xref: /netbsd-src/sys/netinet/ip_reass.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: ip_reass.c,v 1.8 2011/06/27 00:45:50 enami Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * IP reassembly.
36  *
37  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
38  * reassembly queue buffer managment.
39  *
40  * We keep a count of total IP fragments (NB: not fragmented packets),
41  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
42  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
43  * fragments in reassembly queues.  This AIMD policy avoids repeatedly
44  * deleting single packets under heavy fragmentation load (e.g., from lossy
45  * NFS peers).
46  */
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.8 2011/06/27 00:45:50 enami Exp $");
50 
51 #include <sys/param.h>
52 #include <sys/types.h>
53 
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/domain.h>
58 #include <sys/protosw.h>
59 #include <sys/pool.h>
60 #include <sys/queue.h>
61 #include <sys/sysctl.h>
62 #include <sys/systm.h>
63 
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/in_proto.h>
73 #include <netinet/ip_private.h>
74 #include <netinet/in_var.h>
75 
76 /*
77  * IP reassembly queue structures.  Each fragment being reassembled is
78  * attached to one of these structures.  They are timed out after TTL
79  * drops to 0, and may also be reclaimed if memory becomes tight.
80  */
81 
82 typedef struct ipfr_qent {
83 	TAILQ_ENTRY(ipfr_qent)	ipqe_q;
84 	struct ip *		ipqe_ip;
85 	struct mbuf *		ipqe_m;
86 	bool			ipqe_mff;
87 } ipfr_qent_t;
88 
89 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
90 
91 typedef struct ipfr_queue {
92 	LIST_ENTRY(ipfr_queue)	ipq_q;		/* to other reass headers */
93 	struct ipfr_qent_head	ipq_fragq;	/* queue of fragment entries */
94 	uint8_t			ipq_ttl;	/* time for reass q to live */
95 	uint8_t			ipq_p;		/* protocol of this fragment */
96 	uint16_t		ipq_id;		/* sequence id for reassembly */
97 	struct in_addr		ipq_src;
98 	struct in_addr		ipq_dst;
99 	uint16_t		ipq_nfrags;	/* frags in this queue entry */
100 	uint8_t 		ipq_tos;	/* TOS of this fragment */
101 } ipfr_queue_t;
102 
103 /*
104  * Hash table of IP reassembly queues.
105  */
106 #define	IPREASS_HASH_SHIFT	6
107 #define	IPREASS_HASH_SIZE	(1 << IPREASS_HASH_SHIFT)
108 #define	IPREASS_HASH_MASK	(IPREASS_HASH_SIZE - 1)
109 #define	IPREASS_HASH(x, y) \
110 	(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
111 
112 static LIST_HEAD(, ipfr_queue)	ip_frags[IPREASS_HASH_SIZE];
113 static pool_cache_t	ipfren_cache;
114 static kmutex_t		ipfr_lock;
115 
116 /* Number of packets in reassembly queue and total number of fragments. */
117 static int		ip_nfragpackets;
118 static int		ip_nfrags;
119 
120 /* Limits on packet and fragments. */
121 static int		ip_maxfragpackets;
122 static int		ip_maxfrags;
123 
124 /*
125  * Cached copy of nmbclusters.  If nbclusters is different, recalculate
126  * IP parameters derived from nmbclusters.
127  */
128 static int		ip_nmbclusters;
129 
130 /*
131  * IP reassembly TTL machinery for multiplicative drop.
132  */
133 static u_int		fragttl_histo[IPFRAGTTL + 1];
134 
135 static struct sysctllog *ip_reass_sysctllog;
136 
137 void			sysctl_ip_reass_setup(void);
138 static void		ip_nmbclusters_changed(void);
139 
140 static struct mbuf *	ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
141 static u_int		ip_reass_ttl_decr(u_int ticks);
142 static void		ip_reass_drophalf(void);
143 static void		ip_freef(ipfr_queue_t *);
144 
145 /*
146  * ip_reass_init:
147  *
148  *	Initialization of IP reassembly mechanism.
149  */
150 void
151 ip_reass_init(void)
152 {
153 	int i;
154 
155 	ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
156 	    0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
157 	mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
158 
159 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
160 		LIST_INIT(&ip_frags[i]);
161 	}
162 	ip_maxfragpackets = 200;
163 	ip_maxfrags = 0;
164 	ip_nmbclusters_changed();
165 
166 	sysctl_ip_reass_setup();
167 }
168 
169 void
170 sysctl_ip_reass_setup(void)
171 {
172 
173 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
174 		CTLFLAG_PERMANENT,
175 		CTLTYPE_NODE, "net", NULL,
176 		NULL, 0, NULL, 0,
177 		CTL_NET, CTL_EOL);
178 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
179 		CTLFLAG_PERMANENT,
180 		CTLTYPE_NODE, "inet",
181 		SYSCTL_DESCR("PF_INET related settings"),
182 		NULL, 0, NULL, 0,
183 		CTL_NET, PF_INET, CTL_EOL);
184 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
185 		CTLFLAG_PERMANENT,
186 		CTLTYPE_NODE, "ip",
187 		SYSCTL_DESCR("IPv4 related settings"),
188 		NULL, 0, NULL, 0,
189 		CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
190 
191 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
192 		CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
193 		CTLTYPE_INT, "maxfragpackets",
194 		SYSCTL_DESCR("Maximum number of fragments to retain for "
195 			     "possible reassembly"),
196 		NULL, 0, &ip_maxfragpackets, 0,
197 		CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
198 }
199 
200 #define CHECK_NMBCLUSTER_PARAMS()				\
201 do {								\
202 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
203 		ip_nmbclusters_changed();			\
204 } while (/*CONSTCOND*/0)
205 
206 /*
207  * Compute IP limits derived from the value of nmbclusters.
208  */
209 static void
210 ip_nmbclusters_changed(void)
211 {
212 	ip_maxfrags = nmbclusters / 4;
213 	ip_nmbclusters = nmbclusters;
214 }
215 
216 /*
217  * ip_reass:
218  *
219  *	Take incoming datagram fragment and try to reassemble it into whole
220  *	datagram.  If a chain for reassembly of this datagram already exists,
221  *	then it is given as 'fp'; otherwise have to make a chain.
222  */
223 struct mbuf *
224 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
225 {
226 	struct ip *ip = ipqe->ipqe_ip, *qip;
227 	const int hlen = ip->ip_hl << 2;
228 	struct mbuf *m = ipqe->ipqe_m, *t;
229 	ipfr_qent_t *nq, *p, *q;
230 	int i, next;
231 
232 	KASSERT(mutex_owned(&ipfr_lock));
233 
234 	/*
235 	 * Presence of header sizes in mbufs would confuse code below.
236 	 */
237 	m->m_data += hlen;
238 	m->m_len -= hlen;
239 
240 #ifdef	notyet
241 	/* Make sure fragment limit is up-to-date. */
242 	CHECK_NMBCLUSTER_PARAMS();
243 
244 	/* If we have too many fragments, drop the older half. */
245 	if (ip_nfrags >= ip_maxfrags) {
246 		ip_reass_drophalf(void);
247 	}
248 #endif
249 
250 	/*
251 	 * We are about to add a fragment; increment frag count.
252 	 */
253 	ip_nfrags++;
254 
255 	/*
256 	 * If first fragment to arrive, create a reassembly queue.
257 	 */
258 	if (fp == NULL) {
259 		/*
260 		 * Enforce upper bound on number of fragmented packets
261 		 * for which we attempt reassembly:  a) if maxfrag is 0,
262 		 * never accept fragments  b) if maxfrag is -1, accept
263 		 * all fragments without limitation.
264 		 */
265 		if (ip_maxfragpackets < 0)
266 			;
267 		else if (ip_nfragpackets >= ip_maxfragpackets) {
268 			goto dropfrag;
269 		}
270 		fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
271 		if (fp == NULL) {
272 			goto dropfrag;
273 		}
274 		ip_nfragpackets++;
275 		TAILQ_INIT(&fp->ipq_fragq);
276 		fp->ipq_nfrags = 1;
277 		fp->ipq_ttl = IPFRAGTTL;
278 		fp->ipq_p = ip->ip_p;
279 		fp->ipq_id = ip->ip_id;
280 		fp->ipq_tos = ip->ip_tos;
281 		fp->ipq_src = ip->ip_src;
282 		fp->ipq_dst = ip->ip_dst;
283 		LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
284 		p = NULL;
285 		goto insert;
286 	} else {
287 		fp->ipq_nfrags++;
288 	}
289 
290 	/*
291 	 * Find a segment which begins after this one does.
292 	 */
293 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
294 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
295 			break;
296 	}
297 	if (q != NULL) {
298 		p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
299 	} else {
300 		p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
301 	}
302 
303 	/*
304 	 * If there is a preceding segment, it may provide some of our
305 	 * data already.  If so, drop the data from the incoming segment.
306 	 * If it provides all of our data, drop us.
307 	 */
308 	if (p != NULL) {
309 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
310 		    ntohs(ip->ip_off);
311 		if (i > 0) {
312 			if (i >= ntohs(ip->ip_len)) {
313 				goto dropfrag;
314 			}
315 			m_adj(ipqe->ipqe_m, i);
316 			ip->ip_off = htons(ntohs(ip->ip_off) + i);
317 			ip->ip_len = htons(ntohs(ip->ip_len) - i);
318 		}
319 	}
320 
321 	/*
322 	 * While we overlap succeeding segments trim them or, if they are
323 	 * completely covered, dequeue them.
324 	 */
325 	while (q != NULL) {
326 		size_t end;
327 
328 		qip = q->ipqe_ip;
329 		end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
330 		if (end <= ntohs(qip->ip_off)) {
331 			break;
332 		}
333 		i = end - ntohs(qip->ip_off);
334 		if (i < ntohs(qip->ip_len)) {
335 			qip->ip_len = htons(ntohs(qip->ip_len) - i);
336 			qip->ip_off = htons(ntohs(qip->ip_off) + i);
337 			m_adj(q->ipqe_m, i);
338 			break;
339 		}
340 		nq = TAILQ_NEXT(q, ipqe_q);
341 		m_freem(q->ipqe_m);
342 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
343 		pool_cache_put(ipfren_cache, q);
344 		fp->ipq_nfrags--;
345 		ip_nfrags--;
346 		q = nq;
347 	}
348 
349 insert:
350 	/*
351 	 * Stick new segment in its place; check for complete reassembly.
352 	 */
353 	if (p == NULL) {
354 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
355 	} else {
356 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
357 	}
358 	next = 0;
359 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
360 		qip = q->ipqe_ip;
361 		if (ntohs(qip->ip_off) != next) {
362 			mutex_exit(&ipfr_lock);
363 			return NULL;
364 		}
365 		next += ntohs(qip->ip_len);
366 	}
367 	p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
368 	if (p->ipqe_mff) {
369 		mutex_exit(&ipfr_lock);
370 		return NULL;
371 	}
372 
373 	/*
374 	 * Reassembly is complete.  Check for a bogus message size.
375 	 */
376 	q = TAILQ_FIRST(&fp->ipq_fragq);
377 	ip = q->ipqe_ip;
378 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
379 		IP_STATINC(IP_STAT_TOOLONG);
380 		ip_freef(fp);
381 		mutex_exit(&ipfr_lock);
382 		return NULL;
383 	}
384 	LIST_REMOVE(fp, ipq_q);
385 	ip_nfrags -= fp->ipq_nfrags;
386 	ip_nfragpackets--;
387 	mutex_exit(&ipfr_lock);
388 
389 	/* Concatenate all fragments. */
390 	m = q->ipqe_m;
391 	t = m->m_next;
392 	m->m_next = NULL;
393 	m_cat(m, t);
394 	nq = TAILQ_NEXT(q, ipqe_q);
395 	pool_cache_put(ipfren_cache, q);
396 
397 	for (q = nq; q != NULL; q = nq) {
398 		t = q->ipqe_m;
399 		nq = TAILQ_NEXT(q, ipqe_q);
400 		pool_cache_put(ipfren_cache, q);
401 		m_cat(m, t);
402 	}
403 
404 	/*
405 	 * Create header for new packet by modifying header of first
406 	 * packet.  Dequeue and discard fragment reassembly header.  Make
407 	 * header visible.
408 	 */
409 	ip->ip_len = htons((ip->ip_hl << 2) + next);
410 	ip->ip_src = fp->ipq_src;
411 	ip->ip_dst = fp->ipq_dst;
412 	free(fp, M_FTABLE);
413 
414 	m->m_len += (ip->ip_hl << 2);
415 	m->m_data -= (ip->ip_hl << 2);
416 
417 	/* Fix up mbuf.  XXX This should be done elsewhere. */
418 	if (m->m_flags & M_PKTHDR) {
419 		int plen = 0;
420 		for (t = m; t; t = t->m_next) {
421 			plen += t->m_len;
422 		}
423 		m->m_pkthdr.len = plen;
424 		m->m_pkthdr.csum_flags = 0;
425 	}
426 	return m;
427 
428 dropfrag:
429 	if (fp != NULL) {
430 		fp->ipq_nfrags--;
431 	}
432 	ip_nfrags--;
433 	IP_STATINC(IP_STAT_FRAGDROPPED);
434 	mutex_exit(&ipfr_lock);
435 
436 	pool_cache_put(ipfren_cache, ipqe);
437 	m_freem(m);
438 	return NULL;
439 }
440 
441 /*
442  * ip_freef:
443  *
444  *	Free a fragment reassembly header and all associated datagrams.
445  */
446 static void
447 ip_freef(ipfr_queue_t *fp)
448 {
449 	ipfr_qent_t *q;
450 
451 	KASSERT(mutex_owned(&ipfr_lock));
452 
453 	LIST_REMOVE(fp, ipq_q);
454 	ip_nfrags -= fp->ipq_nfrags;
455 	ip_nfragpackets--;
456 
457 	while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
458 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
459 		m_freem(q->ipqe_m);
460 		pool_cache_put(ipfren_cache, q);
461 	}
462 	free(fp, M_FTABLE);
463 }
464 
465 /*
466  * ip_reass_ttl_decr:
467  *
468  *	Decrement TTL of all reasembly queue entries by `ticks'.  Count
469  *	number of distinct fragments (as opposed to partial, fragmented
470  *	datagrams) inthe reassembly queue.  While we  traverse the entire
471  *	reassembly queue, compute and return the median TTL over all
472  *	fragments.
473  */
474 static u_int
475 ip_reass_ttl_decr(u_int ticks)
476 {
477 	u_int nfrags, median, dropfraction, keepfraction;
478 	ipfr_queue_t *fp, *nfp;
479 	int i;
480 
481 	nfrags = 0;
482 	memset(fragttl_histo, 0, sizeof(fragttl_histo));
483 
484 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
485 		for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
486 			fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
487 			    0 : fp->ipq_ttl - ticks);
488 			nfp = LIST_NEXT(fp, ipq_q);
489 			if (fp->ipq_ttl == 0) {
490 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
491 				ip_freef(fp);
492 			} else {
493 				nfrags += fp->ipq_nfrags;
494 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
495 			}
496 		}
497 	}
498 
499 	KASSERT(ip_nfrags == nfrags);
500 
501 	/* Find median (or other drop fraction) in histogram. */
502 	dropfraction = (ip_nfrags / 2);
503 	keepfraction = ip_nfrags - dropfraction;
504 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
505 		median += fragttl_histo[i];
506 		if (median >= keepfraction)
507 			break;
508 	}
509 
510 	/* Return TTL of median (or other fraction). */
511 	return (u_int)i;
512 }
513 
514 static void
515 ip_reass_drophalf(void)
516 {
517 	u_int median_ticks;
518 
519 	KASSERT(mutex_owned(&ipfr_lock));
520 
521 	/*
522 	 * Compute median TTL of all fragments, and count frags
523 	 * with that TTL or lower (roughly half of all fragments).
524 	 */
525 	median_ticks = ip_reass_ttl_decr(0);
526 
527 	/* Drop half. */
528 	median_ticks = ip_reass_ttl_decr(median_ticks);
529 }
530 
531 /*
532  * ip_reass_drain: drain off all datagram fragments.  Do not acquire
533  * softnet_lock as can be called from hardware interrupt context.
534  */
535 void
536 ip_reass_drain(void)
537 {
538 
539 	/*
540 	 * We may be called from a device's interrupt context.  If
541 	 * the ipq is already busy, just bail out now.
542 	 */
543 	if (mutex_tryenter(&ipfr_lock)) {
544 		/*
545 		 * Drop half the total fragments now. If more mbufs are
546 		 * needed, we will be called again soon.
547 		 */
548 		ip_reass_drophalf();
549 		mutex_exit(&ipfr_lock);
550 	}
551 }
552 
553 /*
554  * ip_reass_slowtimo:
555  *
556  *	If a timer expires on a reassembly queue, discard it.
557  */
558 void
559 ip_reass_slowtimo(void)
560 {
561 	static u_int dropscanidx = 0;
562 	u_int i, median_ttl;
563 
564 	mutex_enter(&ipfr_lock);
565 
566 	/* Age TTL of all fragments by 1 tick .*/
567 	median_ttl = ip_reass_ttl_decr(1);
568 
569 	/* Make sure fragment limit is up-to-date. */
570 	CHECK_NMBCLUSTER_PARAMS();
571 
572 	/* If we have too many fragments, drop the older half. */
573 	if (ip_nfrags > ip_maxfrags) {
574 		ip_reass_ttl_decr(median_ttl);
575 	}
576 
577 	/*
578 	 * If we are over the maximum number of fragmented packets (due to
579 	 * the limit being lowered), drain off enough to get down to the
580 	 * new limit.  Start draining from the reassembly hashqueue most
581 	 * recently drained.
582 	 */
583 	if (ip_maxfragpackets < 0)
584 		;
585 	else {
586 		int wrapped = 0;
587 
588 		i = dropscanidx;
589 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
590 			while (LIST_FIRST(&ip_frags[i]) != NULL) {
591 				ip_freef(LIST_FIRST(&ip_frags[i]));
592 			}
593 			if (++i >= IPREASS_HASH_SIZE) {
594 				i = 0;
595 			}
596 			/*
597 			 * Do not scan forever even if fragment counters are
598 			 * wrong: stop after scanning entire reassembly queue.
599 			 */
600 			if (i == dropscanidx) {
601 				wrapped = 1;
602 			}
603 		}
604 		dropscanidx = i;
605 	}
606 	mutex_exit(&ipfr_lock);
607 }
608 
609 /*
610  * ip_reass_packet: generic routine to perform IP reassembly.
611  *
612  * => Passed fragment should have IP_MF flag and/or offset set.
613  * => Fragment should not have other than IP_MF flags set.
614  *
615  * => Returns 0 on success or error otherwise.
616  * => On complete, m0 represents a constructed final packet.
617  */
618 int
619 ip_reass_packet(struct mbuf **m0, struct ip *ip)
620 {
621 	const int hlen = ip->ip_hl << 2;
622 	const int len = ntohs(ip->ip_len);
623 	struct mbuf *m = *m0;
624 	ipfr_queue_t *fp;
625 	ipfr_qent_t *ipqe;
626 	u_int hash, off, flen;
627 	bool mff;
628 
629 	/*
630 	 * Prevent TCP blind data attacks by not allowing non-initial
631 	 * fragments to start at less than 68 bytes (minimal fragment
632 	 * size) and making sure the first fragment is at least 68
633 	 * bytes.
634 	 */
635 	off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
636 	if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
637 		IP_STATINC(IP_STAT_BADFRAGS);
638 		return EINVAL;
639 	}
640 
641 	/*
642 	 * Fragment length and MF flag.  Make sure that fragments have
643 	 * a data length which is non-zero and multiple of 8 bytes.
644 	 */
645 	flen = ntohs(ip->ip_len) - hlen;
646 	mff = (ip->ip_off & htons(IP_MF)) != 0;
647 	if (mff && (flen == 0 || (flen & 0x7) != 0)) {
648 		IP_STATINC(IP_STAT_BADFRAGS);
649 		return EINVAL;
650 	}
651 
652 	/*
653 	 * Adjust total IP length to not reflect header and convert
654 	 * offset of this to bytes.  XXX: clobbers struct ip.
655 	 */
656 	ip->ip_len = htons(flen);
657 	ip->ip_off = htons(off);
658 
659 	/* Look for queue of fragments of this datagram. */
660 	mutex_enter(&ipfr_lock);
661 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
662 	LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
663 		if (ip->ip_id != fp->ipq_id)
664 			continue;
665 		if (!in_hosteq(ip->ip_src, fp->ipq_src))
666 			continue;
667 		if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
668 			continue;
669 		if (ip->ip_p != fp->ipq_p)
670 			continue;
671 		break;
672 	}
673 
674 	/* Make sure that TOS matches previous fragments. */
675 	if (fp && fp->ipq_tos != ip->ip_tos) {
676 		IP_STATINC(IP_STAT_BADFRAGS);
677 		mutex_exit(&ipfr_lock);
678 		return EINVAL;
679 	}
680 
681 	/*
682 	 * Create new entry and attempt to reassembly.
683 	 */
684 	IP_STATINC(IP_STAT_FRAGMENTS);
685 	ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
686 	if (ipqe == NULL) {
687 		IP_STATINC(IP_STAT_RCVMEMDROP);
688 		mutex_exit(&ipfr_lock);
689 		return ENOMEM;
690 	}
691 	ipqe->ipqe_mff = mff;
692 	ipqe->ipqe_m = m;
693 	ipqe->ipqe_ip = ip;
694 
695 	*m0 = ip_reass(ipqe, fp, hash);
696 	if (*m0) {
697 		/* Note that finally reassembled. */
698 		IP_STATINC(IP_STAT_REASSEMBLED);
699 	}
700 	return 0;
701 }
702