xref: /netbsd-src/sys/netinet/portalgo.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: portalgo.c,v 1.1 2012/06/25 15:28:39 christos Exp $	*/
2 
3 /*
4  * Copyright 2011 Vlad Balan
5  *
6  * Written by Vlad Balan for the NetBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  */
30 
31 /*
32  * see:
33  *	RFC 6056 Recommendations for Transport-Protocol Port Randomization
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: portalgo.c,v 1.1 2012/06/25 15:28:39 christos Exp $");
38 
39 #include "opt_inet.h"
40 
41 #include <sys/param.h>
42 #include <sys/errno.h>
43 #include <sys/kauth.h>
44 #include <sys/uidinfo.h>
45 #include <sys/domain.h>
46 #include <sys/md5.h>
47 #include <sys/cprng.h>
48 
49 #include <net/if.h>
50 #include <net/route.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 
59 #ifdef INET6
60 #include <netinet/ip6.h>
61 #include <netinet6/ip6_var.h>
62 #include <netinet6/in6_pcb.h>
63 #endif
64 
65 #include <netinet/tcp_vtw.h>
66 
67 #include "portalgo.h"
68 
69 #define NPROTO 2
70 #define PORTALGO_TCP 0
71 #define PORTALGO_UDP 1
72 
73 #define NAF 2
74 #define PORTALGO_IPV4 0
75 #define PORTALGO_IPV6 1
76 
77 #define NRANGES 2
78 #define PORTALGO_LOWPORT 0
79 #define PORTALGO_HIGHPORT 1
80 
81 #if PORTALGO_DEBUG
82 static bool portalgo_debug = true;
83 #define DPRINTF if (portalgo_debug) printf
84 #else
85 #define DPRINTF while (/*CONSTCOND*/0) printf
86 #endif
87 
88 #ifdef INET
89 static int inet4_portalgo = PORTALGO_BSD;
90 #endif
91 #ifdef INET6
92 static int inet6_portalgo = PORTALGO_BSD;
93 #endif
94 
95 typedef struct {
96 	const char *name;
97 	int (*func)(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
98 } portalgo_algorithm_t;
99 
100 static int algo_bsd(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
101 static int algo_random_start(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
102 static int algo_random_pick(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
103 static int algo_hash(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
104 static int algo_doublehash(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
105 static int algo_randinc(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
106 
107 static const portalgo_algorithm_t algos[] = {
108 	{
109 		.name = "bsd",
110 		.func = algo_bsd
111 	},
112 	{
113 		.name = "random_start",
114 		.func = algo_random_start
115 	},
116 	{
117 		.name = "random_pick",
118 		.func = algo_random_pick
119 	},
120 	{
121 		.name = "hash",
122 		.func = algo_hash
123 	},
124 	{
125 		.name = "doublehash",
126 		.func = algo_doublehash
127 	},
128 	{
129 		.name = "randinc",
130 		.func = algo_randinc
131 	}
132 };
133 
134 #define NALGOS __arraycount(algos)
135 
136 static uint16_t portalgo_next_ephemeral[NPROTO][NAF][NRANGES][NALGOS];
137 
138 /*
139  * Access the pcb and copy the values of the last port and the ends of
140  * the port range.
141  */
142 static int
143 pcb_getports(struct inpcb_hdr *inp_hdr, uint16_t *lastport,
144     uint16_t *mymin, uint16_t *mymax, uint16_t **pnext_ephemeral, int algo)
145 {
146 	struct inpcbtable * const table = inp_hdr->inph_table;
147 	struct socket *so;
148 	int portalgo_proto;
149 	int portalgo_af;
150 	int portalgo_range;
151 
152 	so = inp_hdr->inph_socket;
153 	switch (so->so_type) {
154 	case SOCK_DGRAM: /* UDP or DCCP */
155 		portalgo_proto = PORTALGO_UDP;
156 		break;
157 	case SOCK_STREAM: /* TCP or SCTP */
158 		portalgo_proto = PORTALGO_TCP;
159 		break;
160 	default:
161 		return EPFNOSUPPORT;
162 	}
163 
164 	switch (inp_hdr->inph_af) {
165 #ifdef INET
166 	case AF_INET: {
167 		struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
168 
169 		portalgo_af = PORTALGO_IPV4;
170 		if (inp->inp_flags & INP_LOWPORT) {
171 			*mymin = lowportmin;
172 			*mymax = lowportmax;
173 			*lastport = table->inpt_lastlow;
174 			portalgo_range = PORTALGO_LOWPORT;
175 		} else {
176 			*mymin = anonportmin;
177 			*mymax = anonportmax;
178 			*lastport = table->inpt_lastport;
179 			portalgo_range = PORTALGO_HIGHPORT;
180 		}
181 		break;
182 	}
183 #endif
184 #ifdef INET6
185 	case AF_INET6: {
186 		struct in6pcb *in6p = (struct in6pcb *)(void *)inp_hdr;
187 
188 		portalgo_af = PORTALGO_IPV6;
189 		if (in6p->in6p_flags & IN6P_LOWPORT) {
190 			*mymin = ip6_lowportmin;
191 			*mymax = ip6_lowportmax;
192 			*lastport = table->inpt_lastlow;
193 			portalgo_range = PORTALGO_LOWPORT;
194 		} else {
195 			*mymin = ip6_anonportmin;
196 			*mymax = ip6_anonportmax;
197 			*lastport = table->inpt_lastport;
198 			portalgo_range = PORTALGO_HIGHPORT;
199 		}
200 		break;
201 	}
202 #endif
203 	default:
204 		return EAFNOSUPPORT;
205 	}
206 
207 	if (*mymin > *mymax) {	/* sanity check */
208 		u_int16_t swp;
209 
210 		swp = *mymin;
211 		*mymin = *mymax;
212 		*mymax = swp;
213 	}
214 
215 	DPRINTF("%s mymin:%d mymax:%d lastport:%d\n", __func__,
216 	    *mymin, *mymax, *lastport);
217 
218 	*pnext_ephemeral = &portalgo_next_ephemeral[portalgo_proto]
219 	    [portalgo_af][portalgo_range][algo];
220 
221 	DPRINTF("%s portalgo_proto:%d portalgo_af:%d portalgo_range:%d\n",
222 	    __func__, portalgo_proto, portalgo_af, portalgo_range);
223 	return 0;
224 }
225 
226 /*
227  * Check whether the port picked by the port randomizer is available
228  * and whether KAUTH approves of our choice. This part of the code
229  * shamelessly copied from in_pcb.c.
230  */
231 static bool
232 check_suitable_port(uint16_t port, struct inpcb_hdr *inp_hdr, kauth_cred_t cred)
233 {
234 	struct inpcbtable * const table = inp_hdr->inph_table;
235 #ifdef INET
236 	vestigial_inpcb_t vestigial;
237 #endif
238 	int error;
239 #ifdef INET6
240 	struct socket *so;
241 	int wild = 0;
242 #endif
243 
244 	DPRINTF("%s called for argument %d\n", __func__, port);
245 
246 	switch (inp_hdr->inph_af) {
247 #ifdef INET
248 	case AF_INET: { /* IPv4 */
249 		struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
250 		struct inpcb *pcb;
251 		struct sockaddr_in sin;
252 
253 		sin.sin_addr = inp->inp_laddr;
254 		pcb = in_pcblookup_port(table, sin.sin_addr, htons(port), 1,
255 		    &vestigial);
256 
257 		DPRINTF("%s in_pcblookup_port returned %p and "
258 		    "vestigial.valid %d\n",
259 		    __func__, pcb, vestigial.valid);
260 
261 		if ((!pcb) && (!vestigial.valid)) {
262 			enum kauth_network_req req;
263 
264 			/* We have a free port. Check with the secmodel. */
265 			if (inp->inp_flags & INP_LOWPORT) {
266 #ifndef IPNOPRIVPORTS
267 				req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
268 #else
269 				req = KAUTH_REQ_NETWORK_BIND_PORT;
270 #endif
271 			} else
272 				req = KAUTH_REQ_NETWORK_BIND_PORT;
273 
274 			sin.sin_port = port;
275 			error = kauth_authorize_network(cred,
276 			    KAUTH_NETWORK_BIND,
277 			    req, inp->inp_socket, &sin, NULL);
278 			DPRINTF("%s kauth_authorize_network returned %d\n",
279 			    __func__, error);
280 
281 			if (error == 0) {
282 				DPRINTF("%s port approved\n", __func__);
283 				return true;	/* KAUTH agrees */
284 			}
285 		}
286 		break;
287 	}
288 #endif
289 #ifdef INET6
290 	case AF_INET6: { /* IPv6 */
291 		struct in6pcb *in6p = (struct in6pcb *)(void *)inp_hdr;
292 		struct sockaddr_in6 sin6;
293 		void *t;
294 
295 		sin6.sin6_addr = in6p->in6p_laddr;
296 		so = in6p->in6p_socket;
297 
298 		/* XXX: this is redundant when called from in6_pcbbind */
299 		if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
300 		    ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
301 			(so->so_options & SO_ACCEPTCONN) == 0))
302 			wild = 1;
303 
304 #ifdef INET
305 		if (IN6_IS_ADDR_V4MAPPED(&sin6.sin6_addr)) {
306 			t = in_pcblookup_port(table,
307 			    *(struct in_addr *)&sin6.sin6_addr.s6_addr32[3],
308 			    htons(port), wild, &vestigial);
309 			if (!t && vestigial.valid) {
310 				DPRINTF("%s in_pcblookup_port returned "
311 				    "a result\n", __func__);
312 				return false;
313 			}
314 		} else
315 #endif
316 		{
317 			t = in6_pcblookup_port(table, &sin6.sin6_addr,
318 			    htons(port), wild, &vestigial);
319 			if (!t && vestigial.valid) {
320 				DPRINTF("%s in6_pcblookup_port returned "
321 				    "a result\n", __func__);
322 				return false;
323 			}
324 		}
325 		if (t == NULL) {
326 			enum kauth_network_req req;
327 
328 			/* We have a free port. Check with the secmodel. */
329 			if (in6p->in6p_flags & IN6P_LOWPORT) {
330 #ifndef IPNOPRIVPORTS
331 				req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
332 #else
333 				req = KAUTH_REQ_NETWORK_BIND_PORT;
334 #endif
335 			} else {
336 				req = KAUTH_REQ_NETWORK_BIND_PORT;
337 			}
338 
339 			sin6.sin6_port = port;
340 			error = kauth_authorize_network(cred,
341 			    KAUTH_NETWORK_BIND, req, so, &sin6, NULL);
342 			if (error) {
343 				/* Secmodel says no. Keep looking. */
344 				DPRINTF("%s secmodel says no\n", __func__);
345 				return false;
346 			}
347 			DPRINTF("%s port approved\n", __func__);
348 			return true;
349 		}
350 		break;
351 	}
352 #endif
353 	default:
354 		DPRINTF("%s unknown address family\n", __func__);
355 		return false;
356 	}
357 	return false;
358 }
359 
360 /* This is the default BSD algorithm, as described in RFC 6056 */
361 static int
362 algo_bsd(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr, kauth_cred_t cred)
363 {
364 	uint16_t count;
365 	uint16_t mymin, mymax, lastport;
366 	uint16_t *next_ephemeral;
367 	int error;
368 
369 	DPRINTF("%s called\n", __func__);
370 	error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
371 	    &next_ephemeral, algo);
372 	if (error)
373 		return error;
374 	count = mymax - mymin + 1;
375 	do {
376 		uint16_t myport = *next_ephemeral;
377 
378 		if (myport < mymin || mymax < myport)
379 			myport = mymax;
380 		*next_ephemeral = myport - 1;
381 		if (check_suitable_port(myport, inp_hdr, cred)) {
382 			*port = myport;
383 			DPRINTF("%s returning port %d\n", __func__, *port);
384 			return 0;
385 		}
386 		count--;
387 	} while (count > 0);
388 
389 	DPRINTF("%s returning EAGAIN\n", __func__);
390 	return EAGAIN;
391 }
392 
393 /*
394  * The straightforward algorithm that calls random() in order to
395  * compute the increment to the next port number.
396  */
397 static int
398 algo_random_start(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
399     kauth_cred_t cred)
400 {
401 	uint16_t count, num_ephemeral;
402 	uint16_t mymin, mymax, lastport;
403 	uint16_t *next_ephemeral;
404 	int error;
405 
406 	DPRINTF("%s called\n", __func__);
407 
408 	error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
409 	    &next_ephemeral, algo);
410 	if (error)
411 		return error;
412 
413 	num_ephemeral = mymax - mymin + 1;
414 
415 	DPRINTF("num_ephemeral: %u\n", num_ephemeral);
416 
417 	*next_ephemeral = mymin + (cprng_fast32() % num_ephemeral);
418 
419 	DPRINTF("next_ephemeral initially: %u\n", *next_ephemeral);
420 
421 	count = num_ephemeral;
422 
423 	do {
424 		if (check_suitable_port(*next_ephemeral, inp_hdr, cred)) {
425 			*port = *next_ephemeral;
426 			DPRINTF("%s returning port %d\n", __func__, *port);
427 			return 0;
428 		}
429 		if (*next_ephemeral == mymax) {
430 			*next_ephemeral = mymin;
431 		} else
432 			(*next_ephemeral)++;
433 
434 		count--;
435 
436 
437 		DPRINTF("next_ephemeral: %u count: %u\n", *next_ephemeral,
438 		    count);
439 
440 	} while (count > 0);
441 
442 	DPRINTF("%s returning EINVAL\n", __func__);
443 
444 	return EINVAL;
445 }
446 
447 /*
448  * Since there is no state kept on the ports tried, we might actually
449  * give up before exhausting the free ports.
450  */
451 static int
452 algo_random_pick(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
453     kauth_cred_t cred)
454 {
455 	uint16_t count, num_ephemeral;
456 	uint16_t mymin, mymax, lastport;
457 	uint16_t *next_ephemeral;
458 	int error;
459 
460 	DPRINTF("%s called\n", __func__);
461 
462 	error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
463 	    &next_ephemeral, algo);
464 	if (error)
465 		return error;
466 
467 	num_ephemeral = mymax - mymin + 1;
468 
469 	DPRINTF("num_ephemeral: %u\n", num_ephemeral);
470 	*next_ephemeral = mymin + (cprng_fast32() % num_ephemeral);
471 
472 	DPRINTF("next_ephemeral initially: %u\n", *next_ephemeral);
473 
474 	count = num_ephemeral;
475 
476 	do {
477 		if (check_suitable_port(*next_ephemeral, inp_hdr, cred)) {
478 			*port = *next_ephemeral;
479 			DPRINTF("%s returning port %d\n", __func__, *port);
480 			return 0;
481 		}
482 		*next_ephemeral = mymin +
483 		    (cprng_fast32() % num_ephemeral);
484 
485 		count--;
486 
487 		DPRINTF("next_ephemeral: %u count: %u\n",
488 		    *next_ephemeral, count);
489 	} while (count > 0);
490 
491 	DPRINTF("%s returning EINVAL\n", __func__);
492 
493 	return EINVAL;
494 }
495 
496 /* This is the implementation from FreeBSD, with tweaks */
497 static uint16_t
498 Fhash(const struct inpcb_hdr *inp_hdr)
499 {
500 	MD5_CTX f_ctx;
501 	uint32_t Ff[4];
502 	uint32_t secret_f[4];
503 	uint32_t offset;
504 	uint16_t soffset[2];
505 
506 	cprng_fast(secret_f, sizeof(secret_f));
507 
508 	MD5Init(&f_ctx);
509 	switch (inp_hdr->inph_af) {
510 #ifdef INET
511 	case AF_INET: {
512 		const struct inpcb *inp =
513 		    (const struct inpcb *)(const void *)inp_hdr;
514 		MD5Update(&f_ctx, (const u_char *)&inp->inp_laddr,
515 		    sizeof(inp->inp_laddr));
516 		MD5Update(&f_ctx, (const u_char *)&inp->inp_faddr,
517 		    sizeof(inp->inp_faddr));
518 		MD5Update(&f_ctx, (const u_char *)&inp->inp_fport,
519 		    sizeof(inp->inp_fport));
520 		break;
521 	}
522 #endif
523 #ifdef INET6
524 	case AF_INET6: {
525 		const struct in6pcb *in6p =
526 		    (const struct in6pcb *)(const void *)inp_hdr;
527 		MD5Update(&f_ctx, (const u_char *)&in6p->in6p_laddr,
528 		    sizeof(in6p->in6p_laddr));
529 		MD5Update(&f_ctx, (const u_char *)&in6p->in6p_faddr,
530 		    sizeof(in6p->in6p_faddr));
531 		MD5Update(&f_ctx, (const u_char *)&in6p->in6p_fport,
532 		    sizeof(in6p->in6p_fport));
533 		break;
534 	}
535 #endif
536 	default:
537 		break;
538 	}
539 	MD5Update(&f_ctx, (const u_char *)secret_f, sizeof(secret_f));
540 	MD5Final((u_char *)&Ff, &f_ctx);
541 
542 	offset = (Ff[0] ^ Ff[1]) ^ (Ff[2] ^ Ff[3]);
543 
544 	memcpy(&soffset, &offset, sizeof(soffset));
545 
546 	return soffset[0] ^ soffset[1];
547 }
548 
549 /*
550  * Checks whether the tuple is complete. If not, marks the pcb for
551  * late binding.
552  */
553 static bool
554 iscompletetuple(struct inpcb_hdr *inp_hdr)
555 {
556 #ifdef INET6
557 	struct in6pcb *in6p;
558 #endif
559 
560 	switch (inp_hdr->inph_af) {
561 #ifdef INET
562 	case AF_INET: {
563 		struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
564 		if (inp->inp_fport == 0 || in_nullhost(inp->inp_faddr)) {
565 			DPRINTF("%s fport or faddr missing, delaying port "
566 			    "to connect/send\n", __func__);
567 			inp->inp_bindportonsend = true;
568 			return false;
569 		} else {
570 			inp->inp_bindportonsend = false;
571 		}
572 		break;
573 	}
574 #endif
575 #ifdef INET6
576 	case AF_INET6: {
577 		in6p = (struct in6pcb *)(void *)inp_hdr;
578 		if (in6p->in6p_fport == 0 || memcmp(&in6p->in6p_faddr,
579 		    &in6addr_any, sizeof(in6p->in6p_faddr)) == 0) {
580 			DPRINTF("%s fport or faddr missing, delaying port "
581 			    "to connect/send\n", __func__);
582 			in6p->in6p_bindportonsend = true;
583 			return false;
584 		} else {
585 			in6p->in6p_bindportonsend = false;
586 		}
587 		break;
588 	}
589 #endif
590 	default:
591 		DPRINTF("%s incorrect address family\n", __func__);
592 		return false;
593 	}
594 
595 	return true;
596 }
597 
598 static int
599 algo_hash(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
600     kauth_cred_t cred)
601 {
602 	uint16_t count, num_ephemeral;
603 	uint16_t mymin, mymax, lastport;
604 	uint16_t *next_ephemeral;
605 	uint16_t offset, myport;
606 	int error;
607 
608 	DPRINTF("%s called\n", __func__);
609 
610 	error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
611 	    &next_ephemeral, algo);
612 	if (error)
613 		return error;
614 
615 	if (!iscompletetuple(inp_hdr)) {
616 		*port = 0;
617 		return 0;
618 	}
619 
620 	/* Ephemeral port selection function */
621 	num_ephemeral = mymax - mymin + 1;
622 
623 	DPRINTF("num_ephemeral: %d\n", num_ephemeral);
624 
625 	offset = Fhash(inp_hdr);
626 
627 	count = num_ephemeral;
628 	do {
629 		myport = mymin + (*next_ephemeral + offset)
630 		    % num_ephemeral;
631 
632 		(*next_ephemeral)++;
633 
634 		if (check_suitable_port(myport, inp_hdr, cred)) {
635 			*port = myport;
636 			DPRINTF("%s returning port %d\n", __func__, *port);
637 			return 0;
638 		}
639 		count--;
640 	} while (count > 0);
641 
642 	DPRINTF("%s returning EINVAL\n", __func__);
643 
644 	return EINVAL;
645 }
646 
647 static int
648 algo_doublehash(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
649     kauth_cred_t cred)
650 {
651 	uint16_t count, num_ephemeral;
652 	uint16_t mymin, mymax, lastport;
653 	uint16_t *next_ephemeral;
654 	uint16_t offset, myport;
655 	static uint16_t dhtable[8];
656 	size_t idx;
657 	int error;
658 
659 	DPRINTF("%s called\n", __func__);
660 
661 	error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
662 	    &next_ephemeral, algo);
663 	if (error)
664 		return error;
665 
666 	if (!iscompletetuple(inp_hdr)) {
667 		*port = 0;
668 		return 0;
669 	}
670 	/* first time initialization */
671 	if (dhtable[0] == 0)
672 		for (size_t i = 0; i < __arraycount(dhtable); i++)
673 			dhtable[i] = random() & 0xffff;
674 
675 	/* Ephemeral port selection function */
676 	num_ephemeral = mymax - mymin + 1;
677 	offset = Fhash(inp_hdr);
678 	idx = Fhash(inp_hdr) % __arraycount(dhtable);	/* G */
679 	count = num_ephemeral;
680 
681 	do {
682 		myport = mymin + (offset + dhtable[idx])
683 		    % num_ephemeral;
684 		dhtable[idx]++;
685 
686 		if (check_suitable_port(myport, inp_hdr, cred)) {
687 			*port = myport;
688 			DPRINTF("%s returning port %d\n", __func__, *port);
689 			return 0;
690 		}
691 		count--;
692 
693 	} while (count > 0);
694 
695 	DPRINTF("%s returning EINVAL\n", __func__);
696 
697 	return EINVAL;
698 }
699 
700 static int
701 algo_randinc(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
702     kauth_cred_t cred)
703 {
704 	static const uint16_t N = 500;	/* Determines the trade-off */
705 	uint16_t count, num_ephemeral;
706 	uint16_t mymin, mymax, lastport;
707 	uint16_t *next_ephemeral;
708 	uint16_t myport;
709 	int error;
710 
711 	DPRINTF("%s called\n", __func__);
712 
713 	error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
714 	    &next_ephemeral, algo);
715 	if (error)
716 		return error;
717 
718 	if (*next_ephemeral == 0)
719 		*next_ephemeral = cprng_fast32() & 0xffff;
720 
721 	/* Ephemeral port selection function */
722 	num_ephemeral = mymax - mymin + 1;
723 
724 	count = num_ephemeral;
725 	do {
726 		*next_ephemeral = *next_ephemeral +
727 		    (cprng_fast32() % N) + 1;
728 		myport = mymin +
729 		    (*next_ephemeral % num_ephemeral);
730 
731 		if (check_suitable_port(myport, inp_hdr, cred)) {
732 			*port = myport;
733 			DPRINTF("%s returning port %d\n", __func__, *port);
734 			return 0;
735 		}
736 		count--;
737 	} while (count > 0);
738 
739 	return EINVAL;
740 }
741 
742 /* The generic function called in order to pick a port. */
743 int
744 portalgo_randport(uint16_t *port, struct inpcb_hdr *inp_hdr, kauth_cred_t cred)
745 {
746 	int algo, error;
747 	uint16_t lport;
748 	int default_algo;
749 
750 	DPRINTF("%s called\n", __func__);
751 
752 	if (inp_hdr->inph_portalgo == PORTALGO_DEFAULT) {
753 		switch (inp_hdr->inph_af) {
754 #ifdef INET
755 		case AF_INET:
756 			default_algo = inet4_portalgo;
757 			break;
758 #endif
759 #ifdef INET6
760 		case AF_INET6:
761 			default_algo = inet6_portalgo;
762 			break;
763 #endif
764 		default:
765 			return EINVAL;
766 		}
767 
768 		if (default_algo == PORTALGO_DEFAULT)
769 			algo = PORTALGO_BSD;
770 		else
771 			algo = default_algo;
772 	}
773 	else /* socket specifies the algorithm */
774 		algo = inp_hdr->inph_portalgo;
775 
776 	KASSERT(algo >= 0);
777 	KASSERT(algo < NALGOS);
778 
779 	switch (inp_hdr->inph_af) {
780 #ifdef INET
781 	case AF_INET: {
782 		struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
783 		DPRINTF("local addr: %s\n", inet_ntoa(inp->inp_laddr));
784 		DPRINTF("local port: %d\n", inp->inp_lport);
785 		DPRINTF("foreign addr: %s\n", inet_ntoa(inp->inp_faddr));
786 		DPRINTF("foreign port: %d\n", inp->inp_fport);
787 		break;
788 	}
789 #endif
790 #ifdef INET6
791 	case AF_INET6: {
792 		struct in6pcb *in6p = (struct in6pcb *)(void *)inp_hdr;
793 
794 		DPRINTF("local addr: %s\n", ip6_sprintf(&in6p->in6p_laddr));
795 		DPRINTF("local port: %d\n", in6p->in6p_lport);
796 		DPRINTF("foreign addr: %s\n", ip6_sprintf(&in6p->in6p_faddr));
797 		DPRINTF("foreign port: %d\n", in6p->in6p_fport);
798 		break;
799 	}
800 #endif
801 	default:
802 		break;
803 	}
804 
805 	DPRINTF("%s portalgo = %d\n", __func__, algo);
806 
807 	error = (*algos[algo].func)(algo, &lport, inp_hdr, cred);
808 	if (error == 0) {
809 		*port = lport;
810 	} else if (error != EAGAIN) {
811 		uint16_t lastport, mymin, mymax, *pnext_ephemeral;
812 
813 		error = pcb_getports(inp_hdr, &lastport, &mymin,
814 		    &mymax, &pnext_ephemeral, algo);
815 		if (error)
816 			return error;
817 		*port = lastport - 1;
818 	}
819 	return error;
820 }
821 
822 /* Sets the algorithm to be used globally */
823 static int
824 portalgo_algo_name_select(const char *name, int *algo)
825 {
826 	size_t ai;
827 
828 	DPRINTF("%s called\n", __func__);
829 
830 	for (ai = 0; ai < NALGOS; ai++)
831 		if (strcmp(algos[ai].name, name) == 0) {
832 			DPRINTF("%s: found idx %zu\n", __func__, ai);
833 			*algo = ai;
834 			return 0;
835 		}
836 	return EINVAL;
837 }
838 
839 /* Sets the algorithm to be used by the pcb inp. */
840 int
841 portalgo_algo_index_select(struct inpcb_hdr *inp, int algo)
842 {
843 
844 	DPRINTF("%s called with algo %d for pcb %p\n", __func__, algo, inp );
845 
846 	if ((algo < 0 || algo >= NALGOS) &&
847 	    (algo != PORTALGO_DEFAULT))
848 		return EINVAL;
849 
850 	inp->inph_portalgo = algo;
851 	return 0;
852 }
853 
854 /*
855  * The sysctl hook that is supposed to check that we are picking one
856  * of the valid algorithms. IPv4.
857  */
858 static int
859 sysctl_portalgo_helper(SYSCTLFN_ARGS, int *algo)
860 {
861 	struct sysctlnode node;
862 	int error;
863 	char newalgo[PORTALGO_MAXLEN];
864 
865 	DPRINTF("%s called\n", __func__);
866 
867 	strlcpy(newalgo, algos[*algo].name, sizeof(newalgo));
868 
869 	node = *rnode;
870 	node.sysctl_data = newalgo;
871 	node.sysctl_size = sizeof(newalgo);
872 
873 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
874 
875 	DPRINTF("newalgo: %s\n", newalgo);
876 
877 	if (error || newp == NULL ||
878 	    strncmp(newalgo, algos[*algo].name, sizeof(newalgo)) == 0)
879 		return error;
880 
881 #ifdef KAUTH_NETWORK_SOCKET_PORT_RANDOMIZE
882 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
883 	    KAUTH_NETWORK_SOCKET, KAUTH_NETWORK_SOCKET_PORT_RANDOMIZE, newname,
884 	    NULL, NULL)) != 0)
885 		return error;
886 #endif
887 
888 	mutex_enter(softnet_lock);
889 	error = portalgo_algo_name_select(newalgo, algo);
890 	mutex_exit(softnet_lock);
891 	return error;
892 }
893 
894 /*
895  * The sysctl hook that is supposed to check that we are picking one
896  * of the valid algorithms.
897  */
898 int
899 sysctl_portalgo_selected(SYSCTLFN_ARGS)
900 {
901 
902 	return sysctl_portalgo_helper(SYSCTLFN_CALL(rnode), &inet4_portalgo);
903 }
904 
905 #ifdef INET6
906 int
907 sysctl_portalgo_selected6(SYSCTLFN_ARGS)
908 {
909 
910 	return sysctl_portalgo_helper(SYSCTLFN_CALL(rnode), &inet6_portalgo);
911 }
912 #endif
913 
914 /*
915  * The sysctl hook that returns the available
916  * algorithms.
917  */
918 int
919 sysctl_portalgo_available(SYSCTLFN_ARGS)
920 {
921 	size_t ai, len = 0;
922 	struct sysctlnode node;
923 	char availalgo[NALGOS * PORTALGO_MAXLEN];
924 
925 	DPRINTF("%s called\n", __func__);
926 
927 	availalgo[0] = '\0';
928 
929 	for (ai = 0; ai < NALGOS; ai++) {
930 		len = strlcat(availalgo, algos[ai].name, sizeof(availalgo));
931 		if (ai < NALGOS - 1)
932 			strlcat(availalgo, " ", sizeof(availalgo));
933 	}
934 
935 	DPRINTF("available algos: %s\n", availalgo);
936 
937 	node = *rnode;
938 	node.sysctl_data = availalgo;
939 	node.sysctl_size = len;
940 
941 	return sysctl_lookup(SYSCTLFN_CALL(&node));
942 }
943