xref: /netbsd-src/sys/netinet/ip_output.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: ip_output.c,v 1.196 2008/04/28 20:24:09 martin Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.196 2008/04/28 20:24:09 martin Exp $");
95 
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef FAST_IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114 
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118 
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127 
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131 
132 #include <machine/stdarg.h>
133 
134 #ifdef IPSEC
135 #include <netinet6/ipsec.h>
136 #include <netinet6/ipsec_private.h>
137 #include <netkey/key.h>
138 #include <netkey/key_debug.h>
139 #endif /*IPSEC*/
140 
141 #ifdef FAST_IPSEC
142 #include <netipsec/ipsec.h>
143 #include <netipsec/key.h>
144 #include <netipsec/xform.h>
145 #endif	/* FAST_IPSEC*/
146 
147 #ifdef IPSEC_NAT_T
148 #include <netinet/udp.h>
149 #endif
150 
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154     const struct sockaddr_in *);
155 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
156 
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook;			/* XXX */
159 #endif
160 
161 int	ip_do_loopback_cksum = 0;
162 
163 /*
164  * IP output.  The packet in mbuf chain m contains a skeletal IP
165  * header (with len, off, ttl, proto, tos, src, dst).
166  * The mbuf chain containing the packet will be freed.
167  * The mbuf opt, if present, will not be freed.
168  */
169 int
170 ip_output(struct mbuf *m0, ...)
171 {
172 	struct rtentry *rt;
173 	struct ip *ip;
174 	struct ifnet *ifp;
175 	struct mbuf *m = m0;
176 	int hlen = sizeof (struct ip);
177 	int len, error = 0;
178 	struct route iproute;
179 	const struct sockaddr_in *dst;
180 	struct in_ifaddr *ia;
181 	struct ifaddr *xifa;
182 	struct mbuf *opt;
183 	struct route *ro;
184 	int flags, sw_csum;
185 	int *mtu_p;
186 	u_long mtu;
187 	struct ip_moptions *imo;
188 	struct socket *so;
189 	va_list ap;
190 #ifdef IPSEC_NAT_T
191 	int natt_frag = 0;
192 #endif
193 #ifdef IPSEC
194 	struct secpolicy *sp = NULL;
195 #endif /*IPSEC*/
196 #ifdef FAST_IPSEC
197 	struct inpcb *inp;
198 	struct secpolicy *sp = NULL;
199 	int s;
200 #endif
201 	u_int16_t ip_len;
202 	union {
203 		struct sockaddr		dst;
204 		struct sockaddr_in	dst4;
205 	} u;
206 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
207 					 * to the nexthop
208 					 */
209 
210 	len = 0;
211 	va_start(ap, m0);
212 	opt = va_arg(ap, struct mbuf *);
213 	ro = va_arg(ap, struct route *);
214 	flags = va_arg(ap, int);
215 	imo = va_arg(ap, struct ip_moptions *);
216 	so = va_arg(ap, struct socket *);
217 	if (flags & IP_RETURNMTU)
218 		mtu_p = va_arg(ap, int *);
219 	else
220 		mtu_p = NULL;
221 	va_end(ap);
222 
223 	MCLAIM(m, &ip_tx_mowner);
224 #ifdef FAST_IPSEC
225 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
226 		inp = (struct inpcb *)so->so_pcb;
227 	else
228 		inp = NULL;
229 #endif /* FAST_IPSEC */
230 
231 #ifdef	DIAGNOSTIC
232 	if ((m->m_flags & M_PKTHDR) == 0)
233 		panic("ip_output: no HDR");
234 
235 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
236 		panic("ip_output: IPv6 checksum offload flags: %d",
237 		    m->m_pkthdr.csum_flags);
238 	}
239 
240 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
241 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
242 		panic("ip_output: conflicting checksum offload flags: %d",
243 		    m->m_pkthdr.csum_flags);
244 	}
245 #endif
246 	if (opt) {
247 		m = ip_insertoptions(m, opt, &len);
248 		if (len >= sizeof(struct ip))
249 			hlen = len;
250 	}
251 	ip = mtod(m, struct ip *);
252 	/*
253 	 * Fill in IP header.
254 	 */
255 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
256 		ip->ip_v = IPVERSION;
257 		ip->ip_off = htons(0);
258 		/* ip->ip_id filled in after we find out source ia */
259 		ip->ip_hl = hlen >> 2;
260 		IP_STATINC(IP_STAT_LOCALOUT);
261 	} else {
262 		hlen = ip->ip_hl << 2;
263 	}
264 	/*
265 	 * Route packet.
266 	 */
267 	memset(&iproute, 0, sizeof(iproute));
268 	if (ro == NULL)
269 		ro = &iproute;
270 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
271 	dst = satocsin(rtcache_getdst(ro));
272 	/*
273 	 * If there is a cached route,
274 	 * check that it is to the same destination
275 	 * and is still up.  If not, free it and try again.
276 	 * The address family should also be checked in case of sharing the
277 	 * cache with IPv6.
278 	 */
279 	if (dst == NULL)
280 		;
281 	else if (dst->sin_family != AF_INET ||
282 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
283 		rtcache_free(ro);
284 
285 	if ((rt = rtcache_validate(ro)) == NULL &&
286 	    (rt = rtcache_update(ro, 1)) == NULL) {
287 		dst = &u.dst4;
288 		rtcache_setdst(ro, &u.dst);
289 	}
290 	/*
291 	 * If routing to interface only,
292 	 * short circuit routing lookup.
293 	 */
294 	if (flags & IP_ROUTETOIF) {
295 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
296 			IP_STATINC(IP_STAT_NOROUTE);
297 			error = ENETUNREACH;
298 			goto bad;
299 		}
300 		ifp = ia->ia_ifp;
301 		mtu = ifp->if_mtu;
302 		ip->ip_ttl = 1;
303 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
304 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
305 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
306 		ifp = imo->imo_multicast_ifp;
307 		mtu = ifp->if_mtu;
308 		IFP_TO_IA(ifp, ia);
309 	} else {
310 		if (rt == NULL)
311 			rt = rtcache_init(ro);
312 		if (rt == NULL) {
313 			IP_STATINC(IP_STAT_NOROUTE);
314 			error = EHOSTUNREACH;
315 			goto bad;
316 		}
317 		ia = ifatoia(rt->rt_ifa);
318 		ifp = rt->rt_ifp;
319 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
320 			mtu = ifp->if_mtu;
321 		rt->rt_use++;
322 		if (rt->rt_flags & RTF_GATEWAY)
323 			dst = satosin(rt->rt_gateway);
324 	}
325 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
326 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
327 		struct in_multi *inm;
328 
329 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
330 			M_BCAST : M_MCAST;
331 		/*
332 		 * See if the caller provided any multicast options
333 		 */
334 		if (imo != NULL)
335 			ip->ip_ttl = imo->imo_multicast_ttl;
336 		else
337 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
338 
339 		/*
340 		 * if we don't know the outgoing ifp yet, we can't generate
341 		 * output
342 		 */
343 		if (!ifp) {
344 			IP_STATINC(IP_STAT_NOROUTE);
345 			error = ENETUNREACH;
346 			goto bad;
347 		}
348 
349 		/*
350 		 * If the packet is multicast or broadcast, confirm that
351 		 * the outgoing interface can transmit it.
352 		 */
353 		if (((m->m_flags & M_MCAST) &&
354 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
355 		    ((m->m_flags & M_BCAST) &&
356 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
357 			IP_STATINC(IP_STAT_NOROUTE);
358 			error = ENETUNREACH;
359 			goto bad;
360 		}
361 		/*
362 		 * If source address not specified yet, use an address
363 		 * of outgoing interface.
364 		 */
365 		if (in_nullhost(ip->ip_src)) {
366 			struct in_ifaddr *xia;
367 
368 			IFP_TO_IA(ifp, xia);
369 			if (!xia) {
370 				error = EADDRNOTAVAIL;
371 				goto bad;
372 			}
373 			xifa = &xia->ia_ifa;
374 			if (xifa->ifa_getifa != NULL) {
375 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
376 			}
377 			ip->ip_src = xia->ia_addr.sin_addr;
378 		}
379 
380 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
381 		if (inm != NULL &&
382 		   (imo == NULL || imo->imo_multicast_loop)) {
383 			/*
384 			 * If we belong to the destination multicast group
385 			 * on the outgoing interface, and the caller did not
386 			 * forbid loopback, loop back a copy.
387 			 */
388 			ip_mloopback(ifp, m, &u.dst4);
389 		}
390 #ifdef MROUTING
391 		else {
392 			/*
393 			 * If we are acting as a multicast router, perform
394 			 * multicast forwarding as if the packet had just
395 			 * arrived on the interface to which we are about
396 			 * to send.  The multicast forwarding function
397 			 * recursively calls this function, using the
398 			 * IP_FORWARDING flag to prevent infinite recursion.
399 			 *
400 			 * Multicasts that are looped back by ip_mloopback(),
401 			 * above, will be forwarded by the ip_input() routine,
402 			 * if necessary.
403 			 */
404 			extern struct socket *ip_mrouter;
405 
406 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
407 				if (ip_mforward(m, ifp) != 0) {
408 					m_freem(m);
409 					goto done;
410 				}
411 			}
412 		}
413 #endif
414 		/*
415 		 * Multicasts with a time-to-live of zero may be looped-
416 		 * back, above, but must not be transmitted on a network.
417 		 * Also, multicasts addressed to the loopback interface
418 		 * are not sent -- the above call to ip_mloopback() will
419 		 * loop back a copy if this host actually belongs to the
420 		 * destination group on the loopback interface.
421 		 */
422 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
423 			m_freem(m);
424 			goto done;
425 		}
426 
427 		goto sendit;
428 	}
429 	/*
430 	 * If source address not specified yet, use address
431 	 * of outgoing interface.
432 	 */
433 	if (in_nullhost(ip->ip_src)) {
434 		xifa = &ia->ia_ifa;
435 		if (xifa->ifa_getifa != NULL)
436 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
437 		ip->ip_src = ia->ia_addr.sin_addr;
438 	}
439 
440 	/*
441 	 * packets with Class-D address as source are not valid per
442 	 * RFC 1112
443 	 */
444 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
445 		IP_STATINC(IP_STAT_ODROPPED);
446 		error = EADDRNOTAVAIL;
447 		goto bad;
448 	}
449 
450 	/*
451 	 * Look for broadcast address and
452 	 * and verify user is allowed to send
453 	 * such a packet.
454 	 */
455 	if (in_broadcast(dst->sin_addr, ifp)) {
456 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
457 			error = EADDRNOTAVAIL;
458 			goto bad;
459 		}
460 		if ((flags & IP_ALLOWBROADCAST) == 0) {
461 			error = EACCES;
462 			goto bad;
463 		}
464 		/* don't allow broadcast messages to be fragmented */
465 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
466 			error = EMSGSIZE;
467 			goto bad;
468 		}
469 		m->m_flags |= M_BCAST;
470 	} else
471 		m->m_flags &= ~M_BCAST;
472 
473 sendit:
474 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
475 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
476 			ip->ip_id = 0;
477 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
478 			ip->ip_id = ip_newid(ia);
479 		} else {
480 
481 			/*
482 			 * TSO capable interfaces (typically?) increment
483 			 * ip_id for each segment.
484 			 * "allocate" enough ids here to increase the chance
485 			 * for them to be unique.
486 			 *
487 			 * note that the following calculation is not
488 			 * needed to be precise.  wasting some ip_id is fine.
489 			 */
490 
491 			unsigned int segsz = m->m_pkthdr.segsz;
492 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
493 			unsigned int num = howmany(datasz, segsz);
494 
495 			ip->ip_id = ip_newid_range(ia, num);
496 		}
497 	}
498 	/*
499 	 * If we're doing Path MTU Discovery, we need to set DF unless
500 	 * the route's MTU is locked.
501 	 */
502 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
503 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
504 		ip->ip_off |= htons(IP_DF);
505 
506 	/* Remember the current ip_len */
507 	ip_len = ntohs(ip->ip_len);
508 
509 #ifdef IPSEC
510 	/* get SP for this packet */
511 	if (so == NULL)
512 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
513 		    flags, &error);
514 	else {
515 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
516 					 IPSEC_DIR_OUTBOUND))
517 			goto skip_ipsec;
518 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
519 	}
520 
521 	if (sp == NULL) {
522 		IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
523 		goto bad;
524 	}
525 
526 	error = 0;
527 
528 	/* check policy */
529 	switch (sp->policy) {
530 	case IPSEC_POLICY_DISCARD:
531 		/*
532 		 * This packet is just discarded.
533 		 */
534 		IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
535 		goto bad;
536 
537 	case IPSEC_POLICY_BYPASS:
538 	case IPSEC_POLICY_NONE:
539 		/* no need to do IPsec. */
540 		goto skip_ipsec;
541 
542 	case IPSEC_POLICY_IPSEC:
543 		if (sp->req == NULL) {
544 			/* XXX should be panic ? */
545 			printf("ip_output: No IPsec request specified.\n");
546 			error = EINVAL;
547 			goto bad;
548 		}
549 		break;
550 
551 	case IPSEC_POLICY_ENTRUST:
552 	default:
553 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
554 	}
555 
556 #ifdef IPSEC_NAT_T
557 	/*
558 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
559 	 * we'll do it on each fragmented packet.
560 	 */
561 	if (sp->req->sav &&
562 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
563 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
564 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
565 			natt_frag = 1;
566 			mtu = sp->req->sav->esp_frag;
567 			goto skip_ipsec;
568 		}
569 	}
570 #endif /* IPSEC_NAT_T */
571 
572 	/*
573 	 * ipsec4_output() expects ip_len and ip_off in network
574 	 * order.  They have been set to network order above.
575 	 */
576 
577     {
578 	struct ipsec_output_state state;
579 	bzero(&state, sizeof(state));
580 	state.m = m;
581 	if (flags & IP_ROUTETOIF) {
582 		state.ro = &iproute;
583 		memset(&iproute, 0, sizeof(iproute));
584 	} else
585 		state.ro = ro;
586 	state.dst = sintocsa(dst);
587 
588 	/*
589 	 * We can't defer the checksum of payload data if
590 	 * we're about to encrypt/authenticate it.
591 	 *
592 	 * XXX When we support crypto offloading functions of
593 	 * XXX network interfaces, we need to reconsider this,
594 	 * XXX since it's likely that they'll support checksumming,
595 	 * XXX as well.
596 	 */
597 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
598 		in_delayed_cksum(m);
599 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
600 	}
601 
602 	error = ipsec4_output(&state, sp, flags);
603 
604 	m = state.m;
605 	if (flags & IP_ROUTETOIF) {
606 		/*
607 		 * if we have tunnel mode SA, we may need to ignore
608 		 * IP_ROUTETOIF.
609 		 */
610 		if (state.ro != &iproute ||
611 		    rtcache_validate(state.ro) != NULL) {
612 			flags &= ~IP_ROUTETOIF;
613 			ro = state.ro;
614 		}
615 	} else
616 		ro = state.ro;
617 	dst = satocsin(state.dst);
618 	if (error) {
619 		/* mbuf is already reclaimed in ipsec4_output. */
620 		m0 = NULL;
621 		switch (error) {
622 		case EHOSTUNREACH:
623 		case ENETUNREACH:
624 		case EMSGSIZE:
625 		case ENOBUFS:
626 		case ENOMEM:
627 			break;
628 		default:
629 			printf("ip4_output (ipsec): error code %d\n", error);
630 			/*fall through*/
631 		case ENOENT:
632 			/* don't show these error codes to the user */
633 			error = 0;
634 			break;
635 		}
636 		goto bad;
637 	}
638 
639 	/* be sure to update variables that are affected by ipsec4_output() */
640 	ip = mtod(m, struct ip *);
641 	hlen = ip->ip_hl << 2;
642 	ip_len = ntohs(ip->ip_len);
643 
644 	if ((rt = rtcache_validate(ro)) == NULL) {
645 		if ((flags & IP_ROUTETOIF) == 0) {
646 			printf("ip_output: "
647 				"can't update route after IPsec processing\n");
648 			error = EHOSTUNREACH;	/*XXX*/
649 			goto bad;
650 		}
651 	} else {
652 		/* nobody uses ia beyond here */
653 		if (state.encap) {
654 			ifp = rt->rt_ifp;
655 			if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
656 				mtu = ifp->if_mtu;
657 		}
658 	}
659     }
660 skip_ipsec:
661 #endif /*IPSEC*/
662 #ifdef FAST_IPSEC
663 	/*
664 	 * Check the security policy (SP) for the packet and, if
665 	 * required, do IPsec-related processing.  There are two
666 	 * cases here; the first time a packet is sent through
667 	 * it will be untagged and handled by ipsec4_checkpolicy.
668 	 * If the packet is resubmitted to ip_output (e.g. after
669 	 * AH, ESP, etc. processing), there will be a tag to bypass
670 	 * the lookup and related policy checking.
671 	 */
672 	if (!ipsec_outdone(m)) {
673 		s = splsoftnet();
674 		if (inp != NULL &&
675 				IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
676 			goto spd_done;
677 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
678 				&error, inp);
679 		/*
680 		 * There are four return cases:
681 		 *    sp != NULL	 	    apply IPsec policy
682 		 *    sp == NULL, error == 0	    no IPsec handling needed
683 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
684 		 *    sp == NULL, error != 0	    discard packet, report error
685 		 */
686 		if (sp != NULL) {
687 #ifdef IPSEC_NAT_T
688 			/*
689 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
690 			 * we'll do it on each fragmented packet.
691 			 */
692 			if (sp->req->sav &&
693 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
694 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
695 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
696 					natt_frag = 1;
697 					mtu = sp->req->sav->esp_frag;
698 					splx(s);
699 					goto spd_done;
700 				}
701 			}
702 #endif /* IPSEC_NAT_T */
703 
704 			/*
705 			 * Do delayed checksums now because we send before
706 			 * this is done in the normal processing path.
707 			 */
708 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
709 				in_delayed_cksum(m);
710 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
711 			}
712 
713 #ifdef __FreeBSD__
714 			ip->ip_len = htons(ip->ip_len);
715 			ip->ip_off = htons(ip->ip_off);
716 #endif
717 
718 			/* NB: callee frees mbuf */
719 			error = ipsec4_process_packet(m, sp->req, flags, 0);
720 			/*
721 			 * Preserve KAME behaviour: ENOENT can be returned
722 			 * when an SA acquire is in progress.  Don't propagate
723 			 * this to user-level; it confuses applications.
724 			 *
725 			 * XXX this will go away when the SADB is redone.
726 			 */
727 			if (error == ENOENT)
728 				error = 0;
729 			splx(s);
730 			goto done;
731 		} else {
732 			splx(s);
733 
734 			if (error != 0) {
735 				/*
736 				 * Hack: -EINVAL is used to signal that a packet
737 				 * should be silently discarded.  This is typically
738 				 * because we asked key management for an SA and
739 				 * it was delayed (e.g. kicked up to IKE).
740 				 */
741 				if (error == -EINVAL)
742 					error = 0;
743 				goto bad;
744 			} else {
745 				/* No IPsec processing for this packet. */
746 			}
747 		}
748 	}
749 spd_done:
750 #endif /* FAST_IPSEC */
751 
752 #ifdef PFIL_HOOKS
753 	/*
754 	 * Run through list of hooks for output packets.
755 	 */
756 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
757 		goto done;
758 	if (m == NULL)
759 		goto done;
760 
761 	ip = mtod(m, struct ip *);
762 	hlen = ip->ip_hl << 2;
763 	ip_len = ntohs(ip->ip_len);
764 #endif /* PFIL_HOOKS */
765 
766 	m->m_pkthdr.csum_data |= hlen << 16;
767 
768 #if IFA_STATS
769 	/*
770 	 * search for the source address structure to
771 	 * maintain output statistics.
772 	 */
773 	INADDR_TO_IA(ip->ip_src, ia);
774 #endif
775 
776 	/* Maybe skip checksums on loopback interfaces. */
777 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
778 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
779 	}
780 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
781 	/*
782 	 * If small enough for mtu of path, or if using TCP segmentation
783 	 * offload, can just send directly.
784 	 */
785 	if (ip_len <= mtu ||
786 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
787 #if IFA_STATS
788 		if (ia)
789 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
790 #endif
791 		/*
792 		 * Always initialize the sum to 0!  Some HW assisted
793 		 * checksumming requires this.
794 		 */
795 		ip->ip_sum = 0;
796 
797 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
798 			/*
799 			 * Perform any checksums that the hardware can't do
800 			 * for us.
801 			 *
802 			 * XXX Does any hardware require the {th,uh}_sum
803 			 * XXX fields to be 0?
804 			 */
805 			if (sw_csum & M_CSUM_IPv4) {
806 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
807 				ip->ip_sum = in_cksum(m, hlen);
808 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
809 			}
810 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
811 				if (IN_NEED_CHECKSUM(ifp,
812 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
813 					in_delayed_cksum(m);
814 				}
815 				m->m_pkthdr.csum_flags &=
816 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
817 			}
818 		}
819 
820 #ifdef IPSEC
821 		/* clean ipsec history once it goes out of the node */
822 		ipsec_delaux(m);
823 #endif
824 
825 		if (__predict_true(
826 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
827 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
828 			error =
829 			    (*ifp->if_output)(ifp, m,
830 				(m->m_flags & M_MCAST) ?
831 				    sintocsa(rdst) : sintocsa(dst),
832 				rt);
833 		} else {
834 			error =
835 			    ip_tso_output(ifp, m,
836 				(m->m_flags & M_MCAST) ?
837 				    sintocsa(rdst) : sintocsa(dst),
838 				rt);
839 		}
840 		goto done;
841 	}
842 
843 	/*
844 	 * We can't use HW checksumming if we're about to
845 	 * to fragment the packet.
846 	 *
847 	 * XXX Some hardware can do this.
848 	 */
849 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
850 		if (IN_NEED_CHECKSUM(ifp,
851 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
852 			in_delayed_cksum(m);
853 		}
854 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
855 	}
856 
857 	/*
858 	 * Too large for interface; fragment if possible.
859 	 * Must be able to put at least 8 bytes per fragment.
860 	 */
861 	if (ntohs(ip->ip_off) & IP_DF) {
862 		if (flags & IP_RETURNMTU)
863 			*mtu_p = mtu;
864 		error = EMSGSIZE;
865 		IP_STATINC(IP_STAT_CANTFRAG);
866 		goto bad;
867 	}
868 
869 	error = ip_fragment(m, ifp, mtu);
870 	if (error) {
871 		m = NULL;
872 		goto bad;
873 	}
874 
875 	for (; m; m = m0) {
876 		m0 = m->m_nextpkt;
877 		m->m_nextpkt = 0;
878 		if (error == 0) {
879 #if IFA_STATS
880 			if (ia)
881 				ia->ia_ifa.ifa_data.ifad_outbytes +=
882 				    ntohs(ip->ip_len);
883 #endif
884 #ifdef IPSEC
885 			/* clean ipsec history once it goes out of the node */
886 			ipsec_delaux(m);
887 #endif /* IPSEC */
888 
889 #ifdef IPSEC_NAT_T
890 			/*
891 			 * If we get there, the packet has not been handeld by
892 			 * IPSec whereas it should have. Now that it has been
893 			 * fragmented, re-inject it in ip_output so that IPsec
894 			 * processing can occur.
895 			 */
896 			if (natt_frag) {
897 				error = ip_output(m, opt,
898 				    ro, flags, imo, so, mtu_p);
899 			} else
900 #endif /* IPSEC_NAT_T */
901 			{
902 				KASSERT((m->m_pkthdr.csum_flags &
903 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
904 				error = (*ifp->if_output)(ifp, m,
905 				    (m->m_flags & M_MCAST) ?
906 					sintocsa(rdst) : sintocsa(dst),
907 				    rt);
908 			}
909 		} else
910 			m_freem(m);
911 	}
912 
913 	if (error == 0)
914 		IP_STATINC(IP_STAT_FRAGMENTED);
915 done:
916 	rtcache_free(&iproute);
917 
918 #ifdef IPSEC
919 	if (sp != NULL) {
920 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
921 			printf("DP ip_output call free SP:%p\n", sp));
922 		key_freesp(sp);
923 	}
924 #endif /* IPSEC */
925 #ifdef FAST_IPSEC
926 	if (sp != NULL)
927 		KEY_FREESP(&sp);
928 #endif /* FAST_IPSEC */
929 
930 	return (error);
931 bad:
932 	m_freem(m);
933 	goto done;
934 }
935 
936 int
937 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
938 {
939 	struct ip *ip, *mhip;
940 	struct mbuf *m0;
941 	int len, hlen, off;
942 	int mhlen, firstlen;
943 	struct mbuf **mnext;
944 	int sw_csum = m->m_pkthdr.csum_flags;
945 	int fragments = 0;
946 	int s;
947 	int error = 0;
948 
949 	ip = mtod(m, struct ip *);
950 	hlen = ip->ip_hl << 2;
951 	if (ifp != NULL)
952 		sw_csum &= ~ifp->if_csum_flags_tx;
953 
954 	len = (mtu - hlen) &~ 7;
955 	if (len < 8) {
956 		m_freem(m);
957 		return (EMSGSIZE);
958 	}
959 
960 	firstlen = len;
961 	mnext = &m->m_nextpkt;
962 
963 	/*
964 	 * Loop through length of segment after first fragment,
965 	 * make new header and copy data of each part and link onto chain.
966 	 */
967 	m0 = m;
968 	mhlen = sizeof (struct ip);
969 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
970 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
971 		if (m == 0) {
972 			error = ENOBUFS;
973 			IP_STATINC(IP_STAT_ODROPPED);
974 			goto sendorfree;
975 		}
976 		MCLAIM(m, m0->m_owner);
977 		*mnext = m;
978 		mnext = &m->m_nextpkt;
979 		m->m_data += max_linkhdr;
980 		mhip = mtod(m, struct ip *);
981 		*mhip = *ip;
982 		/* we must inherit MCAST and BCAST flags */
983 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
984 		if (hlen > sizeof (struct ip)) {
985 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
986 			mhip->ip_hl = mhlen >> 2;
987 		}
988 		m->m_len = mhlen;
989 		mhip->ip_off = ((off - hlen) >> 3) +
990 		    (ntohs(ip->ip_off) & ~IP_MF);
991 		if (ip->ip_off & htons(IP_MF))
992 			mhip->ip_off |= IP_MF;
993 		if (off + len >= ntohs(ip->ip_len))
994 			len = ntohs(ip->ip_len) - off;
995 		else
996 			mhip->ip_off |= IP_MF;
997 		HTONS(mhip->ip_off);
998 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
999 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1000 		if (m->m_next == 0) {
1001 			error = ENOBUFS;	/* ??? */
1002 			IP_STATINC(IP_STAT_ODROPPED);
1003 			goto sendorfree;
1004 		}
1005 		m->m_pkthdr.len = mhlen + len;
1006 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1007 		mhip->ip_sum = 0;
1008 		if (sw_csum & M_CSUM_IPv4) {
1009 			mhip->ip_sum = in_cksum(m, mhlen);
1010 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1011 		} else {
1012 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1013 			m->m_pkthdr.csum_data |= mhlen << 16;
1014 		}
1015 		IP_STATINC(IP_STAT_OFRAGMENTS);
1016 		fragments++;
1017 	}
1018 	/*
1019 	 * Update first fragment by trimming what's been copied out
1020 	 * and updating header, then send each fragment (in order).
1021 	 */
1022 	m = m0;
1023 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1024 	m->m_pkthdr.len = hlen + firstlen;
1025 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1026 	ip->ip_off |= htons(IP_MF);
1027 	ip->ip_sum = 0;
1028 	if (sw_csum & M_CSUM_IPv4) {
1029 		ip->ip_sum = in_cksum(m, hlen);
1030 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1031 	} else {
1032 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1033 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1034 			sizeof(struct ip));
1035 	}
1036 sendorfree:
1037 	/*
1038 	 * If there is no room for all the fragments, don't queue
1039 	 * any of them.
1040 	 */
1041 	if (ifp != NULL) {
1042 		s = splnet();
1043 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1044 		    error == 0) {
1045 			error = ENOBUFS;
1046 			IP_STATINC(IP_STAT_ODROPPED);
1047 			IFQ_INC_DROPS(&ifp->if_snd);
1048 		}
1049 		splx(s);
1050 	}
1051 	if (error) {
1052 		for (m = m0; m; m = m0) {
1053 			m0 = m->m_nextpkt;
1054 			m->m_nextpkt = NULL;
1055 			m_freem(m);
1056 		}
1057 	}
1058 	return (error);
1059 }
1060 
1061 /*
1062  * Process a delayed payload checksum calculation.
1063  */
1064 void
1065 in_delayed_cksum(struct mbuf *m)
1066 {
1067 	struct ip *ip;
1068 	u_int16_t csum, offset;
1069 
1070 	ip = mtod(m, struct ip *);
1071 	offset = ip->ip_hl << 2;
1072 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1073 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1074 		csum = 0xffff;
1075 
1076 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1077 
1078 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
1079 		/* This happen when ip options were inserted
1080 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1081 		    m->m_len, offset, ip->ip_p);
1082 		 */
1083 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
1084 	} else
1085 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
1086 }
1087 
1088 /*
1089  * Determine the maximum length of the options to be inserted;
1090  * we would far rather allocate too much space rather than too little.
1091  */
1092 
1093 u_int
1094 ip_optlen(struct inpcb *inp)
1095 {
1096 	struct mbuf *m = inp->inp_options;
1097 
1098 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1099 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1100 	else
1101 		return 0;
1102 }
1103 
1104 
1105 /*
1106  * Insert IP options into preformed packet.
1107  * Adjust IP destination as required for IP source routing,
1108  * as indicated by a non-zero in_addr at the start of the options.
1109  */
1110 static struct mbuf *
1111 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1112 {
1113 	struct ipoption *p = mtod(opt, struct ipoption *);
1114 	struct mbuf *n;
1115 	struct ip *ip = mtod(m, struct ip *);
1116 	unsigned optlen;
1117 
1118 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1119 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1120 		return (m);		/* XXX should fail */
1121 	if (!in_nullhost(p->ipopt_dst))
1122 		ip->ip_dst = p->ipopt_dst;
1123 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1124 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1125 		if (n == 0)
1126 			return (m);
1127 		MCLAIM(n, m->m_owner);
1128 		M_MOVE_PKTHDR(n, m);
1129 		m->m_len -= sizeof(struct ip);
1130 		m->m_data += sizeof(struct ip);
1131 		n->m_next = m;
1132 		m = n;
1133 		m->m_len = optlen + sizeof(struct ip);
1134 		m->m_data += max_linkhdr;
1135 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1136 	} else {
1137 		m->m_data -= optlen;
1138 		m->m_len += optlen;
1139 		memmove(mtod(m, void *), ip, sizeof(struct ip));
1140 	}
1141 	m->m_pkthdr.len += optlen;
1142 	ip = mtod(m, struct ip *);
1143 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1144 	*phlen = sizeof(struct ip) + optlen;
1145 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1146 	return (m);
1147 }
1148 
1149 /*
1150  * Copy options from ip to jp,
1151  * omitting those not copied during fragmentation.
1152  */
1153 int
1154 ip_optcopy(struct ip *ip, struct ip *jp)
1155 {
1156 	u_char *cp, *dp;
1157 	int opt, optlen, cnt;
1158 
1159 	cp = (u_char *)(ip + 1);
1160 	dp = (u_char *)(jp + 1);
1161 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1162 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1163 		opt = cp[0];
1164 		if (opt == IPOPT_EOL)
1165 			break;
1166 		if (opt == IPOPT_NOP) {
1167 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1168 			*dp++ = IPOPT_NOP;
1169 			optlen = 1;
1170 			continue;
1171 		}
1172 #ifdef DIAGNOSTIC
1173 		if (cnt < IPOPT_OLEN + sizeof(*cp))
1174 			panic("malformed IPv4 option passed to ip_optcopy");
1175 #endif
1176 		optlen = cp[IPOPT_OLEN];
1177 #ifdef DIAGNOSTIC
1178 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1179 			panic("malformed IPv4 option passed to ip_optcopy");
1180 #endif
1181 		/* bogus lengths should have been caught by ip_dooptions */
1182 		if (optlen > cnt)
1183 			optlen = cnt;
1184 		if (IPOPT_COPIED(opt)) {
1185 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1186 			dp += optlen;
1187 		}
1188 	}
1189 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1190 		*dp++ = IPOPT_EOL;
1191 	return (optlen);
1192 }
1193 
1194 /*
1195  * IP socket option processing.
1196  */
1197 int
1198 ip_ctloutput(int op, struct socket *so, int level, int optname,
1199     struct mbuf **mp)
1200 {
1201 	struct inpcb *inp = sotoinpcb(so);
1202 	struct mbuf *m = *mp;
1203 	int optval = 0;
1204 	int error = 0;
1205 #if defined(IPSEC) || defined(FAST_IPSEC)
1206 	struct lwp *l = curlwp;	/*XXX*/
1207 #endif
1208 
1209 	if (level != IPPROTO_IP) {
1210 		if (op == PRCO_SETOPT && *mp)
1211 			(void) m_free(*mp);
1212 		if (level == SOL_SOCKET && optname == SO_NOHEADER)
1213 			return 0;
1214 		return ENOPROTOOPT;
1215 	}
1216 
1217 	switch (op) {
1218 
1219 	case PRCO_SETOPT:
1220 		switch (optname) {
1221 		case IP_OPTIONS:
1222 #ifdef notyet
1223 		case IP_RETOPTS:
1224 			return (ip_pcbopts(optname, &inp->inp_options, m));
1225 #else
1226 			return (ip_pcbopts(&inp->inp_options, m));
1227 #endif
1228 
1229 		case IP_TOS:
1230 		case IP_TTL:
1231 		case IP_RECVOPTS:
1232 		case IP_RECVRETOPTS:
1233 		case IP_RECVDSTADDR:
1234 		case IP_RECVIF:
1235 			if (m == NULL || m->m_len != sizeof(int))
1236 				error = EINVAL;
1237 			else {
1238 				optval = *mtod(m, int *);
1239 				switch (optname) {
1240 
1241 				case IP_TOS:
1242 					inp->inp_ip.ip_tos = optval;
1243 					break;
1244 
1245 				case IP_TTL:
1246 					inp->inp_ip.ip_ttl = optval;
1247 					break;
1248 #define	OPTSET(bit) \
1249 	if (optval) \
1250 		inp->inp_flags |= bit; \
1251 	else \
1252 		inp->inp_flags &= ~bit;
1253 
1254 				case IP_RECVOPTS:
1255 					OPTSET(INP_RECVOPTS);
1256 					break;
1257 
1258 				case IP_RECVRETOPTS:
1259 					OPTSET(INP_RECVRETOPTS);
1260 					break;
1261 
1262 				case IP_RECVDSTADDR:
1263 					OPTSET(INP_RECVDSTADDR);
1264 					break;
1265 
1266 				case IP_RECVIF:
1267 					OPTSET(INP_RECVIF);
1268 					break;
1269 				}
1270 			}
1271 			break;
1272 #undef OPTSET
1273 
1274 		case IP_MULTICAST_IF:
1275 		case IP_MULTICAST_TTL:
1276 		case IP_MULTICAST_LOOP:
1277 		case IP_ADD_MEMBERSHIP:
1278 		case IP_DROP_MEMBERSHIP:
1279 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
1280 			break;
1281 
1282 		case IP_PORTRANGE:
1283 			if (m == 0 || m->m_len != sizeof(int))
1284 				error = EINVAL;
1285 			else {
1286 				optval = *mtod(m, int *);
1287 
1288 				switch (optval) {
1289 
1290 				case IP_PORTRANGE_DEFAULT:
1291 				case IP_PORTRANGE_HIGH:
1292 					inp->inp_flags &= ~(INP_LOWPORT);
1293 					break;
1294 
1295 				case IP_PORTRANGE_LOW:
1296 					inp->inp_flags |= INP_LOWPORT;
1297 					break;
1298 
1299 				default:
1300 					error = EINVAL;
1301 					break;
1302 				}
1303 			}
1304 			break;
1305 
1306 #if defined(IPSEC) || defined(FAST_IPSEC)
1307 		case IP_IPSEC_POLICY:
1308 		{
1309 			void *req = NULL;
1310 			size_t len = 0;
1311 			int priv = 0;
1312 
1313 #ifdef __NetBSD__
1314 			if (l == 0 || kauth_authorize_generic(l->l_cred,
1315 			    KAUTH_GENERIC_ISSUSER, NULL))
1316 				priv = 0;
1317 			else
1318 				priv = 1;
1319 #else
1320 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
1321 #endif
1322 			if (m) {
1323 				req = mtod(m, void *);
1324 				len = m->m_len;
1325 			}
1326 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1327 			break;
1328 		    }
1329 #endif /*IPSEC*/
1330 
1331 		default:
1332 			error = ENOPROTOOPT;
1333 			break;
1334 		}
1335 		if (m)
1336 			(void)m_free(m);
1337 		break;
1338 
1339 	case PRCO_GETOPT:
1340 		switch (optname) {
1341 		case IP_OPTIONS:
1342 		case IP_RETOPTS:
1343 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1344 			MCLAIM(m, so->so_mowner);
1345 			if (inp->inp_options) {
1346 				m->m_len = inp->inp_options->m_len;
1347 				bcopy(mtod(inp->inp_options, void *),
1348 				    mtod(m, void *), (unsigned)m->m_len);
1349 			} else
1350 				m->m_len = 0;
1351 			break;
1352 
1353 		case IP_TOS:
1354 		case IP_TTL:
1355 		case IP_RECVOPTS:
1356 		case IP_RECVRETOPTS:
1357 		case IP_RECVDSTADDR:
1358 		case IP_RECVIF:
1359 		case IP_ERRORMTU:
1360 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1361 			MCLAIM(m, so->so_mowner);
1362 			m->m_len = sizeof(int);
1363 			switch (optname) {
1364 
1365 			case IP_TOS:
1366 				optval = inp->inp_ip.ip_tos;
1367 				break;
1368 
1369 			case IP_TTL:
1370 				optval = inp->inp_ip.ip_ttl;
1371 				break;
1372 
1373 			case IP_ERRORMTU:
1374 				optval = inp->inp_errormtu;
1375 				break;
1376 
1377 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1378 
1379 			case IP_RECVOPTS:
1380 				optval = OPTBIT(INP_RECVOPTS);
1381 				break;
1382 
1383 			case IP_RECVRETOPTS:
1384 				optval = OPTBIT(INP_RECVRETOPTS);
1385 				break;
1386 
1387 			case IP_RECVDSTADDR:
1388 				optval = OPTBIT(INP_RECVDSTADDR);
1389 				break;
1390 
1391 			case IP_RECVIF:
1392 				optval = OPTBIT(INP_RECVIF);
1393 				break;
1394 			}
1395 			*mtod(m, int *) = optval;
1396 			break;
1397 
1398 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
1399 		/* XXX: code broken */
1400 		case IP_IPSEC_POLICY:
1401 		{
1402 			void *req = NULL;
1403 			size_t len = 0;
1404 
1405 			if (m) {
1406 				req = mtod(m, void *);
1407 				len = m->m_len;
1408 			}
1409 			error = ipsec4_get_policy(inp, req, len, mp);
1410 			break;
1411 		}
1412 #endif /*IPSEC*/
1413 
1414 		case IP_MULTICAST_IF:
1415 		case IP_MULTICAST_TTL:
1416 		case IP_MULTICAST_LOOP:
1417 		case IP_ADD_MEMBERSHIP:
1418 		case IP_DROP_MEMBERSHIP:
1419 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
1420 			if (*mp)
1421 				MCLAIM(*mp, so->so_mowner);
1422 			break;
1423 
1424 		case IP_PORTRANGE:
1425 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1426 			MCLAIM(m, so->so_mowner);
1427 			m->m_len = sizeof(int);
1428 
1429 			if (inp->inp_flags & INP_LOWPORT)
1430 				optval = IP_PORTRANGE_LOW;
1431 			else
1432 				optval = IP_PORTRANGE_DEFAULT;
1433 
1434 			*mtod(m, int *) = optval;
1435 			break;
1436 
1437 		default:
1438 			error = ENOPROTOOPT;
1439 			break;
1440 		}
1441 		break;
1442 	}
1443 	return (error);
1444 }
1445 
1446 /*
1447  * Set up IP options in pcb for insertion in output packets.
1448  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1449  * with destination address if source routed.
1450  */
1451 int
1452 #ifdef notyet
1453 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1454 #else
1455 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1456 #endif
1457 {
1458 	int cnt, optlen;
1459 	u_char *cp;
1460 	u_char opt;
1461 
1462 	/* turn off any old options */
1463 	if (*pcbopt)
1464 		(void)m_free(*pcbopt);
1465 	*pcbopt = 0;
1466 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1467 		/*
1468 		 * Only turning off any previous options.
1469 		 */
1470 		if (m)
1471 			(void)m_free(m);
1472 		return (0);
1473 	}
1474 
1475 #ifndef	__vax__
1476 	if (m->m_len % sizeof(int32_t))
1477 		goto bad;
1478 #endif
1479 	/*
1480 	 * IP first-hop destination address will be stored before
1481 	 * actual options; move other options back
1482 	 * and clear it when none present.
1483 	 */
1484 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1485 		goto bad;
1486 	cnt = m->m_len;
1487 	m->m_len += sizeof(struct in_addr);
1488 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1489 	memmove(cp, mtod(m, void *), (unsigned)cnt);
1490 	bzero(mtod(m, void *), sizeof(struct in_addr));
1491 
1492 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1493 		opt = cp[IPOPT_OPTVAL];
1494 		if (opt == IPOPT_EOL)
1495 			break;
1496 		if (opt == IPOPT_NOP)
1497 			optlen = 1;
1498 		else {
1499 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1500 				goto bad;
1501 			optlen = cp[IPOPT_OLEN];
1502 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1503 				goto bad;
1504 		}
1505 		switch (opt) {
1506 
1507 		default:
1508 			break;
1509 
1510 		case IPOPT_LSRR:
1511 		case IPOPT_SSRR:
1512 			/*
1513 			 * user process specifies route as:
1514 			 *	->A->B->C->D
1515 			 * D must be our final destination (but we can't
1516 			 * check that since we may not have connected yet).
1517 			 * A is first hop destination, which doesn't appear in
1518 			 * actual IP option, but is stored before the options.
1519 			 */
1520 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1521 				goto bad;
1522 			m->m_len -= sizeof(struct in_addr);
1523 			cnt -= sizeof(struct in_addr);
1524 			optlen -= sizeof(struct in_addr);
1525 			cp[IPOPT_OLEN] = optlen;
1526 			/*
1527 			 * Move first hop before start of options.
1528 			 */
1529 			bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1530 			    sizeof(struct in_addr));
1531 			/*
1532 			 * Then copy rest of options back
1533 			 * to close up the deleted entry.
1534 			 */
1535 			(void)memmove(&cp[IPOPT_OFFSET+1],
1536 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1537 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1538 			break;
1539 		}
1540 	}
1541 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1542 		goto bad;
1543 	*pcbopt = m;
1544 	return (0);
1545 
1546 bad:
1547 	(void)m_free(m);
1548 	return (EINVAL);
1549 }
1550 
1551 /*
1552  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1553  */
1554 static struct ifnet *
1555 ip_multicast_if(struct in_addr *a, int *ifindexp)
1556 {
1557 	int ifindex;
1558 	struct ifnet *ifp = NULL;
1559 	struct in_ifaddr *ia;
1560 
1561 	if (ifindexp)
1562 		*ifindexp = 0;
1563 	if (ntohl(a->s_addr) >> 24 == 0) {
1564 		ifindex = ntohl(a->s_addr) & 0xffffff;
1565 		if (ifindex < 0 || if_indexlim <= ifindex)
1566 			return NULL;
1567 		ifp = ifindex2ifnet[ifindex];
1568 		if (!ifp)
1569 			return NULL;
1570 		if (ifindexp)
1571 			*ifindexp = ifindex;
1572 	} else {
1573 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1574 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1575 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1576 				ifp = ia->ia_ifp;
1577 				break;
1578 			}
1579 		}
1580 	}
1581 	return ifp;
1582 }
1583 
1584 static int
1585 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1586 {
1587 	u_int tval;
1588 
1589 	if (m == NULL)
1590 		return EINVAL;
1591 
1592 	switch (m->m_len) {
1593 	case sizeof(u_char):
1594 		tval = *(mtod(m, u_char *));
1595 		break;
1596 	case sizeof(u_int):
1597 		tval = *(mtod(m, u_int *));
1598 		break;
1599 	default:
1600 		return EINVAL;
1601 	}
1602 
1603 	if (tval > maxval)
1604 		return EINVAL;
1605 
1606 	*val = tval;
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Set the IP multicast options in response to user setsockopt().
1612  */
1613 int
1614 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1615 {
1616 	int error = 0;
1617 	int i;
1618 	struct in_addr addr;
1619 	struct ip_mreq *mreq;
1620 	struct ifnet *ifp;
1621 	struct ip_moptions *imo = *imop;
1622 	int ifindex;
1623 
1624 	if (imo == NULL) {
1625 		/*
1626 		 * No multicast option buffer attached to the pcb;
1627 		 * allocate one and initialize to default values.
1628 		 */
1629 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1630 		    M_WAITOK);
1631 
1632 		if (imo == NULL)
1633 			return (ENOBUFS);
1634 		*imop = imo;
1635 		imo->imo_multicast_ifp = NULL;
1636 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1637 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1638 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1639 		imo->imo_num_memberships = 0;
1640 	}
1641 
1642 	switch (optname) {
1643 
1644 	case IP_MULTICAST_IF:
1645 		/*
1646 		 * Select the interface for outgoing multicast packets.
1647 		 */
1648 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1649 			error = EINVAL;
1650 			break;
1651 		}
1652 		addr = *(mtod(m, struct in_addr *));
1653 		/*
1654 		 * INADDR_ANY is used to remove a previous selection.
1655 		 * When no interface is selected, a default one is
1656 		 * chosen every time a multicast packet is sent.
1657 		 */
1658 		if (in_nullhost(addr)) {
1659 			imo->imo_multicast_ifp = NULL;
1660 			break;
1661 		}
1662 		/*
1663 		 * The selected interface is identified by its local
1664 		 * IP address.  Find the interface and confirm that
1665 		 * it supports multicasting.
1666 		 */
1667 		ifp = ip_multicast_if(&addr, &ifindex);
1668 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1669 			error = EADDRNOTAVAIL;
1670 			break;
1671 		}
1672 		imo->imo_multicast_ifp = ifp;
1673 		if (ifindex)
1674 			imo->imo_multicast_addr = addr;
1675 		else
1676 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1677 		break;
1678 
1679 	case IP_MULTICAST_TTL:
1680 		/*
1681 		 * Set the IP time-to-live for outgoing multicast packets.
1682 		 */
1683 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1684 		break;
1685 
1686 	case IP_MULTICAST_LOOP:
1687 		/*
1688 		 * Set the loopback flag for outgoing multicast packets.
1689 		 * Must be zero or one.
1690 		 */
1691 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1692 		break;
1693 
1694 	case IP_ADD_MEMBERSHIP:
1695 		/*
1696 		 * Add a multicast group membership.
1697 		 * Group must be a valid IP multicast address.
1698 		 */
1699 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1700 			error = EINVAL;
1701 			break;
1702 		}
1703 		mreq = mtod(m, struct ip_mreq *);
1704 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1705 			error = EINVAL;
1706 			break;
1707 		}
1708 		/*
1709 		 * If no interface address was provided, use the interface of
1710 		 * the route to the given multicast address.
1711 		 */
1712 		if (in_nullhost(mreq->imr_interface)) {
1713 			struct rtentry *rt;
1714 			union {
1715 				struct sockaddr		dst;
1716 				struct sockaddr_in	dst4;
1717 			} u;
1718 			struct route ro;
1719 
1720 			memset(&ro, 0, sizeof(ro));
1721 
1722 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1723 			rtcache_setdst(&ro, &u.dst);
1724 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1725 			                                        : NULL;
1726 			rtcache_free(&ro);
1727 		} else {
1728 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1729 		}
1730 		/*
1731 		 * See if we found an interface, and confirm that it
1732 		 * supports multicast.
1733 		 */
1734 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1735 			error = EADDRNOTAVAIL;
1736 			break;
1737 		}
1738 		/*
1739 		 * See if the membership already exists or if all the
1740 		 * membership slots are full.
1741 		 */
1742 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1743 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1744 			    in_hosteq(imo->imo_membership[i]->inm_addr,
1745 				      mreq->imr_multiaddr))
1746 				break;
1747 		}
1748 		if (i < imo->imo_num_memberships) {
1749 			error = EADDRINUSE;
1750 			break;
1751 		}
1752 		if (i == IP_MAX_MEMBERSHIPS) {
1753 			error = ETOOMANYREFS;
1754 			break;
1755 		}
1756 		/*
1757 		 * Everything looks good; add a new record to the multicast
1758 		 * address list for the given interface.
1759 		 */
1760 		if ((imo->imo_membership[i] =
1761 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1762 			error = ENOBUFS;
1763 			break;
1764 		}
1765 		++imo->imo_num_memberships;
1766 		break;
1767 
1768 	case IP_DROP_MEMBERSHIP:
1769 		/*
1770 		 * Drop a multicast group membership.
1771 		 * Group must be a valid IP multicast address.
1772 		 */
1773 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1774 			error = EINVAL;
1775 			break;
1776 		}
1777 		mreq = mtod(m, struct ip_mreq *);
1778 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1779 			error = EINVAL;
1780 			break;
1781 		}
1782 		/*
1783 		 * If an interface address was specified, get a pointer
1784 		 * to its ifnet structure.
1785 		 */
1786 		if (in_nullhost(mreq->imr_interface))
1787 			ifp = NULL;
1788 		else {
1789 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1790 			if (ifp == NULL) {
1791 				error = EADDRNOTAVAIL;
1792 				break;
1793 			}
1794 		}
1795 		/*
1796 		 * Find the membership in the membership array.
1797 		 */
1798 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1799 			if ((ifp == NULL ||
1800 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1801 			     in_hosteq(imo->imo_membership[i]->inm_addr,
1802 				       mreq->imr_multiaddr))
1803 				break;
1804 		}
1805 		if (i == imo->imo_num_memberships) {
1806 			error = EADDRNOTAVAIL;
1807 			break;
1808 		}
1809 		/*
1810 		 * Give up the multicast address record to which the
1811 		 * membership points.
1812 		 */
1813 		in_delmulti(imo->imo_membership[i]);
1814 		/*
1815 		 * Remove the gap in the membership array.
1816 		 */
1817 		for (++i; i < imo->imo_num_memberships; ++i)
1818 			imo->imo_membership[i-1] = imo->imo_membership[i];
1819 		--imo->imo_num_memberships;
1820 		break;
1821 
1822 	default:
1823 		error = EOPNOTSUPP;
1824 		break;
1825 	}
1826 
1827 	/*
1828 	 * If all options have default values, no need to keep the mbuf.
1829 	 */
1830 	if (imo->imo_multicast_ifp == NULL &&
1831 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1832 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1833 	    imo->imo_num_memberships == 0) {
1834 		free(*imop, M_IPMOPTS);
1835 		*imop = NULL;
1836 	}
1837 
1838 	return (error);
1839 }
1840 
1841 /*
1842  * Return the IP multicast options in response to user getsockopt().
1843  */
1844 int
1845 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1846 {
1847 	u_char *ttl;
1848 	u_char *loop;
1849 	struct in_addr *addr;
1850 	struct in_ifaddr *ia;
1851 
1852 	*mp = m_get(M_WAIT, MT_SOOPTS);
1853 
1854 	switch (optname) {
1855 
1856 	case IP_MULTICAST_IF:
1857 		addr = mtod(*mp, struct in_addr *);
1858 		(*mp)->m_len = sizeof(struct in_addr);
1859 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1860 			*addr = zeroin_addr;
1861 		else if (imo->imo_multicast_addr.s_addr) {
1862 			/* return the value user has set */
1863 			*addr = imo->imo_multicast_addr;
1864 		} else {
1865 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1866 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1867 		}
1868 		return (0);
1869 
1870 	case IP_MULTICAST_TTL:
1871 		ttl = mtod(*mp, u_char *);
1872 		(*mp)->m_len = 1;
1873 		*ttl = imo ? imo->imo_multicast_ttl
1874 			   : IP_DEFAULT_MULTICAST_TTL;
1875 		return (0);
1876 
1877 	case IP_MULTICAST_LOOP:
1878 		loop = mtod(*mp, u_char *);
1879 		(*mp)->m_len = 1;
1880 		*loop = imo ? imo->imo_multicast_loop
1881 			    : IP_DEFAULT_MULTICAST_LOOP;
1882 		return (0);
1883 
1884 	default:
1885 		return (EOPNOTSUPP);
1886 	}
1887 }
1888 
1889 /*
1890  * Discard the IP multicast options.
1891  */
1892 void
1893 ip_freemoptions(struct ip_moptions *imo)
1894 {
1895 	int i;
1896 
1897 	if (imo != NULL) {
1898 		for (i = 0; i < imo->imo_num_memberships; ++i)
1899 			in_delmulti(imo->imo_membership[i]);
1900 		free(imo, M_IPMOPTS);
1901 	}
1902 }
1903 
1904 /*
1905  * Routine called from ip_output() to loop back a copy of an IP multicast
1906  * packet to the input queue of a specified interface.  Note that this
1907  * calls the output routine of the loopback "driver", but with an interface
1908  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1909  */
1910 static void
1911 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1912 {
1913 	struct ip *ip;
1914 	struct mbuf *copym;
1915 
1916 	copym = m_copypacket(m, M_DONTWAIT);
1917 	if (copym != NULL
1918 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1919 		copym = m_pullup(copym, sizeof(struct ip));
1920 	if (copym == NULL)
1921 		return;
1922 	/*
1923 	 * We don't bother to fragment if the IP length is greater
1924 	 * than the interface's MTU.  Can this possibly matter?
1925 	 */
1926 	ip = mtod(copym, struct ip *);
1927 
1928 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1929 		in_delayed_cksum(copym);
1930 		copym->m_pkthdr.csum_flags &=
1931 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1932 	}
1933 
1934 	ip->ip_sum = 0;
1935 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1936 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
1937 }
1938