1 /* $KAME: sctp_pcb.h,v 1.21 2005/07/16 01:18:47 suz Exp $ */ 2 /* $NetBSD: sctp_pcb.h,v 1.3 2020/01/19 20:51:13 riastradh Exp $ */ 3 4 #ifndef __SCTP_PCB_H__ 5 #define __SCTP_PCB_H__ 6 7 /* 8 * Copyright (c) 2001, 2002, 2003, 2004 Cisco Systems, Inc. 9 * All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by Cisco Systems, Inc. 22 * 4. Neither the name of the project nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY CISCO SYSTEMS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL CISCO SYSTEMS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 /* 40 * We must have V6 so the size of the proto can be calculated. Otherwise 41 * we would not allocate enough for Net/Open BSD :-< 42 */ 43 #include <net/if.h> 44 #include <netinet/ip6.h> 45 #include <netinet6/ip6_var.h> 46 #include <netinet6/ip6protosw.h> 47 #include <netinet6/in6_var.h> 48 #include <netinet6/in6_pcb.h> 49 50 #include <netinet/sctp.h> 51 #include <netinet/sctp_constants.h> 52 53 LIST_HEAD(sctppcbhead, sctp_inpcb); 54 LIST_HEAD(sctpasochead, sctp_tcb); 55 TAILQ_HEAD(sctpsocketq, sctp_socket_q_list); 56 LIST_HEAD(sctpladdr, sctp_laddr); 57 LIST_HEAD(sctpvtaghead, sctp_tagblock); 58 59 #include <netinet/sctp_structs.h> 60 #include <netinet/sctp_uio.h> 61 62 /* 63 * PCB flags 64 */ 65 #define SCTP_PCB_FLAGS_UDPTYPE 0x00000001 66 #define SCTP_PCB_FLAGS_TCPTYPE 0x00000002 67 #define SCTP_PCB_FLAGS_BOUNDALL 0x00000004 68 #define SCTP_PCB_FLAGS_ACCEPTING 0x00000008 69 #define SCTP_PCB_FLAGS_UNBOUND 0x00000010 70 #define SCTP_PCB_FLAGS_DO_ASCONF 0x00000020 71 #define SCTP_PCB_FLAGS_AUTO_ASCONF 0x00000040 72 /* socket options */ 73 #define SCTP_PCB_FLAGS_NODELAY 0x00000100 74 #define SCTP_PCB_FLAGS_AUTOCLOSE 0x00000200 75 #define SCTP_PCB_FLAGS_RECVDATAIOEVNT 0x00000400 76 #define SCTP_PCB_FLAGS_RECVASSOCEVNT 0x00000800 77 #define SCTP_PCB_FLAGS_RECVPADDREVNT 0x00001000 78 #define SCTP_PCB_FLAGS_RECVPEERERR 0x00002000 79 #define SCTP_PCB_FLAGS_RECVSENDFAILEVNT 0x00004000 80 #define SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT 0x00008000 81 #define SCTP_PCB_FLAGS_ADAPTIONEVNT 0x00010000 82 #define SCTP_PCB_FLAGS_PDAPIEVNT 0x00020000 83 #define SCTP_PCB_FLAGS_STREAM_RESETEVNT 0x00040000 84 #define SCTP_PCB_FLAGS_NO_FRAGMENT 0x00080000 85 /* TCP model support */ 86 #define SCTP_PCB_FLAGS_CONNECTED 0x00100000 87 #define SCTP_PCB_FLAGS_IN_TCPPOOL 0x00200000 88 #define SCTP_PCB_FLAGS_DONT_WAKE 0x00400000 89 #define SCTP_PCB_FLAGS_WAKEOUTPUT 0x00800000 90 #define SCTP_PCB_FLAGS_WAKEINPUT 0x01000000 91 #define SCTP_PCB_FLAGS_BOUND_V6 0x02000000 92 #define SCTP_PCB_FLAGS_NEEDS_MAPPED_V4 0x04000000 93 #define SCTP_PCB_FLAGS_BLOCKING_IO 0x08000000 94 #define SCTP_PCB_FLAGS_SOCKET_GONE 0x10000000 95 #define SCTP_PCB_FLAGS_SOCKET_ALLGONE 0x20000000 96 97 /* flags to copy to new PCB */ 98 #define SCTP_PCB_COPY_FLAGS 0x0707ff64 99 100 #define SCTP_PCBHASH_ALLADDR(port, mask) (port & mask) 101 #define SCTP_PCBHASH_ASOC(tag, mask) (tag & mask) 102 103 struct sctp_laddr { 104 LIST_ENTRY(sctp_laddr) sctp_nxt_addr; /* next in list */ 105 struct ifaddr *ifa; 106 }; 107 108 struct sctp_timewait { 109 uint32_t tv_sec_at_expire; /* the seconds from boot to expire */ 110 uint32_t v_tag; /* the vtag that can not be reused */ 111 }; 112 113 struct sctp_tagblock { 114 LIST_ENTRY(sctp_tagblock) sctp_nxt_tagblock; 115 struct sctp_timewait vtag_block[SCTP_NUMBER_IN_VTAG_BLOCK]; 116 }; 117 118 struct sctp_epinfo { 119 struct sctpasochead *sctp_asochash; 120 u_long hashasocmark; 121 122 struct sctppcbhead *sctp_ephash; 123 u_long hashmark; 124 125 /* 126 * The TCP model represents a substantial overhead in that we get 127 * an additional hash table to keep explicit connections in. The 128 * listening TCP endpoint will exist in the usual ephash above and 129 * accept only INIT's. It will be incapable of sending off an INIT. 130 * When a dg arrives we must look in the normal ephash. If we find 131 * a TCP endpoint that will tell us to go to the specific endpoint 132 * hash and re-hash to find the right assoc/socket. If we find a 133 * UDP model socket we then must complete the lookup. If this fails, 134 * i.e. no association can be found then we must continue to see if 135 * a sctp_peeloff()'d socket is in the tcpephash (a spun off socket 136 * acts like a TCP model connected socket). 137 */ 138 struct sctppcbhead *sctp_tcpephash; 139 u_long hashtcpmark; 140 uint32_t hashtblsize; 141 142 struct sctppcbhead listhead; 143 144 struct sctpiterators iteratorhead; 145 146 /* ep zone info */ 147 #if defined(__FreeBSD__) || defined(__APPLE__) 148 #if __FreeBSD_version >= 500000 149 struct uma_zone *ipi_zone_ep; 150 struct uma_zone *ipi_zone_asoc; 151 struct uma_zone *ipi_zone_laddr; 152 struct uma_zone *ipi_zone_net; 153 struct uma_zone *ipi_zone_chunk; 154 struct uma_zone *ipi_zone_sockq; 155 #else 156 struct vm_zone *ipi_zone_ep; 157 struct vm_zone *ipi_zone_asoc; 158 struct vm_zone *ipi_zone_laddr; 159 struct vm_zone *ipi_zone_net; 160 struct vm_zone *ipi_zone_chunk; 161 struct vm_zone *ipi_zone_sockq; 162 #endif 163 #endif 164 #if defined(__NetBSD__) || defined(__OpenBSD__) 165 struct pool ipi_zone_ep; 166 struct pool ipi_zone_asoc; 167 struct pool ipi_zone_laddr; 168 struct pool ipi_zone_net; 169 struct pool ipi_zone_chunk; 170 struct pool ipi_zone_sockq; 171 struct pool ipi_zone_hash; 172 #endif 173 174 #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 175 struct mtx ipi_ep_mtx; 176 struct mtx it_mtx; 177 #elif 0 /* defined(__NetBSD__) */ 178 krwlock_t ipi_ep_mtx; 179 kmutex_t it_mtx; 180 #endif 181 u_int ipi_count_ep; 182 u_quad_t ipi_gencnt_ep; 183 184 /* assoc/tcb zone info */ 185 u_int ipi_count_asoc; 186 u_quad_t ipi_gencnt_asoc; 187 188 /* local addrlist zone info */ 189 u_int ipi_count_laddr; 190 u_quad_t ipi_gencnt_laddr; 191 192 /* remote addrlist zone info */ 193 u_int ipi_count_raddr; 194 u_quad_t ipi_gencnt_raddr; 195 196 /* chunk structure list for output */ 197 u_int ipi_count_chunk; 198 u_quad_t ipi_gencnt_chunk; 199 200 /* socket queue zone info */ 201 u_int ipi_count_sockq; 202 u_quad_t ipi_gencnt_sockq; 203 204 struct sctpvtaghead vtag_timewait[SCTP_STACK_VTAG_HASH_SIZE]; 205 206 #ifdef _SCTP_NEEDS_CALLOUT_ 207 struct calloutlist callqueue; 208 #endif /* _SCTP_NEEDS_CALLOUT_ */ 209 210 uint32_t mbuf_track; 211 212 /* for port allocations */ 213 uint16_t lastport; 214 uint16_t lastlow; 215 uint16_t lasthi; 216 217 }; 218 219 extern uint32_t sctp_pegs[SCTP_NUMBER_OF_PEGS]; 220 /* 221 * Here we have all the relevant information for each SCTP entity created. 222 * We will need to modify this as approprate. We also need to figure out 223 * how to access /dev/random. 224 */ 225 struct sctp_pcb { 226 unsigned int time_of_secret_change; /* number of seconds from timeval.tv_sec */ 227 uint32_t secret_key[SCTP_HOW_MANY_SECRETS][SCTP_NUMBER_OF_SECRETS]; 228 unsigned int size_of_a_cookie; 229 230 unsigned int sctp_timeoutticks[SCTP_NUM_TMRS]; 231 unsigned int sctp_minrto; 232 unsigned int sctp_maxrto; 233 unsigned int initial_rto; 234 235 int initial_init_rto_max; 236 237 uint32_t sctp_sws_sender; 238 uint32_t sctp_sws_receiver; 239 240 /* various thresholds */ 241 /* Max times I will init at a guy */ 242 uint16_t max_init_times; 243 244 /* Max times I will send before we consider someone dead */ 245 uint16_t max_send_times; 246 247 uint16_t def_net_failure; 248 249 /* number of streams to pre-open on a association */ 250 uint16_t pre_open_stream_count; 251 uint16_t max_open_streams_intome; 252 253 /* 254 * This timer is kept running per endpoint. When it fires it 255 * will change the secret key. The default is once a hour 256 */ 257 struct sctp_timer signature_change; 258 int def_cookie_life; 259 /* defaults to 0 */ 260 int auto_close_time; 261 uint32_t initial_sequence_debug; 262 uint32_t adaption_layer_indicator; 263 uint8_t max_burst; 264 char current_secret_number; 265 char last_secret_number; 266 }; 267 268 #ifndef SCTP_ALIGNMENT 269 #define SCTP_ALIGNMENT 32 270 #endif 271 272 #ifndef SCTP_ALIGNM1 273 #define SCTP_ALIGNM1 (SCTP_ALIGNMENT-1) 274 #endif 275 276 #define sctp_lport ip_inp.inp.inp_lport 277 278 struct sctp_socket_q_list { 279 struct sctp_tcb *tcb; 280 TAILQ_ENTRY(sctp_socket_q_list) next_sq; 281 }; 282 283 struct sctp_inpcb { 284 /* 285 * put an inpcb in front of it all, kind of a waste but we need 286 * to for compatability with all the other stuff. 287 */ 288 union { 289 struct inpcb inp; 290 char align[(sizeof(struct in6pcb) + SCTP_ALIGNM1) & 291 ~SCTP_ALIGNM1]; 292 } ip_inp; 293 LIST_ENTRY(sctp_inpcb) sctp_list; /* lists all endpoints */ 294 /* hash of all endpoints for model */ 295 LIST_ENTRY(sctp_inpcb) sctp_hash; 296 297 /* count of local addresses bound, 0 if bound all */ 298 int laddr_count; 299 /* list of addrs in use by the EP */ 300 struct sctpladdr sctp_addr_list; 301 /* used for source address selection rotation */ 302 struct sctp_laddr *next_addr_touse; 303 struct ifnet *next_ifn_touse; 304 /* back pointer to our socket */ 305 struct socket *sctp_socket; 306 uint32_t sctp_flags; /* flag set */ 307 struct sctp_pcb sctp_ep; /* SCTP ep data */ 308 /* head of the hash of all associations */ 309 struct sctpasochead *sctp_tcbhash; 310 u_long sctp_hashmark; 311 /* head of the list of all associations */ 312 struct sctpasochead sctp_asoc_list; 313 /* queue of TCB's waiting to stuff data up the socket */ 314 struct sctpsocketq sctp_queue_list; 315 void *sctp_tcb_at_block; 316 struct sctp_iterator *inp_starting_point_for_iterator; 317 int error_on_block; 318 uint32_t sctp_frag_point; 319 uint32_t sctp_vtag_first; 320 struct mbuf *pkt, *pkt_last, *sb_last_mpkt; 321 struct mbuf *control; 322 #if !(defined(__FreeBSD__) || defined(__APPLE__)) 323 #ifndef INP_IPV6 324 #define INP_IPV6 0x1 325 #endif 326 #ifndef INP_IPV4 327 #define INP_IPV4 0x2 328 #endif 329 u_char inp_vflag; 330 u_char inp_ip_ttl; 331 u_char inp_ip_tos; 332 u_char inp_ip_resv; 333 #endif 334 #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 335 struct mtx inp_mtx; 336 struct mtx inp_create_mtx; 337 u_int32_t refcount; 338 #elif defined(__NetBSD__) 339 kmutex_t inp_mtx; 340 kmutex_t inp_create_mtx; 341 u_int32_t refcount; 342 #endif 343 }; 344 345 struct sctp_tcb { 346 struct socket *sctp_socket; /* back pointer to socket */ 347 struct sctp_inpcb *sctp_ep; /* back pointer to ep */ 348 LIST_ENTRY(sctp_tcb) sctp_tcbhash; /* next link in hash table */ 349 LIST_ENTRY(sctp_tcb) sctp_tcblist; /* list of all of the TCB's */ 350 LIST_ENTRY(sctp_tcb) sctp_asocs; 351 struct sctp_association asoc; 352 uint16_t rport; /* remote port in network format */ 353 uint16_t resv; 354 #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 355 struct mtx tcb_mtx; 356 #elif defined(__NetBSD__) 357 kmutex_t tcb_mtx; 358 #endif 359 }; 360 361 #if defined(__FreeBSD__) && __FreeBSD_version >= 503000 362 363 /* General locking concepts: 364 * The goal of our locking is to of course provide 365 * consistency and yet minimize overhead. We will 366 * attempt to use non-recursive locks which are supposed 367 * to be quite inexpensive. Now in order to do this the goal 368 * is that most functions are not aware of locking. Once we 369 * have a TCB we lock it and unlock when we are through. This 370 * means that the TCB lock is kind-of a "global" lock when 371 * working on an association. Caution must be used when 372 * asserting a TCB_LOCK since if we recurse we deadlock. 373 * 374 * Most other locks (INP and INFO) attempt to localize 375 * the locking i.e. we try to contain the lock and 376 * unlock within the function that needs to lock it. This 377 * sometimes mean we do extra locks and unlocks and loose 378 * a bit of efficency, but if the performance statements about 379 * non-recursive locks are true this should not be a problem. 380 * One issue that arises with this only lock when needed 381 * is that if an implicit association setup is done we 382 * have a problem. If at the time I lookup an association 383 * I have NULL in the tcb return, by the time I call to 384 * create the association some other processor could 385 * have created it. This is what the CREATE lock on 386 * the endpoint. Places where we will be implicitly 387 * creating the association OR just creating an association 388 * (the connect call) will assert the CREATE_INP lock. This 389 * will assure us that during all the lookup of INP and INFO 390 * if another creator is also locking/looking up we can 391 * gate the two to synchronize. So the CREATE_INP lock is 392 * also another one we must use extreme caution in locking 393 * to make sure we don't hit a re-entrancy issue. 394 * 395 * For non FreeBSD 5.x and above we provide a bunch 396 * of EMPTY lock macro's so we can blatantly put locks 397 * everywhere and they reduce to nothing on NetBSD/OpenBSD 398 * and FreeBSD 4.x 399 * 400 */ 401 402 403 /* When working with the global SCTP lists we lock and unlock 404 * the INP_INFO lock. So when we go to lookup an association 405 * we will want to do a SCTP_INP_INFO_RLOCK() and then when 406 * we want to add a new association to the sctppcbinfo list's 407 * we will do a SCTP_INP_INFO_WLOCK(). 408 */ 409 410 /* 411 * FIX ME, all locks right now have a 412 * recursive check/panic to validate that I 413 * don't have any lock recursion going on. 414 */ 415 416 #define SCTP_INP_INFO_LOCK_INIT() \ 417 mtx_init(&sctppcbinfo.ipi_ep_mtx, "sctp", "inp_info", MTX_DEF) 418 419 #ifdef xyzzy 420 #define SCTP_INP_INFO_RLOCK() do { \ 421 if (mtx_owned(&sctppcbinfo.ipi_ep_mtx)) \ 422 panic("INP INFO Recursive Lock-R"); \ 423 mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 424 } while (0) 425 426 #define SCTP_INP_INFO_WLOCK() do { \ 427 if (mtx_owned(&sctppcbinfo.ipi_ep_mtx)) \ 428 panic("INP INFO Recursive Lock-W"); \ 429 mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 430 } while (0) 431 432 #else 433 434 void SCTP_INP_INFO_RLOCK(void); 435 void SCTP_INP_INFO_WLOCK(void); 436 437 #endif 438 439 #define SCTP_INP_INFO_RUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 440 #define SCTP_INP_INFO_WUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 441 442 /* The INP locks we will use for locking an SCTP endpoint, so for 443 * example if we want to change something at the endpoint level for 444 * example cookie secrets we lock the INP level. 445 */ 446 #define SCTP_INP_LOCK_INIT(_inp) \ 447 mtx_init(&(_inp)->inp_mtx, "sctp", "inp", MTX_DEF | MTX_DUPOK) 448 449 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 450 mtx_init(&(_inp)->inp_create_mtx, "sctp", "inp_create", \ 451 MTX_DEF | MTX_DUPOK) 452 453 #define SCTP_INP_LOCK_DESTROY(_inp) mtx_destroy(&(_inp)->inp_mtx) 454 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) mtx_destroy(&(_inp)->inp_create_mtx) 455 456 #ifdef xyzzy 457 #define SCTP_INP_RLOCK(_inp) do { \ 458 struct sctp_tcb *xx_stcb; \ 459 xx_stcb = LIST_FIRST(&_inp->sctp_asoc_list); \ 460 if (xx_stcb) \ 461 if (mtx_owned(&(xx_stcb)->tcb_mtx)) \ 462 panic("I own TCB lock?"); \ 463 if (mtx_owned(&(_inp)->inp_mtx)) \ 464 panic("INP Recursive Lock-R"); \ 465 mtx_lock(&(_inp)->inp_mtx); \ 466 } while (0) 467 468 #define SCTP_INP_WLOCK(_inp) do { \ 469 struct sctp_tcb *xx_stcb; \ 470 xx_stcb = LIST_FIRST(&_inp->sctp_asoc_list); \ 471 if (xx_stcb) \ 472 if (mtx_owned(&(xx_stcb)->tcb_mtx)) \ 473 panic("I own TCB lock?"); \ 474 if (mtx_owned(&(_inp)->inp_mtx)) \ 475 panic("INP Recursive Lock-W"); \ 476 mtx_lock(&(_inp)->inp_mtx); \ 477 } while (0) 478 479 #else 480 void SCTP_INP_RLOCK(struct sctp_inpcb *); 481 void SCTP_INP_WLOCK(struct sctp_inpcb *); 482 483 #endif 484 485 486 #define SCTP_INP_INCR_REF(_inp) _inp->refcount++ 487 488 #define SCTP_INP_DECR_REF(_inp) do { \ 489 if (_inp->refcount > 0) \ 490 _inp->refcount--; \ 491 else \ 492 panic("bad inp refcount"); \ 493 }while (0) 494 495 #define SCTP_ASOC_CREATE_LOCK(_inp) do { \ 496 if (mtx_owned(&(_inp)->inp_create_mtx)) \ 497 panic("INP Recursive CREATE"); \ 498 mtx_lock(&(_inp)->inp_create_mtx); \ 499 } while (0) 500 501 #define SCTP_INP_RUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 502 #define SCTP_INP_WUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 503 #define SCTP_ASOC_CREATE_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_create_mtx) 504 505 /* For the majority of things (once we have found the association) we 506 * will lock the actual association mutex. This will protect all 507 * the assoiciation level queues and streams and such. We will 508 * need to lock the socket layer when we stuff data up into 509 * the receiving sb_mb. I.e. we will need to do an extra 510 * SOCKBUF_LOCK(&so->so_rcv) even though the association is 511 * locked. 512 */ 513 514 #define SCTP_TCB_LOCK_INIT(_tcb) \ 515 mutex_init(&(_tcb)->tcb_mtx, MUTEX_DEFAULT, IPL_NET) 516 #define SCTP_TCB_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_mtx) 517 #define SCTP_TCB_LOCK(_tcb) do { \ 518 if (!mtx_owned(&(_tcb->sctp_ep->inp_mtx))) \ 519 panic("TCB locking and no INP lock"); \ 520 if (mtx_owned(&(_tcb)->tcb_mtx)) \ 521 panic("TCB Lock-recursive"); \ 522 mtx_lock(&(_tcb)->tcb_mtx); \ 523 } while (0) 524 #define SCTP_TCB_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_mtx) 525 526 #define SCTP_ITERATOR_LOCK_INIT() \ 527 mtx_init(&sctppcbinfo.it_mtx, "sctp", "iterator", MTX_DEF) 528 #define SCTP_ITERATOR_LOCK() do { \ 529 if (mtx_owned(&sctppcbinfo.it_mtx)) \ 530 panic("Iterator Lock"); \ 531 mtx_lock(&sctppcbinfo.it_mtx); \ 532 } while (0) 533 534 #define SCTP_ITERATOR_UNLOCK() mtx_unlock(&sctppcbinfo.it_mtx) 535 #define SCTP_ITERATOR_LOCK_DESTROY() mtx_destroy(&sctppcbinfo.it_mtx) 536 #elif 0 /* defined(__NetBSD__) */ 537 #define SCTP_INP_INFO_LOCK_INIT() \ 538 rw_init(&sctppcbinfo.ipi_ep_mtx) 539 540 #define SCTP_INP_INFO_RLOCK() do { \ 541 rw_enter(&sctppcbinfo.ipi_ep_mtx, RW_READER); \ 542 } while (0) 543 544 #define SCTP_INP_INFO_WLOCK() do { \ 545 rw_enter(&sctppcbinfo.ipi_ep_mtx, RW_WRITER); \ 546 } while (0) 547 548 #define SCTP_INP_INFO_RUNLOCK() rw_exit(&sctppcbinfo.ipi_ep_mtx) 549 #define SCTP_INP_INFO_WUNLOCK() rw_exit(&sctppcbinfo.ipi_ep_mtx) 550 551 /* The INP locks we will use for locking an SCTP endpoint, so for 552 * example if we want to change something at the endpoint level for 553 * example cookie secrets we lock the INP level. 554 */ 555 #define SCTP_INP_LOCK_INIT(_inp) \ 556 mutex_init(&(_inp)->inp_mtx, MUTEX_DEFAULT, IPL_NET) 557 558 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 559 mutex_init(&(_inp)->inp_create_mtx, MUTEX_DEFAULT, IPL_NET) 560 561 #define SCTP_INP_LOCK_DESTROY(_inp) mutex_destroy(&(_inp)->inp_mtx) 562 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) mutex_destroy(&(_inp)->inp_create_mtx) 563 564 #define SCTP_INP_RLOCK(_inp) do { \ 565 mutex_enter(&(_inp)->inp_mtx); \ 566 } while (0) 567 568 #define SCTP_INP_WLOCK(_inp) do { \ 569 mutex_enter(&(_inp)->inp_mtx); \ 570 } while (0) 571 572 573 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1) 574 575 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1) 576 577 #define SCTP_ASOC_CREATE_LOCK(_inp) do { \ 578 mutex_enter(&(_inp)->inp_create_mtx); \ 579 } while (0) 580 581 #define SCTP_INP_RUNLOCK(_inp) mutex_exit(&(_inp)->inp_mtx) 582 #define SCTP_INP_WUNLOCK(_inp) mutex_exit(&(_inp)->inp_mtx) 583 #define SCTP_ASOC_CREATE_UNLOCK(_inp) mutex_exit(&(_inp)->inp_create_mtx) 584 585 /* For the majority of things (once we have found the association) we 586 * will lock the actual association mutex. This will protect all 587 * the assoiciation level queues and streams and such. We will 588 * need to lock the socket layer when we stuff data up into 589 * the receiving sb_mb. I.e. we will need to do an extra 590 * SOCKBUF_LOCK(&so->so_rcv) even though the association is 591 * locked. 592 */ 593 594 #define SCTP_TCB_LOCK_INIT(_tcb) \ 595 mutex_init(&(_tcb)->tcb_mtx, MUTEX_DEFAULT, IPL_NET) 596 #define SCTP_TCB_LOCK_DESTROY(_tcb) mutex_destroy(&(_tcb)->tcb_mtx) 597 #define SCTP_TCB_LOCK(_tcb) do { \ 598 mutex_enter(&(_tcb)->tcb_mtx); \ 599 } while (0) 600 #define SCTP_TCB_UNLOCK(_tcb) mutex_exit(&(_tcb)->tcb_mtx) 601 602 #define SCTP_ITERATOR_LOCK_INIT() \ 603 mutex_init(&sctppcbinfo.it_mtx, MUTEX_DEFAULT, IPL_NET) 604 #define SCTP_ITERATOR_LOCK() do { \ 605 if (mutex_owned(&sctppcbinfo.it_mtx)) \ 606 panic("Iterator Lock"); \ 607 mutex_enter(&sctppcbinfo.it_mtx); \ 608 } while (0) 609 610 #define SCTP_ITERATOR_UNLOCK() mutex_exit(&sctppcbinfo.it_mtx) 611 #define SCTP_ITERATOR_LOCK_DESTROY() mutex_destroy(&sctppcbinfo.it_mtx) 612 #else 613 614 /* Empty Lock declarations for all other 615 * platforms pre-process away to nothing. 616 */ 617 618 /* Lock for INFO stuff */ 619 #define SCTP_INP_INFO_LOCK_INIT() 620 #define SCTP_INP_INFO_RLOCK() 621 #define SCTP_INP_INFO_RLOCK() 622 #define SCTP_INP_INFO_WLOCK() 623 624 #define SCTP_INP_INFO_RUNLOCK() 625 #define SCTP_INP_INFO_WUNLOCK() 626 /* Lock for INP */ 627 #define SCTP_INP_LOCK_INIT(_inp) 628 #define SCTP_INP_LOCK_DESTROY(_inp) 629 #define SCTP_INP_RLOCK(_inp) 630 #define SCTP_INP_RUNLOCK(_inp) 631 #define SCTP_INP_WLOCK(_inp) 632 #define SCTP_INP_INCR_REF(_inp) 633 #define SCTP_INP_DECR_REF(_inp) 634 #define SCTP_INP_WUNLOCK(_inp) 635 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) 636 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) 637 #define SCTP_ASOC_CREATE_LOCK(_inp) 638 #define SCTP_ASOC_CREATE_UNLOCK(_inp) 639 /* Lock for TCB */ 640 #define SCTP_TCB_LOCK_INIT(_tcb) 641 #define SCTP_TCB_LOCK_DESTROY(_tcb) 642 #define SCTP_TCB_LOCK(_tcb) 643 #define SCTP_TCB_UNLOCK(_tcb) 644 /* iterator locks */ 645 #define SCTP_ITERATOR_LOCK_INIT() 646 #define SCTP_ITERATOR_LOCK() 647 #define SCTP_ITERATOR_UNLOCK() 648 #define SCTP_ITERATOR_LOCK_DESTROY() 649 #endif 650 651 #if defined(_KERNEL) 652 653 extern struct sctp_epinfo sctppcbinfo; 654 extern int sctp_auto_asconf; 655 656 int SCTP6_ARE_ADDR_EQUAL(const struct in6_addr *a, const struct in6_addr *b); 657 658 void sctp_fill_pcbinfo(struct sctp_pcbinfo *); 659 660 struct sctp_nets *sctp_findnet(struct sctp_tcb *, struct sockaddr *); 661 662 struct sctp_inpcb *sctp_pcb_findep(struct sockaddr *, int, int); 663 664 int sctp_inpcb_bind(struct socket *, struct sockaddr *, struct lwp *); 665 666 struct sctp_tcb *sctp_findassociation_addr(struct mbuf *, int, int, 667 struct sctphdr *, struct sctp_chunkhdr *, struct sctp_inpcb **, 668 struct sctp_nets **); 669 670 struct sctp_tcb *sctp_findassociation_addr_sa(struct sockaddr *, 671 struct sockaddr *, struct sctp_inpcb **, struct sctp_nets **, int); 672 673 void sctp_move_pcb_and_assoc(struct sctp_inpcb *, struct sctp_inpcb *, 674 struct sctp_tcb *); 675 676 /* 677 * For this call ep_addr, the to is the destination endpoint address 678 * of the peer (relative to outbound). The from field is only used if 679 * the TCP model is enabled and helps distingush amongst the subset 680 * bound (non-boundall). The TCP model MAY change the actual ep field, 681 * this is why it is passed. 682 */ 683 struct sctp_tcb *sctp_findassociation_ep_addr(struct sctp_inpcb **, 684 struct sockaddr *, struct sctp_nets **, struct sockaddr *, struct sctp_tcb *); 685 686 struct sctp_tcb *sctp_findassociation_ep_asocid(struct sctp_inpcb *, vaddr_t); 687 688 struct sctp_tcb *sctp_findassociation_ep_asconf(struct mbuf *, int, int, 689 struct sctphdr *, struct sctp_inpcb **, struct sctp_nets **); 690 691 int sctp_inpcb_alloc(struct socket *); 692 693 694 int sctp_is_address_on_local_host(struct sockaddr *addr); 695 696 void sctp_inpcb_free(struct sctp_inpcb *, int); 697 698 struct sctp_tcb *sctp_aloc_assoc(struct sctp_inpcb *, struct sockaddr *, 699 int, int *, uint32_t); 700 701 void sctp_free_assoc(struct sctp_inpcb *, struct sctp_tcb *); 702 703 int sctp_add_local_addr_ep(struct sctp_inpcb *, struct ifaddr *); 704 705 int sctp_insert_laddr(struct sctpladdr *, struct ifaddr *); 706 707 void sctp_remove_laddr(struct sctp_laddr *); 708 709 int sctp_del_local_addr_ep(struct sctp_inpcb *, struct ifaddr *); 710 711 int sctp_del_local_addr_ep_sa(struct sctp_inpcb *, struct sockaddr *); 712 713 int sctp_add_remote_addr(struct sctp_tcb *, struct sockaddr *, int, int); 714 715 int sctp_del_remote_addr(struct sctp_tcb *, struct sockaddr *); 716 717 void sctp_pcb_init(void); 718 719 void sctp_free_remote_addr(struct sctp_nets *); 720 721 int sctp_add_local_addr_assoc(struct sctp_tcb *, struct ifaddr *); 722 723 int sctp_del_local_addr_assoc(struct sctp_tcb *, struct ifaddr *); 724 725 int sctp_del_local_addr_assoc_sa(struct sctp_tcb *, struct sockaddr *); 726 727 int sctp_load_addresses_from_init(struct sctp_tcb *, struct mbuf *, int, int, 728 int, struct sctphdr *, struct sockaddr *); 729 730 int sctp_set_primary_addr(struct sctp_tcb *, struct sockaddr *, struct sctp_nets *); 731 732 int sctp_is_vtag_good(struct sctp_inpcb *, uint32_t, struct timeval *); 733 734 /*void sctp_drain(void);*/ 735 736 int sctp_destination_is_reachable(struct sctp_tcb *, const struct sockaddr *); 737 738 int sctp_add_to_socket_q(struct sctp_inpcb *, struct sctp_tcb *); 739 740 struct sctp_tcb *sctp_remove_from_socket_q(struct sctp_inpcb *); 741 742 743 /* Null in last arg inpcb indicate run on ALL ep's. Specific 744 * inp in last arg indicates run on ONLY assoc's of the 745 * specified endpoint. 746 */ 747 int 748 sctp_initiate_iterator(asoc_func af, uint32_t, uint32_t, void *, uint32_t, 749 end_func ef, struct sctp_inpcb *); 750 751 void in6_sin6_2_sin (struct sockaddr_in *, 752 struct sockaddr_in6 *sin6); 753 754 #endif /* _KERNEL */ 755 #endif /* !__SCTP_PCB_H__ */ 756