_CSUM_COUNTERS */
262 
263 int
264 tcp_reass(tp, th, m, tlen)
265 	struct tcpcb *tp;
266 	struct tcphdr *th;
267 	struct mbuf *m;
268 	int *tlen;
269 {
270 	struct ipqent *p, *q, *nq, *tiqe = NULL;
271 	struct socket *so = NULL;
272 	int pkt_flags;
273 	tcp_seq pkt_seq;
274 	unsigned pkt_len;
275 	u_long rcvpartdupbyte = 0;
276 	u_long rcvoobyte;
277 
278 	if (tp->t_inpcb)
279 		so = tp->t_inpcb->inp_socket;
280 #ifdef INET6
281 	else if (tp->t_in6pcb)
282 		so = tp->t_in6pcb->in6p_socket;
283 #endif
284 
285 	TCP_REASS_LOCK_CHECK(tp);
286 
287 	/*
288 	 * Call with th==0 after become established to
289 	 * force pre-ESTABLISHED data up to user socket.
290 	 */
291 	if (th == 0)
292 		goto present;
293 
294 	rcvoobyte = *tlen;
295 	/*
296 	 * Copy these to local variables because the tcpiphdr
297 	 * gets munged while we are collapsing mbufs.
298 	 */
299 	pkt_seq = th->th_seq;
300 	pkt_len = *tlen;
301 	pkt_flags = th->th_flags;
302 	/*
303 	 * Find a segment which begins after this one does.
304 	 */
305 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
306 		nq = q->ipqe_q.le_next;
307 		/*
308 		 * If the received segment is just right after this
309 		 * fragment, merge the two together and then check
310 		 * for further overlaps.
311 		 */
312 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
313 #ifdef TCPREASS_DEBUG
314 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
315 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
316 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
317 #endif
318 			pkt_len += q->ipqe_len;
319 			pkt_flags |= q->ipqe_flags;
320 			pkt_seq = q->ipqe_seq;
321 			m_cat(q->ipqe_m, m);
322 			m = q->ipqe_m;
323 			goto free_ipqe;
324 		}
325 		/*
326 		 * If the received segment is completely past this
327 		 * fragment, we need to go the next fragment.
328 		 */
329 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
330 			p = q;
331 			continue;
332 		}
333 		/*
334 		 * If the fragment is past the received segment,
335 		 * it (or any following) can't be concatenated.
336 		 */
337 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
338 			break;
339 		/*
340 		 * We've received all the data in this segment before.
341 		 * mark it as a duplicate and return.
342 		 */
343 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
344 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
345 			tcpstat.tcps_rcvduppack++;
346 			tcpstat.tcps_rcvdupbyte += pkt_len;
347 			m_freem(m);
348 			if (tiqe != NULL)
349 				pool_put(&ipqent_pool, tiqe);
350 			return (0);
351 		}
352 		/*
353 		 * Received segment completely overlaps this fragment
354 		 * so we drop the fragment (this keeps the temporal
355 		 * ordering of segments correct).
356 		 */
357 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
358 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
359 			rcvpartdupbyte += q->ipqe_len;
360 			m_freem(q->ipqe_m);
361 			goto free_ipqe;
362 		}
363 		/*
364 		 * RX'ed segment extends past the end of the
365 		 * fragment.  Drop the overlapping bytes.  Then
366 		 * merge the fragment and segment then treat as
367 		 * a longer received packet.
368 		 */
369 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
370 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
371 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
372 #ifdef TCPREASS_DEBUG
373 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
374 			       tp, overlap,
375 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
376 #endif
377 			m_adj(m, overlap);
378 			rcvpartdupbyte += overlap;
379 			m_cat(q->ipqe_m, m);
380 			m = q->ipqe_m;
381 			pkt_seq = q->ipqe_seq;
382 			pkt_len += q->ipqe_len - overlap;
383 			rcvoobyte -= overlap;
384 			goto free_ipqe;
385 		}
386 		/*
387 		 * RX'ed segment extends past the front of the
388 		 * fragment.  Drop the overlapping bytes on the
389 		 * received packet.  The packet will then be
390 		 * contatentated with this fragment a bit later.
391 		 */
392 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
393 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
394 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
395 #ifdef TCPREASS_DEBUG
396 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
397 			       tp, overlap,
398 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
399 #endif
400 			m_adj(m, -overlap);
401 			pkt_len -= overlap;
402 			rcvpartdupbyte += overlap;
403 			rcvoobyte -= overlap;
404 		}
405 		/*
406 		 * If the received segment immediates precedes this
407 		 * fragment then tack the fragment onto this segment
408 		 * and reinsert the data.
409 		 */
410 		if (q->ipqe_seq == pkt_seq + pkt_len) {
411 #ifdef TCPREASS_DEBUG
412 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
413 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
414 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
415 #endif
416 			pkt_len += q->ipqe_len;
417 			pkt_flags |= q->ipqe_flags;
418 			m_cat(m, q->ipqe_m);
419 			LIST_REMOVE(q, ipqe_q);
420 			LIST_REMOVE(q, ipqe_timeq);
421 			if (tiqe == NULL) {
422 			    tiqe = q;
423 			} else {
424 			    pool_put(&ipqent_pool, q);
425 			}
426 			break;
427 		}
428 		/*
429 		 * If the fragment is before the segment, remember it.
430 		 * When this loop is terminated, p will contain the
431 		 * pointer to fragment that is right before the received
432 		 * segment.
433 		 */
434 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
435 			p = q;
436 
437 		continue;
438 
439 		/*
440 		 * This is a common operation.  It also will allow
441 		 * to save doing a malloc/free in most instances.
442 		 */
443 	  free_ipqe:
444 		LIST_REMOVE(q, ipqe_q);
445 		LIST_REMOVE(q, ipqe_timeq);
446 		if (tiqe == NULL) {
447 		    tiqe = q;
448 		} else {
449 		    pool_put(&ipqent_pool, q);
450 		}
451 	}
452 
453 	/*
454 	 * Allocate a new queue entry since the received segment did not
455 	 * collapse onto any other out-of-order block; thus we are allocating
456 	 * a new block.  If it had collapsed, tiqe would not be NULL and
457 	 * we would be reusing it.
458 	 * XXX If we can't, just drop the packet.  XXX
459 	 */
460 	if (tiqe == NULL) {
461 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
462 		if (tiqe == NULL) {
463 			tcpstat.tcps_rcvmemdrop++;
464 			m_freem(m);
465 			return (0);
466 		}
467 	}
468 
469 	/*
470 	 * Update the counters.
471 	 */
472 	tcpstat.tcps_rcvoopack++;
473 	tcpstat.tcps_rcvoobyte += rcvoobyte;
474 	if (rcvpartdupbyte) {
475 	    tcpstat.tcps_rcvpartduppack++;
476 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
477 	}
478 
479 	/*
480 	 * Insert the new fragment queue entry into both queues.
481 	 */
482 	tiqe->ipqe_m = m;
483 	tiqe->ipqe_seq = pkt_seq;
484 	tiqe->ipqe_len = pkt_len;
485 	tiqe->ipqe_flags = pkt_flags;
486 	if (p == NULL) {
487 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
488 #ifdef TCPREASS_DEBUG
489 		if (tiqe->ipqe_seq != tp->rcv_nxt)
490 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
491 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
492 #endif
493 	} else {
494 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
495 #ifdef TCPREASS_DEBUG
496 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
497 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
498 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
499 #endif
500 	}
501 
502 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
503 
504 present:
505 	/*
506 	 * Present data to user, advancing rcv_nxt through
507 	 * completed sequence space.
508 	 */
509 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
510 		return (0);
511 	q = tp->segq.lh_first;
512 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
513 		return (0);
514 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
515 		return (0);
516 
517 	tp->rcv_nxt += q->ipqe_len;
518 	pkt_flags = q->ipqe_flags & TH_FIN;
519 	ND6_HINT(tp);
520 
521 	LIST_REMOVE(q, ipqe_q);
522 	LIST_REMOVE(q, ipqe_timeq);
523 	if (so->so_state & SS_CANTRCVMORE)
524 		m_freem(q->ipqe_m);
525 	else
526 		sbappend(&so->so_rcv, q->ipqe_m);
527 	pool_put(&ipqent_pool, q);
528 	sorwakeup(so);
529 	return (pkt_flags);
530 }
531 
532 #ifdef INET6
533 int
534 tcp6_input(mp, offp, proto)
535 	struct mbuf **mp;
536 	int *offp, proto;
537 {
538 	struct mbuf *m = *mp;
539 
540 	/*
541 	 * draft-itojun-ipv6-tcp-to-anycast
542 	 * better place to put this in?
543 	 */
544 	if (m->m_flags & M_ANYCAST6) {
545 		struct ip6_hdr *ip6;
546 		if (m->m_len < sizeof(struct ip6_hdr)) {
547 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
548 				tcpstat.tcps_rcvshort++;
549 				return IPPROTO_DONE;
550 			}
551 		}
552 		ip6 = mtod(m, struct ip6_hdr *);
553 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
554 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
555 		return IPPROTO_DONE;
556 	}
557 
558 	tcp_input(m, *offp, proto);
559 	return IPPROTO_DONE;
560 }
561 #endif
562 
563 /*
564  * TCP input routine, follows pages 65-76 of the
565  * protocol specification dated September, 1981 very closely.
566  */
567 void
568 #if __STDC__
569 tcp_input(struct mbuf *m, ...)
570 #else
571 tcp_input(m, va_alist)
572 	struct mbuf *m;
573 #endif
574 {
575 	int proto;
576 	struct tcphdr *th;
577 	struct ip *ip;
578 	struct inpcb *inp;
579 #ifdef INET6
580 	struct ip6_hdr *ip6;
581 	struct in6pcb *in6p;
582 #endif
583 	caddr_t optp = NULL;
584 	int optlen = 0;
585 	int len, tlen, toff, hdroptlen = 0;
586 	struct tcpcb *tp = 0;
587 	int tiflags;
588 	struct socket *so = NULL;
589 	int todrop, acked, ourfinisacked, needoutput = 0;
590 	short ostate = 0;
591 	int iss = 0;
592 	u_long tiwin;
593 	struct tcp_opt_info opti;
594 	int off, iphlen;
595 	va_list ap;
596 	int af;		/* af on the wire */
597 	struct mbuf *tcp_saveti = NULL;
598 
599 	va_start(ap, m);
600 	toff = va_arg(ap, int);
601 	proto = va_arg(ap, int);
602 	va_end(ap);
603 
604 	tcpstat.tcps_rcvtotal++;
605 
606 	bzero(&opti, sizeof(opti));
607 	opti.ts_present = 0;
608 	opti.maxseg = 0;
609 
610 	/*
611 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
612 	 *
613 	 * TCP is, by definition, unicast, so we reject all
614 	 * multicast outright.
615 	 *
616 	 * Note, there are additional src/dst address checks in
617 	 * the AF-specific code below.
618 	 */
619 	if (m->m_flags & (M_BCAST|M_MCAST)) {
620 		/* XXX stat */
621 		goto drop;
622 	}
623 #ifdef INET6
624 	if (m->m_flags & M_ANYCAST6) {
625 		/* XXX stat */
626 		goto drop;
627 	}
628 #endif
629 
630 	/*
631 	 * Get IP and TCP header together in first mbuf.
632 	 * Note: IP leaves IP header in first mbuf.
633 	 */
634 	ip = mtod(m, struct ip *);
635 #ifdef INET6
636 	ip6 = NULL;
637 #endif
638 	switch (ip->ip_v) {
639 #ifdef INET
640 	case 4:
641 		af = AF_INET;
642 		iphlen = sizeof(struct ip);
643 #ifndef PULLDOWN_TEST
644 		/* would like to get rid of this... */
645 		if (toff > sizeof (struct ip)) {
646 			ip_stripoptions(m, (struct mbuf *)0);
647 			toff = sizeof(struct ip);
648 		}
649 		if (m->m_len < toff + sizeof (struct tcphdr)) {
650 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
651 				tcpstat.tcps_rcvshort++;
652 				return;
653 			}
654 		}
655 		ip = mtod(m, struct ip *);
656 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
657 #else
658 		ip = mtod(m, struct ip *);
659 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
660 			sizeof(struct tcphdr));
661 		if (th == NULL) {
662 			tcpstat.tcps_rcvshort++;
663 			return;
664 		}
665 #endif
666 
667 		/*
668 		 * Make sure destination address is not multicast.
669 		 * Source address checked in ip_input().
670 		 */
671 		if (IN_MULTICAST(ip->ip_dst.s_addr)) {
672 			/* XXX stat */
673 			goto drop;
674 		}
675 
676 		/* We do the checksum after PCB lookup... */
677 		len = ip->ip_len;
678 		tlen = len - toff;
679 		break;
680 #endif
681 #ifdef INET6
682 	case 6:
683 		ip = NULL;
684 		iphlen = sizeof(struct ip6_hdr);
685 		af = AF_INET6;
686 #ifndef PULLDOWN_TEST
687 		if (m->m_len < toff + sizeof(struct tcphdr)) {
688 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
689 			if (m == NULL) {
690 				tcpstat.tcps_rcvshort++;
691 				return;
692 			}
693 		}
694 		ip6 = mtod(m, struct ip6_hdr *);
695 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
696 #else
697 		ip6 = mtod(m, struct ip6_hdr *);
698 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
699 			sizeof(struct tcphdr));
700 		if (th == NULL) {
701 			tcpstat.tcps_rcvshort++;
702 			return;
703 		}
704 #endif
705 
706 		/* Be proactive about malicious use of IPv4 mapped address */
707 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
708 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
709 			/* XXX stat */
710 			goto drop;
711 		}
712 
713 		/*
714 		 * Be proactive about unspecified IPv6 address in source.
715 		 * As we use all-zero to indicate unbounded/unconnected pcb,
716 		 * unspecified IPv6 address can be used to confuse us.
717 		 *
718 		 * Note that packets with unspecified IPv6 destination is
719 		 * already dropped in ip6_input.
720 		 */
721 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
722 			/* XXX stat */
723 			goto drop;
724 		}
725 
726 		/*
727 		 * Make sure destination address is not multicast.
728 		 * Source address checked in ip6_input().
729 		 */
730 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
731 			/* XXX stat */
732 			goto drop;
733 		}
734 
735 		/* We do the checksum after PCB lookup... */
736 		len = m->m_pkthdr.len;
737 		tlen = len - toff;
738 		break;
739 #endif
740 	default:
741 		m_freem(m);
742 		return;
743 	}
744 
745 	/*
746 	 * Check that TCP offset makes sense,
747 	 * pull out TCP options and adjust length.		XXX
748 	 */
749 	off = th->th_off << 2;
750 	if (off < sizeof (struct tcphdr) || off > tlen) {
751 		tcpstat.tcps_rcvbadoff++;
752 		goto drop;
753 	}
754 	tlen -= off;
755 
756 	/*
757 	 * tcp_input() has been modified to use tlen to mean the TCP data
758 	 * length throughout the function.  Other functions can use
759 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
760 	 * rja
761 	 */
762 
763 	if (off > sizeof (struct tcphdr)) {
764 #ifndef PULLDOWN_TEST
765 		if (m->m_len < toff + off) {
766 			if ((m = m_pullup(m, toff + off)) == 0) {
767 				tcpstat.tcps_rcvshort++;
768 				return;
769 			}
770 			switch (af) {
771 #ifdef INET
772 			case AF_INET:
773 				ip = mtod(m, struct ip *);
774 				break;
775 #endif
776 #ifdef INET6
777 			case AF_INET6:
778 				ip6 = mtod(m, struct ip6_hdr *);
779 				break;
780 #endif
781 			}
782 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
783 		}
784 #else
785 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
786 		if (th == NULL) {
787 			tcpstat.tcps_rcvshort++;
788 			return;
789 		}
790 		/*
791 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
792 		 * (as they're before toff) and we don't need to update those.
793 		 */
794 #endif
795 		optlen = off - sizeof (struct tcphdr);
796 		optp = ((caddr_t)th) + sizeof(struct tcphdr);
797 		/*
798 		 * Do quick retrieval of timestamp options ("options
799 		 * prediction?").  If timestamp is the only option and it's
800 		 * formatted as recommended in RFC 1323 appendix A, we
801 		 * quickly get the values now and not bother calling
802 		 * tcp_dooptions(), etc.
803 		 */
804 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
805 		     (optlen > TCPOLEN_TSTAMP_APPA &&
806 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
807 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
808 		     (th->th_flags & TH_SYN) == 0) {
809 			opti.ts_present = 1;
810 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
811 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
812 			optp = NULL;	/* we've parsed the options */
813 		}
814 	}
815 	tiflags = th->th_flags;
816 
817 	/*
818 	 * Locate pcb for segment.
819 	 */
820 findpcb:
821 	inp = NULL;
822 #ifdef INET6
823 	in6p = NULL;
824 #endif
825 	switch (af) {
826 #ifdef INET
827 	case AF_INET:
828 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
829 		    ip->ip_dst, th->th_dport);
830 		if (inp == 0) {
831 			++tcpstat.tcps_pcbhashmiss;
832 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
833 		}
834 #ifdef INET6
835 		if (inp == 0) {
836 			struct in6_addr s, d;
837 
838 			/* mapped addr case */
839 			bzero(&s, sizeof(s));
840 			s.s6_addr16[5] = htons(0xffff);
841 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
842 			bzero(&d, sizeof(d));
843 			d.s6_addr16[5] = htons(0xffff);
844 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
845 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
846 				&d, th->th_dport, 0);
847 			if (in6p == 0) {
848 				++tcpstat.tcps_pcbhashmiss;
849 				in6p = in6_pcblookup_bind(&tcb6, &d,
850 					th->th_dport, 0);
851 			}
852 		}
853 #endif
854 #ifndef INET6
855 		if (inp == 0)
856 #else
857 		if (inp == 0 && in6p == 0)
858 #endif
859 		{
860 			++tcpstat.tcps_noport;
861 			if (tcp_log_refused && (tiflags & TH_SYN)) {
862 #ifndef INET6
863 				char src[4*sizeof "123"];
864 				char dst[4*sizeof "123"];
865 #else
866 				char src[INET6_ADDRSTRLEN];
867 				char dst[INET6_ADDRSTRLEN];
868 #endif
869 				if (ip) {
870 					strcpy(src, inet_ntoa(ip->ip_src));
871 					strcpy(dst, inet_ntoa(ip->ip_dst));
872 				}
873 #ifdef INET6
874 				else if (ip6) {
875 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
876 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
877 				}
878 #endif
879 				else {
880 					strcpy(src, "(unknown)");
881 					strcpy(dst, "(unknown)");
882 				}
883 				log(LOG_INFO,
884 				    "Connection attempt to TCP %s:%d from %s:%d\n",
885 				    dst, ntohs(th->th_dport),
886 				    src, ntohs(th->th_sport));
887 			}
888 			TCP_FIELDS_TO_HOST(th);
889 			goto dropwithreset_ratelim;
890 		}
891 #ifdef IPSEC
892 		if (inp && ipsec4_in_reject(m, inp)) {
893 			ipsecstat.in_polvio++;
894 			goto drop;
895 		}
896 #ifdef INET6
897 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
898 			ipsecstat.in_polvio++;
899 			goto drop;
900 		}
901 #endif
902 #endif /*IPSEC*/
903 		break;
904 #endif /*INET*/
905 #ifdef INET6
906 	case AF_INET6:
907 	    {
908 		int faith;
909 
910 #if defined(NFAITH) && NFAITH > 0
911 		faith = faithprefix(&ip6->ip6_dst);
912 #else
913 		faith = 0;
914 #endif
915 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
916 			&ip6->ip6_dst, th->th_dport, faith);
917 		if (in6p == NULL) {
918 			++tcpstat.tcps_pcbhashmiss;
919 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
920 				th->th_dport, faith);
921 		}
922 		if (in6p == NULL) {
923 			++tcpstat.tcps_noport;
924 			TCP_FIELDS_TO_HOST(th);
925 			goto dropwithreset_ratelim;
926 		}
927 #ifdef IPSEC
928 		if (ipsec6_in_reject(m, in6p)) {
929 			ipsec6stat.in_polvio++;
930 			goto drop;
931 		}
932 #endif /*IPSEC*/
933 		break;
934 	    }
935 #endif
936 	}
937 
938 	/*
939 	 * If the state is CLOSED (i.e., TCB does not exist) then
940 	 * all data in the incoming segment is discarded.
941 	 * If the TCB exists but is in CLOSED state, it is embryonic,
942 	 * but should either do a listen or a connect soon.
943 	 */
944 	tp = NULL;
945 	so = NULL;
946 	if (inp) {
947 		tp = intotcpcb(inp);
948 		so = inp->inp_socket;
949 	}
950 #ifdef INET6
951 	else if (in6p) {
952 		tp = in6totcpcb(in6p);
953 		so = in6p->in6p_socket;
954 	}
955 #endif
956 	if (tp == 0) {
957 		TCP_FIELDS_TO_HOST(th);
958 		goto dropwithreset_ratelim;
959 	}
960 	if (tp->t_state == TCPS_CLOSED)
961 		goto drop;
962 
963 	/*
964 	 * Checksum extended TCP header and data.
965 	 */
966 	switch (af) {
967 #ifdef INET
968 	case AF_INET:
969 		switch (m->m_pkthdr.csum_flags &
970 			((m->m_pkthdr.rcvif->if_csum_flags & M_CSUM_TCPv4) |
971 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
972 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
973 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
974 			goto badcsum;
975 
976 		case M_CSUM_TCPv4|M_CSUM_DATA:
977 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
978 			if ((m->m_pkthdr.csum_data ^ 0xffff) != 0)
979 				goto badcsum;
980 			break;
981 
982 		case M_CSUM_TCPv4:
983 			/* Checksum was okay. */
984 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
985 			break;
986 
987 		default:
988 			/* Must compute it ourselves. */
989 			TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
990 #ifndef PULLDOWN_TEST
991 		    {
992 			struct ipovly *ipov;
993 			ipov = (struct ipovly *)ip;
994 			bzero(ipov->ih_x1, sizeof ipov->ih_x1);
995 			ipov->ih_len = htons(tlen + off);
996 
997 			if (in_cksum(m, len) != 0)
998 				goto badcsum;
999 		    }
1000 #else
1001 			if (in4_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1002 				goto badcsum;
1003 #endif /* ! PULLDOWN_TEST */
1004 			break;
1005 		}
1006 		break;
1007 #endif /* INET4 */
1008 
1009 #ifdef INET6
1010 	case AF_INET6:
1011 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
1012 			goto badcsum;
1013 		break;
1014 #endif /* INET6 */
1015 	}
1016 
1017 	TCP_FIELDS_TO_HOST(th);
1018 
1019 	/* Unscale the window into a 32-bit value. */
1020 	if ((tiflags & TH_SYN) == 0)
1021 		tiwin = th->th_win << tp->snd_scale;
1022 	else
1023 		tiwin = th->th_win;
1024 
1025 #ifdef INET6
1026 	/* save packet options if user wanted */
1027 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1028 		if (in6p->in6p_options) {
1029 			m_freem(in6p->in6p_options);
1030 			in6p->in6p_options = 0;
1031 		}
1032 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1033 	}
1034 #endif
1035 
1036 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1037 		union syn_cache_sa src;
1038 		union syn_cache_sa dst;
1039 
1040 		bzero(&src, sizeof(src));
1041 		bzero(&dst, sizeof(dst));
1042 		switch (af) {
1043 #ifdef INET
1044 		case AF_INET:
1045 			src.sin.sin_len = sizeof(struct sockaddr_in);
1046 			src.sin.sin_family = AF_INET;
1047 			src.sin.sin_addr = ip->ip_src;
1048 			src.sin.sin_port = th->th_sport;
1049 
1050 			dst.sin.sin_len = sizeof(struct sockaddr_in);
1051 			dst.sin.sin_family = AF_INET;
1052 			dst.sin.sin_addr = ip->ip_dst;
1053 			dst.sin.sin_port = th->th_dport;
1054 			break;
1055 #endif
1056 #ifdef INET6
1057 		case AF_INET6:
1058 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1059 			src.sin6.sin6_family = AF_INET6;
1060 			src.sin6.sin6_addr = ip6->ip6_src;
1061 			src.sin6.sin6_port = th->th_sport;
1062 
1063 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1064 			dst.sin6.sin6_family = AF_INET6;
1065 			dst.sin6.sin6_addr = ip6->ip6_dst;
1066 			dst.sin6.sin6_port = th->th_dport;
1067 			break;
1068 #endif /* INET6 */
1069 		default:
1070 			goto badsyn;	/*sanity*/
1071 		}
1072 
1073 		if (so->so_options & SO_DEBUG) {
1074 			ostate = tp->t_state;
1075 
1076 			tcp_saveti = NULL;
1077 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
1078 				goto nosave;
1079 
1080 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1081 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1082 				if (!tcp_saveti)
1083 					goto nosave;
1084 			} else {
1085 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1086 				if (!tcp_saveti)
1087 					goto nosave;
1088 				tcp_saveti->m_len = iphlen;
1089 				m_copydata(m, 0, iphlen,
1090 				    mtod(tcp_saveti, caddr_t));
1091 			}
1092 
1093 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1094 				m_freem(tcp_saveti);
1095 				tcp_saveti = NULL;
1096 			} else {
1097 				tcp_saveti->m_len += sizeof(struct tcphdr);
1098 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1099 				    sizeof(struct tcphdr));
1100 			}
1101 			if (tcp_saveti) {
1102 				/*
1103 				 * need to recover version # field, which was
1104 				 * overwritten on ip_cksum computation.
1105 				 */
1106 				struct ip *sip;
1107 				sip = mtod(tcp_saveti, struct ip *);
1108 				switch (af) {
1109 #ifdef INET
1110 				case AF_INET:
1111 					sip->ip_v = 4;
1112 					break;
1113 #endif
1114 #ifdef INET6
1115 				case AF_INET6:
1116 					sip->ip_v = 6;
1117 					break;
1118 #endif
1119 				}
1120 			}
1121 	nosave:;
1122 		}
1123 		if (so->so_options & SO_ACCEPTCONN) {
1124   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1125 				if (tiflags & TH_RST) {
1126 					syn_cache_reset(&src.sa, &dst.sa, th);
1127 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
1128 				    (TH_ACK|TH_SYN)) {
1129 					/*
1130 					 * Received a SYN,ACK.  This should
1131 					 * never happen while we are in
1132 					 * LISTEN.  Send an RST.
1133 					 */
1134 					goto badsyn;
1135 				} else if (tiflags & TH_ACK) {
1136 					so = syn_cache_get(&src.sa, &dst.sa,
1137 						th, toff, tlen, so, m);
1138 					if (so == NULL) {
1139 						/*
1140 						 * We don't have a SYN for
1141 						 * this ACK; send an RST.
1142 						 */
1143 						goto badsyn;
1144 					} else if (so ==
1145 					    (struct socket *)(-1)) {
1146 						/*
1147 						 * We were unable to create
1148 						 * the connection.  If the
1149 						 * 3-way handshake was
1150 						 * completed, and RST has
1151 						 * been sent to the peer.
1152 						 * Since the mbuf might be
1153 						 * in use for the reply,
1154 						 * do not free it.
1155 						 */
1156 						m = NULL;
1157 					} else {
1158 						/*
1159 						 * We have created a
1160 						 * full-blown connection.
1161 						 */
1162 						tp = NULL;
1163 						inp = NULL;
1164 #ifdef INET6
1165 						in6p = NULL;
1166 #endif
1167 						switch (so->so_proto->pr_domain->dom_family) {
1168 #ifdef INET
1169 						case AF_INET:
1170 							inp = sotoinpcb(so);
1171 							tp = intotcpcb(inp);
1172 							break;
1173 #endif
1174 #ifdef INET6
1175 						case AF_INET6:
1176 							in6p = sotoin6pcb(so);
1177 							tp = in6totcpcb(in6p);
1178 							break;
1179 #endif
1180 						}
1181 						if (tp == NULL)
1182 							goto badsyn;	/*XXX*/
1183 						tiwin <<= tp->snd_scale;
1184 						goto after_listen;
1185 					}
1186   				} else {
1187 					/*
1188 					 * None of RST, SYN or ACK was set.
1189 					 * This is an invalid packet for a
1190 					 * TCB in LISTEN state.  Send a RST.
1191 					 */
1192 					goto badsyn;
1193 				}
1194   			} else {
1195 				/*
1196 				 * Received a SYN.
1197 				 */
1198 
1199 				/*
1200 				 * LISTEN socket received a SYN
1201 				 * from itself?  This can't possibly
1202 				 * be valid; drop the packet.
1203 				 */
1204 				if (th->th_sport == th->th_dport) {
1205 					int i;
1206 
1207 					switch (af) {
1208 #ifdef INET
1209 					case AF_INET:
1210 						i = in_hosteq(ip->ip_src, ip->ip_dst);
1211 						break;
1212 #endif
1213 #ifdef INET6
1214 					case AF_INET6:
1215 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1216 						break;
1217 #endif
1218 					default:
1219 						i = 1;
1220 					}
1221 					if (i) {
1222 						tcpstat.tcps_badsyn++;
1223 						goto drop;
1224 					}
1225 				}
1226 
1227 				/*
1228 				 * SYN looks ok; create compressed TCP
1229 				 * state for it.
1230 				 */
1231 				if (so->so_qlen <= so->so_qlimit &&
1232 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
1233 						so, m, optp, optlen, &opti))
1234 					m = NULL;
1235 			}
1236 			goto drop;
1237 		}
1238 	}
1239 
1240 after_listen:
1241 #ifdef DIAGNOSTIC
1242 	/*
1243 	 * Should not happen now that all embryonic connections
1244 	 * are handled with compressed state.
1245 	 */
1246 	if (tp->t_state == TCPS_LISTEN)
1247 		panic("tcp_input: TCPS_LISTEN");
1248 #endif
1249 
1250 	/*
1251 	 * Segment received on connection.
1252 	 * Reset idle time and keep-alive timer.
1253 	 */
1254 	tp->t_idle = 0;
1255 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1256 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1257 
1258 	/*
1259 	 * Process options.
1260 	 */
1261 	if (optp)
1262 		tcp_dooptions(tp, optp, optlen, th, &opti);
1263 
1264 	/*
1265 	 * Header prediction: check for the two common cases
1266 	 * of a uni-directional data xfer.  If the packet has
1267 	 * no control flags, is in-sequence, the window didn't
1268 	 * change and we're not retransmitting, it's a
1269 	 * candidate.  If the length is zero and the ack moved
1270 	 * forward, we're the sender side of the xfer.  Just
1271 	 * free the data acked & wake any higher level process
1272 	 * that was blocked waiting for space.  If the length
1273 	 * is non-zero and the ack didn't move, we're the
1274 	 * receiver side.  If we're getting packets in-order
1275 	 * (the reassembly queue is empty), add the data to
1276 	 * the socket buffer and note that we need a delayed ack.
1277 	 */
1278 	if (tp->t_state == TCPS_ESTABLISHED &&
1279 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1280 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1281 	    th->th_seq == tp->rcv_nxt &&
1282 	    tiwin && tiwin == tp->snd_wnd &&
1283 	    tp->snd_nxt == tp->snd_max) {
1284 
1285 		/*
1286 		 * If last ACK falls within this segment's sequence numbers,
1287 		 *  record the timestamp.
1288 		 */
1289 		if (opti.ts_present &&
1290 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1291 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1292 			tp->ts_recent_age = TCP_TIMESTAMP(tp);
1293 			tp->ts_recent = opti.ts_val;
1294 		}
1295 
1296 		if (tlen == 0) {
1297 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1298 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1299 			    tp->snd_cwnd >= tp->snd_wnd &&
1300 			    tp->t_dupacks < tcprexmtthresh) {
1301 				/*
1302 				 * this is a pure ack for outstanding data.
1303 				 */
1304 				++tcpstat.tcps_predack;
1305 				if (opti.ts_present && opti.ts_ecr)
1306 					tcp_xmit_timer(tp,
1307 					  TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1308 				else if (tp->t_rtt &&
1309 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1310 					tcp_xmit_timer(tp, tp->t_rtt);
1311 				acked = th->th_ack - tp->snd_una;
1312 				tcpstat.tcps_rcvackpack++;
1313 				tcpstat.tcps_rcvackbyte += acked;
1314 				ND6_HINT(tp);
1315 				sbdrop(&so->so_snd, acked);
1316 				/*
1317 				 * We want snd_recover to track snd_una to
1318 				 * avoid sequence wraparound problems for
1319 				 * very large transfers.
1320 				 */
1321 				tp->snd_una = tp->snd_recover = th->th_ack;
1322 				m_freem(m);
1323 
1324 				/*
1325 				 * If all outstanding data are acked, stop
1326 				 * retransmit timer, otherwise restart timer
1327 				 * using current (possibly backed-off) value.
1328 				 * If process is waiting for space,
1329 				 * wakeup/selwakeup/signal.  If data
1330 				 * are ready to send, let tcp_output
1331 				 * decide between more output or persist.
1332 				 */
1333 				if (tp->snd_una == tp->snd_max)
1334 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1335 				else if (TCP_TIMER_ISARMED(tp,
1336 				    TCPT_PERSIST) == 0)
1337 					TCP_TIMER_ARM(tp, TCPT_REXMT,
1338 					    tp->t_rxtcur);
1339 
1340 				sowwakeup(so);
1341 				if (so->so_snd.sb_cc)
1342 					(void) tcp_output(tp);
1343 				if (tcp_saveti)
1344 					m_freem(tcp_saveti);
1345 				return;
1346 			}
1347 		} else if (th->th_ack == tp->snd_una &&
1348 		    tp->segq.lh_first == NULL &&
1349 		    tlen <= sbspace(&so->so_rcv)) {
1350 			/*
1351 			 * this is a pure, in-sequence data packet
1352 			 * with nothing on the reassembly queue and
1353 			 * we have enough buffer space to take it.
1354 			 */
1355 			++tcpstat.tcps_preddat;
1356 			tp->rcv_nxt += tlen;
1357 			tcpstat.tcps_rcvpack++;
1358 			tcpstat.tcps_rcvbyte += tlen;
1359 			ND6_HINT(tp);
1360 			/*
1361 			 * Drop TCP, IP headers and TCP options then add data
1362 			 * to socket buffer.
1363 			 */
1364 			m_adj(m, toff + off);
1365 			sbappend(&so->so_rcv, m);
1366 			sorwakeup(so);
1367 			TCP_SETUP_ACK(tp, th);
1368 			if (tp->t_flags & TF_ACKNOW)
1369 				(void) tcp_output(tp);
1370 			if (tcp_saveti)
1371 				m_freem(tcp_saveti);
1372 			return;
1373 		}
1374 	}
1375 
1376 	/*
1377 	 * Compute mbuf offset to TCP data segment.
1378 	 */
1379 	hdroptlen = toff + off;
1380 
1381 	/*
1382 	 * Calculate amount of space in receive window,
1383 	 * and then do TCP input processing.
1384 	 * Receive window is amount of space in rcv queue,
1385 	 * but not less than advertised window.
1386 	 */
1387 	{ int win;
1388 
1389 	win = sbspace(&so->so_rcv);
1390 	if (win < 0)
1391 		win = 0;
1392 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1393 	}
1394 
1395 	switch (tp->t_state) {
1396 
1397 	/*
1398 	 * If the state is SYN_SENT:
1399 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1400 	 *	if seg contains a RST, then drop the connection.
1401 	 *	if seg does not contain SYN, then drop it.
1402 	 * Otherwise this is an acceptable SYN segment
1403 	 *	initialize tp->rcv_nxt and tp->irs
1404 	 *	if seg contains ack then advance tp->snd_una
1405 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1406 	 *	arrange for segment to be acked (eventually)
1407 	 *	continue processing rest of data/controls, beginning with URG
1408 	 */
1409 	case TCPS_SYN_SENT:
1410 		if ((tiflags & TH_ACK) &&
1411 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1412 		     SEQ_GT(th->th_ack, tp->snd_max)))
1413 			goto dropwithreset;
1414 		if (tiflags & TH_RST) {
1415 			if (tiflags & TH_ACK)
1416 				tp = tcp_drop(tp, ECONNREFUSED);
1417 			goto drop;
1418 		}
1419 		if ((tiflags & TH_SYN) == 0)
1420 			goto drop;
1421 		if (tiflags & TH_ACK) {
1422 			tp->snd_una = tp->snd_recover = th->th_ack;
1423 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1424 				tp->snd_nxt = tp->snd_una;
1425 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1426 		}
1427 		tp->irs = th->th_seq;
1428 		tcp_rcvseqinit(tp);
1429 		tp->t_flags |= TF_ACKNOW;
1430 		tcp_mss_from_peer(tp, opti.maxseg);
1431 
1432 		/*
1433 		 * Initialize the initial congestion window.  If we
1434 		 * had to retransmit the SYN, we must initialize cwnd
1435 		 * to 1 segment (i.e. the Loss Window).
1436 		 */
1437 		if (tp->t_flags & TF_SYN_REXMT)
1438 			tp->snd_cwnd = tp->t_peermss;
1439 		else
1440 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1441 			    tp->t_peermss);
1442 
1443 		tcp_rmx_rtt(tp);
1444 		if (tiflags & TH_ACK) {
1445 			tcpstat.tcps_connects++;
1446 			soisconnected(so);
1447 			tcp_established(tp);
1448 			/* Do window scaling on this connection? */
1449 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1450 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1451 				tp->snd_scale = tp->requested_s_scale;
1452 				tp->rcv_scale = tp->request_r_scale;
1453 			}
1454 			TCP_REASS_LOCK(tp);
1455 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1456 			TCP_REASS_UNLOCK(tp);
1457 			/*
1458 			 * if we didn't have to retransmit the SYN,
1459 			 * use its rtt as our initial srtt & rtt var.
1460 			 */
1461 			if (tp->t_rtt)
1462 				tcp_xmit_timer(tp, tp->t_rtt);
1463 		} else
1464 			tp->t_state = TCPS_SYN_RECEIVED;
1465 
1466 		/*
1467 		 * Advance th->th_seq to correspond to first data byte.
1468 		 * If data, trim to stay within window,
1469 		 * dropping FIN if necessary.
1470 		 */
1471 		th->th_seq++;
1472 		if (tlen > tp->rcv_wnd) {
1473 			todrop = tlen - tp->rcv_wnd;
1474 			m_adj(m, -todrop);
1475 			tlen = tp->rcv_wnd;
1476 			tiflags &= ~TH_FIN;
1477 			tcpstat.tcps_rcvpackafterwin++;
1478 			tcpstat.tcps_rcvbyteafterwin += todrop;
1479 		}
1480 		tp->snd_wl1 = th->th_seq - 1;
1481 		tp->rcv_up = th->th_seq;
1482 		goto step6;
1483 
1484 	/*
1485 	 * If the state is SYN_RECEIVED:
1486 	 *	If seg contains an ACK, but not for our SYN, drop the input
1487 	 *	and generate an RST.  See page 36, rfc793
1488 	 */
1489 	case TCPS_SYN_RECEIVED:
1490 		if ((tiflags & TH_ACK) &&
1491 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1492 		     SEQ_GT(th->th_ack, tp->snd_max)))
1493 			goto dropwithreset;
1494 		break;
1495 	}
1496 
1497 	/*
1498 	 * States other than LISTEN or SYN_SENT.
1499 	 * First check timestamp, if present.
1500 	 * Then check that at least some bytes of segment are within
1501 	 * receive window.  If segment begins before rcv_nxt,
1502 	 * drop leading data (and SYN); if nothing left, just ack.
1503 	 *
1504 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1505 	 * and it's less than ts_recent, drop it.
1506 	 */
1507 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1508 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1509 
1510 		/* Check to see if ts_recent is over 24 days old.  */
1511 		if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1512 		    TCP_PAWS_IDLE) {
1513 			/*
1514 			 * Invalidate ts_recent.  If this segment updates
1515 			 * ts_recent, the age will be reset later and ts_recent
1516 			 * will get a valid value.  If it does not, setting
1517 			 * ts_recent to zero will at least satisfy the
1518 			 * requirement that zero be placed in the timestamp
1519 			 * echo reply when ts_recent isn't valid.  The
1520 			 * age isn't reset until we get a valid ts_recent
1521 			 * because we don't want out-of-order segments to be
1522 			 * dropped when ts_recent is old.
1523 			 */
1524 			tp->ts_recent = 0;
1525 		} else {
1526 			tcpstat.tcps_rcvduppack++;
1527 			tcpstat.tcps_rcvdupbyte += tlen;
1528 			tcpstat.tcps_pawsdrop++;
1529 			goto dropafterack;
1530 		}
1531 	}
1532 
1533 	todrop = tp->rcv_nxt - th->th_seq;
1534 	if (todrop > 0) {
1535 		if (tiflags & TH_SYN) {
1536 			tiflags &= ~TH_SYN;
1537 			th->th_seq++;
1538 			if (th->th_urp > 1)
1539 				th->th_urp--;
1540 			else {
1541 				tiflags &= ~TH_URG;
1542 				th->th_urp = 0;
1543 			}
1544 			todrop--;
1545 		}
1546 		if (todrop > tlen ||
1547 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1548 			/*
1549 			 * Any valid FIN must be to the left of the window.
1550 			 * At this point the FIN must be a duplicate or
1551 			 * out of sequence; drop it.
1552 			 */
1553 			tiflags &= ~TH_FIN;
1554 			/*
1555 			 * Send an ACK to resynchronize and drop any data.
1556 			 * But keep on processing for RST or ACK.
1557 			 */
1558 			tp->t_flags |= TF_ACKNOW;
1559 			todrop = tlen;
1560 			tcpstat.tcps_rcvdupbyte += todrop;
1561 			tcpstat.tcps_rcvduppack++;
1562 		} else {
1563 			tcpstat.tcps_rcvpartduppack++;
1564 			tcpstat.tcps_rcvpartdupbyte += todrop;
1565 		}
1566 		hdroptlen += todrop;	/*drop from head afterwards*/
1567 		th->th_seq += todrop;
1568 		tlen -= todrop;
1569 		if (th->th_urp > todrop)
1570 			th->th_urp -= todrop;
1571 		else {
1572 			tiflags &= ~TH_URG;
1573 			th->th_urp = 0;
1574 		}
1575 	}
1576 
1577 	/*
1578 	 * If new data are received on a connection after the
1579 	 * user processes are gone, then RST the other end.
1580 	 */
1581 	if ((so->so_state & SS_NOFDREF) &&
1582 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1583 		tp = tcp_close(tp);
1584 		tcpstat.tcps_rcvafterclose++;
1585 		goto dropwithreset;
1586 	}
1587 
1588 	/*
1589 	 * If segment ends after window, drop trailing data
1590 	 * (and PUSH and FIN); if nothing left, just ACK.
1591 	 */
1592 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1593 	if (todrop > 0) {
1594 		tcpstat.tcps_rcvpackafterwin++;
1595 		if (todrop >= tlen) {
1596 			tcpstat.tcps_rcvbyteafterwin += tlen;
1597 			/*
1598 			 * If a new connection request is received
1599 			 * while in TIME_WAIT, drop the old connection
1600 			 * and start over if the sequence numbers
1601 			 * are above the previous ones.
1602 			 */
1603 			if (tiflags & TH_SYN &&
1604 			    tp->t_state == TCPS_TIME_WAIT &&
1605 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1606 				iss = tcp_new_iss(tp, tp->snd_nxt);
1607 				tp = tcp_close(tp);
1608 				goto findpcb;
1609 			}
1610 			/*
1611 			 * If window is closed can only take segments at
1612 			 * window edge, and have to drop data and PUSH from
1613 			 * incoming segments.  Continue processing, but
1614 			 * remember to ack.  Otherwise, drop segment
1615 			 * and ack.
1616 			 */
1617 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1618 				tp->t_flags |= TF_ACKNOW;
1619 				tcpstat.tcps_rcvwinprobe++;
1620 			} else
1621 				goto dropafterack;
1622 		} else
1623 			tcpstat.tcps_rcvbyteafterwin += todrop;
1624 		m_adj(m, -todrop);
1625 		tlen -= todrop;
1626 		tiflags &= ~(TH_PUSH|TH_FIN);
1627 	}
1628 
1629 	/*
1630 	 * If last ACK falls within this segment's sequence numbers,
1631 	 * and the timestamp is newer, record it.
1632 	 */
1633 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1634 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1635 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1636 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1637 		tp->ts_recent_age = TCP_TIMESTAMP(tp);
1638 		tp->ts_recent = opti.ts_val;
1639 	}
1640 
1641 	/*
1642 	 * If the RST bit is set examine the state:
1643 	 *    SYN_RECEIVED STATE:
1644 	 *	If passive open, return to LISTEN state.
1645 	 *	If active open, inform user that connection was refused.
1646 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1647 	 *	Inform user that connection was reset, and close tcb.
1648 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1649 	 *	Close the tcb.
1650 	 */
1651 	if (tiflags&TH_RST) switch (tp->t_state) {
1652 
1653 	case TCPS_SYN_RECEIVED:
1654 		so->so_error = ECONNREFUSED;
1655 		goto close;
1656 
1657 	case TCPS_ESTABLISHED:
1658 	case TCPS_FIN_WAIT_1:
1659 	case TCPS_FIN_WAIT_2:
1660 	case TCPS_CLOSE_WAIT:
1661 		so->so_error = ECONNRESET;
1662 	close:
1663 		tp->t_state = TCPS_CLOSED;
1664 		tcpstat.tcps_drops++;
1665 		tp = tcp_close(tp);
1666 		goto drop;
1667 
1668 	case TCPS_CLOSING:
1669 	case TCPS_LAST_ACK:
1670 	case TCPS_TIME_WAIT:
1671 		tp = tcp_close(tp);
1672 		goto drop;
1673 	}
1674 
1675 	/*
1676 	 * If a SYN is in the window, then this is an
1677 	 * error and we send an RST and drop the connection.
1678 	 */
1679 	if (tiflags & TH_SYN) {
1680 		tp = tcp_drop(tp, ECONNRESET);
1681 		goto dropwithreset;
1682 	}
1683 
1684 	/*
1685 	 * If the ACK bit is off we drop the segment and return.
1686 	 */
1687 	if ((tiflags & TH_ACK) == 0) {
1688 		if (tp->t_flags & TF_ACKNOW)
1689 			goto dropafterack;
1690 		else
1691 			goto drop;
1692 	}
1693 
1694 	/*
1695 	 * Ack processing.
1696 	 */
1697 	switch (tp->t_state) {
1698 
1699 	/*
1700 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1701 	 * ESTABLISHED state and continue processing, otherwise
1702 	 * send an RST.
1703 	 */
1704 	case TCPS_SYN_RECEIVED:
1705 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
1706 		    SEQ_GT(th->th_ack, tp->snd_max))
1707 			goto dropwithreset;
1708 		tcpstat.tcps_connects++;
1709 		soisconnected(so);
1710 		tcp_established(tp);
1711 		/* Do window scaling? */
1712 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1713 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1714 			tp->snd_scale = tp->requested_s_scale;
1715 			tp->rcv_scale = tp->request_r_scale;
1716 		}
1717 		TCP_REASS_LOCK(tp);
1718 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1719 		TCP_REASS_UNLOCK(tp);
1720 		tp->snd_wl1 = th->th_seq - 1;
1721 		/* fall into ... */
1722 
1723 	/*
1724 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1725 	 * ACKs.  If the ack is in the range
1726 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1727 	 * then advance tp->snd_una to th->th_ack and drop
1728 	 * data from the retransmission queue.  If this ACK reflects
1729 	 * more up to date window information we update our window information.
1730 	 */
1731 	case TCPS_ESTABLISHED:
1732 	case TCPS_FIN_WAIT_1:
1733 	case TCPS_FIN_WAIT_2:
1734 	case TCPS_CLOSE_WAIT:
1735 	case TCPS_CLOSING:
1736 	case TCPS_LAST_ACK:
1737 	case TCPS_TIME_WAIT:
1738 
1739 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1740 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1741 				tcpstat.tcps_rcvdupack++;
1742 				/*
1743 				 * If we have outstanding data (other than
1744 				 * a window probe), this is a completely
1745 				 * duplicate ack (ie, window info didn't
1746 				 * change), the ack is the biggest we've
1747 				 * seen and we've seen exactly our rexmt
1748 				 * threshhold of them, assume a packet
1749 				 * has been dropped and retransmit it.
1750 				 * Kludge snd_nxt & the congestion
1751 				 * window so we send only this one
1752 				 * packet.
1753 				 *
1754 				 * We know we're losing at the current
1755 				 * window size so do congestion avoidance
1756 				 * (set ssthresh to half the current window
1757 				 * and pull our congestion window back to
1758 				 * the new ssthresh).
1759 				 *
1760 				 * Dup acks mean that packets have left the
1761 				 * network (they're now cached at the receiver)
1762 				 * so bump cwnd by the amount in the receiver
1763 				 * to keep a constant cwnd packets in the
1764 				 * network.
1765 				 */
1766 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1767 				    th->th_ack != tp->snd_una)
1768 					tp->t_dupacks = 0;
1769 				else if (++tp->t_dupacks == tcprexmtthresh) {
1770 					tcp_seq onxt = tp->snd_nxt;
1771 					u_int win =
1772 					    min(tp->snd_wnd, tp->snd_cwnd) /
1773 					    2 /	tp->t_segsz;
1774 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1775 					    tp->snd_recover)) {
1776 						/*
1777 						 * False fast retransmit after
1778 						 * timeout.  Do not cut window.
1779 						 */
1780 						tp->snd_cwnd += tp->t_segsz;
1781 						tp->t_dupacks = 0;
1782 						(void) tcp_output(tp);
1783 						goto drop;
1784 					}
1785 
1786 					if (win < 2)
1787 						win = 2;
1788 					tp->snd_ssthresh = win * tp->t_segsz;
1789 					tp->snd_recover = tp->snd_max;
1790 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1791 					tp->t_rtt = 0;
1792 					tp->snd_nxt = th->th_ack;
1793 					tp->snd_cwnd = tp->t_segsz;
1794 					(void) tcp_output(tp);
1795 					tp->snd_cwnd = tp->snd_ssthresh +
1796 					       tp->t_segsz * tp->t_dupacks;
1797 					if (SEQ_GT(onxt, tp->snd_nxt))
1798 						tp->snd_nxt = onxt;
1799 					goto drop;
1800 				} else if (tp->t_dupacks > tcprexmtthresh) {
1801 					tp->snd_cwnd += tp->t_segsz;
1802 					(void) tcp_output(tp);
1803 					goto drop;
1804 				}
1805 			} else
1806 				tp->t_dupacks = 0;
1807 			break;
1808 		}
1809 		/*
1810 		 * If the congestion window was inflated to account
1811 		 * for the other side's cached packets, retract it.
1812 		 */
1813 		if (tcp_do_newreno == 0) {
1814 			if (tp->t_dupacks >= tcprexmtthresh &&
1815 			    tp->snd_cwnd > tp->snd_ssthresh)
1816 				tp->snd_cwnd = tp->snd_ssthresh;
1817 			tp->t_dupacks = 0;
1818 		} else if (tp->t_dupacks >= tcprexmtthresh &&
1819 			   tcp_newreno(tp, th) == 0) {
1820 			tp->snd_cwnd = tp->snd_ssthresh;
1821 			/*
1822 			 * Window inflation should have left us with approx.
1823 			 * snd_ssthresh outstanding data.  But in case we
1824 			 * would be inclined to send a burst, better to do
1825 			 * it via the slow start mechanism.
1826 			 */
1827 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
1828 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
1829 				    + tp->t_segsz;
1830 			tp->t_dupacks = 0;
1831 		}
1832 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1833 			tcpstat.tcps_rcvacktoomuch++;
1834 			goto dropafterack;
1835 		}
1836 		acked = th->th_ack - tp->snd_una;
1837 		tcpstat.tcps_rcvackpack++;
1838 		tcpstat.tcps_rcvackbyte += acked;
1839 
1840 		/*
1841 		 * If we have a timestamp reply, update smoothed
1842 		 * round trip time.  If no timestamp is present but
1843 		 * transmit timer is running and timed sequence
1844 		 * number was acked, update smoothed round trip time.
1845 		 * Since we now have an rtt measurement, cancel the
1846 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1847 		 * Recompute the initial retransmit timer.
1848 		 */
1849 		if (opti.ts_present && opti.ts_ecr)
1850 			tcp_xmit_timer(tp, TCP_TIMESTAMP(tp) - opti.ts_ecr + 1);
1851 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
1852 			tcp_xmit_timer(tp,tp->t_rtt);
1853 
1854 		/*
1855 		 * If all outstanding data is acked, stop retransmit
1856 		 * timer and remember to restart (more output or persist).
1857 		 * If there is more data to be acked, restart retransmit
1858 		 * timer, using current (possibly backed-off) value.
1859 		 */
1860 		if (th->th_ack == tp->snd_max) {
1861 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1862 			needoutput = 1;
1863 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1864 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1865 		/*
1866 		 * When new data is acked, open the congestion window.
1867 		 * If the window gives us less than ssthresh packets
1868 		 * in flight, open exponentially (segsz per packet).
1869 		 * Otherwise open linearly: segsz per window
1870 		 * (segsz^2 / cwnd per packet), plus a constant
1871 		 * fraction of a packet (segsz/8) to help larger windows
1872 		 * open quickly enough.
1873 		 */
1874 		{
1875 		u_int cw = tp->snd_cwnd;
1876 		u_int incr = tp->t_segsz;
1877 
1878 		if (cw > tp->snd_ssthresh)
1879 			incr = incr * incr / cw;
1880 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
1881 			tp->snd_cwnd = min(cw + incr,
1882 			    TCP_MAXWIN << tp->snd_scale);
1883 		}
1884 		ND6_HINT(tp);
1885 		if (acked > so->so_snd.sb_cc) {
1886 			tp->snd_wnd -= so->so_snd.sb_cc;
1887 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1888 			ourfinisacked = 1;
1889 		} else {
1890 			sbdrop(&so->so_snd, acked);
1891 			tp->snd_wnd -= acked;
1892 			ourfinisacked = 0;
1893 		}
1894 		sowwakeup(so);
1895 		/*
1896 		 * We want snd_recover to track snd_una to
1897 		 * avoid sequence wraparound problems for
1898 		 * very large transfers.
1899 		 */
1900 		tp->snd_una = tp->snd_recover = th->th_ack;
1901 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1902 			tp->snd_nxt = tp->snd_una;
1903 
1904 		switch (tp->t_state) {
1905 
1906 		/*
1907 		 * In FIN_WAIT_1 STATE in addition to the processing
1908 		 * for the ESTABLISHED state if our FIN is now acknowledged
1909 		 * then enter FIN_WAIT_2.
1910 		 */
1911 		case TCPS_FIN_WAIT_1:
1912 			if (ourfinisacked) {
1913 				/*
1914 				 * If we can't receive any more
1915 				 * data, then closing user can proceed.
1916 				 * Starting the timer is contrary to the
1917 				 * specification, but if we don't get a FIN
1918 				 * we'll hang forever.
1919 				 */
1920 				if (so->so_state & SS_CANTRCVMORE) {
1921 					soisdisconnected(so);
1922 					if (tcp_maxidle > 0)
1923 						TCP_TIMER_ARM(tp, TCPT_2MSL,
1924 						    tcp_maxidle);
1925 				}
1926 				tp->t_state = TCPS_FIN_WAIT_2;
1927 			}
1928 			break;
1929 
1930 	 	/*
1931 		 * In CLOSING STATE in addition to the processing for
1932 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1933 		 * then enter the TIME-WAIT state, otherwise ignore
1934 		 * the segment.
1935 		 */
1936 		case TCPS_CLOSING:
1937 			if (ourfinisacked) {
1938 				tp->t_state = TCPS_TIME_WAIT;
1939 				tcp_canceltimers(tp);
1940 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1941 				soisdisconnected(so);
1942 			}
1943 			break;
1944 
1945 		/*
1946 		 * In LAST_ACK, we may still be waiting for data to drain
1947 		 * and/or to be acked, as well as for the ack of our FIN.
1948 		 * If our FIN is now acknowledged, delete the TCB,
1949 		 * enter the closed state and return.
1950 		 */
1951 		case TCPS_LAST_ACK:
1952 			if (ourfinisacked) {
1953 				tp = tcp_close(tp);
1954 				goto drop;
1955 			}
1956 			break;
1957 
1958 		/*
1959 		 * In TIME_WAIT state the only thing that should arrive
1960 		 * is a retransmission of the remote FIN.  Acknowledge
1961 		 * it and restart the finack timer.
1962 		 */
1963 		case TCPS_TIME_WAIT:
1964 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1965 			goto dropafterack;
1966 		}
1967 	}
1968 
1969 step6:
1970 	/*
1971 	 * Update window information.
1972 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1973 	 */
1974 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1975 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1976 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1977 		/* keep track of pure window updates */
1978 		if (tlen == 0 &&
1979 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1980 			tcpstat.tcps_rcvwinupd++;
1981 		tp->snd_wnd = tiwin;
1982 		tp->snd_wl1 = th->th_seq;
1983 		tp->snd_wl2 = th->th_ack;
1984 		if (tp->snd_wnd > tp->max_sndwnd)
1985 			tp->max_sndwnd = tp->snd_wnd;
1986 		needoutput = 1;
1987 	}
1988 
1989 	/*
1990 	 * Process segments with URG.
1991 	 */
1992 	if ((tiflags & TH_URG) && th->th_urp &&
1993 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1994 		/*
1995 		 * This is a kludge, but if we receive and accept
1996 		 * random urgent pointers, we'll crash in
1997 		 * soreceive.  It's hard to imagine someone
1998 		 * actually wanting to send this much urgent data.
1999 		 */
2000 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2001 			th->th_urp = 0;			/* XXX */
2002 			tiflags &= ~TH_URG;		/* XXX */
2003 			goto dodata;			/* XXX */
2004 		}
2005 		/*
2006 		 * If this segment advances the known urgent pointer,
2007 		 * then mark the data stream.  This should not happen
2008 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2009 		 * a FIN has been received from the remote side.
2010 		 * In these states we ignore the URG.
2011 		 *
2012 		 * According to RFC961 (Assigned Protocols),
2013 		 * the urgent pointer points to the last octet
2014 		 * of urgent data.  We continue, however,
2015 		 * to consider it to indicate the first octet
2016 		 * of data past the urgent section as the original
2017 		 * spec states (in one of two places).
2018 		 */
2019 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2020 			tp->rcv_up = th->th_seq + th->th_urp;
2021 			so->so_oobmark = so->so_rcv.sb_cc +
2022 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2023 			if (so->so_oobmark == 0)
2024 				so->so_state |= SS_RCVATMARK;
2025 			sohasoutofband(so);
2026 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2027 		}
2028 		/*
2029 		 * Remove out of band data so doesn't get presented to user.
2030 		 * This can happen independent of advancing the URG pointer,
2031 		 * but if two URG's are pending at once, some out-of-band
2032 		 * data may creep in... ick.
2033 		 */
2034 		if (th->th_urp <= (u_int16_t) tlen
2035 #ifdef SO_OOBINLINE
2036 		     && (so->so_options & SO_OOBINLINE) == 0
2037 #endif
2038 		     )
2039 			tcp_pulloutofband(so, th, m, hdroptlen);
2040 	} else
2041 		/*
2042 		 * If no out of band data is expected,
2043 		 * pull receive urgent pointer along
2044 		 * with the receive window.
2045 		 */
2046 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2047 			tp->rcv_up = tp->rcv_nxt;
2048 dodata:							/* XXX */
2049 
2050 	/*
2051 	 * Process the segment text, merging it into the TCP sequencing queue,
2052 	 * and arranging for acknowledgement of receipt if necessary.
2053 	 * This process logically involves adjusting tp->rcv_wnd as data
2054 	 * is presented to the user (this happens in tcp_usrreq.c,
2055 	 * case PRU_RCVD).  If a FIN has already been received on this
2056 	 * connection then we just ignore the text.
2057 	 */
2058 	if ((tlen || (tiflags & TH_FIN)) &&
2059 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2060 		/*
2061 		 * Insert segment ti into reassembly queue of tcp with
2062 		 * control block tp.  Return TH_FIN if reassembly now includes
2063 		 * a segment with FIN.  The macro form does the common case
2064 		 * inline (segment is the next to be received on an
2065 		 * established connection, and the queue is empty),
2066 		 * avoiding linkage into and removal from the queue and
2067 		 * repetition of various conversions.
2068 		 * Set DELACK for segments received in order, but ack
2069 		 * immediately when segments are out of order
2070 		 * (so fast retransmit can work).
2071 		 */
2072 		/* NOTE: this was TCP_REASS() macro, but used only once */
2073 		TCP_REASS_LOCK(tp);
2074 		if (th->th_seq == tp->rcv_nxt &&
2075 		    tp->segq.lh_first == NULL &&
2076 		    tp->t_state == TCPS_ESTABLISHED) {
2077 			TCP_SETUP_ACK(tp, th);
2078 			tp->rcv_nxt += tlen;
2079 			tiflags = th->th_flags & TH_FIN;
2080 			tcpstat.tcps_rcvpack++;
2081 			tcpstat.tcps_rcvbyte += tlen;
2082 			ND6_HINT(tp);
2083 			m_adj(m, hdroptlen);
2084 			sbappend(&(so)->so_rcv, m);
2085 			sorwakeup(so);
2086 		} else {
2087 			m_adj(m, hdroptlen);
2088 			tiflags = tcp_reass(tp, th, m, &tlen);
2089 			tp->t_flags |= TF_ACKNOW;
2090 		}
2091 		TCP_REASS_UNLOCK(tp);
2092 
2093 		/*
2094 		 * Note the amount of data that peer has sent into
2095 		 * our window, in order to estimate the sender's
2096 		 * buffer size.
2097 		 */
2098 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2099 	} else {
2100 		m_freem(m);
2101 		m = NULL;
2102 		tiflags &= ~TH_FIN;
2103 	}
2104 
2105 	/*
2106 	 * If FIN is received ACK the FIN and let the user know
2107 	 * that the connection is closing.  Ignore a FIN received before
2108 	 * the connection is fully established.
2109 	 */
2110 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2111 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2112 			socantrcvmore(so);
2113 			tp->t_flags |= TF_ACKNOW;
2114 			tp->rcv_nxt++;
2115 		}
2116 		switch (tp->t_state) {
2117 
2118 	 	/*
2119 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2120 		 */
2121 		case TCPS_ESTABLISHED:
2122 			tp->t_state = TCPS_CLOSE_WAIT;
2123 			break;
2124 
2125 	 	/*
2126 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2127 		 * enter the CLOSING state.
2128 		 */
2129 		case TCPS_FIN_WAIT_1:
2130 			tp->t_state = TCPS_CLOSING;
2131 			break;
2132 
2133 	 	/*
2134 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2135 		 * starting the time-wait timer, turning off the other
2136 		 * standard timers.
2137 		 */
2138 		case TCPS_FIN_WAIT_2:
2139 			tp->t_state = TCPS_TIME_WAIT;
2140 			tcp_canceltimers(tp);
2141 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2142 			soisdisconnected(so);
2143 			break;
2144 
2145 		/*
2146 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2147 		 */
2148 		case TCPS_TIME_WAIT:
2149 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2150 			break;
2151 		}
2152 	}
2153 	if (so->so_options & SO_DEBUG) {
2154 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2155 	}
2156 
2157 	/*
2158 	 * Return any desired output.
2159 	 */
2160 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2161 		(void) tcp_output(tp);
2162 	if (tcp_saveti)
2163 		m_freem(tcp_saveti);
2164 	return;
2165 
2166 badsyn:
2167 	/*
2168 	 * Received a bad SYN.  Increment counters and dropwithreset.
2169 	 */
2170 	tcpstat.tcps_badsyn++;
2171 	tp = NULL;
2172 	goto dropwithreset;
2173 
2174 dropafterack:
2175 	/*
2176 	 * Generate an ACK dropping incoming segment if it occupies
2177 	 * sequence space, where the ACK reflects our state.
2178 	 */
2179 	if (tiflags & TH_RST)
2180 		goto drop;
2181 	m_freem(m);
2182 	tp->t_flags |= TF_ACKNOW;
2183 	(void) tcp_output(tp);
2184 	if (tcp_saveti)
2185 		m_freem(tcp_saveti);
2186 	return;
2187 
2188 dropwithreset_ratelim:
2189 	/*
2190 	 * We may want to rate-limit RSTs in certain situations,
2191 	 * particularly if we are sending an RST in response to
2192 	 * an attempt to connect to or otherwise communicate with
2193 	 * a port for which we have no socket.
2194 	 */
2195 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2196 	    tcp_rst_ppslim) == 0) {
2197 		/* XXX stat */
2198 		goto drop;
2199 	}
2200 	/* ...fall into dropwithreset... */
2201 
2202 dropwithreset:
2203 	/*
2204 	 * Generate a RST, dropping incoming segment.
2205 	 * Make ACK acceptable to originator of segment.
2206 	 */
2207 	if (tiflags & TH_RST)
2208 		goto drop;
2209     {
2210 	/*
2211 	 * need to recover version # field, which was overwritten on
2212 	 * ip_cksum computation.
2213 	 */
2214 	struct ip *sip;
2215 	sip = mtod(m, struct ip *);
2216 	switch (af) {
2217 #ifdef INET
2218 	case AF_INET:
2219 		sip->ip_v = 4;
2220 		break;
2221 #endif
2222 #ifdef INET6
2223 	case AF_INET6:
2224 		sip->ip_v = 6;
2225 		break;
2226 #endif
2227 	}
2228     }
2229 	if (tiflags & TH_ACK)
2230 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2231 	else {
2232 		if (tiflags & TH_SYN)
2233 			tlen++;
2234 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2235 		    TH_RST|TH_ACK);
2236 	}
2237 	if (tcp_saveti)
2238 		m_freem(tcp_saveti);
2239 	return;
2240 
2241 badcsum:
2242 	tcpstat.tcps_rcvbadsum++;
2243 drop:
2244 	/*
2245 	 * Drop space held by incoming segment and return.
2246 	 */
2247 	if (tp) {
2248 		if (tp->t_inpcb)
2249 			so = tp->t_inpcb->inp_socket;
2250 #ifdef INET6
2251 		else if (tp->t_in6pcb)
2252 			so = tp->t_in6pcb->in6p_socket;
2253 #endif
2254 		else
2255 			so = NULL;
2256 		if (so && (so->so_options & SO_DEBUG) != 0)
2257 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2258 	}
2259 	if (tcp_saveti)
2260 		m_freem(tcp_saveti);
2261 	m_freem(m);
2262 	return;
2263 }
2264 
2265 void
2266 tcp_dooptions(tp, cp, cnt, th, oi)
2267 	struct tcpcb *tp;
2268 	u_char *cp;
2269 	int cnt;
2270 	struct tcphdr *th;
2271 	struct tcp_opt_info *oi;
2272 {
2273 	u_int16_t mss;
2274 	int opt, optlen;
2275 
2276 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2277 		opt = cp[0];
2278 		if (opt == TCPOPT_EOL)
2279 			break;
2280 		if (opt == TCPOPT_NOP)
2281 			optlen = 1;
2282 		else {
2283 			if (cnt < 2)
2284 				break;
2285 			optlen = cp[1];
2286 			if (optlen < 2 || optlen > cnt)
2287 				break;
2288 		}
2289 		switch (opt) {
2290 
2291 		default:
2292 			continue;
2293 
2294 		case TCPOPT_MAXSEG:
2295 			if (optlen != TCPOLEN_MAXSEG)
2296 				continue;
2297 			if (!(th->th_flags & TH_SYN))
2298 				continue;
2299 			bcopy(cp + 2, &mss, sizeof(mss));
2300 			oi->maxseg = ntohs(mss);
2301 			break;
2302 
2303 		case TCPOPT_WINDOW:
2304 			if (optlen != TCPOLEN_WINDOW)
2305 				continue;
2306 			if (!(th->th_flags & TH_SYN))
2307 				continue;
2308 			tp->t_flags |= TF_RCVD_SCALE;
2309 			tp->requested_s_scale = cp[2];
2310 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2311 #if 0	/*XXX*/
2312 				char *p;
2313 
2314 				if (ip)
2315 					p = ntohl(ip->ip_src);
2316 #ifdef INET6
2317 				else if (ip6)
2318 					p = ip6_sprintf(&ip6->ip6_src);
2319 #endif
2320 				else
2321 					p = "(unknown)";
2322 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2323 				    "assuming %d\n",
2324 				    tp->requested_s_scale, p,
2325 				    TCP_MAX_WINSHIFT);
2326 #else
2327 				log(LOG_ERR, "TCP: invalid wscale %d, "
2328 				    "assuming %d\n",
2329 				    tp->requested_s_scale,
2330 				    TCP_MAX_WINSHIFT);
2331 #endif
2332 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
2333 			}
2334 			break;
2335 
2336 		case TCPOPT_TIMESTAMP:
2337 			if (optlen != TCPOLEN_TIMESTAMP)
2338 				continue;
2339 			oi->ts_present = 1;
2340 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2341 			NTOHL(oi->ts_val);
2342 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2343 			NTOHL(oi->ts_ecr);
2344 
2345 			/*
2346 			 * A timestamp received in a SYN makes
2347 			 * it ok to send timestamp requests and replies.
2348 			 */
2349 			if (th->th_flags & TH_SYN) {
2350 				tp->t_flags |= TF_RCVD_TSTMP;
2351 				tp->ts_recent = oi->ts_val;
2352 				tp->ts_recent_age = TCP_TIMESTAMP(tp);
2353 			}
2354 			break;
2355 		case TCPOPT_SACK_PERMITTED:
2356 			if (optlen != TCPOLEN_SACK_PERMITTED)
2357 				continue;
2358 			if (!(th->th_flags & TH_SYN))
2359 				continue;
2360 			tp->t_flags &= ~TF_CANT_TXSACK;
2361 			break;
2362 
2363 		case TCPOPT_SACK:
2364 			if (tp->t_flags & TF_IGNR_RXSACK)
2365 				continue;
2366 			if (optlen % 8 != 2 || optlen < 10)
2367 				continue;
2368 			cp += 2;
2369 			optlen -= 2;
2370 			for (; optlen > 0; cp -= 8, optlen -= 8) {
2371 				tcp_seq lwe, rwe;
2372 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2373 				NTOHL(lwe);
2374 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2375 				NTOHL(rwe);
2376 				/* tcp_mark_sacked(tp, lwe, rwe); */
2377 			}
2378 			break;
2379 		}
2380 	}
2381 }
2382 
2383 /*
2384  * Pull out of band byte out of a segment so
2385  * it doesn't appear in the user's data queue.
2386  * It is still reflected in the segment length for
2387  * sequencing purposes.
2388  */
2389 void
2390 tcp_pulloutofband(so, th, m, off)
2391 	struct socket *so;
2392 	struct tcphdr *th;
2393 	struct mbuf *m;
2394 	int off;
2395 {
2396 	int cnt = off + th->th_urp - 1;
2397 
2398 	while (cnt >= 0) {
2399 		if (m->m_len > cnt) {
2400 			char *cp = mtod(m, caddr_t) + cnt;
2401 			struct tcpcb *tp = sototcpcb(so);
2402 
2403 			tp->t_iobc = *cp;
2404 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2405 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2406 			m->m_len--;
2407 			return;
2408 		}
2409 		cnt -= m->m_len;
2410 		m = m->m_next;
2411 		if (m == 0)
2412 			break;
2413 	}
2414 	panic("tcp_pulloutofband");
2415 }
2416 
2417 /*
2418  * Collect new round-trip time estimate
2419  * and update averages and current timeout.
2420  */
2421 void
2422 tcp_xmit_timer(tp, rtt)
2423 	struct tcpcb *tp;
2424 	short rtt;
2425 {
2426 	short delta;
2427 	short rttmin;
2428 
2429 	tcpstat.tcps_rttupdated++;
2430 	--rtt;
2431 	if (tp->t_srtt != 0) {
2432 		/*
2433 		 * srtt is stored as fixed point with 3 bits after the
2434 		 * binary point (i.e., scaled by 8).  The following magic
2435 		 * is equivalent to the smoothing algorithm in rfc793 with
2436 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2437 		 * point).  Adjust rtt to origin 0.
2438 		 */
2439 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2440 		if ((tp->t_srtt += delta) <= 0)
2441 			tp->t_srtt = 1 << 2;
2442 		/*
2443 		 * We accumulate a smoothed rtt variance (actually, a
2444 		 * smoothed mean difference), then set the retransmit
2445 		 * timer to smoothed rtt + 4 times the smoothed variance.
2446 		 * rttvar is stored as fixed point with 2 bits after the
2447 		 * binary point (scaled by 4).  The following is
2448 		 * equivalent to rfc793 smoothing with an alpha of .75
2449 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2450 		 * rfc793's wired-in beta.
2451 		 */
2452 		if (delta < 0)
2453 			delta = -delta;
2454 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2455 		if ((tp->t_rttvar += delta) <= 0)
2456 			tp->t_rttvar = 1 << 2;
2457 	} else {
2458 		/*
2459 		 * No rtt measurement yet - use the unsmoothed rtt.
2460 		 * Set the variance to half the rtt (so our first
2461 		 * retransmit happens at 3*rtt).
2462 		 */
2463 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2464 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2465 	}
2466 	tp->t_rtt = 0;
2467 	tp->t_rxtshift = 0;
2468 
2469 	/*
2470 	 * the retransmit should happen at rtt + 4 * rttvar.
2471 	 * Because of the way we do the smoothing, srtt and rttvar
2472 	 * will each average +1/2 tick of bias.  When we compute
2473 	 * the retransmit timer, we want 1/2 tick of rounding and
2474 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2475 	 * firing of the timer.  The bias will give us exactly the
2476 	 * 1.5 tick we need.  But, because the bias is
2477 	 * statistical, we have to test that we don't drop below
2478 	 * the minimum feasible timer (which is 2 ticks).
2479 	 */
2480 	if (tp->t_rttmin > rtt + 2)
2481 		rttmin = tp->t_rttmin;
2482 	else
2483 		rttmin = rtt + 2;
2484 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2485 
2486 	/*
2487 	 * We received an ack for a packet that wasn't retransmitted;
2488 	 * it is probably safe to discard any error indications we've
2489 	 * received recently.  This isn't quite right, but close enough
2490 	 * for now (a route might have failed after we sent a segment,
2491 	 * and the return path might not be symmetrical).
2492 	 */
2493 	tp->t_softerror = 0;
2494 }
2495 
2496 /*
2497  * Checks for partial ack.  If partial ack arrives, force the retransmission
2498  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2499  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
2500  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2501  */
2502 int
2503 tcp_newreno(tp, th)
2504 	struct tcpcb *tp;
2505 	struct tcphdr *th;
2506 {
2507 	tcp_seq onxt = tp->snd_nxt;
2508 	u_long ocwnd = tp->snd_cwnd;
2509 
2510 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2511 		/*
2512 		 * snd_una has not yet been updated and the socket's send
2513 		 * buffer has not yet drained off the ACK'd data, so we
2514 		 * have to leave snd_una as it was to get the correct data
2515 		 * offset in tcp_output().
2516 		 */
2517 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2518 	        tp->t_rtt = 0;
2519 	        tp->snd_nxt = th->th_ack;
2520 		/*
2521 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
2522 		 * is not yet updated when we're called.
2523 		 */
2524 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
2525 	        (void) tcp_output(tp);
2526 	        tp->snd_cwnd = ocwnd;
2527 	        if (SEQ_GT(onxt, tp->snd_nxt))
2528 	                tp->snd_nxt = onxt;
2529 	        /*
2530 	         * Partial window deflation.  Relies on fact that tp->snd_una
2531 	         * not updated yet.
2532 	         */
2533 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
2534 	        return 1;
2535 	}
2536 	return 0;
2537 }
2538 
2539 
2540 /*
2541  * TCP compressed state engine.  Currently used to hold compressed
2542  * state for SYN_RECEIVED.
2543  */
2544 
2545 u_long	syn_cache_count;
2546 u_int32_t syn_hash1, syn_hash2;
2547 
2548 #define SYN_HASH(sa, sp, dp) \
2549 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
2550 				     ((u_int32_t)(sp)))^syn_hash2)))
2551 #ifndef INET6
2552 #define	SYN_HASHALL(hash, src, dst) \
2553 do {									\
2554 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
2555 		((struct sockaddr_in *)(src))->sin_port,		\
2556 		((struct sockaddr_in *)(dst))->sin_port);		\
2557 } while (0)
2558 #else
2559 #define SYN_HASH6(sa, sp, dp) \
2560 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
2561 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
2562 	 & 0x7fffffff)
2563 
2564 #define SYN_HASHALL(hash, src, dst) \
2565 do {									\
2566 	switch ((src)->sa_family) {					\
2567 	case AF_INET:							\
2568 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
2569 			((struct sockaddr_in *)(src))->sin_port,	\
2570 			((struct sockaddr_in *)(dst))->sin_port);	\
2571 		break;							\
2572 	case AF_INET6:							\
2573 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
2574 			((struct sockaddr_in6 *)(src))->sin6_port,	\
2575 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
2576 		break;							\
2577 	default:							\
2578 		hash = 0;						\
2579 	}								\
2580 } while (0)
2581 #endif /* INET6 */
2582 
2583 #define	SYN_CACHE_RM(sc)						\
2584 do {									\
2585 	LIST_REMOVE((sc), sc_bucketq);					\
2586 	(sc)->sc_tp = NULL;						\
2587 	LIST_REMOVE((sc), sc_tpq);					\
2588 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
2589 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
2590 	syn_cache_count--;						\
2591 } while (0)
2592 
2593 #define	SYN_CACHE_PUT(sc)						\
2594 do {									\
2595 	if ((sc)->sc_ipopts)						\
2596 		(void) m_free((sc)->sc_ipopts);				\
2597 	if ((sc)->sc_route4.ro_rt != NULL)				\
2598 		RTFREE((sc)->sc_route4.ro_rt);				\
2599 	pool_put(&syn_cache_pool, (sc));				\
2600 } while (0)
2601 
2602 struct pool syn_cache_pool;
2603 
2604 /*
2605  * We don't estimate RTT with SYNs, so each packet starts with the default
2606  * RTT and each timer queue has a fixed timeout value.  This allows us to
2607  * optimize the timer queues somewhat.
2608  */
2609 #define	SYN_CACHE_TIMER_ARM(sc)						\
2610 do {									\
2611 	TCPT_RANGESET((sc)->sc_rxtcur,					\
2612 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
2613 	    TCPTV_REXMTMAX);						\
2614 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
2615 } while (0)
2616 
2617 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
2618 
2619 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
2620 
2621 void
2622 syn_cache_init()
2623 {
2624 	int i;
2625 
2626 	/* Initialize the hash buckets. */
2627 	for (i = 0; i < tcp_syn_cache_size; i++)
2628 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
2629 
2630 	/* Initialize the timer queues. */
2631 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
2632 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
2633 
2634 	/* Initialize the syn cache pool. */
2635 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
2636 	    "synpl", 0, NULL, NULL, M_PCB);
2637 }
2638 
2639 void
2640 syn_cache_insert(sc, tp)
2641 	struct syn_cache *sc;
2642 	struct tcpcb *tp;
2643 {
2644 	struct syn_cache_head *scp;
2645 	struct syn_cache *sc2;
2646 	int s, i;
2647 
2648 	/*
2649 	 * If there are no entries in the hash table, reinitialize
2650 	 * the hash secrets.
2651 	 */
2652 	if (syn_cache_count == 0) {
2653 		struct timeval tv;
2654 		microtime(&tv);
2655 		syn_hash1 = random() ^ (u_long)&sc;
2656 		syn_hash2 = random() ^ tv.tv_usec;
2657 	}
2658 
2659 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
2660 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
2661 	scp = &tcp_syn_cache[sc->sc_bucketidx];
2662 
2663 	/*
2664 	 * Make sure that we don't overflow the per-bucket
2665 	 * limit or the total cache size limit.
2666 	 */
2667 	s = splsoftnet();
2668 	if (scp->sch_length >= tcp_syn_bucket_limit) {
2669 		tcpstat.tcps_sc_bucketoverflow++;
2670 		/*
2671 		 * The bucket is full.  Toss the oldest element in the
2672 		 * bucket.  This will be the entry with our bucket
2673 		 * index closest to the front of the timer queue with
2674 		 * the largest timeout value.
2675 		 *
2676 		 * Note: This timer queue traversal may be expensive, so
2677 		 * we hope that this doesn't happen very often.  It is
2678 		 * much more likely that we'll overflow the entire
2679 		 * cache, which is much easier to handle; see below.
2680 		 */
2681 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2682 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2683 			     sc2 != NULL;
2684 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
2685 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
2686 					SYN_CACHE_RM(sc2);
2687 					SYN_CACHE_PUT(sc2);
2688 					goto insert;	/* 2 level break */
2689 				}
2690 			}
2691 		}
2692 #ifdef DIAGNOSTIC
2693 		/*
2694 		 * This should never happen; we should always find an
2695 		 * entry in our bucket.
2696 		 */
2697 		panic("syn_cache_insert: bucketoverflow: impossible");
2698 #endif
2699 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
2700 		tcpstat.tcps_sc_overflowed++;
2701 		/*
2702 		 * The cache is full.  Toss the oldest entry in the
2703 		 * entire cache.  This is the front entry in the
2704 		 * first non-empty timer queue with the largest
2705 		 * timeout value.
2706 		 */
2707 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
2708 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2709 			if (sc2 == NULL)
2710 				continue;
2711 			SYN_CACHE_RM(sc2);
2712 			SYN_CACHE_PUT(sc2);
2713 			goto insert;		/* symmetry with above */
2714 		}
2715 #ifdef DIAGNOSTIC
2716 		/*
2717 		 * This should never happen; we should always find an
2718 		 * entry in the cache.
2719 		 */
2720 		panic("syn_cache_insert: cache overflow: impossible");
2721 #endif
2722 	}
2723 
2724  insert:
2725 	/*
2726 	 * Initialize the entry's timer.
2727 	 */
2728 	sc->sc_rxttot = 0;
2729 	sc->sc_rxtshift = 0;
2730 	SYN_CACHE_TIMER_ARM(sc);
2731 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2732 
2733 	/* Link it from tcpcb entry */
2734 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
2735 
2736 	/* Put it into the bucket. */
2737 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2738 	scp->sch_length++;
2739 	syn_cache_count++;
2740 
2741 	tcpstat.tcps_sc_added++;
2742 	splx(s);
2743 }
2744 
2745 /*
2746  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2747  * If we have retransmitted an entry the maximum number of times, expire
2748  * that entry.
2749  */
2750 void
2751 syn_cache_timer()
2752 {
2753 	struct syn_cache *sc, *nsc;
2754 	int i, s;
2755 
2756 	s = splsoftnet();
2757 
2758 	/*
2759 	 * First, get all the entries that need to be retransmitted, or
2760 	 * must be expired due to exceeding the initial keepalive time.
2761 	 */
2762 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2763 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2764 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2765 		     sc = nsc) {
2766 			nsc = TAILQ_NEXT(sc, sc_timeq);
2767 
2768 			/*
2769 			 * Compute the total amount of time this entry has
2770 			 * been on a queue.  If this entry has been on longer
2771 			 * than the keep alive timer would allow, expire it.
2772 			 */
2773 			sc->sc_rxttot += sc->sc_rxtcur;
2774 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2775 				tcpstat.tcps_sc_timed_out++;
2776 				SYN_CACHE_RM(sc);
2777 				SYN_CACHE_PUT(sc);
2778 				continue;
2779 			}
2780 
2781 			tcpstat.tcps_sc_retransmitted++;
2782 			(void) syn_cache_respond(sc, NULL);
2783 
2784 			/* Advance this entry onto the next timer queue. */
2785 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2786 			sc->sc_rxtshift = i + 1;
2787 			SYN_CACHE_TIMER_ARM(sc);
2788 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2789 			    sc, sc_timeq);
2790 		}
2791 	}
2792 
2793 	/*
2794 	 * Now get all the entries that are expired due to too many
2795 	 * retransmissions.
2796 	 */
2797 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2798 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2799 	     sc = nsc) {
2800 		nsc = TAILQ_NEXT(sc, sc_timeq);
2801 		tcpstat.tcps_sc_timed_out++;
2802 		SYN_CACHE_RM(sc);
2803 		SYN_CACHE_PUT(sc);
2804 	}
2805 	splx(s);
2806 }
2807 
2808 /*
2809  * Remove syn cache created by the specified tcb entry,
2810  * because this does not make sense to keep them
2811  * (if there's no tcb entry, syn cache entry will never be used)
2812  */
2813 void
2814 syn_cache_cleanup(tp)
2815 	struct tcpcb *tp;
2816 {
2817 	struct syn_cache *sc, *nsc;
2818 	int s;
2819 
2820 	s = splsoftnet();
2821 
2822 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
2823 		nsc = LIST_NEXT(sc, sc_tpq);
2824 
2825 #ifdef DIAGNOSTIC
2826 		if (sc->sc_tp != tp)
2827 			panic("invalid sc_tp in syn_cache_cleanup");
2828 #endif
2829 		SYN_CACHE_RM(sc);
2830 		SYN_CACHE_PUT(sc);
2831 	}
2832 	/* just for safety */
2833 	LIST_INIT(&tp->t_sc);
2834 
2835 	splx(s);
2836 }
2837 
2838 /*
2839  * Find an entry in the syn cache.
2840  */
2841 struct syn_cache *
2842 syn_cache_lookup(src, dst, headp)
2843 	struct sockaddr *src;
2844 	struct sockaddr *dst;
2845 	struct syn_cache_head **headp;
2846 {
2847 	struct syn_cache *sc;
2848 	struct syn_cache_head *scp;
2849 	u_int32_t hash;
2850 	int s;
2851 
2852 	SYN_HASHALL(hash, src, dst);
2853 
2854 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2855 	*headp = scp;
2856 	s = splsoftnet();
2857 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2858 	     sc = LIST_NEXT(sc, sc_bucketq)) {
2859 		if (sc->sc_hash != hash)
2860 			continue;
2861 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
2862 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
2863 			splx(s);
2864 			return (sc);
2865 		}
2866 	}
2867 	splx(s);
2868 	return (NULL);
2869 }
2870 
2871 /*
2872  * This function gets called when we receive an ACK for a
2873  * socket in the LISTEN state.  We look up the connection
2874  * in the syn cache, and if its there, we pull it out of
2875  * the cache and turn it into a full-blown connection in
2876  * the SYN-RECEIVED state.
2877  *
2878  * The return values may not be immediately obvious, and their effects
2879  * can be subtle, so here they are:
2880  *
2881  *	NULL	SYN was not found in cache; caller should drop the
2882  *		packet and send an RST.
2883  *
2884  *	-1	We were unable to create the new connection, and are
2885  *		aborting it.  An ACK,RST is being sent to the peer
2886  *		(unless we got screwey sequence numbners; see below),
2887  *		because the 3-way handshake has been completed.  Caller
2888  *		should not free the mbuf, since we may be using it.  If
2889  *		we are not, we will free it.
2890  *
2891  *	Otherwise, the return value is a pointer to the new socket
2892  *	associated with the connection.
2893  */
2894 struct socket *
2895 syn_cache_get(src, dst, th, hlen, tlen, so, m)
2896 	struct sockaddr *src;
2897 	struct sockaddr *dst;
2898 	struct tcphdr *th;
2899 	unsigned int hlen, tlen;
2900 	struct socket *so;
2901 	struct mbuf *m;
2902 {
2903 	struct syn_cache *sc;
2904 	struct syn_cache_head *scp;
2905 	struct inpcb *inp = NULL;
2906 #ifdef INET6
2907 	struct in6pcb *in6p = NULL;
2908 #endif
2909 	struct tcpcb *tp = 0;
2910 	struct mbuf *am;
2911 	int s;
2912 	struct socket *oso;
2913 
2914 	s = splsoftnet();
2915 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
2916 		splx(s);
2917 		return (NULL);
2918 	}
2919 
2920 	/*
2921 	 * Verify the sequence and ack numbers.  Try getting the correct
2922 	 * response again.
2923 	 */
2924 	if ((th->th_ack != sc->sc_iss + 1) ||
2925 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
2926 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
2927 		(void) syn_cache_respond(sc, m);
2928 		splx(s);
2929 		return ((struct socket *)(-1));
2930 	}
2931 
2932 	/* Remove this cache entry */
2933 	SYN_CACHE_RM(sc);
2934 	splx(s);
2935 
2936 	/*
2937 	 * Ok, create the full blown connection, and set things up
2938 	 * as they would have been set up if we had created the
2939 	 * connection when the SYN arrived.  If we can't create
2940 	 * the connection, abort it.
2941 	 */
2942 	/*
2943 	 * inp still has the OLD in_pcb stuff, set the
2944 	 * v6-related flags on the new guy, too.   This is
2945 	 * done particularly for the case where an AF_INET6
2946 	 * socket is bound only to a port, and a v4 connection
2947 	 * comes in on that port.
2948 	 * we also copy the flowinfo from the original pcb
2949 	 * to the new one.
2950 	 */
2951     {
2952 	struct inpcb *parentinpcb;
2953 
2954 	parentinpcb = (struct inpcb *)so->so_pcb;
2955 
2956 	oso = so;
2957 	so = sonewconn(so, SS_ISCONNECTED);
2958 	if (so == NULL)
2959 		goto resetandabort;
2960 
2961 	switch (so->so_proto->pr_domain->dom_family) {
2962 #ifdef INET
2963 	case AF_INET:
2964 		inp = sotoinpcb(so);
2965 		break;
2966 #endif
2967 #ifdef INET6
2968 	case AF_INET6:
2969 		in6p = sotoin6pcb(so);
2970 		break;
2971 #endif
2972 	}
2973     }
2974 	switch (src->sa_family) {
2975 #ifdef INET
2976 	case AF_INET:
2977 		if (inp) {
2978 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
2979 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
2980 			inp->inp_options = ip_srcroute();
2981 			in_pcbstate(inp, INP_BOUND);
2982 			if (inp->inp_options == NULL) {
2983 				inp->inp_options = sc->sc_ipopts;
2984 				sc->sc_ipopts = NULL;
2985 			}
2986 		}
2987 #ifdef INET6
2988 		else if (in6p) {
2989 			/* IPv4 packet to AF_INET6 socket */
2990 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
2991 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
2992 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
2993 				&in6p->in6p_laddr.s6_addr32[3],
2994 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
2995 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
2996 			in6totcpcb(in6p)->t_family = AF_INET;
2997 		}
2998 #endif
2999 		break;
3000 #endif
3001 #ifdef INET6
3002 	case AF_INET6:
3003 		if (in6p) {
3004 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3005 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3006 #if 0
3007 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
3008 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
3009 #endif
3010 		}
3011 		break;
3012 #endif
3013 	}
3014 #ifdef INET6
3015 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3016 		struct in6pcb *oin6p = sotoin6pcb(oso);
3017 		/* inherit socket options from the listening socket */
3018 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3019 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3020 			m_freem(in6p->in6p_options);
3021 			in6p->in6p_options = 0;
3022 		}
3023 		ip6_savecontrol(in6p, &in6p->in6p_options,
3024 			mtod(m, struct ip6_hdr *), m);
3025 	}
3026 #endif
3027 
3028 #ifdef IPSEC
3029 	/*
3030 	 * we make a copy of policy, instead of sharing the policy,
3031 	 * for better behavior in terms of SA lookup and dead SA removal.
3032 	 */
3033 	if (inp) {
3034 		/* copy old policy into new socket's */
3035 		if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3036 			printf("tcp_input: could not copy policy\n");
3037 	}
3038 #ifdef INET6
3039 	else if (in6p) {
3040 		/* copy old policy into new socket's */
3041 		if (ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp, in6p->in6p_sp))
3042 			printf("tcp_input: could not copy policy\n");
3043 	}
3044 #endif
3045 #endif
3046 
3047 	/*
3048 	 * Give the new socket our cached route reference.
3049 	 */
3050 	if (inp)
3051 		inp->inp_route = sc->sc_route4;		/* struct assignment */
3052 #ifdef INET6
3053 	else
3054 		in6p->in6p_route = sc->sc_route6;
3055 #endif
3056 	sc->sc_route4.ro_rt = NULL;
3057 
3058 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3059 	if (am == NULL)
3060 		goto resetandabort;
3061 	am->m_len = src->sa_len;
3062 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3063 	if (inp) {
3064 		if (in_pcbconnect(inp, am)) {
3065 			(void) m_free(am);
3066 			goto resetandabort;
3067 		}
3068 	}
3069 #ifdef INET6
3070 	else if (in6p) {
3071 		if (src->sa_family == AF_INET) {
3072 			/* IPv4 packet to AF_INET6 socket */
3073 			struct sockaddr_in6 *sin6;
3074 			sin6 = mtod(am, struct sockaddr_in6 *);
3075 			am->m_len = sizeof(*sin6);
3076 			bzero(sin6, sizeof(*sin6));
3077 			sin6->sin6_family = AF_INET6;
3078 			sin6->sin6_len = sizeof(*sin6);
3079 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3080 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3081 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
3082 				&sin6->sin6_addr.s6_addr32[3],
3083 				sizeof(sin6->sin6_addr.s6_addr32[3]));
3084 		}
3085 		if (in6_pcbconnect(in6p, am)) {
3086 			(void) m_free(am);
3087 			goto resetandabort;
3088 		}
3089 	}
3090 #endif
3091 	else {
3092 		(void) m_free(am);
3093 		goto resetandabort;
3094 	}
3095 	(void) m_free(am);
3096 
3097 	if (inp)
3098 		tp = intotcpcb(inp);
3099 #ifdef INET6
3100 	else if (in6p)
3101 		tp = in6totcpcb(in6p);
3102 #endif
3103 	else
3104 		tp = NULL;
3105 	if (sc->sc_request_r_scale != 15) {
3106 		tp->requested_s_scale = sc->sc_requested_s_scale;
3107 		tp->request_r_scale = sc->sc_request_r_scale;
3108 		tp->snd_scale = sc->sc_requested_s_scale;
3109 		tp->rcv_scale = sc->sc_request_r_scale;
3110 		tp->t_flags |= TF_RCVD_SCALE;
3111 	}
3112 	if (sc->sc_flags & SCF_TIMESTAMP)
3113 		tp->t_flags |= TF_RCVD_TSTMP;
3114 	tp->ts_timebase = sc->sc_timebase;
3115 
3116 	tp->t_template = tcp_template(tp);
3117 	if (tp->t_template == 0) {
3118 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3119 		so = NULL;
3120 		m_freem(m);
3121 		goto abort;
3122 	}
3123 
3124 	tp->iss = sc->sc_iss;
3125 	tp->irs = sc->sc_irs;
3126 	tcp_sendseqinit(tp);
3127 	tcp_rcvseqinit(tp);
3128 	tp->t_state = TCPS_SYN_RECEIVED;
3129 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3130 	tcpstat.tcps_accepts++;
3131 
3132 	/* Initialize tp->t_ourmss before we deal with the peer's! */
3133 	tp->t_ourmss = sc->sc_ourmaxseg;
3134 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3135 
3136 	/*
3137 	 * Initialize the initial congestion window.  If we
3138 	 * had to retransmit the SYN,ACK, we must initialize cwnd
3139 	 * to 1 segment (i.e. the Loss Window).
3140 	 */
3141 	if (sc->sc_rxtshift)
3142 		tp->snd_cwnd = tp->t_peermss;
3143 	else
3144 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
3145 
3146 	tcp_rmx_rtt(tp);
3147 	tp->snd_wl1 = sc->sc_irs;
3148 	tp->rcv_up = sc->sc_irs + 1;
3149 
3150 	/*
3151 	 * This is what whould have happened in tcp_ouput() when
3152 	 * the SYN,ACK was sent.
3153 	 */
3154 	tp->snd_up = tp->snd_una;
3155 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3156 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3157 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3158 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3159 	tp->last_ack_sent = tp->rcv_nxt;
3160 
3161 	tcpstat.tcps_sc_completed++;
3162 	SYN_CACHE_PUT(sc);
3163 	return (so);
3164 
3165 resetandabort:
3166 	(void) tcp_respond(NULL, m, m, th,
3167 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
3168 abort:
3169 	if (so != NULL)
3170 		(void) soabort(so);
3171 	SYN_CACHE_PUT(sc);
3172 	tcpstat.tcps_sc_aborted++;
3173 	return ((struct socket *)(-1));
3174 }
3175 
3176 /*
3177  * This function is called when we get a RST for a
3178  * non-existent connection, so that we can see if the
3179  * connection is in the syn cache.  If it is, zap it.
3180  */
3181 
3182 void
3183 syn_cache_reset(src, dst, th)
3184 	struct sockaddr *src;
3185 	struct sockaddr *dst;
3186 	struct tcphdr *th;
3187 {
3188 	struct syn_cache *sc;
3189 	struct syn_cache_head *scp;
3190 	int s = splsoftnet();
3191 
3192 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3193 		splx(s);
3194 		return;
3195 	}
3196 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3197 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3198 		splx(s);
3199 		return;
3200 	}
3201 	SYN_CACHE_RM(sc);
3202 	splx(s);
3203 	tcpstat.tcps_sc_reset++;
3204 	SYN_CACHE_PUT(sc);
3205 }
3206 
3207 void
3208 syn_cache_unreach(src, dst, th)
3209 	struct sockaddr *src;
3210 	struct sockaddr *dst;
3211 	struct tcphdr *th;
3212 {
3213 	struct syn_cache *sc;
3214 	struct syn_cache_head *scp;
3215 	int s;
3216 
3217 	s = splsoftnet();
3218 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3219 		splx(s);
3220 		return;
3221 	}
3222 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3223 	if (ntohl (th->th_seq) != sc->sc_iss) {
3224 		splx(s);
3225 		return;
3226 	}
3227 
3228 	/*
3229 	 * If we've rertransmitted 3 times and this is our second error,
3230 	 * we remove the entry.  Otherwise, we allow it to continue on.
3231 	 * This prevents us from incorrectly nuking an entry during a
3232 	 * spurious network outage.
3233 	 *
3234 	 * See tcp_notify().
3235 	 */
3236 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3237 		sc->sc_flags |= SCF_UNREACH;
3238 		splx(s);
3239 		return;
3240 	}
3241 
3242 	SYN_CACHE_RM(sc);
3243 	splx(s);
3244 	tcpstat.tcps_sc_unreach++;
3245 	SYN_CACHE_PUT(sc);
3246 }
3247 
3248 /*
3249  * Given a LISTEN socket and an inbound SYN request, add
3250  * this to the syn cache, and send back a segment:
3251  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3252  * to the source.
3253  *
3254  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3255  * Doing so would require that we hold onto the data and deliver it
3256  * to the application.  However, if we are the target of a SYN-flood
3257  * DoS attack, an attacker could send data which would eventually
3258  * consume all available buffer space if it were ACKed.  By not ACKing
3259  * the data, we avoid this DoS scenario.
3260  */
3261 
3262 int
3263 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3264 	struct sockaddr *src;
3265 	struct sockaddr *dst;
3266 	struct tcphdr *th;
3267 	unsigned int hlen;
3268 	struct socket *so;
3269 	struct mbuf *m;
3270 	u_char *optp;
3271 	int optlen;
3272 	struct tcp_opt_info *oi;
3273 {
3274 	struct tcpcb tb, *tp;
3275 	long win;
3276 	struct syn_cache *sc;
3277 	struct syn_cache_head *scp;
3278 	struct mbuf *ipopts;
3279 
3280 	tp = sototcpcb(so);
3281 
3282 	/*
3283 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3284 	 *
3285 	 * Note this check is performed in tcp_input() very early on.
3286 	 */
3287 
3288 	/*
3289 	 * Initialize some local state.
3290 	 */
3291 	win = sbspace(&so->so_rcv);
3292 	if (win > TCP_MAXWIN)
3293 		win = TCP_MAXWIN;
3294 
3295 	switch (src->sa_family) {
3296 #ifdef INET
3297 	case AF_INET:
3298 		/*
3299 		 * Remember the IP options, if any.
3300 		 */
3301 		ipopts = ip_srcroute();
3302 		break;
3303 #endif
3304 	default:
3305 		ipopts = NULL;
3306 	}
3307 
3308 	if (optp) {
3309 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3310 		tcp_dooptions(&tb, optp, optlen, th, oi);
3311 	} else
3312 		tb.t_flags = 0;
3313 
3314 	/*
3315 	 * See if we already have an entry for this connection.
3316 	 * If we do, resend the SYN,ACK.  We do not count this
3317 	 * as a retransmission (XXX though maybe we should).
3318 	 */
3319 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3320 		tcpstat.tcps_sc_dupesyn++;
3321 		if (ipopts) {
3322 			/*
3323 			 * If we were remembering a previous source route,
3324 			 * forget it and use the new one we've been given.
3325 			 */
3326 			if (sc->sc_ipopts)
3327 				(void) m_free(sc->sc_ipopts);
3328 			sc->sc_ipopts = ipopts;
3329 		}
3330 		sc->sc_timestamp = tb.ts_recent;
3331 		if (syn_cache_respond(sc, m) == 0) {
3332 			tcpstat.tcps_sndacks++;
3333 			tcpstat.tcps_sndtotal++;
3334 		}
3335 		return (1);
3336 	}
3337 
3338 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3339 	if (sc == NULL) {
3340 		if (ipopts)
3341 			(void) m_free(ipopts);
3342 		return (0);
3343 	}
3344 
3345 	/*
3346 	 * Fill in the cache, and put the necessary IP and TCP
3347 	 * options into the reply.
3348 	 */
3349 	bzero(sc, sizeof(struct syn_cache));
3350 	bcopy(src, &sc->sc_src, src->sa_len);
3351 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3352 	sc->sc_flags = 0;
3353 	sc->sc_ipopts = ipopts;
3354 	sc->sc_irs = th->th_seq;
3355 	switch (src->sa_family) {
3356 #ifdef INET
3357 	case AF_INET:
3358 	    {
3359 		struct sockaddr_in *srcin = (void *) src;
3360 		struct sockaddr_in *dstin = (void *) dst;
3361 
3362 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3363 		    &srcin->sin_addr, dstin->sin_port,
3364 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
3365 		break;
3366 	    }
3367 #endif /* INET */
3368 #ifdef INET6
3369 	case AF_INET6:
3370 	    {
3371 		struct sockaddr_in6 *srcin6 = (void *) src;
3372 		struct sockaddr_in6 *dstin6 = (void *) dst;
3373 
3374 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3375 		    &srcin6->sin6_addr, dstin6->sin6_port,
3376 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3377 		break;
3378 	    }
3379 #endif /* INET6 */
3380 	}
3381 	sc->sc_peermaxseg = oi->maxseg;
3382 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3383 						m->m_pkthdr.rcvif : NULL,
3384 						sc->sc_src.sa.sa_family);
3385 	sc->sc_win = win;
3386 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
3387 	sc->sc_timestamp = tb.ts_recent;
3388 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
3389 		sc->sc_flags |= SCF_TIMESTAMP;
3390 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3391 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3392 		sc->sc_requested_s_scale = tb.requested_s_scale;
3393 		sc->sc_request_r_scale = 0;
3394 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3395 		    TCP_MAXWIN << sc->sc_request_r_scale <
3396 		    so->so_rcv.sb_hiwat)
3397 			sc->sc_request_r_scale++;
3398 	} else {
3399 		sc->sc_requested_s_scale = 15;
3400 		sc->sc_request_r_scale = 15;
3401 	}
3402 	sc->sc_tp = tp;
3403 	if (syn_cache_respond(sc, m) == 0) {
3404 		syn_cache_insert(sc, tp);
3405 		tcpstat.tcps_sndacks++;
3406 		tcpstat.tcps_sndtotal++;
3407 	} else {
3408 		SYN_CACHE_PUT(sc);
3409 		tcpstat.tcps_sc_dropped++;
3410 	}
3411 	return (1);
3412 }
3413 
3414 int
3415 syn_cache_respond(sc, m)
3416 	struct syn_cache *sc;
3417 	struct mbuf *m;
3418 {
3419 	struct route *ro;
3420 	u_int8_t *optp;
3421 	int optlen, error;
3422 	u_int16_t tlen;
3423 	struct ip *ip = NULL;
3424 #ifdef INET6
3425 	struct ip6_hdr *ip6 = NULL;
3426 #endif
3427 	struct tcphdr *th;
3428 	u_int hlen;
3429 
3430 	switch (sc->sc_src.sa.sa_family) {
3431 	case AF_INET:
3432 		hlen = sizeof(struct ip);
3433 		ro = &sc->sc_route4;
3434 		break;
3435 #ifdef INET6
3436 	case AF_INET6:
3437 		hlen = sizeof(struct ip6_hdr);
3438 		ro = (struct route *)&sc->sc_route6;
3439 		break;
3440 #endif
3441 	default:
3442 		if (m)
3443 			m_freem(m);
3444 		return EAFNOSUPPORT;
3445 	}
3446 
3447 	/* Compute the size of the TCP options. */
3448 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
3449 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
3450 
3451 	tlen = hlen + sizeof(struct tcphdr) + optlen;
3452 
3453 	/*
3454 	 * Create the IP+TCP header from scratch.
3455 	 */
3456 	if (m)
3457 		m_freem(m);
3458 #ifdef DIAGNOSTIC
3459 	if (max_linkhdr + tlen > MCLBYTES)
3460 		return (ENOBUFS);
3461 #endif
3462 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3463 	if (m && tlen > MHLEN) {
3464 		MCLGET(m, M_DONTWAIT);
3465 		if ((m->m_flags & M_EXT) == 0) {
3466 			m_freem(m);
3467 			m = NULL;
3468 		}
3469 	}
3470 	if (m == NULL)
3471 		return (ENOBUFS);
3472 
3473 	/* Fixup the mbuf. */
3474 	m->m_data += max_linkhdr;
3475 	m->m_len = m->m_pkthdr.len = tlen;
3476 #ifdef IPSEC
3477 	if (sc->sc_tp) {
3478 		struct tcpcb *tp;
3479 		struct socket *so;
3480 
3481 		tp = sc->sc_tp;
3482 		if (tp->t_inpcb)
3483 			so = tp->t_inpcb->inp_socket;
3484 #ifdef INET6
3485 		else if (tp->t_in6pcb)
3486 			so = tp->t_in6pcb->in6p_socket;
3487 #endif
3488 		else
3489 			so = NULL;
3490 		/* use IPsec policy on listening socket, on SYN ACK */
3491 		if (ipsec_setsocket(m, so) != 0) {
3492 			m_freem(m);
3493 			return ENOBUFS;
3494 		}
3495 	}
3496 #endif
3497 	m->m_pkthdr.rcvif = NULL;
3498 	memset(mtod(m, u_char *), 0, tlen);
3499 
3500 	switch (sc->sc_src.sa.sa_family) {
3501 	case AF_INET:
3502 		ip = mtod(m, struct ip *);
3503 		ip->ip_dst = sc->sc_src.sin.sin_addr;
3504 		ip->ip_src = sc->sc_dst.sin.sin_addr;
3505 		ip->ip_p = IPPROTO_TCP;
3506 		th = (struct tcphdr *)(ip + 1);
3507 		th->th_dport = sc->sc_src.sin.sin_port;
3508 		th->th_sport = sc->sc_dst.sin.sin_port;
3509 		break;
3510 #ifdef INET6
3511 	case AF_INET6:
3512 		ip6 = mtod(m, struct ip6_hdr *);
3513 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
3514 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
3515 		ip6->ip6_nxt = IPPROTO_TCP;
3516 		/* ip6_plen will be updated in ip6_output() */
3517 		th = (struct tcphdr *)(ip6 + 1);
3518 		th->th_dport = sc->sc_src.sin6.sin6_port;
3519 		th->th_sport = sc->sc_dst.sin6.sin6_port;
3520 		break;
3521 #endif
3522 	default:
3523 		th = NULL;
3524 	}
3525 
3526 	th->th_seq = htonl(sc->sc_iss);
3527 	th->th_ack = htonl(sc->sc_irs + 1);
3528 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
3529 	th->th_flags = TH_SYN|TH_ACK;
3530 	th->th_win = htons(sc->sc_win);
3531 	/* th_sum already 0 */
3532 	/* th_urp already 0 */
3533 
3534 	/* Tack on the TCP options. */
3535 	optp = (u_int8_t *)(th + 1);
3536 	*optp++ = TCPOPT_MAXSEG;
3537 	*optp++ = 4;
3538 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
3539 	*optp++ = sc->sc_ourmaxseg & 0xff;
3540 
3541 	if (sc->sc_request_r_scale != 15) {
3542 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
3543 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
3544 		    sc->sc_request_r_scale);
3545 		optp += 4;
3546 	}
3547 
3548 	if (sc->sc_flags & SCF_TIMESTAMP) {
3549 		u_int32_t *lp = (u_int32_t *)(optp);
3550 		/* Form timestamp option as shown in appendix A of RFC 1323. */
3551 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
3552 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
3553 		*lp   = htonl(sc->sc_timestamp);
3554 		optp += TCPOLEN_TSTAMP_APPA;
3555 	}
3556 
3557 	/* Compute the packet's checksum. */
3558 	switch (sc->sc_src.sa.sa_family) {
3559 	case AF_INET:
3560 		ip->ip_len = htons(tlen - hlen);
3561 		th->th_sum = 0;
3562 		th->th_sum = in_cksum(m, tlen);
3563 		break;
3564 #ifdef INET6
3565 	case AF_INET6:
3566 		ip6->ip6_plen = htons(tlen - hlen);
3567 		th->th_sum = 0;
3568 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
3569 		break;
3570 #endif
3571 	}
3572 
3573 	/*
3574 	 * Fill in some straggling IP bits.  Note the stack expects
3575 	 * ip_len to be in host order, for convenience.
3576 	 */
3577 	switch (sc->sc_src.sa.sa_family) {
3578 #ifdef INET
3579 	case AF_INET:
3580 		ip->ip_len = tlen;
3581 		ip->ip_ttl = ip_defttl;
3582 		/* XXX tos? */
3583 		break;
3584 #endif
3585 #ifdef INET6
3586 	case AF_INET6:
3587 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3588 		ip6->ip6_vfc |= IPV6_VERSION;
3589 		ip6->ip6_plen = htons(tlen - hlen);
3590 		/* ip6_hlim will be initialized afterwards */
3591 		/* XXX flowlabel? */
3592 		break;
3593 #endif
3594 	}
3595 
3596 	switch (sc->sc_src.sa.sa_family) {
3597 #ifdef INET
3598 	case AF_INET:
3599 		error = ip_output(m, sc->sc_ipopts, ro,
3600 		    (ip_mtudisc ? IP_MTUDISC : 0),
3601 		    NULL);
3602 		break;
3603 #endif
3604 #ifdef INET6
3605 	case AF_INET6:
3606 		ip6->ip6_hlim = in6_selecthlim(NULL,
3607 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
3608 
3609 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
3610 			0, NULL, NULL);
3611 		break;
3612 #endif
3613 	default:
3614 		error = EAFNOSUPPORT;
3615 		break;
3616 	}
3617 	return (error);
3618 }
3619