xref: /netbsd-src/sys/netinet/ip_output.c (revision f983e71d70cfccf7b3de601eb4d998b2d886ede4)
1 /*	$NetBSD: ip_output.c,v 1.195 2008/04/23 06:09:04 thorpej Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.195 2008/04/23 06:09:04 thorpej Exp $");
102 
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107 
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121 
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_private.h>
133 #include <netinet/in_offload.h>
134 
135 #ifdef MROUTING
136 #include <netinet/ip_mroute.h>
137 #endif
138 
139 #include <machine/stdarg.h>
140 
141 #ifdef IPSEC
142 #include <netinet6/ipsec.h>
143 #include <netinet6/ipsec_private.h>
144 #include <netkey/key.h>
145 #include <netkey/key_debug.h>
146 #endif /*IPSEC*/
147 
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #include <netipsec/xform.h>
152 #endif	/* FAST_IPSEC*/
153 
154 #ifdef IPSEC_NAT_T
155 #include <netinet/udp.h>
156 #endif
157 
158 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
159 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
160 static void ip_mloopback(struct ifnet *, struct mbuf *,
161     const struct sockaddr_in *);
162 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
163 
164 #ifdef PFIL_HOOKS
165 extern struct pfil_head inet_pfil_hook;			/* XXX */
166 #endif
167 
168 int	ip_do_loopback_cksum = 0;
169 
170 /*
171  * IP output.  The packet in mbuf chain m contains a skeletal IP
172  * header (with len, off, ttl, proto, tos, src, dst).
173  * The mbuf chain containing the packet will be freed.
174  * The mbuf opt, if present, will not be freed.
175  */
176 int
177 ip_output(struct mbuf *m0, ...)
178 {
179 	struct rtentry *rt;
180 	struct ip *ip;
181 	struct ifnet *ifp;
182 	struct mbuf *m = m0;
183 	int hlen = sizeof (struct ip);
184 	int len, error = 0;
185 	struct route iproute;
186 	const struct sockaddr_in *dst;
187 	struct in_ifaddr *ia;
188 	struct ifaddr *xifa;
189 	struct mbuf *opt;
190 	struct route *ro;
191 	int flags, sw_csum;
192 	int *mtu_p;
193 	u_long mtu;
194 	struct ip_moptions *imo;
195 	struct socket *so;
196 	va_list ap;
197 #ifdef IPSEC_NAT_T
198 	int natt_frag = 0;
199 #endif
200 #ifdef IPSEC
201 	struct secpolicy *sp = NULL;
202 #endif /*IPSEC*/
203 #ifdef FAST_IPSEC
204 	struct inpcb *inp;
205 	struct secpolicy *sp = NULL;
206 	int s;
207 #endif
208 	u_int16_t ip_len;
209 	union {
210 		struct sockaddr		dst;
211 		struct sockaddr_in	dst4;
212 	} u;
213 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
214 					 * to the nexthop
215 					 */
216 
217 	len = 0;
218 	va_start(ap, m0);
219 	opt = va_arg(ap, struct mbuf *);
220 	ro = va_arg(ap, struct route *);
221 	flags = va_arg(ap, int);
222 	imo = va_arg(ap, struct ip_moptions *);
223 	so = va_arg(ap, struct socket *);
224 	if (flags & IP_RETURNMTU)
225 		mtu_p = va_arg(ap, int *);
226 	else
227 		mtu_p = NULL;
228 	va_end(ap);
229 
230 	MCLAIM(m, &ip_tx_mowner);
231 #ifdef FAST_IPSEC
232 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
233 		inp = (struct inpcb *)so->so_pcb;
234 	else
235 		inp = NULL;
236 #endif /* FAST_IPSEC */
237 
238 #ifdef	DIAGNOSTIC
239 	if ((m->m_flags & M_PKTHDR) == 0)
240 		panic("ip_output: no HDR");
241 
242 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
243 		panic("ip_output: IPv6 checksum offload flags: %d",
244 		    m->m_pkthdr.csum_flags);
245 	}
246 
247 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
248 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
249 		panic("ip_output: conflicting checksum offload flags: %d",
250 		    m->m_pkthdr.csum_flags);
251 	}
252 #endif
253 	if (opt) {
254 		m = ip_insertoptions(m, opt, &len);
255 		if (len >= sizeof(struct ip))
256 			hlen = len;
257 	}
258 	ip = mtod(m, struct ip *);
259 	/*
260 	 * Fill in IP header.
261 	 */
262 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
263 		ip->ip_v = IPVERSION;
264 		ip->ip_off = htons(0);
265 		/* ip->ip_id filled in after we find out source ia */
266 		ip->ip_hl = hlen >> 2;
267 		IP_STATINC(IP_STAT_LOCALOUT);
268 	} else {
269 		hlen = ip->ip_hl << 2;
270 	}
271 	/*
272 	 * Route packet.
273 	 */
274 	memset(&iproute, 0, sizeof(iproute));
275 	if (ro == NULL)
276 		ro = &iproute;
277 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
278 	dst = satocsin(rtcache_getdst(ro));
279 	/*
280 	 * If there is a cached route,
281 	 * check that it is to the same destination
282 	 * and is still up.  If not, free it and try again.
283 	 * The address family should also be checked in case of sharing the
284 	 * cache with IPv6.
285 	 */
286 	if (dst == NULL)
287 		;
288 	else if (dst->sin_family != AF_INET ||
289 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
290 		rtcache_free(ro);
291 
292 	if ((rt = rtcache_validate(ro)) == NULL &&
293 	    (rt = rtcache_update(ro, 1)) == NULL) {
294 		dst = &u.dst4;
295 		rtcache_setdst(ro, &u.dst);
296 	}
297 	/*
298 	 * If routing to interface only,
299 	 * short circuit routing lookup.
300 	 */
301 	if (flags & IP_ROUTETOIF) {
302 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
303 			IP_STATINC(IP_STAT_NOROUTE);
304 			error = ENETUNREACH;
305 			goto bad;
306 		}
307 		ifp = ia->ia_ifp;
308 		mtu = ifp->if_mtu;
309 		ip->ip_ttl = 1;
310 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
311 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
312 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
313 		ifp = imo->imo_multicast_ifp;
314 		mtu = ifp->if_mtu;
315 		IFP_TO_IA(ifp, ia);
316 	} else {
317 		if (rt == NULL)
318 			rt = rtcache_init(ro);
319 		if (rt == NULL) {
320 			IP_STATINC(IP_STAT_NOROUTE);
321 			error = EHOSTUNREACH;
322 			goto bad;
323 		}
324 		ia = ifatoia(rt->rt_ifa);
325 		ifp = rt->rt_ifp;
326 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
327 			mtu = ifp->if_mtu;
328 		rt->rt_use++;
329 		if (rt->rt_flags & RTF_GATEWAY)
330 			dst = satosin(rt->rt_gateway);
331 	}
332 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
333 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
334 		struct in_multi *inm;
335 
336 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
337 			M_BCAST : M_MCAST;
338 		/*
339 		 * See if the caller provided any multicast options
340 		 */
341 		if (imo != NULL)
342 			ip->ip_ttl = imo->imo_multicast_ttl;
343 		else
344 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
345 
346 		/*
347 		 * if we don't know the outgoing ifp yet, we can't generate
348 		 * output
349 		 */
350 		if (!ifp) {
351 			IP_STATINC(IP_STAT_NOROUTE);
352 			error = ENETUNREACH;
353 			goto bad;
354 		}
355 
356 		/*
357 		 * If the packet is multicast or broadcast, confirm that
358 		 * the outgoing interface can transmit it.
359 		 */
360 		if (((m->m_flags & M_MCAST) &&
361 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
362 		    ((m->m_flags & M_BCAST) &&
363 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
364 			IP_STATINC(IP_STAT_NOROUTE);
365 			error = ENETUNREACH;
366 			goto bad;
367 		}
368 		/*
369 		 * If source address not specified yet, use an address
370 		 * of outgoing interface.
371 		 */
372 		if (in_nullhost(ip->ip_src)) {
373 			struct in_ifaddr *xia;
374 
375 			IFP_TO_IA(ifp, xia);
376 			if (!xia) {
377 				error = EADDRNOTAVAIL;
378 				goto bad;
379 			}
380 			xifa = &xia->ia_ifa;
381 			if (xifa->ifa_getifa != NULL) {
382 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
383 			}
384 			ip->ip_src = xia->ia_addr.sin_addr;
385 		}
386 
387 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
388 		if (inm != NULL &&
389 		   (imo == NULL || imo->imo_multicast_loop)) {
390 			/*
391 			 * If we belong to the destination multicast group
392 			 * on the outgoing interface, and the caller did not
393 			 * forbid loopback, loop back a copy.
394 			 */
395 			ip_mloopback(ifp, m, &u.dst4);
396 		}
397 #ifdef MROUTING
398 		else {
399 			/*
400 			 * If we are acting as a multicast router, perform
401 			 * multicast forwarding as if the packet had just
402 			 * arrived on the interface to which we are about
403 			 * to send.  The multicast forwarding function
404 			 * recursively calls this function, using the
405 			 * IP_FORWARDING flag to prevent infinite recursion.
406 			 *
407 			 * Multicasts that are looped back by ip_mloopback(),
408 			 * above, will be forwarded by the ip_input() routine,
409 			 * if necessary.
410 			 */
411 			extern struct socket *ip_mrouter;
412 
413 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
414 				if (ip_mforward(m, ifp) != 0) {
415 					m_freem(m);
416 					goto done;
417 				}
418 			}
419 		}
420 #endif
421 		/*
422 		 * Multicasts with a time-to-live of zero may be looped-
423 		 * back, above, but must not be transmitted on a network.
424 		 * Also, multicasts addressed to the loopback interface
425 		 * are not sent -- the above call to ip_mloopback() will
426 		 * loop back a copy if this host actually belongs to the
427 		 * destination group on the loopback interface.
428 		 */
429 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
430 			m_freem(m);
431 			goto done;
432 		}
433 
434 		goto sendit;
435 	}
436 	/*
437 	 * If source address not specified yet, use address
438 	 * of outgoing interface.
439 	 */
440 	if (in_nullhost(ip->ip_src)) {
441 		xifa = &ia->ia_ifa;
442 		if (xifa->ifa_getifa != NULL)
443 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
444 		ip->ip_src = ia->ia_addr.sin_addr;
445 	}
446 
447 	/*
448 	 * packets with Class-D address as source are not valid per
449 	 * RFC 1112
450 	 */
451 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
452 		IP_STATINC(IP_STAT_ODROPPED);
453 		error = EADDRNOTAVAIL;
454 		goto bad;
455 	}
456 
457 	/*
458 	 * Look for broadcast address and
459 	 * and verify user is allowed to send
460 	 * such a packet.
461 	 */
462 	if (in_broadcast(dst->sin_addr, ifp)) {
463 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
464 			error = EADDRNOTAVAIL;
465 			goto bad;
466 		}
467 		if ((flags & IP_ALLOWBROADCAST) == 0) {
468 			error = EACCES;
469 			goto bad;
470 		}
471 		/* don't allow broadcast messages to be fragmented */
472 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
473 			error = EMSGSIZE;
474 			goto bad;
475 		}
476 		m->m_flags |= M_BCAST;
477 	} else
478 		m->m_flags &= ~M_BCAST;
479 
480 sendit:
481 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
482 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
483 			ip->ip_id = 0;
484 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
485 			ip->ip_id = ip_newid(ia);
486 		} else {
487 
488 			/*
489 			 * TSO capable interfaces (typically?) increment
490 			 * ip_id for each segment.
491 			 * "allocate" enough ids here to increase the chance
492 			 * for them to be unique.
493 			 *
494 			 * note that the following calculation is not
495 			 * needed to be precise.  wasting some ip_id is fine.
496 			 */
497 
498 			unsigned int segsz = m->m_pkthdr.segsz;
499 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
500 			unsigned int num = howmany(datasz, segsz);
501 
502 			ip->ip_id = ip_newid_range(ia, num);
503 		}
504 	}
505 	/*
506 	 * If we're doing Path MTU Discovery, we need to set DF unless
507 	 * the route's MTU is locked.
508 	 */
509 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
510 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
511 		ip->ip_off |= htons(IP_DF);
512 
513 	/* Remember the current ip_len */
514 	ip_len = ntohs(ip->ip_len);
515 
516 #ifdef IPSEC
517 	/* get SP for this packet */
518 	if (so == NULL)
519 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
520 		    flags, &error);
521 	else {
522 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
523 					 IPSEC_DIR_OUTBOUND))
524 			goto skip_ipsec;
525 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
526 	}
527 
528 	if (sp == NULL) {
529 		IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
530 		goto bad;
531 	}
532 
533 	error = 0;
534 
535 	/* check policy */
536 	switch (sp->policy) {
537 	case IPSEC_POLICY_DISCARD:
538 		/*
539 		 * This packet is just discarded.
540 		 */
541 		IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
542 		goto bad;
543 
544 	case IPSEC_POLICY_BYPASS:
545 	case IPSEC_POLICY_NONE:
546 		/* no need to do IPsec. */
547 		goto skip_ipsec;
548 
549 	case IPSEC_POLICY_IPSEC:
550 		if (sp->req == NULL) {
551 			/* XXX should be panic ? */
552 			printf("ip_output: No IPsec request specified.\n");
553 			error = EINVAL;
554 			goto bad;
555 		}
556 		break;
557 
558 	case IPSEC_POLICY_ENTRUST:
559 	default:
560 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
561 	}
562 
563 #ifdef IPSEC_NAT_T
564 	/*
565 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
566 	 * we'll do it on each fragmented packet.
567 	 */
568 	if (sp->req->sav &&
569 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
570 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
571 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
572 			natt_frag = 1;
573 			mtu = sp->req->sav->esp_frag;
574 			goto skip_ipsec;
575 		}
576 	}
577 #endif /* IPSEC_NAT_T */
578 
579 	/*
580 	 * ipsec4_output() expects ip_len and ip_off in network
581 	 * order.  They have been set to network order above.
582 	 */
583 
584     {
585 	struct ipsec_output_state state;
586 	bzero(&state, sizeof(state));
587 	state.m = m;
588 	if (flags & IP_ROUTETOIF) {
589 		state.ro = &iproute;
590 		memset(&iproute, 0, sizeof(iproute));
591 	} else
592 		state.ro = ro;
593 	state.dst = sintocsa(dst);
594 
595 	/*
596 	 * We can't defer the checksum of payload data if
597 	 * we're about to encrypt/authenticate it.
598 	 *
599 	 * XXX When we support crypto offloading functions of
600 	 * XXX network interfaces, we need to reconsider this,
601 	 * XXX since it's likely that they'll support checksumming,
602 	 * XXX as well.
603 	 */
604 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
605 		in_delayed_cksum(m);
606 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
607 	}
608 
609 	error = ipsec4_output(&state, sp, flags);
610 
611 	m = state.m;
612 	if (flags & IP_ROUTETOIF) {
613 		/*
614 		 * if we have tunnel mode SA, we may need to ignore
615 		 * IP_ROUTETOIF.
616 		 */
617 		if (state.ro != &iproute ||
618 		    rtcache_validate(state.ro) != NULL) {
619 			flags &= ~IP_ROUTETOIF;
620 			ro = state.ro;
621 		}
622 	} else
623 		ro = state.ro;
624 	dst = satocsin(state.dst);
625 	if (error) {
626 		/* mbuf is already reclaimed in ipsec4_output. */
627 		m0 = NULL;
628 		switch (error) {
629 		case EHOSTUNREACH:
630 		case ENETUNREACH:
631 		case EMSGSIZE:
632 		case ENOBUFS:
633 		case ENOMEM:
634 			break;
635 		default:
636 			printf("ip4_output (ipsec): error code %d\n", error);
637 			/*fall through*/
638 		case ENOENT:
639 			/* don't show these error codes to the user */
640 			error = 0;
641 			break;
642 		}
643 		goto bad;
644 	}
645 
646 	/* be sure to update variables that are affected by ipsec4_output() */
647 	ip = mtod(m, struct ip *);
648 	hlen = ip->ip_hl << 2;
649 	ip_len = ntohs(ip->ip_len);
650 
651 	if ((rt = rtcache_validate(ro)) == NULL) {
652 		if ((flags & IP_ROUTETOIF) == 0) {
653 			printf("ip_output: "
654 				"can't update route after IPsec processing\n");
655 			error = EHOSTUNREACH;	/*XXX*/
656 			goto bad;
657 		}
658 	} else {
659 		/* nobody uses ia beyond here */
660 		if (state.encap) {
661 			ifp = rt->rt_ifp;
662 			if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
663 				mtu = ifp->if_mtu;
664 		}
665 	}
666     }
667 skip_ipsec:
668 #endif /*IPSEC*/
669 #ifdef FAST_IPSEC
670 	/*
671 	 * Check the security policy (SP) for the packet and, if
672 	 * required, do IPsec-related processing.  There are two
673 	 * cases here; the first time a packet is sent through
674 	 * it will be untagged and handled by ipsec4_checkpolicy.
675 	 * If the packet is resubmitted to ip_output (e.g. after
676 	 * AH, ESP, etc. processing), there will be a tag to bypass
677 	 * the lookup and related policy checking.
678 	 */
679 	if (!ipsec_outdone(m)) {
680 		s = splsoftnet();
681 		if (inp != NULL &&
682 				IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
683 			goto spd_done;
684 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
685 				&error, inp);
686 		/*
687 		 * There are four return cases:
688 		 *    sp != NULL	 	    apply IPsec policy
689 		 *    sp == NULL, error == 0	    no IPsec handling needed
690 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
691 		 *    sp == NULL, error != 0	    discard packet, report error
692 		 */
693 		if (sp != NULL) {
694 #ifdef IPSEC_NAT_T
695 			/*
696 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
697 			 * we'll do it on each fragmented packet.
698 			 */
699 			if (sp->req->sav &&
700 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
701 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
702 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
703 					natt_frag = 1;
704 					mtu = sp->req->sav->esp_frag;
705 					splx(s);
706 					goto spd_done;
707 				}
708 			}
709 #endif /* IPSEC_NAT_T */
710 
711 			/*
712 			 * Do delayed checksums now because we send before
713 			 * this is done in the normal processing path.
714 			 */
715 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
716 				in_delayed_cksum(m);
717 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
718 			}
719 
720 #ifdef __FreeBSD__
721 			ip->ip_len = htons(ip->ip_len);
722 			ip->ip_off = htons(ip->ip_off);
723 #endif
724 
725 			/* NB: callee frees mbuf */
726 			error = ipsec4_process_packet(m, sp->req, flags, 0);
727 			/*
728 			 * Preserve KAME behaviour: ENOENT can be returned
729 			 * when an SA acquire is in progress.  Don't propagate
730 			 * this to user-level; it confuses applications.
731 			 *
732 			 * XXX this will go away when the SADB is redone.
733 			 */
734 			if (error == ENOENT)
735 				error = 0;
736 			splx(s);
737 			goto done;
738 		} else {
739 			splx(s);
740 
741 			if (error != 0) {
742 				/*
743 				 * Hack: -EINVAL is used to signal that a packet
744 				 * should be silently discarded.  This is typically
745 				 * because we asked key management for an SA and
746 				 * it was delayed (e.g. kicked up to IKE).
747 				 */
748 				if (error == -EINVAL)
749 					error = 0;
750 				goto bad;
751 			} else {
752 				/* No IPsec processing for this packet. */
753 			}
754 		}
755 	}
756 spd_done:
757 #endif /* FAST_IPSEC */
758 
759 #ifdef PFIL_HOOKS
760 	/*
761 	 * Run through list of hooks for output packets.
762 	 */
763 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
764 		goto done;
765 	if (m == NULL)
766 		goto done;
767 
768 	ip = mtod(m, struct ip *);
769 	hlen = ip->ip_hl << 2;
770 	ip_len = ntohs(ip->ip_len);
771 #endif /* PFIL_HOOKS */
772 
773 	m->m_pkthdr.csum_data |= hlen << 16;
774 
775 #if IFA_STATS
776 	/*
777 	 * search for the source address structure to
778 	 * maintain output statistics.
779 	 */
780 	INADDR_TO_IA(ip->ip_src, ia);
781 #endif
782 
783 	/* Maybe skip checksums on loopback interfaces. */
784 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
785 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
786 	}
787 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
788 	/*
789 	 * If small enough for mtu of path, or if using TCP segmentation
790 	 * offload, can just send directly.
791 	 */
792 	if (ip_len <= mtu ||
793 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
794 #if IFA_STATS
795 		if (ia)
796 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
797 #endif
798 		/*
799 		 * Always initialize the sum to 0!  Some HW assisted
800 		 * checksumming requires this.
801 		 */
802 		ip->ip_sum = 0;
803 
804 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
805 			/*
806 			 * Perform any checksums that the hardware can't do
807 			 * for us.
808 			 *
809 			 * XXX Does any hardware require the {th,uh}_sum
810 			 * XXX fields to be 0?
811 			 */
812 			if (sw_csum & M_CSUM_IPv4) {
813 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
814 				ip->ip_sum = in_cksum(m, hlen);
815 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
816 			}
817 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
818 				if (IN_NEED_CHECKSUM(ifp,
819 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
820 					in_delayed_cksum(m);
821 				}
822 				m->m_pkthdr.csum_flags &=
823 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
824 			}
825 		}
826 
827 #ifdef IPSEC
828 		/* clean ipsec history once it goes out of the node */
829 		ipsec_delaux(m);
830 #endif
831 
832 		if (__predict_true(
833 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
834 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
835 			error =
836 			    (*ifp->if_output)(ifp, m,
837 				(m->m_flags & M_MCAST) ?
838 				    sintocsa(rdst) : sintocsa(dst),
839 				rt);
840 		} else {
841 			error =
842 			    ip_tso_output(ifp, m,
843 				(m->m_flags & M_MCAST) ?
844 				    sintocsa(rdst) : sintocsa(dst),
845 				rt);
846 		}
847 		goto done;
848 	}
849 
850 	/*
851 	 * We can't use HW checksumming if we're about to
852 	 * to fragment the packet.
853 	 *
854 	 * XXX Some hardware can do this.
855 	 */
856 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
857 		if (IN_NEED_CHECKSUM(ifp,
858 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
859 			in_delayed_cksum(m);
860 		}
861 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
862 	}
863 
864 	/*
865 	 * Too large for interface; fragment if possible.
866 	 * Must be able to put at least 8 bytes per fragment.
867 	 */
868 	if (ntohs(ip->ip_off) & IP_DF) {
869 		if (flags & IP_RETURNMTU)
870 			*mtu_p = mtu;
871 		error = EMSGSIZE;
872 		IP_STATINC(IP_STAT_CANTFRAG);
873 		goto bad;
874 	}
875 
876 	error = ip_fragment(m, ifp, mtu);
877 	if (error) {
878 		m = NULL;
879 		goto bad;
880 	}
881 
882 	for (; m; m = m0) {
883 		m0 = m->m_nextpkt;
884 		m->m_nextpkt = 0;
885 		if (error == 0) {
886 #if IFA_STATS
887 			if (ia)
888 				ia->ia_ifa.ifa_data.ifad_outbytes +=
889 				    ntohs(ip->ip_len);
890 #endif
891 #ifdef IPSEC
892 			/* clean ipsec history once it goes out of the node */
893 			ipsec_delaux(m);
894 #endif /* IPSEC */
895 
896 #ifdef IPSEC_NAT_T
897 			/*
898 			 * If we get there, the packet has not been handeld by
899 			 * IPSec whereas it should have. Now that it has been
900 			 * fragmented, re-inject it in ip_output so that IPsec
901 			 * processing can occur.
902 			 */
903 			if (natt_frag) {
904 				error = ip_output(m, opt,
905 				    ro, flags, imo, so, mtu_p);
906 			} else
907 #endif /* IPSEC_NAT_T */
908 			{
909 				KASSERT((m->m_pkthdr.csum_flags &
910 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
911 				error = (*ifp->if_output)(ifp, m,
912 				    (m->m_flags & M_MCAST) ?
913 					sintocsa(rdst) : sintocsa(dst),
914 				    rt);
915 			}
916 		} else
917 			m_freem(m);
918 	}
919 
920 	if (error == 0)
921 		IP_STATINC(IP_STAT_FRAGMENTED);
922 done:
923 	rtcache_free(&iproute);
924 
925 #ifdef IPSEC
926 	if (sp != NULL) {
927 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
928 			printf("DP ip_output call free SP:%p\n", sp));
929 		key_freesp(sp);
930 	}
931 #endif /* IPSEC */
932 #ifdef FAST_IPSEC
933 	if (sp != NULL)
934 		KEY_FREESP(&sp);
935 #endif /* FAST_IPSEC */
936 
937 	return (error);
938 bad:
939 	m_freem(m);
940 	goto done;
941 }
942 
943 int
944 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
945 {
946 	struct ip *ip, *mhip;
947 	struct mbuf *m0;
948 	int len, hlen, off;
949 	int mhlen, firstlen;
950 	struct mbuf **mnext;
951 	int sw_csum = m->m_pkthdr.csum_flags;
952 	int fragments = 0;
953 	int s;
954 	int error = 0;
955 
956 	ip = mtod(m, struct ip *);
957 	hlen = ip->ip_hl << 2;
958 	if (ifp != NULL)
959 		sw_csum &= ~ifp->if_csum_flags_tx;
960 
961 	len = (mtu - hlen) &~ 7;
962 	if (len < 8) {
963 		m_freem(m);
964 		return (EMSGSIZE);
965 	}
966 
967 	firstlen = len;
968 	mnext = &m->m_nextpkt;
969 
970 	/*
971 	 * Loop through length of segment after first fragment,
972 	 * make new header and copy data of each part and link onto chain.
973 	 */
974 	m0 = m;
975 	mhlen = sizeof (struct ip);
976 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
977 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
978 		if (m == 0) {
979 			error = ENOBUFS;
980 			IP_STATINC(IP_STAT_ODROPPED);
981 			goto sendorfree;
982 		}
983 		MCLAIM(m, m0->m_owner);
984 		*mnext = m;
985 		mnext = &m->m_nextpkt;
986 		m->m_data += max_linkhdr;
987 		mhip = mtod(m, struct ip *);
988 		*mhip = *ip;
989 		/* we must inherit MCAST and BCAST flags */
990 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
991 		if (hlen > sizeof (struct ip)) {
992 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
993 			mhip->ip_hl = mhlen >> 2;
994 		}
995 		m->m_len = mhlen;
996 		mhip->ip_off = ((off - hlen) >> 3) +
997 		    (ntohs(ip->ip_off) & ~IP_MF);
998 		if (ip->ip_off & htons(IP_MF))
999 			mhip->ip_off |= IP_MF;
1000 		if (off + len >= ntohs(ip->ip_len))
1001 			len = ntohs(ip->ip_len) - off;
1002 		else
1003 			mhip->ip_off |= IP_MF;
1004 		HTONS(mhip->ip_off);
1005 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
1006 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1007 		if (m->m_next == 0) {
1008 			error = ENOBUFS;	/* ??? */
1009 			IP_STATINC(IP_STAT_ODROPPED);
1010 			goto sendorfree;
1011 		}
1012 		m->m_pkthdr.len = mhlen + len;
1013 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1014 		mhip->ip_sum = 0;
1015 		if (sw_csum & M_CSUM_IPv4) {
1016 			mhip->ip_sum = in_cksum(m, mhlen);
1017 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1018 		} else {
1019 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1020 			m->m_pkthdr.csum_data |= mhlen << 16;
1021 		}
1022 		IP_STATINC(IP_STAT_OFRAGMENTS);
1023 		fragments++;
1024 	}
1025 	/*
1026 	 * Update first fragment by trimming what's been copied out
1027 	 * and updating header, then send each fragment (in order).
1028 	 */
1029 	m = m0;
1030 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1031 	m->m_pkthdr.len = hlen + firstlen;
1032 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1033 	ip->ip_off |= htons(IP_MF);
1034 	ip->ip_sum = 0;
1035 	if (sw_csum & M_CSUM_IPv4) {
1036 		ip->ip_sum = in_cksum(m, hlen);
1037 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1038 	} else {
1039 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1040 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1041 			sizeof(struct ip));
1042 	}
1043 sendorfree:
1044 	/*
1045 	 * If there is no room for all the fragments, don't queue
1046 	 * any of them.
1047 	 */
1048 	if (ifp != NULL) {
1049 		s = splnet();
1050 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1051 		    error == 0) {
1052 			error = ENOBUFS;
1053 			IP_STATINC(IP_STAT_ODROPPED);
1054 			IFQ_INC_DROPS(&ifp->if_snd);
1055 		}
1056 		splx(s);
1057 	}
1058 	if (error) {
1059 		for (m = m0; m; m = m0) {
1060 			m0 = m->m_nextpkt;
1061 			m->m_nextpkt = NULL;
1062 			m_freem(m);
1063 		}
1064 	}
1065 	return (error);
1066 }
1067 
1068 /*
1069  * Process a delayed payload checksum calculation.
1070  */
1071 void
1072 in_delayed_cksum(struct mbuf *m)
1073 {
1074 	struct ip *ip;
1075 	u_int16_t csum, offset;
1076 
1077 	ip = mtod(m, struct ip *);
1078 	offset = ip->ip_hl << 2;
1079 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1080 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1081 		csum = 0xffff;
1082 
1083 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1084 
1085 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
1086 		/* This happen when ip options were inserted
1087 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1088 		    m->m_len, offset, ip->ip_p);
1089 		 */
1090 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
1091 	} else
1092 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
1093 }
1094 
1095 /*
1096  * Determine the maximum length of the options to be inserted;
1097  * we would far rather allocate too much space rather than too little.
1098  */
1099 
1100 u_int
1101 ip_optlen(struct inpcb *inp)
1102 {
1103 	struct mbuf *m = inp->inp_options;
1104 
1105 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1106 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1107 	else
1108 		return 0;
1109 }
1110 
1111 
1112 /*
1113  * Insert IP options into preformed packet.
1114  * Adjust IP destination as required for IP source routing,
1115  * as indicated by a non-zero in_addr at the start of the options.
1116  */
1117 static struct mbuf *
1118 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1119 {
1120 	struct ipoption *p = mtod(opt, struct ipoption *);
1121 	struct mbuf *n;
1122 	struct ip *ip = mtod(m, struct ip *);
1123 	unsigned optlen;
1124 
1125 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1126 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1127 		return (m);		/* XXX should fail */
1128 	if (!in_nullhost(p->ipopt_dst))
1129 		ip->ip_dst = p->ipopt_dst;
1130 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1131 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1132 		if (n == 0)
1133 			return (m);
1134 		MCLAIM(n, m->m_owner);
1135 		M_MOVE_PKTHDR(n, m);
1136 		m->m_len -= sizeof(struct ip);
1137 		m->m_data += sizeof(struct ip);
1138 		n->m_next = m;
1139 		m = n;
1140 		m->m_len = optlen + sizeof(struct ip);
1141 		m->m_data += max_linkhdr;
1142 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1143 	} else {
1144 		m->m_data -= optlen;
1145 		m->m_len += optlen;
1146 		memmove(mtod(m, void *), ip, sizeof(struct ip));
1147 	}
1148 	m->m_pkthdr.len += optlen;
1149 	ip = mtod(m, struct ip *);
1150 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1151 	*phlen = sizeof(struct ip) + optlen;
1152 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1153 	return (m);
1154 }
1155 
1156 /*
1157  * Copy options from ip to jp,
1158  * omitting those not copied during fragmentation.
1159  */
1160 int
1161 ip_optcopy(struct ip *ip, struct ip *jp)
1162 {
1163 	u_char *cp, *dp;
1164 	int opt, optlen, cnt;
1165 
1166 	cp = (u_char *)(ip + 1);
1167 	dp = (u_char *)(jp + 1);
1168 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1169 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1170 		opt = cp[0];
1171 		if (opt == IPOPT_EOL)
1172 			break;
1173 		if (opt == IPOPT_NOP) {
1174 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1175 			*dp++ = IPOPT_NOP;
1176 			optlen = 1;
1177 			continue;
1178 		}
1179 #ifdef DIAGNOSTIC
1180 		if (cnt < IPOPT_OLEN + sizeof(*cp))
1181 			panic("malformed IPv4 option passed to ip_optcopy");
1182 #endif
1183 		optlen = cp[IPOPT_OLEN];
1184 #ifdef DIAGNOSTIC
1185 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1186 			panic("malformed IPv4 option passed to ip_optcopy");
1187 #endif
1188 		/* bogus lengths should have been caught by ip_dooptions */
1189 		if (optlen > cnt)
1190 			optlen = cnt;
1191 		if (IPOPT_COPIED(opt)) {
1192 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1193 			dp += optlen;
1194 		}
1195 	}
1196 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1197 		*dp++ = IPOPT_EOL;
1198 	return (optlen);
1199 }
1200 
1201 /*
1202  * IP socket option processing.
1203  */
1204 int
1205 ip_ctloutput(int op, struct socket *so, int level, int optname,
1206     struct mbuf **mp)
1207 {
1208 	struct inpcb *inp = sotoinpcb(so);
1209 	struct mbuf *m = *mp;
1210 	int optval = 0;
1211 	int error = 0;
1212 #if defined(IPSEC) || defined(FAST_IPSEC)
1213 	struct lwp *l = curlwp;	/*XXX*/
1214 #endif
1215 
1216 	if (level != IPPROTO_IP) {
1217 		if (op == PRCO_SETOPT && *mp)
1218 			(void) m_free(*mp);
1219 		if (level == SOL_SOCKET && optname == SO_NOHEADER)
1220 			return 0;
1221 		return ENOPROTOOPT;
1222 	}
1223 
1224 	switch (op) {
1225 
1226 	case PRCO_SETOPT:
1227 		switch (optname) {
1228 		case IP_OPTIONS:
1229 #ifdef notyet
1230 		case IP_RETOPTS:
1231 			return (ip_pcbopts(optname, &inp->inp_options, m));
1232 #else
1233 			return (ip_pcbopts(&inp->inp_options, m));
1234 #endif
1235 
1236 		case IP_TOS:
1237 		case IP_TTL:
1238 		case IP_RECVOPTS:
1239 		case IP_RECVRETOPTS:
1240 		case IP_RECVDSTADDR:
1241 		case IP_RECVIF:
1242 			if (m == NULL || m->m_len != sizeof(int))
1243 				error = EINVAL;
1244 			else {
1245 				optval = *mtod(m, int *);
1246 				switch (optname) {
1247 
1248 				case IP_TOS:
1249 					inp->inp_ip.ip_tos = optval;
1250 					break;
1251 
1252 				case IP_TTL:
1253 					inp->inp_ip.ip_ttl = optval;
1254 					break;
1255 #define	OPTSET(bit) \
1256 	if (optval) \
1257 		inp->inp_flags |= bit; \
1258 	else \
1259 		inp->inp_flags &= ~bit;
1260 
1261 				case IP_RECVOPTS:
1262 					OPTSET(INP_RECVOPTS);
1263 					break;
1264 
1265 				case IP_RECVRETOPTS:
1266 					OPTSET(INP_RECVRETOPTS);
1267 					break;
1268 
1269 				case IP_RECVDSTADDR:
1270 					OPTSET(INP_RECVDSTADDR);
1271 					break;
1272 
1273 				case IP_RECVIF:
1274 					OPTSET(INP_RECVIF);
1275 					break;
1276 				}
1277 			}
1278 			break;
1279 #undef OPTSET
1280 
1281 		case IP_MULTICAST_IF:
1282 		case IP_MULTICAST_TTL:
1283 		case IP_MULTICAST_LOOP:
1284 		case IP_ADD_MEMBERSHIP:
1285 		case IP_DROP_MEMBERSHIP:
1286 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
1287 			break;
1288 
1289 		case IP_PORTRANGE:
1290 			if (m == 0 || m->m_len != sizeof(int))
1291 				error = EINVAL;
1292 			else {
1293 				optval = *mtod(m, int *);
1294 
1295 				switch (optval) {
1296 
1297 				case IP_PORTRANGE_DEFAULT:
1298 				case IP_PORTRANGE_HIGH:
1299 					inp->inp_flags &= ~(INP_LOWPORT);
1300 					break;
1301 
1302 				case IP_PORTRANGE_LOW:
1303 					inp->inp_flags |= INP_LOWPORT;
1304 					break;
1305 
1306 				default:
1307 					error = EINVAL;
1308 					break;
1309 				}
1310 			}
1311 			break;
1312 
1313 #if defined(IPSEC) || defined(FAST_IPSEC)
1314 		case IP_IPSEC_POLICY:
1315 		{
1316 			void *req = NULL;
1317 			size_t len = 0;
1318 			int priv = 0;
1319 
1320 #ifdef __NetBSD__
1321 			if (l == 0 || kauth_authorize_generic(l->l_cred,
1322 			    KAUTH_GENERIC_ISSUSER, NULL))
1323 				priv = 0;
1324 			else
1325 				priv = 1;
1326 #else
1327 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
1328 #endif
1329 			if (m) {
1330 				req = mtod(m, void *);
1331 				len = m->m_len;
1332 			}
1333 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1334 			break;
1335 		    }
1336 #endif /*IPSEC*/
1337 
1338 		default:
1339 			error = ENOPROTOOPT;
1340 			break;
1341 		}
1342 		if (m)
1343 			(void)m_free(m);
1344 		break;
1345 
1346 	case PRCO_GETOPT:
1347 		switch (optname) {
1348 		case IP_OPTIONS:
1349 		case IP_RETOPTS:
1350 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1351 			MCLAIM(m, so->so_mowner);
1352 			if (inp->inp_options) {
1353 				m->m_len = inp->inp_options->m_len;
1354 				bcopy(mtod(inp->inp_options, void *),
1355 				    mtod(m, void *), (unsigned)m->m_len);
1356 			} else
1357 				m->m_len = 0;
1358 			break;
1359 
1360 		case IP_TOS:
1361 		case IP_TTL:
1362 		case IP_RECVOPTS:
1363 		case IP_RECVRETOPTS:
1364 		case IP_RECVDSTADDR:
1365 		case IP_RECVIF:
1366 		case IP_ERRORMTU:
1367 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1368 			MCLAIM(m, so->so_mowner);
1369 			m->m_len = sizeof(int);
1370 			switch (optname) {
1371 
1372 			case IP_TOS:
1373 				optval = inp->inp_ip.ip_tos;
1374 				break;
1375 
1376 			case IP_TTL:
1377 				optval = inp->inp_ip.ip_ttl;
1378 				break;
1379 
1380 			case IP_ERRORMTU:
1381 				optval = inp->inp_errormtu;
1382 				break;
1383 
1384 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1385 
1386 			case IP_RECVOPTS:
1387 				optval = OPTBIT(INP_RECVOPTS);
1388 				break;
1389 
1390 			case IP_RECVRETOPTS:
1391 				optval = OPTBIT(INP_RECVRETOPTS);
1392 				break;
1393 
1394 			case IP_RECVDSTADDR:
1395 				optval = OPTBIT(INP_RECVDSTADDR);
1396 				break;
1397 
1398 			case IP_RECVIF:
1399 				optval = OPTBIT(INP_RECVIF);
1400 				break;
1401 			}
1402 			*mtod(m, int *) = optval;
1403 			break;
1404 
1405 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
1406 		/* XXX: code broken */
1407 		case IP_IPSEC_POLICY:
1408 		{
1409 			void *req = NULL;
1410 			size_t len = 0;
1411 
1412 			if (m) {
1413 				req = mtod(m, void *);
1414 				len = m->m_len;
1415 			}
1416 			error = ipsec4_get_policy(inp, req, len, mp);
1417 			break;
1418 		}
1419 #endif /*IPSEC*/
1420 
1421 		case IP_MULTICAST_IF:
1422 		case IP_MULTICAST_TTL:
1423 		case IP_MULTICAST_LOOP:
1424 		case IP_ADD_MEMBERSHIP:
1425 		case IP_DROP_MEMBERSHIP:
1426 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
1427 			if (*mp)
1428 				MCLAIM(*mp, so->so_mowner);
1429 			break;
1430 
1431 		case IP_PORTRANGE:
1432 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1433 			MCLAIM(m, so->so_mowner);
1434 			m->m_len = sizeof(int);
1435 
1436 			if (inp->inp_flags & INP_LOWPORT)
1437 				optval = IP_PORTRANGE_LOW;
1438 			else
1439 				optval = IP_PORTRANGE_DEFAULT;
1440 
1441 			*mtod(m, int *) = optval;
1442 			break;
1443 
1444 		default:
1445 			error = ENOPROTOOPT;
1446 			break;
1447 		}
1448 		break;
1449 	}
1450 	return (error);
1451 }
1452 
1453 /*
1454  * Set up IP options in pcb for insertion in output packets.
1455  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1456  * with destination address if source routed.
1457  */
1458 int
1459 #ifdef notyet
1460 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1461 #else
1462 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1463 #endif
1464 {
1465 	int cnt, optlen;
1466 	u_char *cp;
1467 	u_char opt;
1468 
1469 	/* turn off any old options */
1470 	if (*pcbopt)
1471 		(void)m_free(*pcbopt);
1472 	*pcbopt = 0;
1473 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1474 		/*
1475 		 * Only turning off any previous options.
1476 		 */
1477 		if (m)
1478 			(void)m_free(m);
1479 		return (0);
1480 	}
1481 
1482 #ifndef	__vax__
1483 	if (m->m_len % sizeof(int32_t))
1484 		goto bad;
1485 #endif
1486 	/*
1487 	 * IP first-hop destination address will be stored before
1488 	 * actual options; move other options back
1489 	 * and clear it when none present.
1490 	 */
1491 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1492 		goto bad;
1493 	cnt = m->m_len;
1494 	m->m_len += sizeof(struct in_addr);
1495 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1496 	memmove(cp, mtod(m, void *), (unsigned)cnt);
1497 	bzero(mtod(m, void *), sizeof(struct in_addr));
1498 
1499 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1500 		opt = cp[IPOPT_OPTVAL];
1501 		if (opt == IPOPT_EOL)
1502 			break;
1503 		if (opt == IPOPT_NOP)
1504 			optlen = 1;
1505 		else {
1506 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1507 				goto bad;
1508 			optlen = cp[IPOPT_OLEN];
1509 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1510 				goto bad;
1511 		}
1512 		switch (opt) {
1513 
1514 		default:
1515 			break;
1516 
1517 		case IPOPT_LSRR:
1518 		case IPOPT_SSRR:
1519 			/*
1520 			 * user process specifies route as:
1521 			 *	->A->B->C->D
1522 			 * D must be our final destination (but we can't
1523 			 * check that since we may not have connected yet).
1524 			 * A is first hop destination, which doesn't appear in
1525 			 * actual IP option, but is stored before the options.
1526 			 */
1527 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1528 				goto bad;
1529 			m->m_len -= sizeof(struct in_addr);
1530 			cnt -= sizeof(struct in_addr);
1531 			optlen -= sizeof(struct in_addr);
1532 			cp[IPOPT_OLEN] = optlen;
1533 			/*
1534 			 * Move first hop before start of options.
1535 			 */
1536 			bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1537 			    sizeof(struct in_addr));
1538 			/*
1539 			 * Then copy rest of options back
1540 			 * to close up the deleted entry.
1541 			 */
1542 			(void)memmove(&cp[IPOPT_OFFSET+1],
1543 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1544 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1545 			break;
1546 		}
1547 	}
1548 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1549 		goto bad;
1550 	*pcbopt = m;
1551 	return (0);
1552 
1553 bad:
1554 	(void)m_free(m);
1555 	return (EINVAL);
1556 }
1557 
1558 /*
1559  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1560  */
1561 static struct ifnet *
1562 ip_multicast_if(struct in_addr *a, int *ifindexp)
1563 {
1564 	int ifindex;
1565 	struct ifnet *ifp = NULL;
1566 	struct in_ifaddr *ia;
1567 
1568 	if (ifindexp)
1569 		*ifindexp = 0;
1570 	if (ntohl(a->s_addr) >> 24 == 0) {
1571 		ifindex = ntohl(a->s_addr) & 0xffffff;
1572 		if (ifindex < 0 || if_indexlim <= ifindex)
1573 			return NULL;
1574 		ifp = ifindex2ifnet[ifindex];
1575 		if (!ifp)
1576 			return NULL;
1577 		if (ifindexp)
1578 			*ifindexp = ifindex;
1579 	} else {
1580 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1581 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1582 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1583 				ifp = ia->ia_ifp;
1584 				break;
1585 			}
1586 		}
1587 	}
1588 	return ifp;
1589 }
1590 
1591 static int
1592 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1593 {
1594 	u_int tval;
1595 
1596 	if (m == NULL)
1597 		return EINVAL;
1598 
1599 	switch (m->m_len) {
1600 	case sizeof(u_char):
1601 		tval = *(mtod(m, u_char *));
1602 		break;
1603 	case sizeof(u_int):
1604 		tval = *(mtod(m, u_int *));
1605 		break;
1606 	default:
1607 		return EINVAL;
1608 	}
1609 
1610 	if (tval > maxval)
1611 		return EINVAL;
1612 
1613 	*val = tval;
1614 	return 0;
1615 }
1616 
1617 /*
1618  * Set the IP multicast options in response to user setsockopt().
1619  */
1620 int
1621 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1622 {
1623 	int error = 0;
1624 	int i;
1625 	struct in_addr addr;
1626 	struct ip_mreq *mreq;
1627 	struct ifnet *ifp;
1628 	struct ip_moptions *imo = *imop;
1629 	int ifindex;
1630 
1631 	if (imo == NULL) {
1632 		/*
1633 		 * No multicast option buffer attached to the pcb;
1634 		 * allocate one and initialize to default values.
1635 		 */
1636 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1637 		    M_WAITOK);
1638 
1639 		if (imo == NULL)
1640 			return (ENOBUFS);
1641 		*imop = imo;
1642 		imo->imo_multicast_ifp = NULL;
1643 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1644 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1645 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1646 		imo->imo_num_memberships = 0;
1647 	}
1648 
1649 	switch (optname) {
1650 
1651 	case IP_MULTICAST_IF:
1652 		/*
1653 		 * Select the interface for outgoing multicast packets.
1654 		 */
1655 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1656 			error = EINVAL;
1657 			break;
1658 		}
1659 		addr = *(mtod(m, struct in_addr *));
1660 		/*
1661 		 * INADDR_ANY is used to remove a previous selection.
1662 		 * When no interface is selected, a default one is
1663 		 * chosen every time a multicast packet is sent.
1664 		 */
1665 		if (in_nullhost(addr)) {
1666 			imo->imo_multicast_ifp = NULL;
1667 			break;
1668 		}
1669 		/*
1670 		 * The selected interface is identified by its local
1671 		 * IP address.  Find the interface and confirm that
1672 		 * it supports multicasting.
1673 		 */
1674 		ifp = ip_multicast_if(&addr, &ifindex);
1675 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1676 			error = EADDRNOTAVAIL;
1677 			break;
1678 		}
1679 		imo->imo_multicast_ifp = ifp;
1680 		if (ifindex)
1681 			imo->imo_multicast_addr = addr;
1682 		else
1683 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1684 		break;
1685 
1686 	case IP_MULTICAST_TTL:
1687 		/*
1688 		 * Set the IP time-to-live for outgoing multicast packets.
1689 		 */
1690 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1691 		break;
1692 
1693 	case IP_MULTICAST_LOOP:
1694 		/*
1695 		 * Set the loopback flag for outgoing multicast packets.
1696 		 * Must be zero or one.
1697 		 */
1698 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1699 		break;
1700 
1701 	case IP_ADD_MEMBERSHIP:
1702 		/*
1703 		 * Add a multicast group membership.
1704 		 * Group must be a valid IP multicast address.
1705 		 */
1706 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1707 			error = EINVAL;
1708 			break;
1709 		}
1710 		mreq = mtod(m, struct ip_mreq *);
1711 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1712 			error = EINVAL;
1713 			break;
1714 		}
1715 		/*
1716 		 * If no interface address was provided, use the interface of
1717 		 * the route to the given multicast address.
1718 		 */
1719 		if (in_nullhost(mreq->imr_interface)) {
1720 			struct rtentry *rt;
1721 			union {
1722 				struct sockaddr		dst;
1723 				struct sockaddr_in	dst4;
1724 			} u;
1725 			struct route ro;
1726 
1727 			memset(&ro, 0, sizeof(ro));
1728 
1729 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1730 			rtcache_setdst(&ro, &u.dst);
1731 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1732 			                                        : NULL;
1733 			rtcache_free(&ro);
1734 		} else {
1735 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1736 		}
1737 		/*
1738 		 * See if we found an interface, and confirm that it
1739 		 * supports multicast.
1740 		 */
1741 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1742 			error = EADDRNOTAVAIL;
1743 			break;
1744 		}
1745 		/*
1746 		 * See if the membership already exists or if all the
1747 		 * membership slots are full.
1748 		 */
1749 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1750 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1751 			    in_hosteq(imo->imo_membership[i]->inm_addr,
1752 				      mreq->imr_multiaddr))
1753 				break;
1754 		}
1755 		if (i < imo->imo_num_memberships) {
1756 			error = EADDRINUSE;
1757 			break;
1758 		}
1759 		if (i == IP_MAX_MEMBERSHIPS) {
1760 			error = ETOOMANYREFS;
1761 			break;
1762 		}
1763 		/*
1764 		 * Everything looks good; add a new record to the multicast
1765 		 * address list for the given interface.
1766 		 */
1767 		if ((imo->imo_membership[i] =
1768 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1769 			error = ENOBUFS;
1770 			break;
1771 		}
1772 		++imo->imo_num_memberships;
1773 		break;
1774 
1775 	case IP_DROP_MEMBERSHIP:
1776 		/*
1777 		 * Drop a multicast group membership.
1778 		 * Group must be a valid IP multicast address.
1779 		 */
1780 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1781 			error = EINVAL;
1782 			break;
1783 		}
1784 		mreq = mtod(m, struct ip_mreq *);
1785 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1786 			error = EINVAL;
1787 			break;
1788 		}
1789 		/*
1790 		 * If an interface address was specified, get a pointer
1791 		 * to its ifnet structure.
1792 		 */
1793 		if (in_nullhost(mreq->imr_interface))
1794 			ifp = NULL;
1795 		else {
1796 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1797 			if (ifp == NULL) {
1798 				error = EADDRNOTAVAIL;
1799 				break;
1800 			}
1801 		}
1802 		/*
1803 		 * Find the membership in the membership array.
1804 		 */
1805 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1806 			if ((ifp == NULL ||
1807 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1808 			     in_hosteq(imo->imo_membership[i]->inm_addr,
1809 				       mreq->imr_multiaddr))
1810 				break;
1811 		}
1812 		if (i == imo->imo_num_memberships) {
1813 			error = EADDRNOTAVAIL;
1814 			break;
1815 		}
1816 		/*
1817 		 * Give up the multicast address record to which the
1818 		 * membership points.
1819 		 */
1820 		in_delmulti(imo->imo_membership[i]);
1821 		/*
1822 		 * Remove the gap in the membership array.
1823 		 */
1824 		for (++i; i < imo->imo_num_memberships; ++i)
1825 			imo->imo_membership[i-1] = imo->imo_membership[i];
1826 		--imo->imo_num_memberships;
1827 		break;
1828 
1829 	default:
1830 		error = EOPNOTSUPP;
1831 		break;
1832 	}
1833 
1834 	/*
1835 	 * If all options have default values, no need to keep the mbuf.
1836 	 */
1837 	if (imo->imo_multicast_ifp == NULL &&
1838 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1839 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1840 	    imo->imo_num_memberships == 0) {
1841 		free(*imop, M_IPMOPTS);
1842 		*imop = NULL;
1843 	}
1844 
1845 	return (error);
1846 }
1847 
1848 /*
1849  * Return the IP multicast options in response to user getsockopt().
1850  */
1851 int
1852 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1853 {
1854 	u_char *ttl;
1855 	u_char *loop;
1856 	struct in_addr *addr;
1857 	struct in_ifaddr *ia;
1858 
1859 	*mp = m_get(M_WAIT, MT_SOOPTS);
1860 
1861 	switch (optname) {
1862 
1863 	case IP_MULTICAST_IF:
1864 		addr = mtod(*mp, struct in_addr *);
1865 		(*mp)->m_len = sizeof(struct in_addr);
1866 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1867 			*addr = zeroin_addr;
1868 		else if (imo->imo_multicast_addr.s_addr) {
1869 			/* return the value user has set */
1870 			*addr = imo->imo_multicast_addr;
1871 		} else {
1872 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1873 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1874 		}
1875 		return (0);
1876 
1877 	case IP_MULTICAST_TTL:
1878 		ttl = mtod(*mp, u_char *);
1879 		(*mp)->m_len = 1;
1880 		*ttl = imo ? imo->imo_multicast_ttl
1881 			   : IP_DEFAULT_MULTICAST_TTL;
1882 		return (0);
1883 
1884 	case IP_MULTICAST_LOOP:
1885 		loop = mtod(*mp, u_char *);
1886 		(*mp)->m_len = 1;
1887 		*loop = imo ? imo->imo_multicast_loop
1888 			    : IP_DEFAULT_MULTICAST_LOOP;
1889 		return (0);
1890 
1891 	default:
1892 		return (EOPNOTSUPP);
1893 	}
1894 }
1895 
1896 /*
1897  * Discard the IP multicast options.
1898  */
1899 void
1900 ip_freemoptions(struct ip_moptions *imo)
1901 {
1902 	int i;
1903 
1904 	if (imo != NULL) {
1905 		for (i = 0; i < imo->imo_num_memberships; ++i)
1906 			in_delmulti(imo->imo_membership[i]);
1907 		free(imo, M_IPMOPTS);
1908 	}
1909 }
1910 
1911 /*
1912  * Routine called from ip_output() to loop back a copy of an IP multicast
1913  * packet to the input queue of a specified interface.  Note that this
1914  * calls the output routine of the loopback "driver", but with an interface
1915  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1916  */
1917 static void
1918 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1919 {
1920 	struct ip *ip;
1921 	struct mbuf *copym;
1922 
1923 	copym = m_copypacket(m, M_DONTWAIT);
1924 	if (copym != NULL
1925 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1926 		copym = m_pullup(copym, sizeof(struct ip));
1927 	if (copym == NULL)
1928 		return;
1929 	/*
1930 	 * We don't bother to fragment if the IP length is greater
1931 	 * than the interface's MTU.  Can this possibly matter?
1932 	 */
1933 	ip = mtod(copym, struct ip *);
1934 
1935 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1936 		in_delayed_cksum(copym);
1937 		copym->m_pkthdr.csum_flags &=
1938 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1939 	}
1940 
1941 	ip->ip_sum = 0;
1942 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1943 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
1944 }
1945