xref: /netbsd-src/sys/netinet/ip_reass.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*	$NetBSD: ip_reass.c,v 1.16 2018/05/03 07:25:49 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * IP reassembly.
36  *
37  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38  * reassembly queue buffer managment.
39  *
40  * We keep a count of total IP fragments (NB: not fragmented packets),
41  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43  * fragments in reassembly queues.  This AIMD policy avoids repeatedly
44  * deleting single packets under heavy fragmentation load (e.g., from lossy
45  * NFS peers).
46  */
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.16 2018/05/03 07:25:49 maxv Exp $");
50 
51 #include <sys/param.h>
52 #include <sys/types.h>
53 
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/pool.h>
58 #include <sys/queue.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 
62 #include <net/if.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_private.h>
70 #include <netinet/in_var.h>
71 
72 /*
73  * IP reassembly queue structures.  Each fragment being reassembled is
74  * attached to one of these structures.  They are timed out after TTL
75  * drops to 0, and may also be reclaimed if memory becomes tight.
76  */
77 
78 typedef struct ipfr_qent {
79 	TAILQ_ENTRY(ipfr_qent)	ipqe_q;
80 	struct ip *		ipqe_ip;
81 	struct mbuf *		ipqe_m;
82 	bool			ipqe_mff;
83 } ipfr_qent_t;
84 
85 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
86 
87 typedef struct ipfr_queue {
88 	LIST_ENTRY(ipfr_queue)	ipq_q;		/* to other reass headers */
89 	struct ipfr_qent_head	ipq_fragq;	/* queue of fragment entries */
90 	uint8_t			ipq_ttl;	/* time for reass q to live */
91 	uint8_t			ipq_p;		/* protocol of this fragment */
92 	uint16_t		ipq_id;		/* sequence id for reassembly */
93 	struct in_addr		ipq_src;
94 	struct in_addr		ipq_dst;
95 	uint16_t		ipq_nfrags;	/* frags in this queue entry */
96 	uint8_t 		ipq_tos;	/* TOS of this fragment */
97 } ipfr_queue_t;
98 
99 /*
100  * Hash table of IP reassembly queues.
101  */
102 #define	IPREASS_HASH_SHIFT	6
103 #define	IPREASS_HASH_SIZE	(1 << IPREASS_HASH_SHIFT)
104 #define	IPREASS_HASH_MASK	(IPREASS_HASH_SIZE - 1)
105 #define	IPREASS_HASH(x, y) \
106 	(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
107 
108 static LIST_HEAD(, ipfr_queue)	ip_frags[IPREASS_HASH_SIZE];
109 static pool_cache_t	ipfren_cache;
110 static kmutex_t		ipfr_lock;
111 
112 /* Number of packets in reassembly queue and total number of fragments. */
113 static int		ip_nfragpackets;
114 static int		ip_nfrags;
115 
116 /* Limits on packet and fragments. */
117 static int		ip_maxfragpackets;
118 static int		ip_maxfrags;
119 
120 /*
121  * Cached copy of nmbclusters.  If nbclusters is different, recalculate
122  * IP parameters derived from nmbclusters.
123  */
124 static int		ip_nmbclusters;
125 
126 /*
127  * IP reassembly TTL machinery for multiplicative drop.
128  */
129 static u_int		fragttl_histo[IPFRAGTTL + 1];
130 
131 static struct sysctllog *ip_reass_sysctllog;
132 
133 void			sysctl_ip_reass_setup(void);
134 static void		ip_nmbclusters_changed(void);
135 
136 static struct mbuf *	ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
137 static u_int		ip_reass_ttl_decr(u_int ticks);
138 static void		ip_reass_drophalf(void);
139 static void		ip_freef(ipfr_queue_t *);
140 
141 /*
142  * ip_reass_init:
143  *
144  *	Initialization of IP reassembly mechanism.
145  */
146 void
147 ip_reass_init(void)
148 {
149 	int i;
150 
151 	ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
152 	    0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
153 	mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
154 
155 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
156 		LIST_INIT(&ip_frags[i]);
157 	}
158 	ip_maxfragpackets = 200;
159 	ip_maxfrags = 0;
160 	ip_nmbclusters_changed();
161 
162 	sysctl_ip_reass_setup();
163 }
164 
165 void
166 sysctl_ip_reass_setup(void)
167 {
168 
169 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
170 		CTLFLAG_PERMANENT,
171 		CTLTYPE_NODE, "inet",
172 		SYSCTL_DESCR("PF_INET related settings"),
173 		NULL, 0, NULL, 0,
174 		CTL_NET, PF_INET, CTL_EOL);
175 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
176 		CTLFLAG_PERMANENT,
177 		CTLTYPE_NODE, "ip",
178 		SYSCTL_DESCR("IPv4 related settings"),
179 		NULL, 0, NULL, 0,
180 		CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
181 
182 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
183 		CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
184 		CTLTYPE_INT, "maxfragpackets",
185 		SYSCTL_DESCR("Maximum number of fragments to retain for "
186 			     "possible reassembly"),
187 		NULL, 0, &ip_maxfragpackets, 0,
188 		CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
189 }
190 
191 #define CHECK_NMBCLUSTER_PARAMS()				\
192 do {								\
193 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
194 		ip_nmbclusters_changed();			\
195 } while (/*CONSTCOND*/0)
196 
197 /*
198  * Compute IP limits derived from the value of nmbclusters.
199  */
200 static void
201 ip_nmbclusters_changed(void)
202 {
203 	ip_maxfrags = nmbclusters / 4;
204 	ip_nmbclusters = nmbclusters;
205 }
206 
207 /*
208  * ip_reass:
209  *
210  *	Take incoming datagram fragment and try to reassemble it into whole
211  *	datagram.  If a chain for reassembly of this datagram already exists,
212  *	then it is given as 'fp'; otherwise have to make a chain.
213  */
214 static struct mbuf *
215 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
216 {
217 	struct ip *ip = ipqe->ipqe_ip, *qip;
218 	const int hlen = ip->ip_hl << 2;
219 	struct mbuf *m = ipqe->ipqe_m, *t;
220 	ipfr_qent_t *nq, *p, *q;
221 	int i, next;
222 
223 	KASSERT(mutex_owned(&ipfr_lock));
224 
225 	/*
226 	 * Presence of header sizes in mbufs would confuse code below.
227 	 */
228 	m->m_data += hlen;
229 	m->m_len -= hlen;
230 
231 #ifdef	notyet
232 	/* Make sure fragment limit is up-to-date. */
233 	CHECK_NMBCLUSTER_PARAMS();
234 
235 	/* If we have too many fragments, drop the older half. */
236 	if (ip_nfrags >= ip_maxfrags) {
237 		ip_reass_drophalf(void);
238 	}
239 #endif
240 
241 	/*
242 	 * We are about to add a fragment; increment frag count.
243 	 */
244 	ip_nfrags++;
245 
246 	/*
247 	 * If first fragment to arrive, create a reassembly queue.
248 	 */
249 	if (fp == NULL) {
250 		/*
251 		 * Enforce upper bound on number of fragmented packets
252 		 * for which we attempt reassembly:  a) if maxfrag is 0,
253 		 * never accept fragments  b) if maxfrag is -1, accept
254 		 * all fragments without limitation.
255 		 */
256 		if (ip_maxfragpackets < 0)
257 			;
258 		else if (ip_nfragpackets >= ip_maxfragpackets) {
259 			goto dropfrag;
260 		}
261 		fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
262 		if (fp == NULL) {
263 			goto dropfrag;
264 		}
265 		ip_nfragpackets++;
266 		TAILQ_INIT(&fp->ipq_fragq);
267 		fp->ipq_nfrags = 1;
268 		fp->ipq_ttl = IPFRAGTTL;
269 		fp->ipq_p = ip->ip_p;
270 		fp->ipq_id = ip->ip_id;
271 		fp->ipq_tos = ip->ip_tos;
272 		fp->ipq_src = ip->ip_src;
273 		fp->ipq_dst = ip->ip_dst;
274 		LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
275 		p = NULL;
276 		goto insert;
277 	} else {
278 		fp->ipq_nfrags++;
279 	}
280 
281 	/*
282 	 * Find a segment which begins after this one does.
283 	 */
284 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
285 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
286 			break;
287 	}
288 	if (q != NULL) {
289 		p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
290 	} else {
291 		p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
292 	}
293 
294 	/*
295 	 * If there is a preceding segment, it may provide some of our
296 	 * data already.  If so, drop the data from the incoming segment.
297 	 * If it provides all of our data, drop us.
298 	 */
299 	if (p != NULL) {
300 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
301 		    ntohs(ip->ip_off);
302 		if (i > 0) {
303 			if (i >= ntohs(ip->ip_len)) {
304 				goto dropfrag;
305 			}
306 			m_adj(ipqe->ipqe_m, i);
307 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
308 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
309 		}
310 	}
311 
312 	/*
313 	 * While we overlap succeeding segments trim them or, if they are
314 	 * completely covered, dequeue them.
315 	 */
316 	while (q != NULL) {
317 		size_t end;
318 
319 		qip = q->ipqe_ip;
320 		end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
321 		if (end <= ntohs(qip->ip_off)) {
322 			break;
323 		}
324 		i = end - ntohs(qip->ip_off);
325 		if (i < ntohs(qip->ip_len)) {
326 			qip->ip_len = htons(ntohs(qip->ip_len) - i);
327 			qip->ip_off = htons(ntohs(qip->ip_off) + i);
328 			m_adj(q->ipqe_m, i);
329 			break;
330 		}
331 		nq = TAILQ_NEXT(q, ipqe_q);
332 		m_freem(q->ipqe_m);
333 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
334 		pool_cache_put(ipfren_cache, q);
335 		fp->ipq_nfrags--;
336 		ip_nfrags--;
337 		q = nq;
338 	}
339 
340 insert:
341 	/*
342 	 * Stick new segment in its place; check for complete reassembly.
343 	 */
344 	if (p == NULL) {
345 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
346 	} else {
347 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
348 	}
349 	next = 0;
350 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
351 		qip = q->ipqe_ip;
352 		if (ntohs(qip->ip_off) != next) {
353 			mutex_exit(&ipfr_lock);
354 			return NULL;
355 		}
356 		next += ntohs(qip->ip_len);
357 	}
358 	p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
359 	if (p->ipqe_mff) {
360 		mutex_exit(&ipfr_lock);
361 		return NULL;
362 	}
363 
364 	/*
365 	 * Reassembly is complete.  Check for a bogus message size.
366 	 */
367 	q = TAILQ_FIRST(&fp->ipq_fragq);
368 	ip = q->ipqe_ip;
369 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
370 		IP_STATINC(IP_STAT_TOOLONG);
371 		ip_freef(fp);
372 		mutex_exit(&ipfr_lock);
373 		return NULL;
374 	}
375 	LIST_REMOVE(fp, ipq_q);
376 	ip_nfrags -= fp->ipq_nfrags;
377 	ip_nfragpackets--;
378 	mutex_exit(&ipfr_lock);
379 
380 	/* Concatenate all fragments. */
381 	m = q->ipqe_m;
382 	t = m->m_next;
383 	m->m_next = NULL;
384 	m_cat(m, t);
385 	nq = TAILQ_NEXT(q, ipqe_q);
386 	pool_cache_put(ipfren_cache, q);
387 
388 	for (q = nq; q != NULL; q = nq) {
389 		t = q->ipqe_m;
390 		nq = TAILQ_NEXT(q, ipqe_q);
391 		pool_cache_put(ipfren_cache, q);
392 		m_remove_pkthdr(t);
393 		m_cat(m, t);
394 	}
395 
396 	/*
397 	 * Create header for new packet by modifying header of first
398 	 * packet.  Dequeue and discard fragment reassembly header.  Make
399 	 * header visible.
400 	 */
401 	ip->ip_len = htons((ip->ip_hl << 2) + next);
402 	ip->ip_src = fp->ipq_src;
403 	ip->ip_dst = fp->ipq_dst;
404 	free(fp, M_FTABLE);
405 
406 	m->m_len += (ip->ip_hl << 2);
407 	m->m_data -= (ip->ip_hl << 2);
408 
409 	/* Fix up mbuf.  XXX This should be done elsewhere. */
410 	{
411 		KASSERT(m->m_flags & M_PKTHDR);
412 		int plen = 0;
413 		for (t = m; t; t = t->m_next) {
414 			plen += t->m_len;
415 		}
416 		m->m_pkthdr.len = plen;
417 		m->m_pkthdr.csum_flags = 0;
418 	}
419 	return m;
420 
421 dropfrag:
422 	if (fp != NULL) {
423 		fp->ipq_nfrags--;
424 	}
425 	ip_nfrags--;
426 	IP_STATINC(IP_STAT_FRAGDROPPED);
427 	mutex_exit(&ipfr_lock);
428 
429 	pool_cache_put(ipfren_cache, ipqe);
430 	m_freem(m);
431 	return NULL;
432 }
433 
434 /*
435  * ip_freef:
436  *
437  *	Free a fragment reassembly header and all associated datagrams.
438  */
439 static void
440 ip_freef(ipfr_queue_t *fp)
441 {
442 	ipfr_qent_t *q;
443 
444 	KASSERT(mutex_owned(&ipfr_lock));
445 
446 	LIST_REMOVE(fp, ipq_q);
447 	ip_nfrags -= fp->ipq_nfrags;
448 	ip_nfragpackets--;
449 
450 	while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
451 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
452 		m_freem(q->ipqe_m);
453 		pool_cache_put(ipfren_cache, q);
454 	}
455 	free(fp, M_FTABLE);
456 }
457 
458 /*
459  * ip_reass_ttl_decr:
460  *
461  *	Decrement TTL of all reasembly queue entries by `ticks'.  Count
462  *	number of distinct fragments (as opposed to partial, fragmented
463  *	datagrams) inthe reassembly queue.  While we  traverse the entire
464  *	reassembly queue, compute and return the median TTL over all
465  *	fragments.
466  */
467 static u_int
468 ip_reass_ttl_decr(u_int ticks)
469 {
470 	u_int nfrags, median, dropfraction, keepfraction;
471 	ipfr_queue_t *fp, *nfp;
472 	int i;
473 
474 	nfrags = 0;
475 	memset(fragttl_histo, 0, sizeof(fragttl_histo));
476 
477 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
478 		for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
479 			fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
480 			    0 : fp->ipq_ttl - ticks);
481 			nfp = LIST_NEXT(fp, ipq_q);
482 			if (fp->ipq_ttl == 0) {
483 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
484 				ip_freef(fp);
485 			} else {
486 				nfrags += fp->ipq_nfrags;
487 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
488 			}
489 		}
490 	}
491 
492 	KASSERT(ip_nfrags == nfrags);
493 
494 	/* Find median (or other drop fraction) in histogram. */
495 	dropfraction = (ip_nfrags / 2);
496 	keepfraction = ip_nfrags - dropfraction;
497 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
498 		median += fragttl_histo[i];
499 		if (median >= keepfraction)
500 			break;
501 	}
502 
503 	/* Return TTL of median (or other fraction). */
504 	return (u_int)i;
505 }
506 
507 static void
508 ip_reass_drophalf(void)
509 {
510 	u_int median_ticks;
511 
512 	KASSERT(mutex_owned(&ipfr_lock));
513 
514 	/*
515 	 * Compute median TTL of all fragments, and count frags
516 	 * with that TTL or lower (roughly half of all fragments).
517 	 */
518 	median_ticks = ip_reass_ttl_decr(0);
519 
520 	/* Drop half. */
521 	median_ticks = ip_reass_ttl_decr(median_ticks);
522 }
523 
524 /*
525  * ip_reass_drain: drain off all datagram fragments.  Do not acquire
526  * softnet_lock as can be called from hardware interrupt context.
527  */
528 void
529 ip_reass_drain(void)
530 {
531 
532 	/*
533 	 * We may be called from a device's interrupt context.  If
534 	 * the ipq is already busy, just bail out now.
535 	 */
536 	if (mutex_tryenter(&ipfr_lock)) {
537 		/*
538 		 * Drop half the total fragments now. If more mbufs are
539 		 * needed, we will be called again soon.
540 		 */
541 		ip_reass_drophalf();
542 		mutex_exit(&ipfr_lock);
543 	}
544 }
545 
546 /*
547  * ip_reass_slowtimo:
548  *
549  *	If a timer expires on a reassembly queue, discard it.
550  */
551 void
552 ip_reass_slowtimo(void)
553 {
554 	static u_int dropscanidx = 0;
555 	u_int i, median_ttl;
556 
557 	mutex_enter(&ipfr_lock);
558 
559 	/* Age TTL of all fragments by 1 tick .*/
560 	median_ttl = ip_reass_ttl_decr(1);
561 
562 	/* Make sure fragment limit is up-to-date. */
563 	CHECK_NMBCLUSTER_PARAMS();
564 
565 	/* If we have too many fragments, drop the older half. */
566 	if (ip_nfrags > ip_maxfrags) {
567 		ip_reass_ttl_decr(median_ttl);
568 	}
569 
570 	/*
571 	 * If we are over the maximum number of fragmented packets (due to
572 	 * the limit being lowered), drain off enough to get down to the
573 	 * new limit.  Start draining from the reassembly hashqueue most
574 	 * recently drained.
575 	 */
576 	if (ip_maxfragpackets < 0)
577 		;
578 	else {
579 		int wrapped = 0;
580 
581 		i = dropscanidx;
582 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
583 			while (LIST_FIRST(&ip_frags[i]) != NULL) {
584 				ip_freef(LIST_FIRST(&ip_frags[i]));
585 			}
586 			if (++i >= IPREASS_HASH_SIZE) {
587 				i = 0;
588 			}
589 			/*
590 			 * Do not scan forever even if fragment counters are
591 			 * wrong: stop after scanning entire reassembly queue.
592 			 */
593 			if (i == dropscanidx) {
594 				wrapped = 1;
595 			}
596 		}
597 		dropscanidx = i;
598 	}
599 	mutex_exit(&ipfr_lock);
600 }
601 
602 /*
603  * ip_reass_packet: generic routine to perform IP reassembly.
604  *
605  * => Passed fragment should have IP_MF flag and/or offset set.
606  * => Fragment should not have other than IP_MF flags set.
607  *
608  * => Returns 0 on success or error otherwise.
609  * => On complete, m0 represents a constructed final packet.
610  */
611 int
612 ip_reass_packet(struct mbuf **m0, struct ip *ip)
613 {
614 	const int hlen = ip->ip_hl << 2;
615 	const int len = ntohs(ip->ip_len);
616 	struct mbuf *m = *m0;
617 	ipfr_queue_t *fp;
618 	ipfr_qent_t *ipqe;
619 	u_int hash, off, flen;
620 	bool mff;
621 
622 	/*
623 	 * Prevent TCP blind data attacks by not allowing non-initial
624 	 * fragments to start at less than 68 bytes (minimal fragment
625 	 * size) and making sure the first fragment is at least 68
626 	 * bytes.
627 	 */
628 	off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
629 	if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
630 		IP_STATINC(IP_STAT_BADFRAGS);
631 		return EINVAL;
632 	}
633 
634 	if (off + len > IP_MAXPACKET) {
635 		IP_STATINC(IP_STAT_TOOLONG);
636 		return EINVAL;
637 	}
638 
639 	/*
640 	 * Fragment length and MF flag.  Make sure that fragments have
641 	 * a data length which is non-zero and multiple of 8 bytes.
642 	 */
643 	flen = ntohs(ip->ip_len) - hlen;
644 	mff = (ip->ip_off & htons(IP_MF)) != 0;
645 	if (mff && (flen == 0 || (flen & 0x7) != 0)) {
646 		IP_STATINC(IP_STAT_BADFRAGS);
647 		return EINVAL;
648 	}
649 
650 	/*
651 	 * Adjust total IP length to not reflect header and convert
652 	 * offset of this to bytes.  XXX: clobbers struct ip.
653 	 */
654 	ip->ip_len = htons(flen);
655 	ip->ip_off = htons(off);
656 
657 	/* Look for queue of fragments of this datagram. */
658 	mutex_enter(&ipfr_lock);
659 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
660 	LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
661 		if (ip->ip_id != fp->ipq_id)
662 			continue;
663 		if (!in_hosteq(ip->ip_src, fp->ipq_src))
664 			continue;
665 		if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
666 			continue;
667 		if (ip->ip_p != fp->ipq_p)
668 			continue;
669 		break;
670 	}
671 
672 	/* Make sure that TOS matches previous fragments. */
673 	if (fp && fp->ipq_tos != ip->ip_tos) {
674 		IP_STATINC(IP_STAT_BADFRAGS);
675 		mutex_exit(&ipfr_lock);
676 		return EINVAL;
677 	}
678 
679 	/*
680 	 * Create new entry and attempt to reassembly.
681 	 */
682 	IP_STATINC(IP_STAT_FRAGMENTS);
683 	ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
684 	if (ipqe == NULL) {
685 		IP_STATINC(IP_STAT_RCVMEMDROP);
686 		mutex_exit(&ipfr_lock);
687 		return ENOMEM;
688 	}
689 	ipqe->ipqe_mff = mff;
690 	ipqe->ipqe_m = m;
691 	ipqe->ipqe_ip = ip;
692 
693 	*m0 = ip_reass(ipqe, fp, hash);
694 	if (*m0) {
695 		/* Note that finally reassembled. */
696 		IP_STATINC(IP_STAT_REASSEMBLED);
697 	}
698 	return 0;
699 }
700