xref: /netbsd-src/sys/netinet/tcp_input.c (revision 0b9f50897e9a9c6709320fafb4c3787fddcc0a45)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)tcp_input.c	7.25 (Berkeley) 6/30/90
34  *	$Id: tcp_input.c,v 1.2 1993/05/18 18:20:15 cgd Exp $
35  */
36 
37 #include "param.h"
38 #include "systm.h"
39 #include "malloc.h"
40 #include "select.h"
41 #include "mbuf.h"
42 #include "protosw.h"
43 #include "socket.h"
44 #include "socketvar.h"
45 #include "errno.h"
46 
47 #include "../net/if.h"
48 #include "../net/route.h"
49 
50 #include "in.h"
51 #include "in_systm.h"
52 #include "ip.h"
53 #include "in_pcb.h"
54 #include "ip_var.h"
55 #include "tcp.h"
56 #include "tcp_fsm.h"
57 #include "tcp_seq.h"
58 #include "tcp_timer.h"
59 #include "tcp_var.h"
60 #include "tcpip.h"
61 #include "tcp_debug.h"
62 
63 int	tcprexmtthresh = 3;
64 int	tcppredack;	/* XXX debugging: times hdr predict ok for acks */
65 int	tcppreddat;	/* XXX # times header prediction ok for data packets */
66 int	tcppcbcachemiss;
67 struct	tcpiphdr tcp_saveti;
68 struct	inpcb *tcp_last_inpcb = &tcb;
69 
70 struct	tcpcb *tcp_newtcpcb();
71 
72 /*
73  * Insert segment ti into reassembly queue of tcp with
74  * control block tp.  Return TH_FIN if reassembly now includes
75  * a segment with FIN.  The macro form does the common case inline
76  * (segment is the next to be received on an established connection,
77  * and the queue is empty), avoiding linkage into and removal
78  * from the queue and repetition of various conversions.
79  * Set DELACK for segments received in order, but ack immediately
80  * when segments are out of order (so fast retransmit can work).
81  */
82 #define	TCP_REASS(tp, ti, m, so, flags) { \
83 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
84 	    (tp)->seg_next == (struct tcpiphdr *)(tp) && \
85 	    (tp)->t_state == TCPS_ESTABLISHED) { \
86 		tp->t_flags |= TF_DELACK; \
87 		(tp)->rcv_nxt += (ti)->ti_len; \
88 		flags = (ti)->ti_flags & TH_FIN; \
89 		tcpstat.tcps_rcvpack++;\
90 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
91 		sbappend(&(so)->so_rcv, (m)); \
92 		sorwakeup(so); \
93 	} else { \
94 		(flags) = tcp_reass((tp), (ti), (m)); \
95 		tp->t_flags |= TF_ACKNOW; \
96 	} \
97 }
98 
99 tcp_reass(tp, ti, m)
100 	register struct tcpcb *tp;
101 	register struct tcpiphdr *ti;
102 	struct mbuf *m;
103 {
104 	register struct tcpiphdr *q;
105 	struct socket *so = tp->t_inpcb->inp_socket;
106 	int flags;
107 
108 	/*
109 	 * Call with ti==0 after become established to
110 	 * force pre-ESTABLISHED data up to user socket.
111 	 */
112 	if (ti == 0)
113 		goto present;
114 
115 	/*
116 	 * Find a segment which begins after this one does.
117 	 */
118 	for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
119 	    q = (struct tcpiphdr *)q->ti_next)
120 		if (SEQ_GT(q->ti_seq, ti->ti_seq))
121 			break;
122 
123 	/*
124 	 * If there is a preceding segment, it may provide some of
125 	 * our data already.  If so, drop the data from the incoming
126 	 * segment.  If it provides all of our data, drop us.
127 	 */
128 	if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
129 		register int i;
130 		q = (struct tcpiphdr *)q->ti_prev;
131 		/* conversion to int (in i) handles seq wraparound */
132 		i = q->ti_seq + q->ti_len - ti->ti_seq;
133 		if (i > 0) {
134 			if (i >= ti->ti_len) {
135 				tcpstat.tcps_rcvduppack++;
136 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
137 				m_freem(m);
138 				return (0);
139 			}
140 			m_adj(m, i);
141 			ti->ti_len -= i;
142 			ti->ti_seq += i;
143 		}
144 		q = (struct tcpiphdr *)(q->ti_next);
145 	}
146 	tcpstat.tcps_rcvoopack++;
147 	tcpstat.tcps_rcvoobyte += ti->ti_len;
148 	REASS_MBUF(ti) = m;		/* XXX */
149 
150 	/*
151 	 * While we overlap succeeding segments trim them or,
152 	 * if they are completely covered, dequeue them.
153 	 */
154 	while (q != (struct tcpiphdr *)tp) {
155 		register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
156 		if (i <= 0)
157 			break;
158 		if (i < q->ti_len) {
159 			q->ti_seq += i;
160 			q->ti_len -= i;
161 			m_adj(REASS_MBUF(q), i);
162 			break;
163 		}
164 		q = (struct tcpiphdr *)q->ti_next;
165 		m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
166 		remque(q->ti_prev);
167 		m_freem(m);
168 	}
169 
170 	/*
171 	 * Stick new segment in its place.
172 	 */
173 	insque(ti, q->ti_prev);
174 
175 present:
176 	/*
177 	 * Present data to user, advancing rcv_nxt through
178 	 * completed sequence space.
179 	 */
180 	if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
181 		return (0);
182 	ti = tp->seg_next;
183 	if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
184 		return (0);
185 	if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
186 		return (0);
187 	do {
188 		tp->rcv_nxt += ti->ti_len;
189 		flags = ti->ti_flags & TH_FIN;
190 		remque(ti);
191 		m = REASS_MBUF(ti);
192 		ti = (struct tcpiphdr *)ti->ti_next;
193 		if (so->so_state & SS_CANTRCVMORE)
194 			m_freem(m);
195 		else
196 			sbappend(&so->so_rcv, m);
197 	} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
198 	sorwakeup(so);
199 	return (flags);
200 }
201 
202 /*
203  * TCP input routine, follows pages 65-76 of the
204  * protocol specification dated September, 1981 very closely.
205  */
206 tcp_input(m, iphlen)
207 	register struct mbuf *m;
208 	int iphlen;
209 {
210 	register struct tcpiphdr *ti;
211 	register struct inpcb *inp;
212 	struct mbuf *om = 0;
213 	int len, tlen, off;
214 	register struct tcpcb *tp = 0;
215 	register int tiflags;
216 	struct socket *so;
217 	int todrop, acked, ourfinisacked, needoutput = 0;
218 	short ostate;
219 	struct in_addr laddr;
220 	int dropsocket = 0;
221 	int iss = 0;
222 
223 	tcpstat.tcps_rcvtotal++;
224 	/*
225 	 * Get IP and TCP header together in first mbuf.
226 	 * Note: IP leaves IP header in first mbuf.
227 	 */
228 	ti = mtod(m, struct tcpiphdr *);
229 	if (iphlen > sizeof (struct ip))
230 		ip_stripoptions(m, (struct mbuf *)0);
231 	if (m->m_len < sizeof (struct tcpiphdr)) {
232 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
233 			tcpstat.tcps_rcvshort++;
234 			return;
235 		}
236 		ti = mtod(m, struct tcpiphdr *);
237 	}
238 
239 	/*
240 	 * Checksum extended TCP header and data.
241 	 */
242 	tlen = ((struct ip *)ti)->ip_len;
243 	len = sizeof (struct ip) + tlen;
244 	ti->ti_next = ti->ti_prev = 0;
245 	ti->ti_x1 = 0;
246 	ti->ti_len = (u_short)tlen;
247 	HTONS(ti->ti_len);
248 	if (ti->ti_sum = in_cksum(m, len)) {
249 		tcpstat.tcps_rcvbadsum++;
250 		goto drop;
251 	}
252 
253 	/*
254 	 * Check that TCP offset makes sense,
255 	 * pull out TCP options and adjust length.		XXX
256 	 */
257 	off = ti->ti_off << 2;
258 	if (off < sizeof (struct tcphdr) || off > tlen) {
259 		tcpstat.tcps_rcvbadoff++;
260 		goto drop;
261 	}
262 	tlen -= off;
263 	ti->ti_len = tlen;
264 	if (off > sizeof (struct tcphdr)) {
265 		if (m->m_len < sizeof(struct ip) + off) {
266 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
267 				tcpstat.tcps_rcvshort++;
268 				return;
269 			}
270 			ti = mtod(m, struct tcpiphdr *);
271 		}
272 		om = m_get(M_DONTWAIT, MT_DATA);
273 		if (om == 0)
274 			goto drop;
275 		om->m_len = off - sizeof (struct tcphdr);
276 		{ caddr_t op = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
277 		  bcopy(op, mtod(om, caddr_t), (unsigned)om->m_len);
278 		  m->m_len -= om->m_len;
279 		  m->m_pkthdr.len -= om->m_len;
280 		  bcopy(op+om->m_len, op,
281 		   (unsigned)(m->m_len-sizeof (struct tcpiphdr)));
282 		}
283 	}
284 	tiflags = ti->ti_flags;
285 
286 	/*
287 	 * Convert TCP protocol specific fields to host format.
288 	 */
289 	NTOHL(ti->ti_seq);
290 	NTOHL(ti->ti_ack);
291 	NTOHS(ti->ti_win);
292 	NTOHS(ti->ti_urp);
293 
294 	/*
295 	 * Locate pcb for segment.
296 	 */
297 findpcb:
298 	inp = tcp_last_inpcb;
299 	if (inp->inp_lport != ti->ti_dport ||
300 	    inp->inp_fport != ti->ti_sport ||
301 	    inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
302 	    inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
303 		inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
304 		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
305 		if (inp)
306 			tcp_last_inpcb = inp;
307 		++tcppcbcachemiss;
308 	}
309 
310 	/*
311 	 * If the state is CLOSED (i.e., TCB does not exist) then
312 	 * all data in the incoming segment is discarded.
313 	 * If the TCB exists but is in CLOSED state, it is embryonic,
314 	 * but should either do a listen or a connect soon.
315 	 */
316 	if (inp == 0)
317 		goto dropwithreset;
318 	tp = intotcpcb(inp);
319 	if (tp == 0)
320 		goto dropwithreset;
321 	if (tp->t_state == TCPS_CLOSED)
322 		goto drop;
323 	so = inp->inp_socket;
324 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
325 		if (so->so_options & SO_DEBUG) {
326 			ostate = tp->t_state;
327 			tcp_saveti = *ti;
328 		}
329 		if (so->so_options & SO_ACCEPTCONN) {
330 			so = sonewconn(so, 0);
331 			if (so == 0)
332 				goto drop;
333 			/*
334 			 * This is ugly, but ....
335 			 *
336 			 * Mark socket as temporary until we're
337 			 * committed to keeping it.  The code at
338 			 * ``drop'' and ``dropwithreset'' check the
339 			 * flag dropsocket to see if the temporary
340 			 * socket created here should be discarded.
341 			 * We mark the socket as discardable until
342 			 * we're committed to it below in TCPS_LISTEN.
343 			 */
344 			dropsocket++;
345 			inp = (struct inpcb *)so->so_pcb;
346 			inp->inp_laddr = ti->ti_dst;
347 			inp->inp_lport = ti->ti_dport;
348 #if BSD>=43
349 			inp->inp_options = ip_srcroute();
350 #endif
351 			tp = intotcpcb(inp);
352 			tp->t_state = TCPS_LISTEN;
353 		}
354 	}
355 
356 	/*
357 	 * Segment received on connection.
358 	 * Reset idle time and keep-alive timer.
359 	 */
360 	tp->t_idle = 0;
361 	tp->t_timer[TCPT_KEEP] = tcp_keepidle;
362 
363 	/*
364 	 * Process options if not in LISTEN state,
365 	 * else do it below (after getting remote address).
366 	 */
367 	if (om && tp->t_state != TCPS_LISTEN) {
368 		tcp_dooptions(tp, om, ti);
369 		om = 0;
370 	}
371 	/*
372 	 * Header prediction: check for the two common cases
373 	 * of a uni-directional data xfer.  If the packet has
374 	 * no control flags, is in-sequence, the window didn't
375 	 * change and we're not retransmitting, it's a
376 	 * candidate.  If the length is zero and the ack moved
377 	 * forward, we're the sender side of the xfer.  Just
378 	 * free the data acked & wake any higher level process
379 	 * that was blocked waiting for space.  If the length
380 	 * is non-zero and the ack didn't move, we're the
381 	 * receiver side.  If we're getting packets in-order
382 	 * (the reassembly queue is empty), add the data to
383 	 * the socket buffer and note that we need a delayed ack.
384 	 */
385 	if (tp->t_state == TCPS_ESTABLISHED &&
386 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
387 	    ti->ti_seq == tp->rcv_nxt &&
388 	    ti->ti_win && ti->ti_win == tp->snd_wnd &&
389 	    tp->snd_nxt == tp->snd_max) {
390 		if (ti->ti_len == 0) {
391 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
392 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
393 			    tp->snd_cwnd >= tp->snd_wnd) {
394 				/*
395 				 * this is a pure ack for outstanding data.
396 				 */
397 				++tcppredack;
398 				if (tp->t_rtt && SEQ_GT(ti->ti_ack,tp->t_rtseq))
399 					tcp_xmit_timer(tp);
400 				acked = ti->ti_ack - tp->snd_una;
401 				tcpstat.tcps_rcvackpack++;
402 				tcpstat.tcps_rcvackbyte += acked;
403 				sbdrop(&so->so_snd, acked);
404 				tp->snd_una = ti->ti_ack;
405 				m_freem(m);
406 
407 				/*
408 				 * If all outstanding data are acked, stop
409 				 * retransmit timer, otherwise restart timer
410 				 * using current (possibly backed-off) value.
411 				 * If process is waiting for space,
412 				 * wakeup/selwakeup/signal.  If data
413 				 * are ready to send, let tcp_output
414 				 * decide between more output or persist.
415 				 */
416 				if (tp->snd_una == tp->snd_max)
417 					tp->t_timer[TCPT_REXMT] = 0;
418 				else if (tp->t_timer[TCPT_PERSIST] == 0)
419 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
420 
421 				if (so->so_snd.sb_flags & SB_NOTIFY)
422 					sowwakeup(so);
423 				if (so->so_snd.sb_cc)
424 					(void) tcp_output(tp);
425 				return;
426 			}
427 		} else if (ti->ti_ack == tp->snd_una &&
428 		    tp->seg_next == (struct tcpiphdr *)tp &&
429 		    ti->ti_len <= sbspace(&so->so_rcv)) {
430 			/*
431 			 * this is a pure, in-sequence data packet
432 			 * with nothing on the reassembly queue and
433 			 * we have enough buffer space to take it.
434 			 */
435 			++tcppreddat;
436 			tp->rcv_nxt += ti->ti_len;
437 			tcpstat.tcps_rcvpack++;
438 			tcpstat.tcps_rcvbyte += ti->ti_len;
439 			/*
440 			 * Drop TCP and IP headers then add data
441 			 * to socket buffer
442 			 */
443 			m->m_data += sizeof(struct tcpiphdr);
444 			m->m_len -= sizeof(struct tcpiphdr);
445 			sbappend(&so->so_rcv, m);
446 			sorwakeup(so);
447 			tp->t_flags |= TF_DELACK;
448 			return;
449 		}
450 	}
451 
452 	/*
453 	 * Drop TCP and IP headers; TCP options were dropped above.
454 	 */
455 	m->m_data += sizeof(struct tcpiphdr);
456 	m->m_len -= sizeof(struct tcpiphdr);
457 
458 	/*
459 	 * Calculate amount of space in receive window,
460 	 * and then do TCP input processing.
461 	 * Receive window is amount of space in rcv queue,
462 	 * but not less than advertised window.
463 	 */
464 	{ int win;
465 
466 	win = sbspace(&so->so_rcv);
467 	if (win < 0)
468 		win = 0;
469 	tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
470 	}
471 
472 	switch (tp->t_state) {
473 
474 	/*
475 	 * If the state is LISTEN then ignore segment if it contains an RST.
476 	 * If the segment contains an ACK then it is bad and send a RST.
477 	 * If it does not contain a SYN then it is not interesting; drop it.
478 	 * Don't bother responding if the destination was a broadcast.
479 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
480 	 * tp->iss, and send a segment:
481 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
482 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
483 	 * Fill in remote peer address fields if not previously specified.
484 	 * Enter SYN_RECEIVED state, and process any other fields of this
485 	 * segment in this state.
486 	 */
487 	case TCPS_LISTEN: {
488 		struct mbuf *am;
489 		register struct sockaddr_in *sin;
490 
491 		if (tiflags & TH_RST)
492 			goto drop;
493 		if (tiflags & TH_ACK)
494 			goto dropwithreset;
495 		if ((tiflags & TH_SYN) == 0)
496 			goto drop;
497 		if (m->m_flags & M_BCAST)
498 			goto drop;
499 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
500 		if (am == NULL)
501 			goto drop;
502 		am->m_len = sizeof (struct sockaddr_in);
503 		sin = mtod(am, struct sockaddr_in *);
504 		sin->sin_family = AF_INET;
505 		sin->sin_len = sizeof(*sin);
506 		sin->sin_addr = ti->ti_src;
507 		sin->sin_port = ti->ti_sport;
508 		laddr = inp->inp_laddr;
509 		if (inp->inp_laddr.s_addr == INADDR_ANY)
510 			inp->inp_laddr = ti->ti_dst;
511 		if (in_pcbconnect(inp, am)) {
512 			inp->inp_laddr = laddr;
513 			(void) m_free(am);
514 			goto drop;
515 		}
516 		(void) m_free(am);
517 		tp->t_template = tcp_template(tp);
518 		if (tp->t_template == 0) {
519 			tp = tcp_drop(tp, ENOBUFS);
520 			dropsocket = 0;		/* socket is already gone */
521 			goto drop;
522 		}
523 		if (om) {
524 			tcp_dooptions(tp, om, ti);
525 			om = 0;
526 		}
527 		if (iss)
528 			tp->iss = iss;
529 		else
530 			tp->iss = tcp_iss;
531 		tcp_iss += TCP_ISSINCR/2;
532 		tp->irs = ti->ti_seq;
533 		tcp_sendseqinit(tp);
534 		tcp_rcvseqinit(tp);
535 		tp->t_flags |= TF_ACKNOW;
536 		tp->t_state = TCPS_SYN_RECEIVED;
537 		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
538 		dropsocket = 0;		/* committed to socket */
539 		tcpstat.tcps_accepts++;
540 		goto trimthenstep6;
541 		}
542 
543 	/*
544 	 * If the state is SYN_SENT:
545 	 *	if seg contains an ACK, but not for our SYN, drop the input.
546 	 *	if seg contains a RST, then drop the connection.
547 	 *	if seg does not contain SYN, then drop it.
548 	 * Otherwise this is an acceptable SYN segment
549 	 *	initialize tp->rcv_nxt and tp->irs
550 	 *	if seg contains ack then advance tp->snd_una
551 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
552 	 *	arrange for segment to be acked (eventually)
553 	 *	continue processing rest of data/controls, beginning with URG
554 	 */
555 	case TCPS_SYN_SENT:
556 		if ((tiflags & TH_ACK) &&
557 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
558 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
559 			goto dropwithreset;
560 		if (tiflags & TH_RST) {
561 			if (tiflags & TH_ACK)
562 				tp = tcp_drop(tp, ECONNREFUSED);
563 			goto drop;
564 		}
565 		if ((tiflags & TH_SYN) == 0)
566 			goto drop;
567 		if (tiflags & TH_ACK) {
568 			tp->snd_una = ti->ti_ack;
569 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
570 				tp->snd_nxt = tp->snd_una;
571 		}
572 		tp->t_timer[TCPT_REXMT] = 0;
573 		tp->irs = ti->ti_seq;
574 		tcp_rcvseqinit(tp);
575 		tp->t_flags |= TF_ACKNOW;
576 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
577 			tcpstat.tcps_connects++;
578 			soisconnected(so);
579 			tp->t_state = TCPS_ESTABLISHED;
580 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
581 				(struct mbuf *)0);
582 			/*
583 			 * if we didn't have to retransmit the SYN,
584 			 * use its rtt as our initial srtt & rtt var.
585 			 */
586 			if (tp->t_rtt)
587 				tcp_xmit_timer(tp);
588 		} else
589 			tp->t_state = TCPS_SYN_RECEIVED;
590 
591 trimthenstep6:
592 		/*
593 		 * Advance ti->ti_seq to correspond to first data byte.
594 		 * If data, trim to stay within window,
595 		 * dropping FIN if necessary.
596 		 */
597 		ti->ti_seq++;
598 		if (ti->ti_len > tp->rcv_wnd) {
599 			todrop = ti->ti_len - tp->rcv_wnd;
600 			m_adj(m, -todrop);
601 			ti->ti_len = tp->rcv_wnd;
602 			tiflags &= ~TH_FIN;
603 			tcpstat.tcps_rcvpackafterwin++;
604 			tcpstat.tcps_rcvbyteafterwin += todrop;
605 		}
606 		tp->snd_wl1 = ti->ti_seq - 1;
607 		tp->rcv_up = ti->ti_seq;
608 		goto step6;
609 	}
610 
611 	/*
612 	 * States other than LISTEN or SYN_SENT.
613 	 * First check that at least some bytes of segment are within
614 	 * receive window.  If segment begins before rcv_nxt,
615 	 * drop leading data (and SYN); if nothing left, just ack.
616 	 */
617 	todrop = tp->rcv_nxt - ti->ti_seq;
618 	if (todrop > 0) {
619 		if (tiflags & TH_SYN) {
620 			tiflags &= ~TH_SYN;
621 			ti->ti_seq++;
622 			if (ti->ti_urp > 1)
623 				ti->ti_urp--;
624 			else
625 				tiflags &= ~TH_URG;
626 			todrop--;
627 		}
628 		if (todrop > ti->ti_len ||
629 		    todrop == ti->ti_len && (tiflags&TH_FIN) == 0) {
630 			tcpstat.tcps_rcvduppack++;
631 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
632 			/*
633 			 * If segment is just one to the left of the window,
634 			 * check two special cases:
635 			 * 1. Don't toss RST in response to 4.2-style keepalive.
636 			 * 2. If the only thing to drop is a FIN, we can drop
637 			 *    it, but check the ACK or we will get into FIN
638 			 *    wars if our FINs crossed (both CLOSING).
639 			 * In either case, send ACK to resynchronize,
640 			 * but keep on processing for RST or ACK.
641 			 */
642 			if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
643 #ifdef TCP_COMPAT_42
644 			  || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1)
645 #endif
646 			   ) {
647 				todrop = ti->ti_len;
648 				tiflags &= ~TH_FIN;
649 				tp->t_flags |= TF_ACKNOW;
650 			} else
651 				goto dropafterack;
652 		} else {
653 			tcpstat.tcps_rcvpartduppack++;
654 			tcpstat.tcps_rcvpartdupbyte += todrop;
655 		}
656 		m_adj(m, todrop);
657 		ti->ti_seq += todrop;
658 		ti->ti_len -= todrop;
659 		if (ti->ti_urp > todrop)
660 			ti->ti_urp -= todrop;
661 		else {
662 			tiflags &= ~TH_URG;
663 			ti->ti_urp = 0;
664 		}
665 	}
666 
667 	/*
668 	 * If new data are received on a connection after the
669 	 * user processes are gone, then RST the other end.
670 	 */
671 	if ((so->so_state & SS_NOFDREF) &&
672 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
673 		tp = tcp_close(tp);
674 		tcpstat.tcps_rcvafterclose++;
675 		goto dropwithreset;
676 	}
677 
678 	/*
679 	 * If segment ends after window, drop trailing data
680 	 * (and PUSH and FIN); if nothing left, just ACK.
681 	 */
682 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
683 	if (todrop > 0) {
684 		tcpstat.tcps_rcvpackafterwin++;
685 		if (todrop >= ti->ti_len) {
686 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
687 			/*
688 			 * If a new connection request is received
689 			 * while in TIME_WAIT, drop the old connection
690 			 * and start over if the sequence numbers
691 			 * are above the previous ones.
692 			 */
693 			if (tiflags & TH_SYN &&
694 			    tp->t_state == TCPS_TIME_WAIT &&
695 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
696 				iss = tp->rcv_nxt + TCP_ISSINCR;
697 				tp = tcp_close(tp);
698 				goto findpcb;
699 			}
700 			/*
701 			 * If window is closed can only take segments at
702 			 * window edge, and have to drop data and PUSH from
703 			 * incoming segments.  Continue processing, but
704 			 * remember to ack.  Otherwise, drop segment
705 			 * and ack.
706 			 */
707 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
708 				tp->t_flags |= TF_ACKNOW;
709 				tcpstat.tcps_rcvwinprobe++;
710 			} else
711 				goto dropafterack;
712 		} else
713 			tcpstat.tcps_rcvbyteafterwin += todrop;
714 		m_adj(m, -todrop);
715 		ti->ti_len -= todrop;
716 		tiflags &= ~(TH_PUSH|TH_FIN);
717 	}
718 
719 	/*
720 	 * If the RST bit is set examine the state:
721 	 *    SYN_RECEIVED STATE:
722 	 *	If passive open, return to LISTEN state.
723 	 *	If active open, inform user that connection was refused.
724 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
725 	 *	Inform user that connection was reset, and close tcb.
726 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
727 	 *	Close the tcb.
728 	 */
729 	if (tiflags&TH_RST) switch (tp->t_state) {
730 
731 	case TCPS_SYN_RECEIVED:
732 		so->so_error = ECONNREFUSED;
733 		goto close;
734 
735 	case TCPS_ESTABLISHED:
736 	case TCPS_FIN_WAIT_1:
737 	case TCPS_FIN_WAIT_2:
738 	case TCPS_CLOSE_WAIT:
739 		so->so_error = ECONNRESET;
740 	close:
741 		tp->t_state = TCPS_CLOSED;
742 		tcpstat.tcps_drops++;
743 		tp = tcp_close(tp);
744 		goto drop;
745 
746 	case TCPS_CLOSING:
747 	case TCPS_LAST_ACK:
748 	case TCPS_TIME_WAIT:
749 		tp = tcp_close(tp);
750 		goto drop;
751 	}
752 
753 	/*
754 	 * If a SYN is in the window, then this is an
755 	 * error and we send an RST and drop the connection.
756 	 */
757 	if (tiflags & TH_SYN) {
758 		tp = tcp_drop(tp, ECONNRESET);
759 		goto dropwithreset;
760 	}
761 
762 	/*
763 	 * If the ACK bit is off we drop the segment and return.
764 	 */
765 	if ((tiflags & TH_ACK) == 0)
766 		goto drop;
767 
768 	/*
769 	 * Ack processing.
770 	 */
771 	switch (tp->t_state) {
772 
773 	/*
774 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
775 	 * ESTABLISHED state and continue processing, otherwise
776 	 * send an RST.
777 	 */
778 	case TCPS_SYN_RECEIVED:
779 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
780 		    SEQ_GT(ti->ti_ack, tp->snd_max))
781 			goto dropwithreset;
782 		tcpstat.tcps_connects++;
783 		soisconnected(so);
784 		tp->t_state = TCPS_ESTABLISHED;
785 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
786 		tp->snd_wl1 = ti->ti_seq - 1;
787 		/* fall into ... */
788 
789 	/*
790 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
791 	 * ACKs.  If the ack is in the range
792 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
793 	 * then advance tp->snd_una to ti->ti_ack and drop
794 	 * data from the retransmission queue.  If this ACK reflects
795 	 * more up to date window information we update our window information.
796 	 */
797 	case TCPS_ESTABLISHED:
798 	case TCPS_FIN_WAIT_1:
799 	case TCPS_FIN_WAIT_2:
800 	case TCPS_CLOSE_WAIT:
801 	case TCPS_CLOSING:
802 	case TCPS_LAST_ACK:
803 	case TCPS_TIME_WAIT:
804 
805 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
806 			if (ti->ti_len == 0 && ti->ti_win == tp->snd_wnd) {
807 				tcpstat.tcps_rcvdupack++;
808 				/*
809 				 * If we have outstanding data (other than
810 				 * a window probe), this is a completely
811 				 * duplicate ack (ie, window info didn't
812 				 * change), the ack is the biggest we've
813 				 * seen and we've seen exactly our rexmt
814 				 * threshhold of them, assume a packet
815 				 * has been dropped and retransmit it.
816 				 * Kludge snd_nxt & the congestion
817 				 * window so we send only this one
818 				 * packet.
819 				 *
820 				 * We know we're losing at the current
821 				 * window size so do congestion avoidance
822 				 * (set ssthresh to half the current window
823 				 * and pull our congestion window back to
824 				 * the new ssthresh).
825 				 *
826 				 * Dup acks mean that packets have left the
827 				 * network (they're now cached at the receiver)
828 				 * so bump cwnd by the amount in the receiver
829 				 * to keep a constant cwnd packets in the
830 				 * network.
831 				 */
832 				if (tp->t_timer[TCPT_REXMT] == 0 ||
833 				    ti->ti_ack != tp->snd_una)
834 					tp->t_dupacks = 0;
835 				else if (++tp->t_dupacks == tcprexmtthresh) {
836 					tcp_seq onxt = tp->snd_nxt;
837 					u_int win =
838 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
839 						tp->t_maxseg;
840 
841 					if (win < 2)
842 						win = 2;
843 					tp->snd_ssthresh = win * tp->t_maxseg;
844 					tp->t_timer[TCPT_REXMT] = 0;
845 					tp->t_rtt = 0;
846 					tp->snd_nxt = ti->ti_ack;
847 					tp->snd_cwnd = tp->t_maxseg;
848 					(void) tcp_output(tp);
849 					tp->snd_cwnd = tp->snd_ssthresh +
850 					       tp->t_maxseg * tp->t_dupacks;
851 					if (SEQ_GT(onxt, tp->snd_nxt))
852 						tp->snd_nxt = onxt;
853 					goto drop;
854 				} else if (tp->t_dupacks > tcprexmtthresh) {
855 					tp->snd_cwnd += tp->t_maxseg;
856 					(void) tcp_output(tp);
857 					goto drop;
858 				}
859 			} else
860 				tp->t_dupacks = 0;
861 			break;
862 		}
863 		/*
864 		 * If the congestion window was inflated to account
865 		 * for the other side's cached packets, retract it.
866 		 */
867 		if (tp->t_dupacks > tcprexmtthresh &&
868 		    tp->snd_cwnd > tp->snd_ssthresh)
869 			tp->snd_cwnd = tp->snd_ssthresh;
870 		tp->t_dupacks = 0;
871 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
872 			tcpstat.tcps_rcvacktoomuch++;
873 			goto dropafterack;
874 		}
875 		acked = ti->ti_ack - tp->snd_una;
876 		tcpstat.tcps_rcvackpack++;
877 		tcpstat.tcps_rcvackbyte += acked;
878 
879 		/*
880 		 * If transmit timer is running and timed sequence
881 		 * number was acked, update smoothed round trip time.
882 		 * Since we now have an rtt measurement, cancel the
883 		 * timer backoff (cf., Phil Karn's retransmit alg.).
884 		 * Recompute the initial retransmit timer.
885 		 */
886 		if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
887 			tcp_xmit_timer(tp);
888 
889 		/*
890 		 * If all outstanding data is acked, stop retransmit
891 		 * timer and remember to restart (more output or persist).
892 		 * If there is more data to be acked, restart retransmit
893 		 * timer, using current (possibly backed-off) value.
894 		 */
895 		if (ti->ti_ack == tp->snd_max) {
896 			tp->t_timer[TCPT_REXMT] = 0;
897 			needoutput = 1;
898 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
899 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
900 		/*
901 		 * When new data is acked, open the congestion window.
902 		 * If the window gives us less than ssthresh packets
903 		 * in flight, open exponentially (maxseg per packet).
904 		 * Otherwise open linearly: maxseg per window
905 		 * (maxseg^2 / cwnd per packet), plus a constant
906 		 * fraction of a packet (maxseg/8) to help larger windows
907 		 * open quickly enough.
908 		 */
909 		{
910 		register u_int cw = tp->snd_cwnd;
911 		register u_int incr = tp->t_maxseg;
912 
913 		if (cw > tp->snd_ssthresh)
914 			incr = incr * incr / cw + incr / 8;
915 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN);
916 		}
917 		if (acked > so->so_snd.sb_cc) {
918 			tp->snd_wnd -= so->so_snd.sb_cc;
919 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
920 			ourfinisacked = 1;
921 		} else {
922 			sbdrop(&so->so_snd, acked);
923 			tp->snd_wnd -= acked;
924 			ourfinisacked = 0;
925 		}
926 		if (so->so_snd.sb_flags & SB_NOTIFY)
927 			sowwakeup(so);
928 		tp->snd_una = ti->ti_ack;
929 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
930 			tp->snd_nxt = tp->snd_una;
931 
932 		switch (tp->t_state) {
933 
934 		/*
935 		 * In FIN_WAIT_1 STATE in addition to the processing
936 		 * for the ESTABLISHED state if our FIN is now acknowledged
937 		 * then enter FIN_WAIT_2.
938 		 */
939 		case TCPS_FIN_WAIT_1:
940 			if (ourfinisacked) {
941 				/*
942 				 * If we can't receive any more
943 				 * data, then closing user can proceed.
944 				 * Starting the timer is contrary to the
945 				 * specification, but if we don't get a FIN
946 				 * we'll hang forever.
947 				 */
948 				if (so->so_state & SS_CANTRCVMORE) {
949 					soisdisconnected(so);
950 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
951 				}
952 				tp->t_state = TCPS_FIN_WAIT_2;
953 			}
954 			break;
955 
956 	 	/*
957 		 * In CLOSING STATE in addition to the processing for
958 		 * the ESTABLISHED state if the ACK acknowledges our FIN
959 		 * then enter the TIME-WAIT state, otherwise ignore
960 		 * the segment.
961 		 */
962 		case TCPS_CLOSING:
963 			if (ourfinisacked) {
964 				tp->t_state = TCPS_TIME_WAIT;
965 				tcp_canceltimers(tp);
966 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
967 				soisdisconnected(so);
968 			}
969 			break;
970 
971 		/*
972 		 * In LAST_ACK, we may still be waiting for data to drain
973 		 * and/or to be acked, as well as for the ack of our FIN.
974 		 * If our FIN is now acknowledged, delete the TCB,
975 		 * enter the closed state and return.
976 		 */
977 		case TCPS_LAST_ACK:
978 			if (ourfinisacked) {
979 				tp = tcp_close(tp);
980 				goto drop;
981 			}
982 			break;
983 
984 		/*
985 		 * In TIME_WAIT state the only thing that should arrive
986 		 * is a retransmission of the remote FIN.  Acknowledge
987 		 * it and restart the finack timer.
988 		 */
989 		case TCPS_TIME_WAIT:
990 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
991 			goto dropafterack;
992 		}
993 	}
994 
995 step6:
996 	/*
997 	 * Update window information.
998 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
999 	 */
1000 	if ((tiflags & TH_ACK) &&
1001 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1002 	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1003 	     tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd))) {
1004 		/* keep track of pure window updates */
1005 		if (ti->ti_len == 0 &&
1006 		    tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd)
1007 			tcpstat.tcps_rcvwinupd++;
1008 		tp->snd_wnd = ti->ti_win;
1009 		tp->snd_wl1 = ti->ti_seq;
1010 		tp->snd_wl2 = ti->ti_ack;
1011 		if (tp->snd_wnd > tp->max_sndwnd)
1012 			tp->max_sndwnd = tp->snd_wnd;
1013 		needoutput = 1;
1014 	}
1015 
1016 	/*
1017 	 * Process segments with URG.
1018 	 */
1019 	if ((tiflags & TH_URG) && ti->ti_urp &&
1020 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1021 		/*
1022 		 * This is a kludge, but if we receive and accept
1023 		 * random urgent pointers, we'll crash in
1024 		 * soreceive.  It's hard to imagine someone
1025 		 * actually wanting to send this much urgent data.
1026 		 */
1027 		if (ti->ti_urp + so->so_rcv.sb_cc > SB_MAX) {
1028 			ti->ti_urp = 0;			/* XXX */
1029 			tiflags &= ~TH_URG;		/* XXX */
1030 			goto dodata;			/* XXX */
1031 		}
1032 		/*
1033 		 * If this segment advances the known urgent pointer,
1034 		 * then mark the data stream.  This should not happen
1035 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1036 		 * a FIN has been received from the remote side.
1037 		 * In these states we ignore the URG.
1038 		 *
1039 		 * According to RFC961 (Assigned Protocols),
1040 		 * the urgent pointer points to the last octet
1041 		 * of urgent data.  We continue, however,
1042 		 * to consider it to indicate the first octet
1043 		 * of data past the urgent section as the original
1044 		 * spec states (in one of two places).
1045 		 */
1046 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1047 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
1048 			so->so_oobmark = so->so_rcv.sb_cc +
1049 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1050 			if (so->so_oobmark == 0)
1051 				so->so_state |= SS_RCVATMARK;
1052 			sohasoutofband(so);
1053 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1054 		}
1055 		/*
1056 		 * Remove out of band data so doesn't get presented to user.
1057 		 * This can happen independent of advancing the URG pointer,
1058 		 * but if two URG's are pending at once, some out-of-band
1059 		 * data may creep in... ick.
1060 		 */
1061 		if (ti->ti_urp <= ti->ti_len
1062 #ifdef SO_OOBINLINE
1063 		     && (so->so_options & SO_OOBINLINE) == 0
1064 #endif
1065 		     )
1066 			tcp_pulloutofband(so, ti, m);
1067 	} else
1068 		/*
1069 		 * If no out of band data is expected,
1070 		 * pull receive urgent pointer along
1071 		 * with the receive window.
1072 		 */
1073 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1074 			tp->rcv_up = tp->rcv_nxt;
1075 dodata:							/* XXX */
1076 
1077 	/*
1078 	 * Process the segment text, merging it into the TCP sequencing queue,
1079 	 * and arranging for acknowledgment of receipt if necessary.
1080 	 * This process logically involves adjusting tp->rcv_wnd as data
1081 	 * is presented to the user (this happens in tcp_usrreq.c,
1082 	 * case PRU_RCVD).  If a FIN has already been received on this
1083 	 * connection then we just ignore the text.
1084 	 */
1085 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
1086 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1087 		TCP_REASS(tp, ti, m, so, tiflags);
1088 		/*
1089 		 * Note the amount of data that peer has sent into
1090 		 * our window, in order to estimate the sender's
1091 		 * buffer size.
1092 		 */
1093 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1094 	} else {
1095 		m_freem(m);
1096 		tiflags &= ~TH_FIN;
1097 	}
1098 
1099 	/*
1100 	 * If FIN is received ACK the FIN and let the user know
1101 	 * that the connection is closing.
1102 	 */
1103 	if (tiflags & TH_FIN) {
1104 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1105 			socantrcvmore(so);
1106 			tp->t_flags |= TF_ACKNOW;
1107 			tp->rcv_nxt++;
1108 		}
1109 		switch (tp->t_state) {
1110 
1111 	 	/*
1112 		 * In SYN_RECEIVED and ESTABLISHED STATES
1113 		 * enter the CLOSE_WAIT state.
1114 		 */
1115 		case TCPS_SYN_RECEIVED:
1116 		case TCPS_ESTABLISHED:
1117 			tp->t_state = TCPS_CLOSE_WAIT;
1118 			break;
1119 
1120 	 	/*
1121 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1122 		 * enter the CLOSING state.
1123 		 */
1124 		case TCPS_FIN_WAIT_1:
1125 			tp->t_state = TCPS_CLOSING;
1126 			break;
1127 
1128 	 	/*
1129 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1130 		 * starting the time-wait timer, turning off the other
1131 		 * standard timers.
1132 		 */
1133 		case TCPS_FIN_WAIT_2:
1134 			tp->t_state = TCPS_TIME_WAIT;
1135 			tcp_canceltimers(tp);
1136 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1137 			soisdisconnected(so);
1138 			break;
1139 
1140 		/*
1141 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1142 		 */
1143 		case TCPS_TIME_WAIT:
1144 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1145 			break;
1146 		}
1147 	}
1148 	if (so->so_options & SO_DEBUG)
1149 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1150 
1151 	/*
1152 	 * Return any desired output.
1153 	 */
1154 	if (needoutput || (tp->t_flags & TF_ACKNOW))
1155 		(void) tcp_output(tp);
1156 	return;
1157 
1158 dropafterack:
1159 	/*
1160 	 * Generate an ACK dropping incoming segment if it occupies
1161 	 * sequence space, where the ACK reflects our state.
1162 	 */
1163 	if (tiflags & TH_RST)
1164 		goto drop;
1165 	m_freem(m);
1166 	tp->t_flags |= TF_ACKNOW;
1167 	(void) tcp_output(tp);
1168 	return;
1169 
1170 dropwithreset:
1171 	if (om) {
1172 		(void) m_free(om);
1173 		om = 0;
1174 	}
1175 	/*
1176 	 * Generate a RST, dropping incoming segment.
1177 	 * Make ACK acceptable to originator of segment.
1178 	 * Don't bother to respond if destination was broadcast.
1179 	 */
1180 	if ((tiflags & TH_RST) || m->m_flags & M_BCAST)
1181 		goto drop;
1182 	if (tiflags & TH_ACK)
1183 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1184 	else {
1185 		if (tiflags & TH_SYN)
1186 			ti->ti_len++;
1187 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1188 		    TH_RST|TH_ACK);
1189 	}
1190 	/* destroy temporarily created socket */
1191 	if (dropsocket)
1192 		(void) soabort(so);
1193 	return;
1194 
1195 drop:
1196 	if (om)
1197 		(void) m_free(om);
1198 	/*
1199 	 * Drop space held by incoming segment and return.
1200 	 */
1201 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1202 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1203 	m_freem(m);
1204 	/* destroy temporarily created socket */
1205 	if (dropsocket)
1206 		(void) soabort(so);
1207 	return;
1208 }
1209 
1210 tcp_dooptions(tp, om, ti)
1211 	struct tcpcb *tp;
1212 	struct mbuf *om;
1213 	struct tcpiphdr *ti;
1214 {
1215 	register u_char *cp;
1216 	u_short mss;
1217 	int opt, optlen, cnt;
1218 
1219 	cp = mtod(om, u_char *);
1220 	cnt = om->m_len;
1221 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1222 		opt = cp[0];
1223 		if (opt == TCPOPT_EOL)
1224 			break;
1225 		if (opt == TCPOPT_NOP)
1226 			optlen = 1;
1227 		else {
1228 			optlen = cp[1];
1229 			if (optlen <= 0)
1230 				break;
1231 		}
1232 		switch (opt) {
1233 
1234 		default:
1235 			continue;
1236 
1237 		case TCPOPT_MAXSEG:
1238 			if (optlen != 4)
1239 				continue;
1240 			if (!(ti->ti_flags & TH_SYN))
1241 				continue;
1242 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1243 			NTOHS(mss);
1244 			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
1245 			break;
1246 		}
1247 	}
1248 	(void) m_free(om);
1249 }
1250 
1251 /*
1252  * Pull out of band byte out of a segment so
1253  * it doesn't appear in the user's data queue.
1254  * It is still reflected in the segment length for
1255  * sequencing purposes.
1256  */
1257 tcp_pulloutofband(so, ti, m)
1258 	struct socket *so;
1259 	struct tcpiphdr *ti;
1260 	register struct mbuf *m;
1261 {
1262 	int cnt = ti->ti_urp - 1;
1263 
1264 	while (cnt >= 0) {
1265 		if (m->m_len > cnt) {
1266 			char *cp = mtod(m, caddr_t) + cnt;
1267 			struct tcpcb *tp = sototcpcb(so);
1268 
1269 			tp->t_iobc = *cp;
1270 			tp->t_oobflags |= TCPOOB_HAVEDATA;
1271 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1272 			m->m_len--;
1273 			return;
1274 		}
1275 		cnt -= m->m_len;
1276 		m = m->m_next;
1277 		if (m == 0)
1278 			break;
1279 	}
1280 	panic("tcp_pulloutofband");
1281 }
1282 
1283 /*
1284  * Collect new round-trip time estimate
1285  * and update averages and current timeout.
1286  */
1287 tcp_xmit_timer(tp)
1288 	register struct tcpcb *tp;
1289 {
1290 	register short delta;
1291 
1292 	tcpstat.tcps_rttupdated++;
1293 	if (tp->t_srtt != 0) {
1294 		/*
1295 		 * srtt is stored as fixed point with 3 bits after the
1296 		 * binary point (i.e., scaled by 8).  The following magic
1297 		 * is equivalent to the smoothing algorithm in rfc793 with
1298 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1299 		 * point).  Adjust t_rtt to origin 0.
1300 		 */
1301 		delta = tp->t_rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1302 		if ((tp->t_srtt += delta) <= 0)
1303 			tp->t_srtt = 1;
1304 		/*
1305 		 * We accumulate a smoothed rtt variance (actually, a
1306 		 * smoothed mean difference), then set the retransmit
1307 		 * timer to smoothed rtt + 4 times the smoothed variance.
1308 		 * rttvar is stored as fixed point with 2 bits after the
1309 		 * binary point (scaled by 4).  The following is
1310 		 * equivalent to rfc793 smoothing with an alpha of .75
1311 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
1312 		 * rfc793's wired-in beta.
1313 		 */
1314 		if (delta < 0)
1315 			delta = -delta;
1316 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1317 		if ((tp->t_rttvar += delta) <= 0)
1318 			tp->t_rttvar = 1;
1319 	} else {
1320 		/*
1321 		 * No rtt measurement yet - use the unsmoothed rtt.
1322 		 * Set the variance to half the rtt (so our first
1323 		 * retransmit happens at 2*rtt)
1324 		 */
1325 		tp->t_srtt = tp->t_rtt << TCP_RTT_SHIFT;
1326 		tp->t_rttvar = tp->t_rtt << (TCP_RTTVAR_SHIFT - 1);
1327 	}
1328 	tp->t_rtt = 0;
1329 	tp->t_rxtshift = 0;
1330 
1331 	/*
1332 	 * the retransmit should happen at rtt + 4 * rttvar.
1333 	 * Because of the way we do the smoothing, srtt and rttvar
1334 	 * will each average +1/2 tick of bias.  When we compute
1335 	 * the retransmit timer, we want 1/2 tick of rounding and
1336 	 * 1 extra tick because of +-1/2 tick uncertainty in the
1337 	 * firing of the timer.  The bias will give us exactly the
1338 	 * 1.5 tick we need.  But, because the bias is
1339 	 * statistical, we have to test that we don't drop below
1340 	 * the minimum feasible timer (which is 2 ticks).
1341 	 */
1342 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1343 	    tp->t_rttmin, TCPTV_REXMTMAX);
1344 
1345 	/*
1346 	 * We received an ack for a packet that wasn't retransmitted;
1347 	 * it is probably safe to discard any error indications we've
1348 	 * received recently.  This isn't quite right, but close enough
1349 	 * for now (a route might have failed after we sent a segment,
1350 	 * and the return path might not be symmetrical).
1351 	 */
1352 	tp->t_softerror = 0;
1353 }
1354 
1355 /*
1356  * Determine a reasonable value for maxseg size.
1357  * If the route is known, check route for mtu.
1358  * If none, use an mss that can be handled on the outgoing
1359  * interface without forcing IP to fragment; if bigger than
1360  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1361  * to utilize large mbufs.  If no route is found, route has no mtu,
1362  * or the destination isn't local, use a default, hopefully conservative
1363  * size (usually 512 or the default IP max size, but no more than the mtu
1364  * of the interface), as we can't discover anything about intervening
1365  * gateways or networks.  We also initialize the congestion/slow start
1366  * window to be a single segment if the destination isn't local.
1367  * While looking at the routing entry, we also initialize other path-dependent
1368  * parameters from pre-set or cached values in the routing entry.
1369  */
1370 
1371 tcp_mss(tp, offer)
1372 	register struct tcpcb *tp;
1373 	u_short offer;
1374 {
1375 	struct route *ro;
1376 	register struct rtentry *rt;
1377 	struct ifnet *ifp;
1378 	register int rtt, mss;
1379 	u_long bufsize;
1380 	struct inpcb *inp;
1381 	struct socket *so;
1382 	extern int tcp_mssdflt, tcp_rttdflt;
1383 
1384 	inp = tp->t_inpcb;
1385 	ro = &inp->inp_route;
1386 
1387 	if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1388 		/* No route yet, so try to acquire one */
1389 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1390 			ro->ro_dst.sa_family = AF_INET;
1391 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1392 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1393 				inp->inp_faddr;
1394 			rtalloc(ro);
1395 		}
1396 		if ((rt = ro->ro_rt) == (struct rtentry *)0)
1397 			return (tcp_mssdflt);
1398 	}
1399 	ifp = rt->rt_ifp;
1400 	so = inp->inp_socket;
1401 
1402 #ifdef RTV_MTU	/* if route characteristics exist ... */
1403 	/*
1404 	 * While we're here, check if there's an initial rtt
1405 	 * or rttvar.  Convert from the route-table units
1406 	 * to scaled multiples of the slow timeout timer.
1407 	 */
1408 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1409 		if (rt->rt_rmx.rmx_locks & RTV_MTU)
1410 			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1411 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1412 		if (rt->rt_rmx.rmx_rttvar)
1413 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1414 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1415 		else
1416 			/* default variation is +- 1 rtt */
1417 			tp->t_rttvar =
1418 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1419 		TCPT_RANGESET(tp->t_rxtcur,
1420 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1421 		    tp->t_rttmin, TCPTV_REXMTMAX);
1422 	}
1423 	/*
1424 	 * if there's an mtu associated with the route, use it
1425 	 */
1426 	if (rt->rt_rmx.rmx_mtu)
1427 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1428 	else
1429 #endif /* RTV_MTU */
1430 	{
1431 		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1432 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1433 		if (mss > MCLBYTES)
1434 			mss &= ~(MCLBYTES-1);
1435 #else
1436 		if (mss > MCLBYTES)
1437 			mss = mss / MCLBYTES * MCLBYTES;
1438 #endif
1439 		if (!in_localaddr(inp->inp_faddr))
1440 			mss = min(mss, tcp_mssdflt);
1441 	}
1442 	/*
1443 	 * The current mss, t_maxseg, is initialized to the default value.
1444 	 * If we compute a smaller value, reduce the current mss.
1445 	 * If we compute a larger value, return it for use in sending
1446 	 * a max seg size option, but don't store it for use
1447 	 * unless we received an offer at least that large from peer.
1448 	 * However, do not accept offers under 32 bytes.
1449 	 */
1450 	if (offer)
1451 		mss = min(mss, offer);
1452 	mss = max(mss, 32);		/* sanity */
1453 	if (mss < tp->t_maxseg || offer != 0) {
1454 		/*
1455 		 * If there's a pipesize, change the socket buffer
1456 		 * to that size.  Make the socket buffers an integral
1457 		 * number of mss units; if the mss is larger than
1458 		 * the socket buffer, decrease the mss.
1459 		 */
1460 #ifdef RTV_SPIPE
1461 		if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1462 #endif
1463 			bufsize = so->so_snd.sb_hiwat;
1464 		if (bufsize < mss)
1465 			mss = bufsize;
1466 		else {
1467 			bufsize = min(bufsize, SB_MAX) / mss * mss;
1468 			(void) sbreserve(&so->so_snd, bufsize);
1469 		}
1470 		tp->t_maxseg = mss;
1471 
1472 #ifdef RTV_RPIPE
1473 		if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1474 #endif
1475 			bufsize = so->so_rcv.sb_hiwat;
1476 		if (bufsize > mss) {
1477 			bufsize = min(bufsize, SB_MAX) / mss * mss;
1478 			(void) sbreserve(&so->so_rcv, bufsize);
1479 		}
1480 	}
1481 	tp->snd_cwnd = mss;
1482 
1483 #ifdef RTV_SSTHRESH
1484 	if (rt->rt_rmx.rmx_ssthresh) {
1485 		/*
1486 		 * There's some sort of gateway or interface
1487 		 * buffer limit on the path.  Use this to set
1488 		 * the slow start threshhold, but set the
1489 		 * threshold to no less than 2*mss.
1490 		 */
1491 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1492 	}
1493 #endif /* RTV_MTU */
1494 	return (mss);
1495 }
1496