1 /* $NetBSD: ip_output.c,v 1.166 2006/11/13 05:13:42 dyoung Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1998 The NetBSD Foundation, Inc. 34 * All rights reserved. 35 * 36 * This code is derived from software contributed to The NetBSD Foundation 37 * by Public Access Networks Corporation ("Panix"). It was developed under 38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. All advertising materials mentioning features or use of this software 49 * must display the following acknowledgement: 50 * This product includes software developed by the NetBSD 51 * Foundation, Inc. and its contributors. 52 * 4. Neither the name of The NetBSD Foundation nor the names of its 53 * contributors may be used to endorse or promote products derived 54 * from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 66 * POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 /* 70 * Copyright (c) 1982, 1986, 1988, 1990, 1993 71 * The Regents of the University of California. All rights reserved. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions 75 * are met: 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 2. Redistributions in binary form must reproduce the above copyright 79 * notice, this list of conditions and the following disclaimer in the 80 * documentation and/or other materials provided with the distribution. 81 * 3. Neither the name of the University nor the names of its contributors 82 * may be used to endorse or promote products derived from this software 83 * without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 95 * SUCH DAMAGE. 96 * 97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 98 */ 99 100 #include <sys/cdefs.h> 101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.166 2006/11/13 05:13:42 dyoung Exp $"); 102 103 #include "opt_pfil_hooks.h" 104 #include "opt_inet.h" 105 #include "opt_ipsec.h" 106 #include "opt_mrouting.h" 107 108 #include <sys/param.h> 109 #include <sys/malloc.h> 110 #include <sys/mbuf.h> 111 #include <sys/errno.h> 112 #include <sys/protosw.h> 113 #include <sys/socket.h> 114 #include <sys/socketvar.h> 115 #include <sys/kauth.h> 116 #ifdef FAST_IPSEC 117 #include <sys/domain.h> 118 #endif 119 #include <sys/systm.h> 120 #include <sys/proc.h> 121 122 #include <net/if.h> 123 #include <net/route.h> 124 #include <net/pfil.h> 125 126 #include <netinet/in.h> 127 #include <netinet/in_systm.h> 128 #include <netinet/ip.h> 129 #include <netinet/in_pcb.h> 130 #include <netinet/in_var.h> 131 #include <netinet/ip_var.h> 132 #include <netinet/in_offload.h> 133 134 #ifdef MROUTING 135 #include <netinet/ip_mroute.h> 136 #endif 137 138 #include <machine/stdarg.h> 139 140 #ifdef IPSEC 141 #include <netinet6/ipsec.h> 142 #include <netkey/key.h> 143 #include <netkey/key_debug.h> 144 #endif /*IPSEC*/ 145 146 #ifdef FAST_IPSEC 147 #include <netipsec/ipsec.h> 148 #include <netipsec/key.h> 149 #include <netipsec/xform.h> 150 #endif /* FAST_IPSEC*/ 151 152 #ifdef IPSEC_NAT_T 153 #include <netinet/udp.h> 154 #endif 155 156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); 157 static struct ifnet *ip_multicast_if(struct in_addr *, int *); 158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *); 159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int); 160 161 #ifdef PFIL_HOOKS 162 extern struct pfil_head inet_pfil_hook; /* XXX */ 163 #endif 164 165 int ip_do_loopback_cksum = 0; 166 167 #define IN_NEED_CHECKSUM(ifp, csum_flags) \ 168 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \ 169 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \ 170 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \ 171 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum))) 172 173 struct ip_tso_output_args { 174 struct ifnet *ifp; 175 struct sockaddr *sa; 176 struct rtentry *rt; 177 }; 178 179 static int ip_tso_output_callback(void *, struct mbuf *); 180 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *, 181 struct rtentry *); 182 183 static int 184 ip_tso_output_callback(void *vp, struct mbuf *m) 185 { 186 struct ip_tso_output_args *args = vp; 187 struct ifnet *ifp = args->ifp; 188 189 return (*ifp->if_output)(ifp, m, args->sa, args->rt); 190 } 191 192 static int 193 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa, 194 struct rtentry *rt) 195 { 196 struct ip_tso_output_args args; 197 198 args.ifp = ifp; 199 args.sa = sa; 200 args.rt = rt; 201 202 return tcp4_segment(m, ip_tso_output_callback, &args); 203 } 204 205 /* 206 * IP output. The packet in mbuf chain m contains a skeletal IP 207 * header (with len, off, ttl, proto, tos, src, dst). 208 * The mbuf chain containing the packet will be freed. 209 * The mbuf opt, if present, will not be freed. 210 */ 211 int 212 ip_output(struct mbuf *m0, ...) 213 { 214 struct ip *ip; 215 struct ifnet *ifp; 216 struct mbuf *m = m0; 217 int hlen = sizeof (struct ip); 218 int len, error = 0; 219 struct route iproute; 220 struct sockaddr_in *dst; 221 struct in_ifaddr *ia; 222 struct ifaddr *xifa; 223 struct mbuf *opt; 224 struct route *ro; 225 int flags, sw_csum; 226 int *mtu_p; 227 u_long mtu; 228 struct ip_moptions *imo; 229 struct socket *so; 230 va_list ap; 231 #ifdef IPSEC_NAT_T 232 int natt_frag = 0; 233 #endif 234 #ifdef IPSEC 235 struct secpolicy *sp = NULL; 236 #endif /*IPSEC*/ 237 #ifdef FAST_IPSEC 238 struct inpcb *inp; 239 struct m_tag *mtag; 240 struct secpolicy *sp = NULL; 241 struct tdb_ident *tdbi; 242 int s; 243 #endif 244 u_int16_t ip_len; 245 246 len = 0; 247 va_start(ap, m0); 248 opt = va_arg(ap, struct mbuf *); 249 ro = va_arg(ap, struct route *); 250 flags = va_arg(ap, int); 251 imo = va_arg(ap, struct ip_moptions *); 252 so = va_arg(ap, struct socket *); 253 if (flags & IP_RETURNMTU) 254 mtu_p = va_arg(ap, int *); 255 else 256 mtu_p = NULL; 257 va_end(ap); 258 259 MCLAIM(m, &ip_tx_mowner); 260 #ifdef FAST_IPSEC 261 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET) 262 inp = (struct inpcb *)so->so_pcb; 263 else 264 inp = NULL; 265 #endif /* FAST_IPSEC */ 266 267 #ifdef DIAGNOSTIC 268 if ((m->m_flags & M_PKTHDR) == 0) 269 panic("ip_output: no HDR"); 270 271 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) { 272 panic("ip_output: IPv6 checksum offload flags: %d", 273 m->m_pkthdr.csum_flags); 274 } 275 276 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) == 277 (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 278 panic("ip_output: conflicting checksum offload flags: %d", 279 m->m_pkthdr.csum_flags); 280 } 281 #endif 282 if (opt) { 283 m = ip_insertoptions(m, opt, &len); 284 if (len >= sizeof(struct ip)) 285 hlen = len; 286 } 287 ip = mtod(m, struct ip *); 288 /* 289 * Fill in IP header. 290 */ 291 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 292 ip->ip_v = IPVERSION; 293 ip->ip_off = htons(0); 294 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 295 ip->ip_id = ip_newid(); 296 } else { 297 298 /* 299 * TSO capable interfaces (typically?) increment 300 * ip_id for each segment. 301 * "allocate" enough ids here to increase the chance 302 * for them to be unique. 303 * 304 * note that the following calculation is not 305 * needed to be precise. wasting some ip_id is fine. 306 */ 307 308 unsigned int segsz = m->m_pkthdr.segsz; 309 unsigned int datasz = ntohs(ip->ip_len) - hlen; 310 unsigned int num = howmany(datasz, segsz); 311 312 ip->ip_id = ip_newid_range(num); 313 } 314 ip->ip_hl = hlen >> 2; 315 ipstat.ips_localout++; 316 } else { 317 hlen = ip->ip_hl << 2; 318 } 319 /* 320 * Route packet. 321 */ 322 if (ro == 0) { 323 ro = &iproute; 324 bzero((caddr_t)ro, sizeof (*ro)); 325 } 326 dst = satosin(&ro->ro_dst); 327 /* 328 * If there is a cached route, 329 * check that it is to the same destination 330 * and is still up. If not, free it and try again. 331 * The address family should also be checked in case of sharing the 332 * cache with IPv6. 333 */ 334 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 335 dst->sin_family != AF_INET || 336 !in_hosteq(dst->sin_addr, ip->ip_dst))) { 337 RTFREE(ro->ro_rt); 338 ro->ro_rt = (struct rtentry *)0; 339 } 340 if (ro->ro_rt == 0) { 341 bzero(dst, sizeof(*dst)); 342 dst->sin_family = AF_INET; 343 dst->sin_len = sizeof(*dst); 344 dst->sin_addr = ip->ip_dst; 345 } 346 /* 347 * If routing to interface only, 348 * short circuit routing lookup. 349 */ 350 if (flags & IP_ROUTETOIF) { 351 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) { 352 ipstat.ips_noroute++; 353 error = ENETUNREACH; 354 goto bad; 355 } 356 ifp = ia->ia_ifp; 357 mtu = ifp->if_mtu; 358 ip->ip_ttl = 1; 359 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) || 360 ip->ip_dst.s_addr == INADDR_BROADCAST) && 361 imo != NULL && imo->imo_multicast_ifp != NULL) { 362 ifp = imo->imo_multicast_ifp; 363 mtu = ifp->if_mtu; 364 IFP_TO_IA(ifp, ia); 365 } else { 366 if (ro->ro_rt == 0) 367 rtalloc(ro); 368 if (ro->ro_rt == 0) { 369 ipstat.ips_noroute++; 370 error = EHOSTUNREACH; 371 goto bad; 372 } 373 ia = ifatoia(ro->ro_rt->rt_ifa); 374 ifp = ro->ro_rt->rt_ifp; 375 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0) 376 mtu = ifp->if_mtu; 377 ro->ro_rt->rt_use++; 378 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 379 dst = satosin(ro->ro_rt->rt_gateway); 380 } 381 if (IN_MULTICAST(ip->ip_dst.s_addr) || 382 (ip->ip_dst.s_addr == INADDR_BROADCAST)) { 383 struct in_multi *inm; 384 385 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ? 386 M_BCAST : M_MCAST; 387 /* 388 * IP destination address is multicast. Make sure "dst" 389 * still points to the address in "ro". (It may have been 390 * changed to point to a gateway address, above.) 391 */ 392 dst = satosin(&ro->ro_dst); 393 /* 394 * See if the caller provided any multicast options 395 */ 396 if (imo != NULL) 397 ip->ip_ttl = imo->imo_multicast_ttl; 398 else 399 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 400 401 /* 402 * if we don't know the outgoing ifp yet, we can't generate 403 * output 404 */ 405 if (!ifp) { 406 ipstat.ips_noroute++; 407 error = ENETUNREACH; 408 goto bad; 409 } 410 411 /* 412 * If the packet is multicast or broadcast, confirm that 413 * the outgoing interface can transmit it. 414 */ 415 if (((m->m_flags & M_MCAST) && 416 (ifp->if_flags & IFF_MULTICAST) == 0) || 417 ((m->m_flags & M_BCAST) && 418 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) { 419 ipstat.ips_noroute++; 420 error = ENETUNREACH; 421 goto bad; 422 } 423 /* 424 * If source address not specified yet, use an address 425 * of outgoing interface. 426 */ 427 if (in_nullhost(ip->ip_src)) { 428 struct in_ifaddr *xia; 429 430 IFP_TO_IA(ifp, xia); 431 if (!xia) { 432 error = EADDRNOTAVAIL; 433 goto bad; 434 } 435 xifa = &xia->ia_ifa; 436 if (xifa->ifa_getifa != NULL) { 437 xia = ifatoia((*xifa->ifa_getifa)(xifa, 438 &ro->ro_dst)); 439 } 440 ip->ip_src = xia->ia_addr.sin_addr; 441 } 442 443 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm); 444 if (inm != NULL && 445 (imo == NULL || imo->imo_multicast_loop)) { 446 /* 447 * If we belong to the destination multicast group 448 * on the outgoing interface, and the caller did not 449 * forbid loopback, loop back a copy. 450 */ 451 ip_mloopback(ifp, m, dst); 452 } 453 #ifdef MROUTING 454 else { 455 /* 456 * If we are acting as a multicast router, perform 457 * multicast forwarding as if the packet had just 458 * arrived on the interface to which we are about 459 * to send. The multicast forwarding function 460 * recursively calls this function, using the 461 * IP_FORWARDING flag to prevent infinite recursion. 462 * 463 * Multicasts that are looped back by ip_mloopback(), 464 * above, will be forwarded by the ip_input() routine, 465 * if necessary. 466 */ 467 extern struct socket *ip_mrouter; 468 469 if (ip_mrouter && (flags & IP_FORWARDING) == 0) { 470 if (ip_mforward(m, ifp) != 0) { 471 m_freem(m); 472 goto done; 473 } 474 } 475 } 476 #endif 477 /* 478 * Multicasts with a time-to-live of zero may be looped- 479 * back, above, but must not be transmitted on a network. 480 * Also, multicasts addressed to the loopback interface 481 * are not sent -- the above call to ip_mloopback() will 482 * loop back a copy if this host actually belongs to the 483 * destination group on the loopback interface. 484 */ 485 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) { 486 m_freem(m); 487 goto done; 488 } 489 490 goto sendit; 491 } 492 /* 493 * If source address not specified yet, use address 494 * of outgoing interface. 495 */ 496 if (in_nullhost(ip->ip_src)) { 497 xifa = &ia->ia_ifa; 498 if (xifa->ifa_getifa != NULL) 499 ia = ifatoia((*xifa->ifa_getifa)(xifa, &ro->ro_dst)); 500 ip->ip_src = ia->ia_addr.sin_addr; 501 } 502 503 /* 504 * packets with Class-D address as source are not valid per 505 * RFC 1112 506 */ 507 if (IN_MULTICAST(ip->ip_src.s_addr)) { 508 ipstat.ips_odropped++; 509 error = EADDRNOTAVAIL; 510 goto bad; 511 } 512 513 /* 514 * Look for broadcast address and 515 * and verify user is allowed to send 516 * such a packet. 517 */ 518 if (in_broadcast(dst->sin_addr, ifp)) { 519 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 520 error = EADDRNOTAVAIL; 521 goto bad; 522 } 523 if ((flags & IP_ALLOWBROADCAST) == 0) { 524 error = EACCES; 525 goto bad; 526 } 527 /* don't allow broadcast messages to be fragmented */ 528 if (ntohs(ip->ip_len) > ifp->if_mtu) { 529 error = EMSGSIZE; 530 goto bad; 531 } 532 m->m_flags |= M_BCAST; 533 } else 534 m->m_flags &= ~M_BCAST; 535 536 sendit: 537 /* 538 * If we're doing Path MTU Discovery, we need to set DF unless 539 * the route's MTU is locked. 540 */ 541 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL && 542 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 543 ip->ip_off |= htons(IP_DF); 544 545 /* Remember the current ip_len */ 546 ip_len = ntohs(ip->ip_len); 547 548 #ifdef IPSEC 549 /* get SP for this packet */ 550 if (so == NULL) 551 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 552 flags, &error); 553 else { 554 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp, 555 IPSEC_DIR_OUTBOUND)) 556 goto skip_ipsec; 557 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 558 } 559 560 if (sp == NULL) { 561 ipsecstat.out_inval++; 562 goto bad; 563 } 564 565 error = 0; 566 567 /* check policy */ 568 switch (sp->policy) { 569 case IPSEC_POLICY_DISCARD: 570 /* 571 * This packet is just discarded. 572 */ 573 ipsecstat.out_polvio++; 574 goto bad; 575 576 case IPSEC_POLICY_BYPASS: 577 case IPSEC_POLICY_NONE: 578 /* no need to do IPsec. */ 579 goto skip_ipsec; 580 581 case IPSEC_POLICY_IPSEC: 582 if (sp->req == NULL) { 583 /* XXX should be panic ? */ 584 printf("ip_output: No IPsec request specified.\n"); 585 error = EINVAL; 586 goto bad; 587 } 588 break; 589 590 case IPSEC_POLICY_ENTRUST: 591 default: 592 printf("ip_output: Invalid policy found. %d\n", sp->policy); 593 } 594 595 #ifdef IPSEC_NAT_T 596 /* 597 * NAT-T ESP fragmentation: don't do IPSec processing now, 598 * we'll do it on each fragmented packet. 599 */ 600 if (sp->req->sav && 601 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) || 602 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) { 603 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) { 604 natt_frag = 1; 605 mtu = sp->req->sav->esp_frag; 606 goto skip_ipsec; 607 } 608 } 609 #endif /* IPSEC_NAT_T */ 610 611 /* 612 * ipsec4_output() expects ip_len and ip_off in network 613 * order. They have been set to network order above. 614 */ 615 616 { 617 struct ipsec_output_state state; 618 bzero(&state, sizeof(state)); 619 state.m = m; 620 if (flags & IP_ROUTETOIF) { 621 state.ro = &iproute; 622 bzero(&iproute, sizeof(iproute)); 623 } else 624 state.ro = ro; 625 state.dst = (struct sockaddr *)dst; 626 627 /* 628 * We can't defer the checksum of payload data if 629 * we're about to encrypt/authenticate it. 630 * 631 * XXX When we support crypto offloading functions of 632 * XXX network interfaces, we need to reconsider this, 633 * XXX since it's likely that they'll support checksumming, 634 * XXX as well. 635 */ 636 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 637 in_delayed_cksum(m); 638 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 639 } 640 641 error = ipsec4_output(&state, sp, flags); 642 643 m = state.m; 644 if (flags & IP_ROUTETOIF) { 645 /* 646 * if we have tunnel mode SA, we may need to ignore 647 * IP_ROUTETOIF. 648 */ 649 if (state.ro != &iproute || state.ro->ro_rt != NULL) { 650 flags &= ~IP_ROUTETOIF; 651 ro = state.ro; 652 } 653 } else 654 ro = state.ro; 655 dst = (struct sockaddr_in *)state.dst; 656 if (error) { 657 /* mbuf is already reclaimed in ipsec4_output. */ 658 m0 = NULL; 659 switch (error) { 660 case EHOSTUNREACH: 661 case ENETUNREACH: 662 case EMSGSIZE: 663 case ENOBUFS: 664 case ENOMEM: 665 break; 666 default: 667 printf("ip4_output (ipsec): error code %d\n", error); 668 /*fall through*/ 669 case ENOENT: 670 /* don't show these error codes to the user */ 671 error = 0; 672 break; 673 } 674 goto bad; 675 } 676 677 /* be sure to update variables that are affected by ipsec4_output() */ 678 ip = mtod(m, struct ip *); 679 hlen = ip->ip_hl << 2; 680 ip_len = ntohs(ip->ip_len); 681 682 if (ro->ro_rt == NULL) { 683 if ((flags & IP_ROUTETOIF) == 0) { 684 printf("ip_output: " 685 "can't update route after IPsec processing\n"); 686 error = EHOSTUNREACH; /*XXX*/ 687 goto bad; 688 } 689 } else { 690 /* nobody uses ia beyond here */ 691 if (state.encap) { 692 ifp = ro->ro_rt->rt_ifp; 693 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0) 694 mtu = ifp->if_mtu; 695 } 696 } 697 } 698 skip_ipsec: 699 #endif /*IPSEC*/ 700 #ifdef FAST_IPSEC 701 /* 702 * Check the security policy (SP) for the packet and, if 703 * required, do IPsec-related processing. There are two 704 * cases here; the first time a packet is sent through 705 * it will be untagged and handled by ipsec4_checkpolicy. 706 * If the packet is resubmitted to ip_output (e.g. after 707 * AH, ESP, etc. processing), there will be a tag to bypass 708 * the lookup and related policy checking. 709 */ 710 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL); 711 s = splsoftnet(); 712 if (mtag != NULL) { 713 tdbi = (struct tdb_ident *)(mtag + 1); 714 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND); 715 if (sp == NULL) 716 error = -EINVAL; /* force silent drop */ 717 m_tag_delete(m, mtag); 718 } else { 719 if (inp != NULL && 720 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) 721 goto spd_done; 722 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, 723 &error, inp); 724 } 725 /* 726 * There are four return cases: 727 * sp != NULL apply IPsec policy 728 * sp == NULL, error == 0 no IPsec handling needed 729 * sp == NULL, error == -EINVAL discard packet w/o error 730 * sp == NULL, error != 0 discard packet, report error 731 */ 732 if (sp != NULL) { 733 #ifdef IPSEC_NAT_T 734 /* 735 * NAT-T ESP fragmentation: don't do IPSec processing now, 736 * we'll do it on each fragmented packet. 737 */ 738 if (sp->req->sav && 739 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) || 740 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) { 741 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) { 742 natt_frag = 1; 743 mtu = sp->req->sav->esp_frag; 744 goto spd_done; 745 } 746 } 747 #endif /* IPSEC_NAT_T */ 748 /* Loop detection, check if ipsec processing already done */ 749 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request")); 750 for (mtag = m_tag_first(m); mtag != NULL; 751 mtag = m_tag_next(m, mtag)) { 752 #ifdef MTAG_ABI_COMPAT 753 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT) 754 continue; 755 #endif 756 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE && 757 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED) 758 continue; 759 /* 760 * Check if policy has an SA associated with it. 761 * This can happen when an SP has yet to acquire 762 * an SA; e.g. on first reference. If it occurs, 763 * then we let ipsec4_process_packet do its thing. 764 */ 765 if (sp->req->sav == NULL) 766 break; 767 tdbi = (struct tdb_ident *)(mtag + 1); 768 if (tdbi->spi == sp->req->sav->spi && 769 tdbi->proto == sp->req->sav->sah->saidx.proto && 770 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst, 771 sizeof (union sockaddr_union)) == 0) { 772 /* 773 * No IPsec processing is needed, free 774 * reference to SP. 775 * 776 * NB: null pointer to avoid free at 777 * done: below. 778 */ 779 KEY_FREESP(&sp), sp = NULL; 780 splx(s); 781 goto spd_done; 782 } 783 } 784 785 /* 786 * Do delayed checksums now because we send before 787 * this is done in the normal processing path. 788 */ 789 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 790 in_delayed_cksum(m); 791 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 792 } 793 794 #ifdef __FreeBSD__ 795 ip->ip_len = htons(ip->ip_len); 796 ip->ip_off = htons(ip->ip_off); 797 #endif 798 799 /* NB: callee frees mbuf */ 800 error = ipsec4_process_packet(m, sp->req, flags, 0); 801 /* 802 * Preserve KAME behaviour: ENOENT can be returned 803 * when an SA acquire is in progress. Don't propagate 804 * this to user-level; it confuses applications. 805 * 806 * XXX this will go away when the SADB is redone. 807 */ 808 if (error == ENOENT) 809 error = 0; 810 splx(s); 811 goto done; 812 } else { 813 splx(s); 814 815 if (error != 0) { 816 /* 817 * Hack: -EINVAL is used to signal that a packet 818 * should be silently discarded. This is typically 819 * because we asked key management for an SA and 820 * it was delayed (e.g. kicked up to IKE). 821 */ 822 if (error == -EINVAL) 823 error = 0; 824 goto bad; 825 } else { 826 /* No IPsec processing for this packet. */ 827 } 828 #ifdef notyet 829 /* 830 * If deferred crypto processing is needed, check that 831 * the interface supports it. 832 */ 833 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL); 834 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) { 835 /* notify IPsec to do its own crypto */ 836 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1)); 837 error = EHOSTUNREACH; 838 goto bad; 839 } 840 #endif 841 } 842 spd_done: 843 #endif /* FAST_IPSEC */ 844 845 #ifdef PFIL_HOOKS 846 /* 847 * Run through list of hooks for output packets. 848 */ 849 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 850 goto done; 851 if (m == NULL) 852 goto done; 853 854 ip = mtod(m, struct ip *); 855 hlen = ip->ip_hl << 2; 856 #endif /* PFIL_HOOKS */ 857 858 m->m_pkthdr.csum_data |= hlen << 16; 859 860 #if IFA_STATS 861 /* 862 * search for the source address structure to 863 * maintain output statistics. 864 */ 865 INADDR_TO_IA(ip->ip_src, ia); 866 #endif 867 868 /* Maybe skip checksums on loopback interfaces. */ 869 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) { 870 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 871 } 872 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 873 /* 874 * If small enough for mtu of path, or if using TCP segmentation 875 * offload, can just send directly. 876 */ 877 if (ip_len <= mtu || 878 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 879 #if IFA_STATS 880 if (ia) 881 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len; 882 #endif 883 /* 884 * Always initialize the sum to 0! Some HW assisted 885 * checksumming requires this. 886 */ 887 ip->ip_sum = 0; 888 889 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 890 /* 891 * Perform any checksums that the hardware can't do 892 * for us. 893 * 894 * XXX Does any hardware require the {th,uh}_sum 895 * XXX fields to be 0? 896 */ 897 if (sw_csum & M_CSUM_IPv4) { 898 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)); 899 ip->ip_sum = in_cksum(m, hlen); 900 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 901 } 902 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 903 if (IN_NEED_CHECKSUM(ifp, 904 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 905 in_delayed_cksum(m); 906 } 907 m->m_pkthdr.csum_flags &= 908 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 909 } 910 } 911 912 #ifdef IPSEC 913 /* clean ipsec history once it goes out of the node */ 914 ipsec_delaux(m); 915 #endif 916 917 if (__predict_true( 918 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 || 919 (ifp->if_capenable & IFCAP_TSOv4) != 0)) { 920 error = 921 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt); 922 } else { 923 error = 924 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt); 925 } 926 goto done; 927 } 928 929 /* 930 * We can't use HW checksumming if we're about to 931 * to fragment the packet. 932 * 933 * XXX Some hardware can do this. 934 */ 935 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 936 if (IN_NEED_CHECKSUM(ifp, 937 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 938 in_delayed_cksum(m); 939 } 940 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 941 } 942 943 /* 944 * Too large for interface; fragment if possible. 945 * Must be able to put at least 8 bytes per fragment. 946 */ 947 if (ntohs(ip->ip_off) & IP_DF) { 948 if (flags & IP_RETURNMTU) 949 *mtu_p = mtu; 950 error = EMSGSIZE; 951 ipstat.ips_cantfrag++; 952 goto bad; 953 } 954 955 error = ip_fragment(m, ifp, mtu); 956 if (error) { 957 m = NULL; 958 goto bad; 959 } 960 961 for (; m; m = m0) { 962 m0 = m->m_nextpkt; 963 m->m_nextpkt = 0; 964 if (error == 0) { 965 #if IFA_STATS 966 if (ia) 967 ia->ia_ifa.ifa_data.ifad_outbytes += 968 ntohs(ip->ip_len); 969 #endif 970 #ifdef IPSEC 971 /* clean ipsec history once it goes out of the node */ 972 ipsec_delaux(m); 973 #endif /* IPSEC */ 974 975 #ifdef IPSEC_NAT_T 976 /* 977 * If we get there, the packet has not been handeld by 978 * IPSec whereas it should have. Now that it has been 979 * fragmented, re-inject it in ip_output so that IPsec 980 * processing can occur. 981 */ 982 if (natt_frag) { 983 error = ip_output(m, opt, 984 ro, flags, imo, so, mtu_p); 985 } else 986 #endif /* IPSEC_NAT_T */ 987 { 988 KASSERT((m->m_pkthdr.csum_flags & 989 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0); 990 error = (*ifp->if_output)(ifp, m, sintosa(dst), 991 ro->ro_rt); 992 } 993 } else 994 m_freem(m); 995 } 996 997 if (error == 0) 998 ipstat.ips_fragmented++; 999 done: 1000 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) { 1001 RTFREE(ro->ro_rt); 1002 ro->ro_rt = 0; 1003 } 1004 1005 #ifdef IPSEC 1006 if (sp != NULL) { 1007 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1008 printf("DP ip_output call free SP:%p\n", sp)); 1009 key_freesp(sp); 1010 } 1011 #endif /* IPSEC */ 1012 #ifdef FAST_IPSEC 1013 if (sp != NULL) 1014 KEY_FREESP(&sp); 1015 #endif /* FAST_IPSEC */ 1016 1017 return (error); 1018 bad: 1019 m_freem(m); 1020 goto done; 1021 } 1022 1023 int 1024 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu) 1025 { 1026 struct ip *ip, *mhip; 1027 struct mbuf *m0; 1028 int len, hlen, off; 1029 int mhlen, firstlen; 1030 struct mbuf **mnext; 1031 int sw_csum = m->m_pkthdr.csum_flags; 1032 int fragments = 0; 1033 int s; 1034 int error = 0; 1035 1036 ip = mtod(m, struct ip *); 1037 hlen = ip->ip_hl << 2; 1038 if (ifp != NULL) 1039 sw_csum &= ~ifp->if_csum_flags_tx; 1040 1041 len = (mtu - hlen) &~ 7; 1042 if (len < 8) { 1043 m_freem(m); 1044 return (EMSGSIZE); 1045 } 1046 1047 firstlen = len; 1048 mnext = &m->m_nextpkt; 1049 1050 /* 1051 * Loop through length of segment after first fragment, 1052 * make new header and copy data of each part and link onto chain. 1053 */ 1054 m0 = m; 1055 mhlen = sizeof (struct ip); 1056 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) { 1057 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1058 if (m == 0) { 1059 error = ENOBUFS; 1060 ipstat.ips_odropped++; 1061 goto sendorfree; 1062 } 1063 MCLAIM(m, m0->m_owner); 1064 *mnext = m; 1065 mnext = &m->m_nextpkt; 1066 m->m_data += max_linkhdr; 1067 mhip = mtod(m, struct ip *); 1068 *mhip = *ip; 1069 /* we must inherit MCAST and BCAST flags */ 1070 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST); 1071 if (hlen > sizeof (struct ip)) { 1072 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1073 mhip->ip_hl = mhlen >> 2; 1074 } 1075 m->m_len = mhlen; 1076 mhip->ip_off = ((off - hlen) >> 3) + 1077 (ntohs(ip->ip_off) & ~IP_MF); 1078 if (ip->ip_off & htons(IP_MF)) 1079 mhip->ip_off |= IP_MF; 1080 if (off + len >= ntohs(ip->ip_len)) 1081 len = ntohs(ip->ip_len) - off; 1082 else 1083 mhip->ip_off |= IP_MF; 1084 HTONS(mhip->ip_off); 1085 mhip->ip_len = htons((u_int16_t)(len + mhlen)); 1086 m->m_next = m_copy(m0, off, len); 1087 if (m->m_next == 0) { 1088 error = ENOBUFS; /* ??? */ 1089 ipstat.ips_odropped++; 1090 goto sendorfree; 1091 } 1092 m->m_pkthdr.len = mhlen + len; 1093 m->m_pkthdr.rcvif = (struct ifnet *)0; 1094 mhip->ip_sum = 0; 1095 if (sw_csum & M_CSUM_IPv4) { 1096 mhip->ip_sum = in_cksum(m, mhlen); 1097 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0); 1098 } else { 1099 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1100 m->m_pkthdr.csum_data |= mhlen << 16; 1101 } 1102 ipstat.ips_ofragments++; 1103 fragments++; 1104 } 1105 /* 1106 * Update first fragment by trimming what's been copied out 1107 * and updating header, then send each fragment (in order). 1108 */ 1109 m = m0; 1110 m_adj(m, hlen + firstlen - ntohs(ip->ip_len)); 1111 m->m_pkthdr.len = hlen + firstlen; 1112 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len); 1113 ip->ip_off |= htons(IP_MF); 1114 ip->ip_sum = 0; 1115 if (sw_csum & M_CSUM_IPv4) { 1116 ip->ip_sum = in_cksum(m, hlen); 1117 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 1118 } else { 1119 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4); 1120 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >= 1121 sizeof(struct ip)); 1122 } 1123 sendorfree: 1124 /* 1125 * If there is no room for all the fragments, don't queue 1126 * any of them. 1127 */ 1128 if (ifp != NULL) { 1129 s = splnet(); 1130 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments && 1131 error == 0) { 1132 error = ENOBUFS; 1133 ipstat.ips_odropped++; 1134 IFQ_INC_DROPS(&ifp->if_snd); 1135 } 1136 splx(s); 1137 } 1138 if (error) { 1139 for (m = m0; m; m = m0) { 1140 m0 = m->m_nextpkt; 1141 m->m_nextpkt = NULL; 1142 m_freem(m); 1143 } 1144 } 1145 return (error); 1146 } 1147 1148 /* 1149 * Process a delayed payload checksum calculation. 1150 */ 1151 void 1152 in_delayed_cksum(struct mbuf *m) 1153 { 1154 struct ip *ip; 1155 u_int16_t csum, offset; 1156 1157 ip = mtod(m, struct ip *); 1158 offset = ip->ip_hl << 2; 1159 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset); 1160 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 1161 csum = 0xffff; 1162 1163 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); 1164 1165 if ((offset + sizeof(u_int16_t)) > m->m_len) { 1166 /* This happen when ip options were inserted 1167 printf("in_delayed_cksum: pullup len %d off %d proto %d\n", 1168 m->m_len, offset, ip->ip_p); 1169 */ 1170 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum); 1171 } else 1172 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 1173 } 1174 1175 /* 1176 * Determine the maximum length of the options to be inserted; 1177 * we would far rather allocate too much space rather than too little. 1178 */ 1179 1180 u_int 1181 ip_optlen(struct inpcb *inp) 1182 { 1183 struct mbuf *m = inp->inp_options; 1184 1185 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) 1186 return (m->m_len - offsetof(struct ipoption, ipopt_dst)); 1187 else 1188 return 0; 1189 } 1190 1191 1192 /* 1193 * Insert IP options into preformed packet. 1194 * Adjust IP destination as required for IP source routing, 1195 * as indicated by a non-zero in_addr at the start of the options. 1196 */ 1197 static struct mbuf * 1198 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) 1199 { 1200 struct ipoption *p = mtod(opt, struct ipoption *); 1201 struct mbuf *n; 1202 struct ip *ip = mtod(m, struct ip *); 1203 unsigned optlen; 1204 1205 optlen = opt->m_len - sizeof(p->ipopt_dst); 1206 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET) 1207 return (m); /* XXX should fail */ 1208 if (!in_nullhost(p->ipopt_dst)) 1209 ip->ip_dst = p->ipopt_dst; 1210 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) { 1211 MGETHDR(n, M_DONTWAIT, MT_HEADER); 1212 if (n == 0) 1213 return (m); 1214 MCLAIM(n, m->m_owner); 1215 M_MOVE_PKTHDR(n, m); 1216 m->m_len -= sizeof(struct ip); 1217 m->m_data += sizeof(struct ip); 1218 n->m_next = m; 1219 m = n; 1220 m->m_len = optlen + sizeof(struct ip); 1221 m->m_data += max_linkhdr; 1222 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 1223 } else { 1224 m->m_data -= optlen; 1225 m->m_len += optlen; 1226 memmove(mtod(m, caddr_t), ip, sizeof(struct ip)); 1227 } 1228 m->m_pkthdr.len += optlen; 1229 ip = mtod(m, struct ip *); 1230 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen); 1231 *phlen = sizeof(struct ip) + optlen; 1232 ip->ip_len = htons(ntohs(ip->ip_len) + optlen); 1233 return (m); 1234 } 1235 1236 /* 1237 * Copy options from ip to jp, 1238 * omitting those not copied during fragmentation. 1239 */ 1240 int 1241 ip_optcopy(struct ip *ip, struct ip *jp) 1242 { 1243 u_char *cp, *dp; 1244 int opt, optlen, cnt; 1245 1246 cp = (u_char *)(ip + 1); 1247 dp = (u_char *)(jp + 1); 1248 cnt = (ip->ip_hl << 2) - sizeof (struct ip); 1249 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1250 opt = cp[0]; 1251 if (opt == IPOPT_EOL) 1252 break; 1253 if (opt == IPOPT_NOP) { 1254 /* Preserve for IP mcast tunnel's LSRR alignment. */ 1255 *dp++ = IPOPT_NOP; 1256 optlen = 1; 1257 continue; 1258 } 1259 #ifdef DIAGNOSTIC 1260 if (cnt < IPOPT_OLEN + sizeof(*cp)) 1261 panic("malformed IPv4 option passed to ip_optcopy"); 1262 #endif 1263 optlen = cp[IPOPT_OLEN]; 1264 #ifdef DIAGNOSTIC 1265 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) 1266 panic("malformed IPv4 option passed to ip_optcopy"); 1267 #endif 1268 /* bogus lengths should have been caught by ip_dooptions */ 1269 if (optlen > cnt) 1270 optlen = cnt; 1271 if (IPOPT_COPIED(opt)) { 1272 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen); 1273 dp += optlen; 1274 } 1275 } 1276 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) 1277 *dp++ = IPOPT_EOL; 1278 return (optlen); 1279 } 1280 1281 /* 1282 * IP socket option processing. 1283 */ 1284 int 1285 ip_ctloutput(int op, struct socket *so, int level, int optname, 1286 struct mbuf **mp) 1287 { 1288 struct inpcb *inp = sotoinpcb(so); 1289 struct mbuf *m = *mp; 1290 int optval = 0; 1291 int error = 0; 1292 #if defined(IPSEC) || defined(FAST_IPSEC) 1293 struct lwp *l = curlwp; /*XXX*/ 1294 #endif 1295 1296 if (level != IPPROTO_IP) { 1297 error = EINVAL; 1298 if (op == PRCO_SETOPT && *mp) 1299 (void) m_free(*mp); 1300 } else switch (op) { 1301 1302 case PRCO_SETOPT: 1303 switch (optname) { 1304 case IP_OPTIONS: 1305 #ifdef notyet 1306 case IP_RETOPTS: 1307 return (ip_pcbopts(optname, &inp->inp_options, m)); 1308 #else 1309 return (ip_pcbopts(&inp->inp_options, m)); 1310 #endif 1311 1312 case IP_TOS: 1313 case IP_TTL: 1314 case IP_RECVOPTS: 1315 case IP_RECVRETOPTS: 1316 case IP_RECVDSTADDR: 1317 case IP_RECVIF: 1318 if (m == NULL || m->m_len != sizeof(int)) 1319 error = EINVAL; 1320 else { 1321 optval = *mtod(m, int *); 1322 switch (optname) { 1323 1324 case IP_TOS: 1325 inp->inp_ip.ip_tos = optval; 1326 break; 1327 1328 case IP_TTL: 1329 inp->inp_ip.ip_ttl = optval; 1330 break; 1331 #define OPTSET(bit) \ 1332 if (optval) \ 1333 inp->inp_flags |= bit; \ 1334 else \ 1335 inp->inp_flags &= ~bit; 1336 1337 case IP_RECVOPTS: 1338 OPTSET(INP_RECVOPTS); 1339 break; 1340 1341 case IP_RECVRETOPTS: 1342 OPTSET(INP_RECVRETOPTS); 1343 break; 1344 1345 case IP_RECVDSTADDR: 1346 OPTSET(INP_RECVDSTADDR); 1347 break; 1348 1349 case IP_RECVIF: 1350 OPTSET(INP_RECVIF); 1351 break; 1352 } 1353 } 1354 break; 1355 #undef OPTSET 1356 1357 case IP_MULTICAST_IF: 1358 case IP_MULTICAST_TTL: 1359 case IP_MULTICAST_LOOP: 1360 case IP_ADD_MEMBERSHIP: 1361 case IP_DROP_MEMBERSHIP: 1362 error = ip_setmoptions(optname, &inp->inp_moptions, m); 1363 break; 1364 1365 case IP_PORTRANGE: 1366 if (m == 0 || m->m_len != sizeof(int)) 1367 error = EINVAL; 1368 else { 1369 optval = *mtod(m, int *); 1370 1371 switch (optval) { 1372 1373 case IP_PORTRANGE_DEFAULT: 1374 case IP_PORTRANGE_HIGH: 1375 inp->inp_flags &= ~(INP_LOWPORT); 1376 break; 1377 1378 case IP_PORTRANGE_LOW: 1379 inp->inp_flags |= INP_LOWPORT; 1380 break; 1381 1382 default: 1383 error = EINVAL; 1384 break; 1385 } 1386 } 1387 break; 1388 1389 #if defined(IPSEC) || defined(FAST_IPSEC) 1390 case IP_IPSEC_POLICY: 1391 { 1392 caddr_t req = NULL; 1393 size_t len = 0; 1394 int priv = 0; 1395 1396 #ifdef __NetBSD__ 1397 if (l == 0 || kauth_authorize_generic(l->l_cred, 1398 KAUTH_GENERIC_ISSUSER, &l->l_acflag)) 1399 priv = 0; 1400 else 1401 priv = 1; 1402 #else 1403 priv = (in6p->in6p_socket->so_state & SS_PRIV); 1404 #endif 1405 if (m) { 1406 req = mtod(m, caddr_t); 1407 len = m->m_len; 1408 } 1409 error = ipsec4_set_policy(inp, optname, req, len, priv); 1410 break; 1411 } 1412 #endif /*IPSEC*/ 1413 1414 default: 1415 error = ENOPROTOOPT; 1416 break; 1417 } 1418 if (m) 1419 (void)m_free(m); 1420 break; 1421 1422 case PRCO_GETOPT: 1423 switch (optname) { 1424 case IP_OPTIONS: 1425 case IP_RETOPTS: 1426 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1427 MCLAIM(m, so->so_mowner); 1428 if (inp->inp_options) { 1429 m->m_len = inp->inp_options->m_len; 1430 bcopy(mtod(inp->inp_options, caddr_t), 1431 mtod(m, caddr_t), (unsigned)m->m_len); 1432 } else 1433 m->m_len = 0; 1434 break; 1435 1436 case IP_TOS: 1437 case IP_TTL: 1438 case IP_RECVOPTS: 1439 case IP_RECVRETOPTS: 1440 case IP_RECVDSTADDR: 1441 case IP_RECVIF: 1442 case IP_ERRORMTU: 1443 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1444 MCLAIM(m, so->so_mowner); 1445 m->m_len = sizeof(int); 1446 switch (optname) { 1447 1448 case IP_TOS: 1449 optval = inp->inp_ip.ip_tos; 1450 break; 1451 1452 case IP_TTL: 1453 optval = inp->inp_ip.ip_ttl; 1454 break; 1455 1456 case IP_ERRORMTU: 1457 optval = inp->inp_errormtu; 1458 break; 1459 1460 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1461 1462 case IP_RECVOPTS: 1463 optval = OPTBIT(INP_RECVOPTS); 1464 break; 1465 1466 case IP_RECVRETOPTS: 1467 optval = OPTBIT(INP_RECVRETOPTS); 1468 break; 1469 1470 case IP_RECVDSTADDR: 1471 optval = OPTBIT(INP_RECVDSTADDR); 1472 break; 1473 1474 case IP_RECVIF: 1475 optval = OPTBIT(INP_RECVIF); 1476 break; 1477 } 1478 *mtod(m, int *) = optval; 1479 break; 1480 1481 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */ 1482 /* XXX: code broken */ 1483 case IP_IPSEC_POLICY: 1484 { 1485 caddr_t req = NULL; 1486 size_t len = 0; 1487 1488 if (m) { 1489 req = mtod(m, caddr_t); 1490 len = m->m_len; 1491 } 1492 error = ipsec4_get_policy(inp, req, len, mp); 1493 break; 1494 } 1495 #endif /*IPSEC*/ 1496 1497 case IP_MULTICAST_IF: 1498 case IP_MULTICAST_TTL: 1499 case IP_MULTICAST_LOOP: 1500 case IP_ADD_MEMBERSHIP: 1501 case IP_DROP_MEMBERSHIP: 1502 error = ip_getmoptions(optname, inp->inp_moptions, mp); 1503 if (*mp) 1504 MCLAIM(*mp, so->so_mowner); 1505 break; 1506 1507 case IP_PORTRANGE: 1508 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1509 MCLAIM(m, so->so_mowner); 1510 m->m_len = sizeof(int); 1511 1512 if (inp->inp_flags & INP_LOWPORT) 1513 optval = IP_PORTRANGE_LOW; 1514 else 1515 optval = IP_PORTRANGE_DEFAULT; 1516 1517 *mtod(m, int *) = optval; 1518 break; 1519 1520 default: 1521 error = ENOPROTOOPT; 1522 break; 1523 } 1524 break; 1525 } 1526 return (error); 1527 } 1528 1529 /* 1530 * Set up IP options in pcb for insertion in output packets. 1531 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1532 * with destination address if source routed. 1533 */ 1534 int 1535 #ifdef notyet 1536 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m) 1537 #else 1538 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m) 1539 #endif 1540 { 1541 int cnt, optlen; 1542 u_char *cp; 1543 u_char opt; 1544 1545 /* turn off any old options */ 1546 if (*pcbopt) 1547 (void)m_free(*pcbopt); 1548 *pcbopt = 0; 1549 if (m == (struct mbuf *)0 || m->m_len == 0) { 1550 /* 1551 * Only turning off any previous options. 1552 */ 1553 if (m) 1554 (void)m_free(m); 1555 return (0); 1556 } 1557 1558 #ifndef __vax__ 1559 if (m->m_len % sizeof(int32_t)) 1560 goto bad; 1561 #endif 1562 /* 1563 * IP first-hop destination address will be stored before 1564 * actual options; move other options back 1565 * and clear it when none present. 1566 */ 1567 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN]) 1568 goto bad; 1569 cnt = m->m_len; 1570 m->m_len += sizeof(struct in_addr); 1571 cp = mtod(m, u_char *) + sizeof(struct in_addr); 1572 memmove(cp, mtod(m, caddr_t), (unsigned)cnt); 1573 bzero(mtod(m, caddr_t), sizeof(struct in_addr)); 1574 1575 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1576 opt = cp[IPOPT_OPTVAL]; 1577 if (opt == IPOPT_EOL) 1578 break; 1579 if (opt == IPOPT_NOP) 1580 optlen = 1; 1581 else { 1582 if (cnt < IPOPT_OLEN + sizeof(*cp)) 1583 goto bad; 1584 optlen = cp[IPOPT_OLEN]; 1585 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) 1586 goto bad; 1587 } 1588 switch (opt) { 1589 1590 default: 1591 break; 1592 1593 case IPOPT_LSRR: 1594 case IPOPT_SSRR: 1595 /* 1596 * user process specifies route as: 1597 * ->A->B->C->D 1598 * D must be our final destination (but we can't 1599 * check that since we may not have connected yet). 1600 * A is first hop destination, which doesn't appear in 1601 * actual IP option, but is stored before the options. 1602 */ 1603 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr)) 1604 goto bad; 1605 m->m_len -= sizeof(struct in_addr); 1606 cnt -= sizeof(struct in_addr); 1607 optlen -= sizeof(struct in_addr); 1608 cp[IPOPT_OLEN] = optlen; 1609 /* 1610 * Move first hop before start of options. 1611 */ 1612 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t), 1613 sizeof(struct in_addr)); 1614 /* 1615 * Then copy rest of options back 1616 * to close up the deleted entry. 1617 */ 1618 (void)memmove(&cp[IPOPT_OFFSET+1], 1619 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr), 1620 (unsigned)cnt - (IPOPT_MINOFF - 1)); 1621 break; 1622 } 1623 } 1624 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr)) 1625 goto bad; 1626 *pcbopt = m; 1627 return (0); 1628 1629 bad: 1630 (void)m_free(m); 1631 return (EINVAL); 1632 } 1633 1634 /* 1635 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. 1636 */ 1637 static struct ifnet * 1638 ip_multicast_if(struct in_addr *a, int *ifindexp) 1639 { 1640 int ifindex; 1641 struct ifnet *ifp = NULL; 1642 struct in_ifaddr *ia; 1643 1644 if (ifindexp) 1645 *ifindexp = 0; 1646 if (ntohl(a->s_addr) >> 24 == 0) { 1647 ifindex = ntohl(a->s_addr) & 0xffffff; 1648 if (ifindex < 0 || if_indexlim <= ifindex) 1649 return NULL; 1650 ifp = ifindex2ifnet[ifindex]; 1651 if (!ifp) 1652 return NULL; 1653 if (ifindexp) 1654 *ifindexp = ifindex; 1655 } else { 1656 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) { 1657 if (in_hosteq(ia->ia_addr.sin_addr, *a) && 1658 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) { 1659 ifp = ia->ia_ifp; 1660 break; 1661 } 1662 } 1663 } 1664 return ifp; 1665 } 1666 1667 static int 1668 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval) 1669 { 1670 u_int tval; 1671 1672 if (m == NULL) 1673 return EINVAL; 1674 1675 switch (m->m_len) { 1676 case sizeof(u_char): 1677 tval = *(mtod(m, u_char *)); 1678 break; 1679 case sizeof(u_int): 1680 tval = *(mtod(m, u_int *)); 1681 break; 1682 default: 1683 return EINVAL; 1684 } 1685 1686 if (tval > maxval) 1687 return EINVAL; 1688 1689 *val = tval; 1690 return 0; 1691 } 1692 1693 /* 1694 * Set the IP multicast options in response to user setsockopt(). 1695 */ 1696 int 1697 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m) 1698 { 1699 int error = 0; 1700 int i; 1701 struct in_addr addr; 1702 struct ip_mreq *mreq; 1703 struct ifnet *ifp; 1704 struct ip_moptions *imo = *imop; 1705 struct route ro; 1706 struct sockaddr_in *dst; 1707 int ifindex; 1708 1709 if (imo == NULL) { 1710 /* 1711 * No multicast option buffer attached to the pcb; 1712 * allocate one and initialize to default values. 1713 */ 1714 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS, 1715 M_WAITOK); 1716 1717 if (imo == NULL) 1718 return (ENOBUFS); 1719 *imop = imo; 1720 imo->imo_multicast_ifp = NULL; 1721 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1722 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1723 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 1724 imo->imo_num_memberships = 0; 1725 } 1726 1727 switch (optname) { 1728 1729 case IP_MULTICAST_IF: 1730 /* 1731 * Select the interface for outgoing multicast packets. 1732 */ 1733 if (m == NULL || m->m_len != sizeof(struct in_addr)) { 1734 error = EINVAL; 1735 break; 1736 } 1737 addr = *(mtod(m, struct in_addr *)); 1738 /* 1739 * INADDR_ANY is used to remove a previous selection. 1740 * When no interface is selected, a default one is 1741 * chosen every time a multicast packet is sent. 1742 */ 1743 if (in_nullhost(addr)) { 1744 imo->imo_multicast_ifp = NULL; 1745 break; 1746 } 1747 /* 1748 * The selected interface is identified by its local 1749 * IP address. Find the interface and confirm that 1750 * it supports multicasting. 1751 */ 1752 ifp = ip_multicast_if(&addr, &ifindex); 1753 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1754 error = EADDRNOTAVAIL; 1755 break; 1756 } 1757 imo->imo_multicast_ifp = ifp; 1758 if (ifindex) 1759 imo->imo_multicast_addr = addr; 1760 else 1761 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1762 break; 1763 1764 case IP_MULTICAST_TTL: 1765 /* 1766 * Set the IP time-to-live for outgoing multicast packets. 1767 */ 1768 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL); 1769 break; 1770 1771 case IP_MULTICAST_LOOP: 1772 /* 1773 * Set the loopback flag for outgoing multicast packets. 1774 * Must be zero or one. 1775 */ 1776 error = ip_getoptval(m, &imo->imo_multicast_loop, 1); 1777 break; 1778 1779 case IP_ADD_MEMBERSHIP: 1780 /* 1781 * Add a multicast group membership. 1782 * Group must be a valid IP multicast address. 1783 */ 1784 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) { 1785 error = EINVAL; 1786 break; 1787 } 1788 mreq = mtod(m, struct ip_mreq *); 1789 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) { 1790 error = EINVAL; 1791 break; 1792 } 1793 /* 1794 * If no interface address was provided, use the interface of 1795 * the route to the given multicast address. 1796 */ 1797 if (in_nullhost(mreq->imr_interface)) { 1798 bzero((caddr_t)&ro, sizeof(ro)); 1799 ro.ro_rt = NULL; 1800 dst = satosin(&ro.ro_dst); 1801 dst->sin_len = sizeof(*dst); 1802 dst->sin_family = AF_INET; 1803 dst->sin_addr = mreq->imr_multiaddr; 1804 rtalloc(&ro); 1805 if (ro.ro_rt == NULL) { 1806 error = EADDRNOTAVAIL; 1807 break; 1808 } 1809 ifp = ro.ro_rt->rt_ifp; 1810 rtfree(ro.ro_rt); 1811 } else { 1812 ifp = ip_multicast_if(&mreq->imr_interface, NULL); 1813 } 1814 /* 1815 * See if we found an interface, and confirm that it 1816 * supports multicast. 1817 */ 1818 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1819 error = EADDRNOTAVAIL; 1820 break; 1821 } 1822 /* 1823 * See if the membership already exists or if all the 1824 * membership slots are full. 1825 */ 1826 for (i = 0; i < imo->imo_num_memberships; ++i) { 1827 if (imo->imo_membership[i]->inm_ifp == ifp && 1828 in_hosteq(imo->imo_membership[i]->inm_addr, 1829 mreq->imr_multiaddr)) 1830 break; 1831 } 1832 if (i < imo->imo_num_memberships) { 1833 error = EADDRINUSE; 1834 break; 1835 } 1836 if (i == IP_MAX_MEMBERSHIPS) { 1837 error = ETOOMANYREFS; 1838 break; 1839 } 1840 /* 1841 * Everything looks good; add a new record to the multicast 1842 * address list for the given interface. 1843 */ 1844 if ((imo->imo_membership[i] = 1845 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) { 1846 error = ENOBUFS; 1847 break; 1848 } 1849 ++imo->imo_num_memberships; 1850 break; 1851 1852 case IP_DROP_MEMBERSHIP: 1853 /* 1854 * Drop a multicast group membership. 1855 * Group must be a valid IP multicast address. 1856 */ 1857 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) { 1858 error = EINVAL; 1859 break; 1860 } 1861 mreq = mtod(m, struct ip_mreq *); 1862 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) { 1863 error = EINVAL; 1864 break; 1865 } 1866 /* 1867 * If an interface address was specified, get a pointer 1868 * to its ifnet structure. 1869 */ 1870 if (in_nullhost(mreq->imr_interface)) 1871 ifp = NULL; 1872 else { 1873 ifp = ip_multicast_if(&mreq->imr_interface, NULL); 1874 if (ifp == NULL) { 1875 error = EADDRNOTAVAIL; 1876 break; 1877 } 1878 } 1879 /* 1880 * Find the membership in the membership array. 1881 */ 1882 for (i = 0; i < imo->imo_num_memberships; ++i) { 1883 if ((ifp == NULL || 1884 imo->imo_membership[i]->inm_ifp == ifp) && 1885 in_hosteq(imo->imo_membership[i]->inm_addr, 1886 mreq->imr_multiaddr)) 1887 break; 1888 } 1889 if (i == imo->imo_num_memberships) { 1890 error = EADDRNOTAVAIL; 1891 break; 1892 } 1893 /* 1894 * Give up the multicast address record to which the 1895 * membership points. 1896 */ 1897 in_delmulti(imo->imo_membership[i]); 1898 /* 1899 * Remove the gap in the membership array. 1900 */ 1901 for (++i; i < imo->imo_num_memberships; ++i) 1902 imo->imo_membership[i-1] = imo->imo_membership[i]; 1903 --imo->imo_num_memberships; 1904 break; 1905 1906 default: 1907 error = EOPNOTSUPP; 1908 break; 1909 } 1910 1911 /* 1912 * If all options have default values, no need to keep the mbuf. 1913 */ 1914 if (imo->imo_multicast_ifp == NULL && 1915 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL && 1916 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP && 1917 imo->imo_num_memberships == 0) { 1918 free(*imop, M_IPMOPTS); 1919 *imop = NULL; 1920 } 1921 1922 return (error); 1923 } 1924 1925 /* 1926 * Return the IP multicast options in response to user getsockopt(). 1927 */ 1928 int 1929 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp) 1930 { 1931 u_char *ttl; 1932 u_char *loop; 1933 struct in_addr *addr; 1934 struct in_ifaddr *ia; 1935 1936 *mp = m_get(M_WAIT, MT_SOOPTS); 1937 1938 switch (optname) { 1939 1940 case IP_MULTICAST_IF: 1941 addr = mtod(*mp, struct in_addr *); 1942 (*mp)->m_len = sizeof(struct in_addr); 1943 if (imo == NULL || imo->imo_multicast_ifp == NULL) 1944 *addr = zeroin_addr; 1945 else if (imo->imo_multicast_addr.s_addr) { 1946 /* return the value user has set */ 1947 *addr = imo->imo_multicast_addr; 1948 } else { 1949 IFP_TO_IA(imo->imo_multicast_ifp, ia); 1950 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr; 1951 } 1952 return (0); 1953 1954 case IP_MULTICAST_TTL: 1955 ttl = mtod(*mp, u_char *); 1956 (*mp)->m_len = 1; 1957 *ttl = imo ? imo->imo_multicast_ttl 1958 : IP_DEFAULT_MULTICAST_TTL; 1959 return (0); 1960 1961 case IP_MULTICAST_LOOP: 1962 loop = mtod(*mp, u_char *); 1963 (*mp)->m_len = 1; 1964 *loop = imo ? imo->imo_multicast_loop 1965 : IP_DEFAULT_MULTICAST_LOOP; 1966 return (0); 1967 1968 default: 1969 return (EOPNOTSUPP); 1970 } 1971 } 1972 1973 /* 1974 * Discard the IP multicast options. 1975 */ 1976 void 1977 ip_freemoptions(struct ip_moptions *imo) 1978 { 1979 int i; 1980 1981 if (imo != NULL) { 1982 for (i = 0; i < imo->imo_num_memberships; ++i) 1983 in_delmulti(imo->imo_membership[i]); 1984 free(imo, M_IPMOPTS); 1985 } 1986 } 1987 1988 /* 1989 * Routine called from ip_output() to loop back a copy of an IP multicast 1990 * packet to the input queue of a specified interface. Note that this 1991 * calls the output routine of the loopback "driver", but with an interface 1992 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 1993 */ 1994 static void 1995 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst) 1996 { 1997 struct ip *ip; 1998 struct mbuf *copym; 1999 2000 copym = m_copy(m, 0, M_COPYALL); 2001 if (copym != NULL 2002 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip))) 2003 copym = m_pullup(copym, sizeof(struct ip)); 2004 if (copym != NULL) { 2005 /* 2006 * We don't bother to fragment if the IP length is greater 2007 * than the interface's MTU. Can this possibly matter? 2008 */ 2009 ip = mtod(copym, struct ip *); 2010 2011 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 2012 in_delayed_cksum(copym); 2013 copym->m_pkthdr.csum_flags &= 2014 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 2015 } 2016 2017 ip->ip_sum = 0; 2018 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2); 2019 (void) looutput(ifp, copym, sintosa(dst), NULL); 2020 } 2021 } 2022