1 /* $NetBSD: ip_output.c,v 1.265 2016/12/12 03:55:57 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1998 The NetBSD Foundation, Inc. 34 * All rights reserved. 35 * 36 * This code is derived from software contributed to The NetBSD Foundation 37 * by Public Access Networks Corporation ("Panix"). It was developed under 38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 59 * POSSIBILITY OF SUCH DAMAGE. 60 */ 61 62 /* 63 * Copyright (c) 1982, 1986, 1988, 1990, 1993 64 * The Regents of the University of California. All rights reserved. 65 * 66 * Redistribution and use in source and binary forms, with or without 67 * modification, are permitted provided that the following conditions 68 * are met: 69 * 1. Redistributions of source code must retain the above copyright 70 * notice, this list of conditions and the following disclaimer. 71 * 2. Redistributions in binary form must reproduce the above copyright 72 * notice, this list of conditions and the following disclaimer in the 73 * documentation and/or other materials provided with the distribution. 74 * 3. Neither the name of the University nor the names of its contributors 75 * may be used to endorse or promote products derived from this software 76 * without specific prior written permission. 77 * 78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 88 * SUCH DAMAGE. 89 * 90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 91 */ 92 93 #include <sys/cdefs.h> 94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.265 2016/12/12 03:55:57 ozaki-r Exp $"); 95 96 #ifdef _KERNEL_OPT 97 #include "opt_inet.h" 98 #include "opt_ipsec.h" 99 #include "opt_mrouting.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mpls.h" 102 #endif 103 104 #include "arp.h" 105 106 #include <sys/param.h> 107 #include <sys/kmem.h> 108 #include <sys/mbuf.h> 109 #include <sys/protosw.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/kauth.h> 113 #ifdef IPSEC 114 #include <sys/domain.h> 115 #endif 116 #include <sys/systm.h> 117 #include <sys/syslog.h> 118 119 #include <net/if.h> 120 #include <net/if_types.h> 121 #include <net/route.h> 122 #include <net/pfil.h> 123 124 #include <netinet/in.h> 125 #include <netinet/in_systm.h> 126 #include <netinet/ip.h> 127 #include <netinet/in_pcb.h> 128 #include <netinet/in_var.h> 129 #include <netinet/ip_var.h> 130 #include <netinet/ip_private.h> 131 #include <netinet/in_offload.h> 132 #include <netinet/portalgo.h> 133 #include <netinet/udp.h> 134 135 #ifdef INET6 136 #include <netinet6/ip6_var.h> 137 #endif 138 139 #ifdef MROUTING 140 #include <netinet/ip_mroute.h> 141 #endif 142 143 #ifdef IPSEC 144 #include <netipsec/ipsec.h> 145 #include <netipsec/key.h> 146 #endif 147 148 #ifdef MPLS 149 #include <netmpls/mpls.h> 150 #include <netmpls/mpls_var.h> 151 #endif 152 153 static int ip_pcbopts(struct inpcb *, const struct sockopt *); 154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); 155 static struct ifnet *ip_multicast_if(struct in_addr *, int *); 156 static void ip_mloopback(struct ifnet *, struct mbuf *, 157 const struct sockaddr_in *); 158 static int ip_ifaddrvalid(const struct in_ifaddr *); 159 160 extern pfil_head_t *inet_pfil_hook; /* XXX */ 161 162 int ip_do_loopback_cksum = 0; 163 164 static int 165 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m, 166 const struct rtentry *rt) 167 { 168 int error = 0; 169 #ifdef MPLS 170 union mpls_shim msh; 171 172 if (rt == NULL || rt_gettag(rt) == NULL || 173 rt_gettag(rt)->sa_family != AF_MPLS || 174 (m->m_flags & (M_MCAST | M_BCAST)) != 0 || 175 ifp->if_type != IFT_ETHER) 176 return 0; 177 178 msh.s_addr = MPLS_GETSADDR(rt); 179 if (msh.shim.label != MPLS_LABEL_IMPLNULL) { 180 struct m_tag *mtag; 181 /* 182 * XXX tentative solution to tell ether_output 183 * it's MPLS. Need some more efficient solution. 184 */ 185 mtag = m_tag_get(PACKET_TAG_MPLS, 186 sizeof(int) /* dummy */, 187 M_NOWAIT); 188 if (mtag == NULL) 189 return ENOMEM; 190 m_tag_prepend(m, mtag); 191 } 192 #endif 193 return error; 194 } 195 196 /* 197 * Send an IP packet to a host. 198 */ 199 int 200 ip_if_output(struct ifnet * const ifp, struct mbuf * const m, 201 const struct sockaddr * const dst, const struct rtentry *rt) 202 { 203 int error = 0; 204 205 if (rt != NULL) { 206 error = rt_check_reject_route(rt, ifp); 207 if (error != 0) { 208 m_freem(m); 209 return error; 210 } 211 } 212 213 error = ip_mark_mpls(ifp, m, rt); 214 if (error != 0) { 215 m_freem(m); 216 return error; 217 } 218 219 error = if_output_lock(ifp, ifp, m, dst, rt); 220 221 return error; 222 } 223 224 /* 225 * IP output. The packet in mbuf chain m contains a skeletal IP 226 * header (with len, off, ttl, proto, tos, src, dst). 227 * The mbuf chain containing the packet will be freed. 228 * The mbuf opt, if present, will not be freed. 229 */ 230 int 231 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags, 232 struct ip_moptions *imo, struct socket *so) 233 { 234 struct rtentry *rt; 235 struct ip *ip; 236 struct ifnet *ifp, *mifp = NULL; 237 struct mbuf *m = m0; 238 int hlen = sizeof (struct ip); 239 int len, error = 0; 240 struct route iproute; 241 const struct sockaddr_in *dst; 242 struct in_ifaddr *ia = NULL; 243 int isbroadcast; 244 int sw_csum; 245 u_long mtu; 246 #ifdef IPSEC 247 struct secpolicy *sp = NULL; 248 #endif 249 bool natt_frag = false; 250 bool rtmtu_nolock; 251 union { 252 struct sockaddr dst; 253 struct sockaddr_in dst4; 254 } u; 255 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed 256 * to the nexthop 257 */ 258 struct psref psref, psref_ia; 259 int bound; 260 bool bind_need_restore = false; 261 262 len = 0; 263 264 MCLAIM(m, &ip_tx_mowner); 265 266 KASSERT((m->m_flags & M_PKTHDR) != 0); 267 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0); 268 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 269 (M_CSUM_TCPv4|M_CSUM_UDPv4)); 270 271 if (opt) { 272 m = ip_insertoptions(m, opt, &len); 273 if (len >= sizeof(struct ip)) 274 hlen = len; 275 } 276 ip = mtod(m, struct ip *); 277 278 /* 279 * Fill in IP header. 280 */ 281 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 282 ip->ip_v = IPVERSION; 283 ip->ip_off = htons(0); 284 /* ip->ip_id filled in after we find out source ia */ 285 ip->ip_hl = hlen >> 2; 286 IP_STATINC(IP_STAT_LOCALOUT); 287 } else { 288 hlen = ip->ip_hl << 2; 289 } 290 291 /* 292 * Route packet. 293 */ 294 if (ro == NULL) { 295 memset(&iproute, 0, sizeof(iproute)); 296 ro = &iproute; 297 } 298 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0); 299 dst = satocsin(rtcache_getdst(ro)); 300 301 /* 302 * If there is a cached route, check that it is to the same 303 * destination and is still up. If not, free it and try again. 304 * The address family should also be checked in case of sharing 305 * the cache with IPv6. 306 */ 307 if (dst && (dst->sin_family != AF_INET || 308 !in_hosteq(dst->sin_addr, ip->ip_dst))) 309 rtcache_free(ro); 310 311 if ((rt = rtcache_validate(ro)) == NULL && 312 (rt = rtcache_update(ro, 1)) == NULL) { 313 dst = &u.dst4; 314 error = rtcache_setdst(ro, &u.dst); 315 if (error != 0) 316 goto bad; 317 } 318 319 bound = curlwp_bind(); 320 bind_need_restore = true; 321 /* 322 * If routing to interface only, short circuit routing lookup. 323 */ 324 if (flags & IP_ROUTETOIF) { 325 struct ifaddr *ifa; 326 327 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia); 328 if (ifa == NULL) { 329 IP_STATINC(IP_STAT_NOROUTE); 330 error = ENETUNREACH; 331 goto bad; 332 } 333 /* ia is already referenced by psref_ia */ 334 ia = ifatoia(ifa); 335 336 ifp = ia->ia_ifp; 337 mtu = ifp->if_mtu; 338 ip->ip_ttl = 1; 339 isbroadcast = in_broadcast(dst->sin_addr, ifp); 340 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) || 341 ip->ip_dst.s_addr == INADDR_BROADCAST) && 342 imo != NULL && imo->imo_multicast_if_index != 0) { 343 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref); 344 if (ifp == NULL) { 345 IP_STATINC(IP_STAT_NOROUTE); 346 error = ENETUNREACH; 347 goto bad; 348 } 349 mtu = ifp->if_mtu; 350 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia); 351 if (ia == NULL) { 352 error = EADDRNOTAVAIL; 353 goto bad; 354 } 355 isbroadcast = 0; 356 } else { 357 if (rt == NULL) 358 rt = rtcache_init(ro); 359 if (rt == NULL) { 360 IP_STATINC(IP_STAT_NOROUTE); 361 error = EHOSTUNREACH; 362 goto bad; 363 } 364 if (ifa_is_destroying(rt->rt_ifa)) { 365 rtcache_unref(rt, ro); 366 IP_STATINC(IP_STAT_NOROUTE); 367 error = EHOSTUNREACH; 368 goto bad; 369 } 370 ifa_acquire(rt->rt_ifa, &psref_ia); 371 ia = ifatoia(rt->rt_ifa); 372 ifp = rt->rt_ifp; 373 if ((mtu = rt->rt_rmx.rmx_mtu) == 0) 374 mtu = ifp->if_mtu; 375 rt->rt_use++; 376 if (rt->rt_flags & RTF_GATEWAY) 377 dst = satosin(rt->rt_gateway); 378 if (rt->rt_flags & RTF_HOST) 379 isbroadcast = rt->rt_flags & RTF_BROADCAST; 380 else 381 isbroadcast = in_broadcast(dst->sin_addr, ifp); 382 } 383 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0; 384 385 if (IN_MULTICAST(ip->ip_dst.s_addr) || 386 (ip->ip_dst.s_addr == INADDR_BROADCAST)) { 387 bool inmgroup; 388 389 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ? 390 M_BCAST : M_MCAST; 391 /* 392 * See if the caller provided any multicast options 393 */ 394 if (imo != NULL) 395 ip->ip_ttl = imo->imo_multicast_ttl; 396 else 397 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 398 399 /* 400 * if we don't know the outgoing ifp yet, we can't generate 401 * output 402 */ 403 if (!ifp) { 404 IP_STATINC(IP_STAT_NOROUTE); 405 error = ENETUNREACH; 406 goto bad; 407 } 408 409 /* 410 * If the packet is multicast or broadcast, confirm that 411 * the outgoing interface can transmit it. 412 */ 413 if (((m->m_flags & M_MCAST) && 414 (ifp->if_flags & IFF_MULTICAST) == 0) || 415 ((m->m_flags & M_BCAST) && 416 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) { 417 IP_STATINC(IP_STAT_NOROUTE); 418 error = ENETUNREACH; 419 goto bad; 420 } 421 /* 422 * If source address not specified yet, use an address 423 * of outgoing interface. 424 */ 425 if (in_nullhost(ip->ip_src)) { 426 struct in_ifaddr *xia; 427 struct ifaddr *xifa; 428 struct psref _psref; 429 430 xia = in_get_ia_from_ifp_psref(ifp, &_psref); 431 if (!xia) { 432 error = EADDRNOTAVAIL; 433 goto bad; 434 } 435 xifa = &xia->ia_ifa; 436 if (xifa->ifa_getifa != NULL) { 437 ia4_release(xia, &_psref); 438 /* FIXME NOMPSAFE */ 439 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 440 if (xia == NULL) { 441 error = EADDRNOTAVAIL; 442 goto bad; 443 } 444 ia4_acquire(xia, &_psref); 445 } 446 ip->ip_src = xia->ia_addr.sin_addr; 447 ia4_release(xia, &_psref); 448 } 449 450 inmgroup = in_multi_group(ip->ip_dst, ifp, flags); 451 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) { 452 /* 453 * If we belong to the destination multicast group 454 * on the outgoing interface, and the caller did not 455 * forbid loopback, loop back a copy. 456 */ 457 ip_mloopback(ifp, m, &u.dst4); 458 } 459 #ifdef MROUTING 460 else { 461 /* 462 * If we are acting as a multicast router, perform 463 * multicast forwarding as if the packet had just 464 * arrived on the interface to which we are about 465 * to send. The multicast forwarding function 466 * recursively calls this function, using the 467 * IP_FORWARDING flag to prevent infinite recursion. 468 * 469 * Multicasts that are looped back by ip_mloopback(), 470 * above, will be forwarded by the ip_input() routine, 471 * if necessary. 472 */ 473 extern struct socket *ip_mrouter; 474 475 if (ip_mrouter && (flags & IP_FORWARDING) == 0) { 476 if (ip_mforward(m, ifp) != 0) { 477 m_freem(m); 478 goto done; 479 } 480 } 481 } 482 #endif 483 /* 484 * Multicasts with a time-to-live of zero may be looped- 485 * back, above, but must not be transmitted on a network. 486 * Also, multicasts addressed to the loopback interface 487 * are not sent -- the above call to ip_mloopback() will 488 * loop back a copy if this host actually belongs to the 489 * destination group on the loopback interface. 490 */ 491 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) { 492 m_freem(m); 493 goto done; 494 } 495 goto sendit; 496 } 497 498 /* 499 * If source address not specified yet, use address 500 * of outgoing interface. 501 */ 502 if (in_nullhost(ip->ip_src)) { 503 struct ifaddr *xifa; 504 505 xifa = &ia->ia_ifa; 506 if (xifa->ifa_getifa != NULL) { 507 ia4_release(ia, &psref_ia); 508 /* FIXME NOMPSAFE */ 509 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 510 if (ia == NULL) { 511 error = EADDRNOTAVAIL; 512 goto bad; 513 } 514 ia4_acquire(ia, &psref_ia); 515 } 516 ip->ip_src = ia->ia_addr.sin_addr; 517 } 518 519 /* 520 * packets with Class-D address as source are not valid per 521 * RFC 1112 522 */ 523 if (IN_MULTICAST(ip->ip_src.s_addr)) { 524 IP_STATINC(IP_STAT_ODROPPED); 525 error = EADDRNOTAVAIL; 526 goto bad; 527 } 528 529 /* 530 * Look for broadcast address and and verify user is allowed to 531 * send such a packet. 532 */ 533 if (isbroadcast) { 534 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 535 error = EADDRNOTAVAIL; 536 goto bad; 537 } 538 if ((flags & IP_ALLOWBROADCAST) == 0) { 539 error = EACCES; 540 goto bad; 541 } 542 /* don't allow broadcast messages to be fragmented */ 543 if (ntohs(ip->ip_len) > ifp->if_mtu) { 544 error = EMSGSIZE; 545 goto bad; 546 } 547 m->m_flags |= M_BCAST; 548 } else 549 m->m_flags &= ~M_BCAST; 550 551 sendit: 552 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) { 553 if (m->m_pkthdr.len < IP_MINFRAGSIZE) { 554 ip->ip_id = 0; 555 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 556 ip->ip_id = ip_newid(ia); 557 } else { 558 559 /* 560 * TSO capable interfaces (typically?) increment 561 * ip_id for each segment. 562 * "allocate" enough ids here to increase the chance 563 * for them to be unique. 564 * 565 * note that the following calculation is not 566 * needed to be precise. wasting some ip_id is fine. 567 */ 568 569 unsigned int segsz = m->m_pkthdr.segsz; 570 unsigned int datasz = ntohs(ip->ip_len) - hlen; 571 unsigned int num = howmany(datasz, segsz); 572 573 ip->ip_id = ip_newid_range(ia, num); 574 } 575 } 576 if (ia != NULL) { 577 ia4_release(ia, &psref_ia); 578 ia = NULL; 579 } 580 581 /* 582 * If we're doing Path MTU Discovery, we need to set DF unless 583 * the route's MTU is locked. 584 */ 585 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) { 586 ip->ip_off |= htons(IP_DF); 587 } 588 589 #ifdef IPSEC 590 if (ipsec_used) { 591 bool ipsec_done = false; 592 593 /* Perform IPsec processing, if any. */ 594 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, 595 &ipsec_done); 596 if (error || ipsec_done) 597 goto done; 598 } 599 #endif 600 601 /* 602 * Run through list of hooks for output packets. 603 */ 604 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT); 605 if (error) 606 goto done; 607 if (m == NULL) 608 goto done; 609 610 ip = mtod(m, struct ip *); 611 hlen = ip->ip_hl << 2; 612 613 m->m_pkthdr.csum_data |= hlen << 16; 614 615 /* 616 * search for the source address structure to 617 * maintain output statistics. 618 */ 619 KASSERT(ia == NULL); 620 ia = in_get_ia_psref(ip->ip_src, &psref_ia); 621 622 /* Ensure we only send from a valid address. */ 623 if ((ia != NULL || (flags & IP_FORWARDING) == 0) && 624 (error = ip_ifaddrvalid(ia)) != 0) 625 { 626 arplog(LOG_ERR, 627 "refusing to send from invalid address %s (pid %d)\n", 628 in_fmtaddr(ip->ip_src), curproc->p_pid); 629 IP_STATINC(IP_STAT_ODROPPED); 630 if (error == 1) 631 /* 632 * Address exists, but is tentative or detached. 633 * We can't send from it because it's invalid, 634 * so we drop the packet. 635 */ 636 error = 0; 637 else 638 error = EADDRNOTAVAIL; 639 goto bad; 640 } 641 642 /* Maybe skip checksums on loopback interfaces. */ 643 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) { 644 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 645 } 646 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 647 /* 648 * If small enough for mtu of path, or if using TCP segmentation 649 * offload, can just send directly. 650 */ 651 if (ntohs(ip->ip_len) <= mtu || 652 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 653 const struct sockaddr *sa; 654 655 #if IFA_STATS 656 if (ia) 657 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len); 658 #endif 659 /* 660 * Always initialize the sum to 0! Some HW assisted 661 * checksumming requires this. 662 */ 663 ip->ip_sum = 0; 664 665 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 666 /* 667 * Perform any checksums that the hardware can't do 668 * for us. 669 * 670 * XXX Does any hardware require the {th,uh}_sum 671 * XXX fields to be 0? 672 */ 673 if (sw_csum & M_CSUM_IPv4) { 674 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)); 675 ip->ip_sum = in_cksum(m, hlen); 676 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 677 } 678 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 679 if (IN_NEED_CHECKSUM(ifp, 680 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 681 in_delayed_cksum(m); 682 } 683 m->m_pkthdr.csum_flags &= 684 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 685 } 686 } 687 688 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst); 689 if (__predict_true( 690 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 || 691 (ifp->if_capenable & IFCAP_TSOv4) != 0)) { 692 error = ip_if_output(ifp, m, sa, rt); 693 } else { 694 error = ip_tso_output(ifp, m, sa, rt); 695 } 696 goto done; 697 } 698 699 /* 700 * We can't use HW checksumming if we're about to 701 * to fragment the packet. 702 * 703 * XXX Some hardware can do this. 704 */ 705 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 706 if (IN_NEED_CHECKSUM(ifp, 707 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 708 in_delayed_cksum(m); 709 } 710 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 711 } 712 713 /* 714 * Too large for interface; fragment if possible. 715 * Must be able to put at least 8 bytes per fragment. 716 */ 717 if (ntohs(ip->ip_off) & IP_DF) { 718 if (flags & IP_RETURNMTU) { 719 struct inpcb *inp; 720 721 KASSERT(so && solocked(so)); 722 inp = sotoinpcb(so); 723 inp->inp_errormtu = mtu; 724 } 725 error = EMSGSIZE; 726 IP_STATINC(IP_STAT_CANTFRAG); 727 goto bad; 728 } 729 730 error = ip_fragment(m, ifp, mtu); 731 if (error) { 732 m = NULL; 733 goto bad; 734 } 735 736 for (; m; m = m0) { 737 m0 = m->m_nextpkt; 738 m->m_nextpkt = 0; 739 if (error) { 740 m_freem(m); 741 continue; 742 } 743 #if IFA_STATS 744 if (ia) 745 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len); 746 #endif 747 /* 748 * If we get there, the packet has not been handled by 749 * IPsec whereas it should have. Now that it has been 750 * fragmented, re-inject it in ip_output so that IPsec 751 * processing can occur. 752 */ 753 if (natt_frag) { 754 error = ip_output(m, opt, ro, 755 flags | IP_RAWOUTPUT | IP_NOIPNEWID, 756 imo, so); 757 } else { 758 KASSERT((m->m_pkthdr.csum_flags & 759 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0); 760 error = ip_if_output(ifp, m, 761 (m->m_flags & M_MCAST) ? 762 sintocsa(rdst) : sintocsa(dst), rt); 763 } 764 } 765 if (error == 0) { 766 IP_STATINC(IP_STAT_FRAGMENTED); 767 } 768 done: 769 ia4_release(ia, &psref_ia); 770 rtcache_unref(rt, ro); 771 if (ro == &iproute) { 772 rtcache_free(&iproute); 773 } 774 #ifdef IPSEC 775 if (sp) { 776 KEY_FREESP(&sp); 777 } 778 #endif 779 if (mifp != NULL) { 780 if_put(mifp, &psref); 781 } 782 if (bind_need_restore) 783 curlwp_bindx(bound); 784 return error; 785 bad: 786 m_freem(m); 787 goto done; 788 } 789 790 int 791 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu) 792 { 793 struct ip *ip, *mhip; 794 struct mbuf *m0; 795 int len, hlen, off; 796 int mhlen, firstlen; 797 struct mbuf **mnext; 798 int sw_csum = m->m_pkthdr.csum_flags; 799 int fragments = 0; 800 int s; 801 int error = 0; 802 803 ip = mtod(m, struct ip *); 804 hlen = ip->ip_hl << 2; 805 if (ifp != NULL) 806 sw_csum &= ~ifp->if_csum_flags_tx; 807 808 len = (mtu - hlen) &~ 7; 809 if (len < 8) { 810 m_freem(m); 811 return (EMSGSIZE); 812 } 813 814 firstlen = len; 815 mnext = &m->m_nextpkt; 816 817 /* 818 * Loop through length of segment after first fragment, 819 * make new header and copy data of each part and link onto chain. 820 */ 821 m0 = m; 822 mhlen = sizeof (struct ip); 823 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) { 824 MGETHDR(m, M_DONTWAIT, MT_HEADER); 825 if (m == 0) { 826 error = ENOBUFS; 827 IP_STATINC(IP_STAT_ODROPPED); 828 goto sendorfree; 829 } 830 MCLAIM(m, m0->m_owner); 831 *mnext = m; 832 mnext = &m->m_nextpkt; 833 m->m_data += max_linkhdr; 834 mhip = mtod(m, struct ip *); 835 *mhip = *ip; 836 /* we must inherit MCAST and BCAST flags */ 837 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST); 838 if (hlen > sizeof (struct ip)) { 839 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 840 mhip->ip_hl = mhlen >> 2; 841 } 842 m->m_len = mhlen; 843 mhip->ip_off = ((off - hlen) >> 3) + 844 (ntohs(ip->ip_off) & ~IP_MF); 845 if (ip->ip_off & htons(IP_MF)) 846 mhip->ip_off |= IP_MF; 847 if (off + len >= ntohs(ip->ip_len)) 848 len = ntohs(ip->ip_len) - off; 849 else 850 mhip->ip_off |= IP_MF; 851 HTONS(mhip->ip_off); 852 mhip->ip_len = htons((u_int16_t)(len + mhlen)); 853 m->m_next = m_copym(m0, off, len, M_DONTWAIT); 854 if (m->m_next == 0) { 855 error = ENOBUFS; /* ??? */ 856 IP_STATINC(IP_STAT_ODROPPED); 857 goto sendorfree; 858 } 859 m->m_pkthdr.len = mhlen + len; 860 m_reset_rcvif(m); 861 mhip->ip_sum = 0; 862 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0); 863 if (sw_csum & M_CSUM_IPv4) { 864 mhip->ip_sum = in_cksum(m, mhlen); 865 } else { 866 /* 867 * checksum is hw-offloaded or not necessary. 868 */ 869 m->m_pkthdr.csum_flags |= 870 m0->m_pkthdr.csum_flags & M_CSUM_IPv4; 871 m->m_pkthdr.csum_data |= mhlen << 16; 872 KASSERT(!(ifp != NULL && 873 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) || 874 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0); 875 } 876 IP_STATINC(IP_STAT_OFRAGMENTS); 877 fragments++; 878 } 879 /* 880 * Update first fragment by trimming what's been copied out 881 * and updating header, then send each fragment (in order). 882 */ 883 m = m0; 884 m_adj(m, hlen + firstlen - ntohs(ip->ip_len)); 885 m->m_pkthdr.len = hlen + firstlen; 886 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len); 887 ip->ip_off |= htons(IP_MF); 888 ip->ip_sum = 0; 889 if (sw_csum & M_CSUM_IPv4) { 890 ip->ip_sum = in_cksum(m, hlen); 891 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 892 } else { 893 /* 894 * checksum is hw-offloaded or not necessary. 895 */ 896 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) || 897 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0); 898 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >= 899 sizeof(struct ip)); 900 } 901 sendorfree: 902 /* 903 * If there is no room for all the fragments, don't queue 904 * any of them. 905 */ 906 if (ifp != NULL) { 907 s = splnet(); 908 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments && 909 error == 0) { 910 error = ENOBUFS; 911 IP_STATINC(IP_STAT_ODROPPED); 912 IFQ_INC_DROPS(&ifp->if_snd); 913 } 914 splx(s); 915 } 916 if (error) { 917 for (m = m0; m; m = m0) { 918 m0 = m->m_nextpkt; 919 m->m_nextpkt = NULL; 920 m_freem(m); 921 } 922 } 923 return (error); 924 } 925 926 /* 927 * Process a delayed payload checksum calculation. 928 */ 929 void 930 in_delayed_cksum(struct mbuf *m) 931 { 932 struct ip *ip; 933 u_int16_t csum, offset; 934 935 ip = mtod(m, struct ip *); 936 offset = ip->ip_hl << 2; 937 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset); 938 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 939 csum = 0xffff; 940 941 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); 942 943 if ((offset + sizeof(u_int16_t)) > m->m_len) { 944 /* This happen when ip options were inserted 945 printf("in_delayed_cksum: pullup len %d off %d proto %d\n", 946 m->m_len, offset, ip->ip_p); 947 */ 948 m_copyback(m, offset, sizeof(csum), (void *) &csum); 949 } else 950 *(u_int16_t *)(mtod(m, char *) + offset) = csum; 951 } 952 953 /* 954 * Determine the maximum length of the options to be inserted; 955 * we would far rather allocate too much space rather than too little. 956 */ 957 958 u_int 959 ip_optlen(struct inpcb *inp) 960 { 961 struct mbuf *m = inp->inp_options; 962 963 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) { 964 return (m->m_len - offsetof(struct ipoption, ipopt_dst)); 965 } 966 return 0; 967 } 968 969 /* 970 * Insert IP options into preformed packet. 971 * Adjust IP destination as required for IP source routing, 972 * as indicated by a non-zero in_addr at the start of the options. 973 */ 974 static struct mbuf * 975 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) 976 { 977 struct ipoption *p = mtod(opt, struct ipoption *); 978 struct mbuf *n; 979 struct ip *ip = mtod(m, struct ip *); 980 unsigned optlen; 981 982 optlen = opt->m_len - sizeof(p->ipopt_dst); 983 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET) 984 return (m); /* XXX should fail */ 985 if (!in_nullhost(p->ipopt_dst)) 986 ip->ip_dst = p->ipopt_dst; 987 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) { 988 MGETHDR(n, M_DONTWAIT, MT_HEADER); 989 if (n == 0) 990 return (m); 991 MCLAIM(n, m->m_owner); 992 M_MOVE_PKTHDR(n, m); 993 m->m_len -= sizeof(struct ip); 994 m->m_data += sizeof(struct ip); 995 n->m_next = m; 996 m = n; 997 m->m_len = optlen + sizeof(struct ip); 998 m->m_data += max_linkhdr; 999 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip)); 1000 } else { 1001 m->m_data -= optlen; 1002 m->m_len += optlen; 1003 memmove(mtod(m, void *), ip, sizeof(struct ip)); 1004 } 1005 m->m_pkthdr.len += optlen; 1006 ip = mtod(m, struct ip *); 1007 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen); 1008 *phlen = sizeof(struct ip) + optlen; 1009 ip->ip_len = htons(ntohs(ip->ip_len) + optlen); 1010 return (m); 1011 } 1012 1013 /* 1014 * Copy options from ip to jp, 1015 * omitting those not copied during fragmentation. 1016 */ 1017 int 1018 ip_optcopy(struct ip *ip, struct ip *jp) 1019 { 1020 u_char *cp, *dp; 1021 int opt, optlen, cnt; 1022 1023 cp = (u_char *)(ip + 1); 1024 dp = (u_char *)(jp + 1); 1025 cnt = (ip->ip_hl << 2) - sizeof (struct ip); 1026 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1027 opt = cp[0]; 1028 if (opt == IPOPT_EOL) 1029 break; 1030 if (opt == IPOPT_NOP) { 1031 /* Preserve for IP mcast tunnel's LSRR alignment. */ 1032 *dp++ = IPOPT_NOP; 1033 optlen = 1; 1034 continue; 1035 } 1036 1037 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp)); 1038 optlen = cp[IPOPT_OLEN]; 1039 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt); 1040 1041 /* Invalid lengths should have been caught by ip_dooptions. */ 1042 if (optlen > cnt) 1043 optlen = cnt; 1044 if (IPOPT_COPIED(opt)) { 1045 bcopy((void *)cp, (void *)dp, (unsigned)optlen); 1046 dp += optlen; 1047 } 1048 } 1049 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) 1050 *dp++ = IPOPT_EOL; 1051 return (optlen); 1052 } 1053 1054 /* 1055 * IP socket option processing. 1056 */ 1057 int 1058 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1059 { 1060 struct inpcb *inp = sotoinpcb(so); 1061 struct ip *ip = &inp->inp_ip; 1062 int inpflags = inp->inp_flags; 1063 int optval = 0, error = 0; 1064 1065 if (sopt->sopt_level != IPPROTO_IP) { 1066 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER) 1067 return 0; 1068 return ENOPROTOOPT; 1069 } 1070 1071 switch (op) { 1072 case PRCO_SETOPT: 1073 switch (sopt->sopt_name) { 1074 case IP_OPTIONS: 1075 #ifdef notyet 1076 case IP_RETOPTS: 1077 #endif 1078 error = ip_pcbopts(inp, sopt); 1079 break; 1080 1081 case IP_TOS: 1082 case IP_TTL: 1083 case IP_MINTTL: 1084 case IP_PKTINFO: 1085 case IP_RECVOPTS: 1086 case IP_RECVRETOPTS: 1087 case IP_RECVDSTADDR: 1088 case IP_RECVIF: 1089 case IP_RECVPKTINFO: 1090 case IP_RECVTTL: 1091 error = sockopt_getint(sopt, &optval); 1092 if (error) 1093 break; 1094 1095 switch (sopt->sopt_name) { 1096 case IP_TOS: 1097 ip->ip_tos = optval; 1098 break; 1099 1100 case IP_TTL: 1101 ip->ip_ttl = optval; 1102 break; 1103 1104 case IP_MINTTL: 1105 if (optval > 0 && optval <= MAXTTL) 1106 inp->inp_ip_minttl = optval; 1107 else 1108 error = EINVAL; 1109 break; 1110 #define OPTSET(bit) \ 1111 if (optval) \ 1112 inpflags |= bit; \ 1113 else \ 1114 inpflags &= ~bit; 1115 1116 case IP_PKTINFO: 1117 OPTSET(INP_PKTINFO); 1118 break; 1119 1120 case IP_RECVOPTS: 1121 OPTSET(INP_RECVOPTS); 1122 break; 1123 1124 case IP_RECVPKTINFO: 1125 OPTSET(INP_RECVPKTINFO); 1126 break; 1127 1128 case IP_RECVRETOPTS: 1129 OPTSET(INP_RECVRETOPTS); 1130 break; 1131 1132 case IP_RECVDSTADDR: 1133 OPTSET(INP_RECVDSTADDR); 1134 break; 1135 1136 case IP_RECVIF: 1137 OPTSET(INP_RECVIF); 1138 break; 1139 1140 case IP_RECVTTL: 1141 OPTSET(INP_RECVTTL); 1142 break; 1143 } 1144 break; 1145 #undef OPTSET 1146 1147 case IP_MULTICAST_IF: 1148 case IP_MULTICAST_TTL: 1149 case IP_MULTICAST_LOOP: 1150 case IP_ADD_MEMBERSHIP: 1151 case IP_DROP_MEMBERSHIP: 1152 error = ip_setmoptions(&inp->inp_moptions, sopt); 1153 break; 1154 1155 case IP_PORTRANGE: 1156 error = sockopt_getint(sopt, &optval); 1157 if (error) 1158 break; 1159 1160 switch (optval) { 1161 case IP_PORTRANGE_DEFAULT: 1162 case IP_PORTRANGE_HIGH: 1163 inpflags &= ~(INP_LOWPORT); 1164 break; 1165 1166 case IP_PORTRANGE_LOW: 1167 inpflags |= INP_LOWPORT; 1168 break; 1169 1170 default: 1171 error = EINVAL; 1172 break; 1173 } 1174 break; 1175 1176 case IP_PORTALGO: 1177 error = sockopt_getint(sopt, &optval); 1178 if (error) 1179 break; 1180 1181 error = portalgo_algo_index_select( 1182 (struct inpcb_hdr *)inp, optval); 1183 break; 1184 1185 #if defined(IPSEC) 1186 case IP_IPSEC_POLICY: 1187 if (ipsec_enabled) { 1188 error = ipsec4_set_policy(inp, sopt->sopt_name, 1189 sopt->sopt_data, sopt->sopt_size, 1190 curlwp->l_cred); 1191 break; 1192 } 1193 /*FALLTHROUGH*/ 1194 #endif /* IPSEC */ 1195 1196 default: 1197 error = ENOPROTOOPT; 1198 break; 1199 } 1200 break; 1201 1202 case PRCO_GETOPT: 1203 switch (sopt->sopt_name) { 1204 case IP_OPTIONS: 1205 case IP_RETOPTS: { 1206 struct mbuf *mopts = inp->inp_options; 1207 1208 if (mopts) { 1209 struct mbuf *m; 1210 1211 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT); 1212 if (m == NULL) { 1213 error = ENOBUFS; 1214 break; 1215 } 1216 error = sockopt_setmbuf(sopt, m); 1217 } 1218 break; 1219 } 1220 case IP_PKTINFO: 1221 case IP_TOS: 1222 case IP_TTL: 1223 case IP_MINTTL: 1224 case IP_RECVOPTS: 1225 case IP_RECVRETOPTS: 1226 case IP_RECVDSTADDR: 1227 case IP_RECVIF: 1228 case IP_RECVPKTINFO: 1229 case IP_RECVTTL: 1230 case IP_ERRORMTU: 1231 switch (sopt->sopt_name) { 1232 case IP_TOS: 1233 optval = ip->ip_tos; 1234 break; 1235 1236 case IP_TTL: 1237 optval = ip->ip_ttl; 1238 break; 1239 1240 case IP_MINTTL: 1241 optval = inp->inp_ip_minttl; 1242 break; 1243 1244 case IP_ERRORMTU: 1245 optval = inp->inp_errormtu; 1246 break; 1247 1248 #define OPTBIT(bit) (inpflags & bit ? 1 : 0) 1249 1250 case IP_PKTINFO: 1251 optval = OPTBIT(INP_PKTINFO); 1252 break; 1253 1254 case IP_RECVOPTS: 1255 optval = OPTBIT(INP_RECVOPTS); 1256 break; 1257 1258 case IP_RECVPKTINFO: 1259 optval = OPTBIT(INP_RECVPKTINFO); 1260 break; 1261 1262 case IP_RECVRETOPTS: 1263 optval = OPTBIT(INP_RECVRETOPTS); 1264 break; 1265 1266 case IP_RECVDSTADDR: 1267 optval = OPTBIT(INP_RECVDSTADDR); 1268 break; 1269 1270 case IP_RECVIF: 1271 optval = OPTBIT(INP_RECVIF); 1272 break; 1273 1274 case IP_RECVTTL: 1275 optval = OPTBIT(INP_RECVTTL); 1276 break; 1277 } 1278 error = sockopt_setint(sopt, optval); 1279 break; 1280 1281 #if 0 /* defined(IPSEC) */ 1282 case IP_IPSEC_POLICY: 1283 { 1284 struct mbuf *m = NULL; 1285 1286 /* XXX this will return EINVAL as sopt is empty */ 1287 error = ipsec4_get_policy(inp, sopt->sopt_data, 1288 sopt->sopt_size, &m); 1289 if (error == 0) 1290 error = sockopt_setmbuf(sopt, m); 1291 break; 1292 } 1293 #endif /*IPSEC*/ 1294 1295 case IP_MULTICAST_IF: 1296 case IP_MULTICAST_TTL: 1297 case IP_MULTICAST_LOOP: 1298 case IP_ADD_MEMBERSHIP: 1299 case IP_DROP_MEMBERSHIP: 1300 error = ip_getmoptions(inp->inp_moptions, sopt); 1301 break; 1302 1303 case IP_PORTRANGE: 1304 if (inpflags & INP_LOWPORT) 1305 optval = IP_PORTRANGE_LOW; 1306 else 1307 optval = IP_PORTRANGE_DEFAULT; 1308 error = sockopt_setint(sopt, optval); 1309 break; 1310 1311 case IP_PORTALGO: 1312 optval = inp->inp_portalgo; 1313 error = sockopt_setint(sopt, optval); 1314 break; 1315 1316 default: 1317 error = ENOPROTOOPT; 1318 break; 1319 } 1320 break; 1321 } 1322 1323 if (!error) { 1324 inp->inp_flags = inpflags; 1325 } 1326 return error; 1327 } 1328 1329 /* 1330 * Set up IP options in pcb for insertion in output packets. 1331 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1332 * with destination address if source routed. 1333 */ 1334 static int 1335 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt) 1336 { 1337 struct mbuf *m; 1338 const u_char *cp; 1339 u_char *dp; 1340 int cnt; 1341 1342 /* Turn off any old options. */ 1343 if (inp->inp_options) { 1344 m_free(inp->inp_options); 1345 } 1346 inp->inp_options = NULL; 1347 if ((cnt = sopt->sopt_size) == 0) { 1348 /* Only turning off any previous options. */ 1349 return 0; 1350 } 1351 cp = sopt->sopt_data; 1352 1353 #ifndef __vax__ 1354 if (cnt % sizeof(int32_t)) 1355 return (EINVAL); 1356 #endif 1357 1358 m = m_get(M_DONTWAIT, MT_SOOPTS); 1359 if (m == NULL) 1360 return (ENOBUFS); 1361 1362 dp = mtod(m, u_char *); 1363 memset(dp, 0, sizeof(struct in_addr)); 1364 dp += sizeof(struct in_addr); 1365 m->m_len = sizeof(struct in_addr); 1366 1367 /* 1368 * IP option list according to RFC791. Each option is of the form 1369 * 1370 * [optval] [olen] [(olen - 2) data bytes] 1371 * 1372 * We validate the list and copy options to an mbuf for prepending 1373 * to data packets. The IP first-hop destination address will be 1374 * stored before actual options and is zero if unset. 1375 */ 1376 while (cnt > 0) { 1377 uint8_t optval, olen, offset; 1378 1379 optval = cp[IPOPT_OPTVAL]; 1380 1381 if (optval == IPOPT_EOL || optval == IPOPT_NOP) { 1382 olen = 1; 1383 } else { 1384 if (cnt < IPOPT_OLEN + 1) 1385 goto bad; 1386 1387 olen = cp[IPOPT_OLEN]; 1388 if (olen < IPOPT_OLEN + 1 || olen > cnt) 1389 goto bad; 1390 } 1391 1392 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) { 1393 /* 1394 * user process specifies route as: 1395 * ->A->B->C->D 1396 * D must be our final destination (but we can't 1397 * check that since we may not have connected yet). 1398 * A is first hop destination, which doesn't appear in 1399 * actual IP option, but is stored before the options. 1400 */ 1401 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr)) 1402 goto bad; 1403 1404 offset = cp[IPOPT_OFFSET]; 1405 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1, 1406 sizeof(struct in_addr)); 1407 1408 cp += sizeof(struct in_addr); 1409 cnt -= sizeof(struct in_addr); 1410 olen -= sizeof(struct in_addr); 1411 1412 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr)) 1413 goto bad; 1414 1415 memcpy(dp, cp, olen); 1416 dp[IPOPT_OPTVAL] = optval; 1417 dp[IPOPT_OLEN] = olen; 1418 dp[IPOPT_OFFSET] = offset; 1419 break; 1420 } else { 1421 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr)) 1422 goto bad; 1423 1424 memcpy(dp, cp, olen); 1425 break; 1426 } 1427 1428 dp += olen; 1429 m->m_len += olen; 1430 1431 if (optval == IPOPT_EOL) 1432 break; 1433 1434 cp += olen; 1435 cnt -= olen; 1436 } 1437 1438 inp->inp_options = m; 1439 return 0; 1440 bad: 1441 (void)m_free(m); 1442 return EINVAL; 1443 } 1444 1445 /* 1446 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. 1447 */ 1448 static struct ifnet * 1449 ip_multicast_if(struct in_addr *a, int *ifindexp) 1450 { 1451 int ifindex; 1452 struct ifnet *ifp = NULL; 1453 struct in_ifaddr *ia; 1454 1455 if (ifindexp) 1456 *ifindexp = 0; 1457 if (ntohl(a->s_addr) >> 24 == 0) { 1458 ifindex = ntohl(a->s_addr) & 0xffffff; 1459 ifp = if_byindex(ifindex); 1460 if (!ifp) 1461 return NULL; 1462 if (ifindexp) 1463 *ifindexp = ifindex; 1464 } else { 1465 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) { 1466 if (in_hosteq(ia->ia_addr.sin_addr, *a) && 1467 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) { 1468 ifp = ia->ia_ifp; 1469 break; 1470 } 1471 } 1472 } 1473 return ifp; 1474 } 1475 1476 static int 1477 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval) 1478 { 1479 u_int tval; 1480 u_char cval; 1481 int error; 1482 1483 if (sopt == NULL) 1484 return EINVAL; 1485 1486 switch (sopt->sopt_size) { 1487 case sizeof(u_char): 1488 error = sockopt_get(sopt, &cval, sizeof(u_char)); 1489 tval = cval; 1490 break; 1491 1492 case sizeof(u_int): 1493 error = sockopt_get(sopt, &tval, sizeof(u_int)); 1494 break; 1495 1496 default: 1497 error = EINVAL; 1498 } 1499 1500 if (error) 1501 return error; 1502 1503 if (tval > maxval) 1504 return EINVAL; 1505 1506 *val = tval; 1507 return 0; 1508 } 1509 1510 static int 1511 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 1512 struct in_addr *ia, bool add) 1513 { 1514 int error; 1515 struct ip_mreq mreq; 1516 1517 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 1518 if (error) 1519 return error; 1520 1521 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr)) 1522 return EINVAL; 1523 1524 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia)); 1525 1526 if (in_nullhost(mreq.imr_interface)) { 1527 union { 1528 struct sockaddr dst; 1529 struct sockaddr_in dst4; 1530 } u; 1531 struct route ro; 1532 1533 if (!add) { 1534 *ifp = NULL; 1535 return 0; 1536 } 1537 /* 1538 * If no interface address was provided, use the interface of 1539 * the route to the given multicast address. 1540 */ 1541 struct rtentry *rt; 1542 memset(&ro, 0, sizeof(ro)); 1543 1544 sockaddr_in_init(&u.dst4, ia, 0); 1545 error = rtcache_setdst(&ro, &u.dst); 1546 if (error != 0) 1547 return error; 1548 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL; 1549 rtcache_unref(rt, &ro); 1550 rtcache_free(&ro); 1551 } else { 1552 *ifp = ip_multicast_if(&mreq.imr_interface, NULL); 1553 if (!add && *ifp == NULL) 1554 return EADDRNOTAVAIL; 1555 } 1556 return 0; 1557 } 1558 1559 /* 1560 * Add a multicast group membership. 1561 * Group must be a valid IP multicast address. 1562 */ 1563 static int 1564 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt) 1565 { 1566 struct ifnet *ifp = NULL; // XXX: gcc [ppc] 1567 struct in_addr ia; 1568 int i, error; 1569 1570 if (sopt->sopt_size == sizeof(struct ip_mreq)) 1571 error = ip_get_membership(sopt, &ifp, &ia, true); 1572 else 1573 #ifdef INET6 1574 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia)); 1575 #else 1576 return EINVAL; 1577 #endif 1578 1579 if (error) 1580 return error; 1581 1582 /* 1583 * See if we found an interface, and confirm that it 1584 * supports multicast. 1585 */ 1586 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) 1587 return EADDRNOTAVAIL; 1588 1589 /* 1590 * See if the membership already exists or if all the 1591 * membership slots are full. 1592 */ 1593 for (i = 0; i < imo->imo_num_memberships; ++i) { 1594 if (imo->imo_membership[i]->inm_ifp == ifp && 1595 in_hosteq(imo->imo_membership[i]->inm_addr, ia)) 1596 break; 1597 } 1598 if (i < imo->imo_num_memberships) 1599 return EADDRINUSE; 1600 1601 if (i == IP_MAX_MEMBERSHIPS) 1602 return ETOOMANYREFS; 1603 1604 /* 1605 * Everything looks good; add a new record to the multicast 1606 * address list for the given interface. 1607 */ 1608 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL) 1609 return ENOBUFS; 1610 1611 ++imo->imo_num_memberships; 1612 return 0; 1613 } 1614 1615 /* 1616 * Drop a multicast group membership. 1617 * Group must be a valid IP multicast address. 1618 */ 1619 static int 1620 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt) 1621 { 1622 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc] 1623 struct ifnet *ifp = NULL; // XXX: gcc [ppc] 1624 int i, error; 1625 1626 if (sopt->sopt_size == sizeof(struct ip_mreq)) 1627 error = ip_get_membership(sopt, &ifp, &ia, false); 1628 else 1629 #ifdef INET6 1630 error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia)); 1631 #else 1632 return EINVAL; 1633 #endif 1634 1635 if (error) 1636 return error; 1637 1638 /* 1639 * Find the membership in the membership array. 1640 */ 1641 for (i = 0; i < imo->imo_num_memberships; ++i) { 1642 if ((ifp == NULL || 1643 imo->imo_membership[i]->inm_ifp == ifp) && 1644 in_hosteq(imo->imo_membership[i]->inm_addr, ia)) 1645 break; 1646 } 1647 if (i == imo->imo_num_memberships) 1648 return EADDRNOTAVAIL; 1649 1650 /* 1651 * Give up the multicast address record to which the 1652 * membership points. 1653 */ 1654 in_delmulti(imo->imo_membership[i]); 1655 1656 /* 1657 * Remove the gap in the membership array. 1658 */ 1659 for (++i; i < imo->imo_num_memberships; ++i) 1660 imo->imo_membership[i-1] = imo->imo_membership[i]; 1661 --imo->imo_num_memberships; 1662 return 0; 1663 } 1664 1665 /* 1666 * Set the IP multicast options in response to user setsockopt(). 1667 */ 1668 int 1669 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt) 1670 { 1671 struct ip_moptions *imo = *pimo; 1672 struct in_addr addr; 1673 struct ifnet *ifp; 1674 int ifindex, error = 0; 1675 1676 if (!imo) { 1677 /* 1678 * No multicast option buffer attached to the pcb; 1679 * allocate one and initialize to default values. 1680 */ 1681 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP); 1682 if (imo == NULL) 1683 return ENOBUFS; 1684 1685 imo->imo_multicast_if_index = 0; 1686 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1687 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1688 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 1689 imo->imo_num_memberships = 0; 1690 *pimo = imo; 1691 } 1692 1693 switch (sopt->sopt_name) { 1694 case IP_MULTICAST_IF: 1695 /* 1696 * Select the interface for outgoing multicast packets. 1697 */ 1698 error = sockopt_get(sopt, &addr, sizeof(addr)); 1699 if (error) 1700 break; 1701 1702 /* 1703 * INADDR_ANY is used to remove a previous selection. 1704 * When no interface is selected, a default one is 1705 * chosen every time a multicast packet is sent. 1706 */ 1707 if (in_nullhost(addr)) { 1708 imo->imo_multicast_if_index = 0; 1709 break; 1710 } 1711 /* 1712 * The selected interface is identified by its local 1713 * IP address. Find the interface and confirm that 1714 * it supports multicasting. 1715 */ 1716 ifp = ip_multicast_if(&addr, &ifindex); 1717 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1718 error = EADDRNOTAVAIL; 1719 break; 1720 } 1721 imo->imo_multicast_if_index = ifp->if_index; 1722 if (ifindex) 1723 imo->imo_multicast_addr = addr; 1724 else 1725 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1726 break; 1727 1728 case IP_MULTICAST_TTL: 1729 /* 1730 * Set the IP time-to-live for outgoing multicast packets. 1731 */ 1732 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL); 1733 break; 1734 1735 case IP_MULTICAST_LOOP: 1736 /* 1737 * Set the loopback flag for outgoing multicast packets. 1738 * Must be zero or one. 1739 */ 1740 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1); 1741 break; 1742 1743 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */ 1744 error = ip_add_membership(imo, sopt); 1745 break; 1746 1747 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */ 1748 error = ip_drop_membership(imo, sopt); 1749 break; 1750 1751 default: 1752 error = EOPNOTSUPP; 1753 break; 1754 } 1755 1756 /* 1757 * If all options have default values, no need to keep the mbuf. 1758 */ 1759 if (imo->imo_multicast_if_index == 0 && 1760 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL && 1761 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP && 1762 imo->imo_num_memberships == 0) { 1763 kmem_free(imo, sizeof(*imo)); 1764 *pimo = NULL; 1765 } 1766 1767 return error; 1768 } 1769 1770 /* 1771 * Return the IP multicast options in response to user getsockopt(). 1772 */ 1773 int 1774 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt) 1775 { 1776 struct in_addr addr; 1777 uint8_t optval; 1778 int error = 0; 1779 1780 switch (sopt->sopt_name) { 1781 case IP_MULTICAST_IF: 1782 if (imo == NULL || imo->imo_multicast_if_index == 0) 1783 addr = zeroin_addr; 1784 else if (imo->imo_multicast_addr.s_addr) { 1785 /* return the value user has set */ 1786 addr = imo->imo_multicast_addr; 1787 } else { 1788 struct ifnet *ifp; 1789 struct in_ifaddr *ia = NULL; 1790 int s = pserialize_read_enter(); 1791 1792 ifp = if_byindex(imo->imo_multicast_if_index); 1793 if (ifp != NULL) { 1794 ia = in_get_ia_from_ifp(ifp); 1795 } 1796 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr; 1797 pserialize_read_exit(s); 1798 } 1799 error = sockopt_set(sopt, &addr, sizeof(addr)); 1800 break; 1801 1802 case IP_MULTICAST_TTL: 1803 optval = imo ? imo->imo_multicast_ttl 1804 : IP_DEFAULT_MULTICAST_TTL; 1805 1806 error = sockopt_set(sopt, &optval, sizeof(optval)); 1807 break; 1808 1809 case IP_MULTICAST_LOOP: 1810 optval = imo ? imo->imo_multicast_loop 1811 : IP_DEFAULT_MULTICAST_LOOP; 1812 1813 error = sockopt_set(sopt, &optval, sizeof(optval)); 1814 break; 1815 1816 default: 1817 error = EOPNOTSUPP; 1818 } 1819 1820 return error; 1821 } 1822 1823 /* 1824 * Discard the IP multicast options. 1825 */ 1826 void 1827 ip_freemoptions(struct ip_moptions *imo) 1828 { 1829 int i; 1830 1831 if (imo != NULL) { 1832 for (i = 0; i < imo->imo_num_memberships; ++i) 1833 in_delmulti(imo->imo_membership[i]); 1834 kmem_free(imo, sizeof(*imo)); 1835 } 1836 } 1837 1838 /* 1839 * Routine called from ip_output() to loop back a copy of an IP multicast 1840 * packet to the input queue of a specified interface. Note that this 1841 * calls the output routine of the loopback "driver", but with an interface 1842 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 1843 */ 1844 static void 1845 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst) 1846 { 1847 struct ip *ip; 1848 struct mbuf *copym; 1849 1850 copym = m_copypacket(m, M_DONTWAIT); 1851 if (copym != NULL && 1852 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip))) 1853 copym = m_pullup(copym, sizeof(struct ip)); 1854 if (copym == NULL) 1855 return; 1856 /* 1857 * We don't bother to fragment if the IP length is greater 1858 * than the interface's MTU. Can this possibly matter? 1859 */ 1860 ip = mtod(copym, struct ip *); 1861 1862 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1863 in_delayed_cksum(copym); 1864 copym->m_pkthdr.csum_flags &= 1865 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1866 } 1867 1868 ip->ip_sum = 0; 1869 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2); 1870 #ifndef NET_MPSAFE 1871 KERNEL_LOCK(1, NULL); 1872 #endif 1873 (void)looutput(ifp, copym, sintocsa(dst), NULL); 1874 #ifndef NET_MPSAFE 1875 KERNEL_UNLOCK_ONE(NULL); 1876 #endif 1877 } 1878 1879 /* 1880 * Ensure sending address is valid. 1881 * Returns 0 on success, -1 if an error should be sent back or 1 1882 * if the packet could be dropped without error (protocol dependent). 1883 */ 1884 static int 1885 ip_ifaddrvalid(const struct in_ifaddr *ia) 1886 { 1887 1888 if (ia == NULL) 1889 return -1; 1890 1891 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY) 1892 return 0; 1893 1894 if (ia->ia4_flags & IN_IFF_DUPLICATED) 1895 return -1; 1896 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED)) 1897 return 1; 1898 1899 return 0; 1900 } 1901