xref: /netbsd-src/sys/netinet/ip_output.c (revision bf1e9b32e27832f0c493206710fb8b58a980838a)
1 /*	$NetBSD: ip_output.c,v 1.153 2005/05/29 21:41:23 christos Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.153 2005/05/29 21:41:23 christos Exp $");
102 
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107 
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120 
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124 
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/in_offload.h>
132 
133 #ifdef MROUTING
134 #include <netinet/ip_mroute.h>
135 #endif
136 
137 #include <machine/stdarg.h>
138 
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #include <netkey/key_debug.h>
143 #ifdef IPSEC_NAT_T
144 #include <netinet/udp.h>
145 #endif
146 #endif /*IPSEC*/
147 
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #include <netipsec/xform.h>
152 #endif	/* FAST_IPSEC*/
153 
154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
155 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
156 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
157 
158 #ifdef PFIL_HOOKS
159 extern struct pfil_head inet_pfil_hook;			/* XXX */
160 #endif
161 
162 int	udp_do_loopback_cksum = 0;
163 int	tcp_do_loopback_cksum = 0;
164 int	ip_do_loopback_cksum = 0;
165 
166 #define	IN_NEED_CHECKSUM(ifp, csum_flags) \
167 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
168 	(((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
169 	(((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
170 	(((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
171 
172 struct ip_tso_output_args {
173 	struct ifnet *ifp;
174 	struct sockaddr *sa;
175 	struct rtentry *rt;
176 };
177 
178 static int ip_tso_output_callback(void *, struct mbuf *);
179 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
180     struct rtentry *);
181 
182 static int
183 ip_tso_output_callback(void *vp, struct mbuf *m)
184 {
185 	struct ip_tso_output_args *args = vp;
186 	struct ifnet *ifp = args->ifp;
187 
188 	return (*ifp->if_output)(ifp, m, args->sa, args->rt);
189 }
190 
191 static int
192 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
193     struct rtentry *rt)
194 {
195 	struct ip_tso_output_args args;
196 
197 	args.ifp = ifp;
198 	args.sa = sa;
199 	args.rt = rt;
200 
201 	return tcp4_segment(m, ip_tso_output_callback, &args);
202 }
203 
204 /*
205  * IP output.  The packet in mbuf chain m contains a skeletal IP
206  * header (with len, off, ttl, proto, tos, src, dst).
207  * The mbuf chain containing the packet will be freed.
208  * The mbuf opt, if present, will not be freed.
209  */
210 int
211 ip_output(struct mbuf *m0, ...)
212 {
213 	struct ip *ip;
214 	struct ifnet *ifp;
215 	struct mbuf *m = m0;
216 	int hlen = sizeof (struct ip);
217 	int len, error = 0;
218 	struct route iproute;
219 	struct sockaddr_in *dst;
220 	struct in_ifaddr *ia;
221 	struct mbuf *opt;
222 	struct route *ro;
223 	int flags, sw_csum;
224 	int *mtu_p;
225 	u_long mtu;
226 	struct ip_moptions *imo;
227 	struct socket *so;
228 	va_list ap;
229 #ifdef IPSEC
230 	struct secpolicy *sp = NULL;
231 #ifdef IPSEC_NAT_T
232 	int natt_frag = 0;
233 #endif
234 #endif /*IPSEC*/
235 #ifdef FAST_IPSEC
236 	struct inpcb *inp;
237 	struct m_tag *mtag;
238 	struct secpolicy *sp = NULL;
239 	struct tdb_ident *tdbi;
240 	int s;
241 #endif
242 	u_int16_t ip_len;
243 
244 	len = 0;
245 	va_start(ap, m0);
246 	opt = va_arg(ap, struct mbuf *);
247 	ro = va_arg(ap, struct route *);
248 	flags = va_arg(ap, int);
249 	imo = va_arg(ap, struct ip_moptions *);
250 	so = va_arg(ap, struct socket *);
251 	if (flags & IP_RETURNMTU)
252 		mtu_p = va_arg(ap, int *);
253 	else
254 		mtu_p = NULL;
255 	va_end(ap);
256 
257 	MCLAIM(m, &ip_tx_mowner);
258 #ifdef FAST_IPSEC
259 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
260 		inp = (struct inpcb *)so->so_pcb;
261 	else
262 		inp = NULL;
263 #endif /* FAST_IPSEC */
264 
265 #ifdef	DIAGNOSTIC
266 	if ((m->m_flags & M_PKTHDR) == 0)
267 		panic("ip_output no HDR");
268 #endif
269 	if (opt) {
270 		m = ip_insertoptions(m, opt, &len);
271 		if (len >= sizeof(struct ip))
272 			hlen = len;
273 	}
274 	ip = mtod(m, struct ip *);
275 	/*
276 	 * Fill in IP header.
277 	 */
278 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
279 		ip->ip_v = IPVERSION;
280 		ip->ip_off = htons(0);
281 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
282 			ip->ip_id = ip_newid();
283 		} else {
284 
285 			/*
286 			 * TSO capable interfaces (typically?) increment
287 			 * ip_id for each segment.
288 			 * "allocate" enough ids here to increase the chance
289 			 * for them to be unique.
290 			 *
291 			 * note that the following calculation is not
292 			 * needed to be precise.  wasting some ip_id is fine.
293 			 */
294 
295 			unsigned int segsz = m->m_pkthdr.segsz;
296 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
297 			unsigned int num = howmany(datasz, segsz);
298 
299 			ip->ip_id = ip_newid_range(num);
300 		}
301 		ip->ip_hl = hlen >> 2;
302 		ipstat.ips_localout++;
303 	} else {
304 		hlen = ip->ip_hl << 2;
305 	}
306 	/*
307 	 * Route packet.
308 	 */
309 	if (ro == 0) {
310 		ro = &iproute;
311 		bzero((caddr_t)ro, sizeof (*ro));
312 	}
313 	dst = satosin(&ro->ro_dst);
314 	/*
315 	 * If there is a cached route,
316 	 * check that it is to the same destination
317 	 * and is still up.  If not, free it and try again.
318 	 * The address family should also be checked in case of sharing the
319 	 * cache with IPv6.
320 	 */
321 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
322 	    dst->sin_family != AF_INET ||
323 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
324 		RTFREE(ro->ro_rt);
325 		ro->ro_rt = (struct rtentry *)0;
326 	}
327 	if (ro->ro_rt == 0) {
328 		bzero(dst, sizeof(*dst));
329 		dst->sin_family = AF_INET;
330 		dst->sin_len = sizeof(*dst);
331 		dst->sin_addr = ip->ip_dst;
332 	}
333 	/*
334 	 * If routing to interface only,
335 	 * short circuit routing lookup.
336 	 */
337 	if (flags & IP_ROUTETOIF) {
338 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
339 			ipstat.ips_noroute++;
340 			error = ENETUNREACH;
341 			goto bad;
342 		}
343 		ifp = ia->ia_ifp;
344 		mtu = ifp->if_mtu;
345 		ip->ip_ttl = 1;
346 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
347 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
348 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
349 		ifp = imo->imo_multicast_ifp;
350 		mtu = ifp->if_mtu;
351 		IFP_TO_IA(ifp, ia);
352 	} else {
353 		if (ro->ro_rt == 0)
354 			rtalloc(ro);
355 		if (ro->ro_rt == 0) {
356 			ipstat.ips_noroute++;
357 			error = EHOSTUNREACH;
358 			goto bad;
359 		}
360 		ia = ifatoia(ro->ro_rt->rt_ifa);
361 		ifp = ro->ro_rt->rt_ifp;
362 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
363 			mtu = ifp->if_mtu;
364 		ro->ro_rt->rt_use++;
365 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
366 			dst = satosin(ro->ro_rt->rt_gateway);
367 	}
368 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
369 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
370 		struct in_multi *inm;
371 
372 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
373 			M_BCAST : M_MCAST;
374 		/*
375 		 * IP destination address is multicast.  Make sure "dst"
376 		 * still points to the address in "ro".  (It may have been
377 		 * changed to point to a gateway address, above.)
378 		 */
379 		dst = satosin(&ro->ro_dst);
380 		/*
381 		 * See if the caller provided any multicast options
382 		 */
383 		if (imo != NULL)
384 			ip->ip_ttl = imo->imo_multicast_ttl;
385 		else
386 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
387 
388 		/*
389 		 * if we don't know the outgoing ifp yet, we can't generate
390 		 * output
391 		 */
392 		if (!ifp) {
393 			ipstat.ips_noroute++;
394 			error = ENETUNREACH;
395 			goto bad;
396 		}
397 
398 		/*
399 		 * If the packet is multicast or broadcast, confirm that
400 		 * the outgoing interface can transmit it.
401 		 */
402 		if (((m->m_flags & M_MCAST) &&
403 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
404 		    ((m->m_flags & M_BCAST) &&
405 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
406 			ipstat.ips_noroute++;
407 			error = ENETUNREACH;
408 			goto bad;
409 		}
410 		/*
411 		 * If source address not specified yet, use an address
412 		 * of outgoing interface.
413 		 */
414 		if (in_nullhost(ip->ip_src)) {
415 			struct in_ifaddr *xia;
416 
417 			IFP_TO_IA(ifp, xia);
418 			if (!xia) {
419 				error = EADDRNOTAVAIL;
420 				goto bad;
421 			}
422 			ip->ip_src = xia->ia_addr.sin_addr;
423 		}
424 
425 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
426 		if (inm != NULL &&
427 		   (imo == NULL || imo->imo_multicast_loop)) {
428 			/*
429 			 * If we belong to the destination multicast group
430 			 * on the outgoing interface, and the caller did not
431 			 * forbid loopback, loop back a copy.
432 			 */
433 			ip_mloopback(ifp, m, dst);
434 		}
435 #ifdef MROUTING
436 		else {
437 			/*
438 			 * If we are acting as a multicast router, perform
439 			 * multicast forwarding as if the packet had just
440 			 * arrived on the interface to which we are about
441 			 * to send.  The multicast forwarding function
442 			 * recursively calls this function, using the
443 			 * IP_FORWARDING flag to prevent infinite recursion.
444 			 *
445 			 * Multicasts that are looped back by ip_mloopback(),
446 			 * above, will be forwarded by the ip_input() routine,
447 			 * if necessary.
448 			 */
449 			extern struct socket *ip_mrouter;
450 
451 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
452 				if (ip_mforward(m, ifp) != 0) {
453 					m_freem(m);
454 					goto done;
455 				}
456 			}
457 		}
458 #endif
459 		/*
460 		 * Multicasts with a time-to-live of zero may be looped-
461 		 * back, above, but must not be transmitted on a network.
462 		 * Also, multicasts addressed to the loopback interface
463 		 * are not sent -- the above call to ip_mloopback() will
464 		 * loop back a copy if this host actually belongs to the
465 		 * destination group on the loopback interface.
466 		 */
467 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
468 			m_freem(m);
469 			goto done;
470 		}
471 
472 		goto sendit;
473 	}
474 #ifndef notdef
475 	/*
476 	 * If source address not specified yet, use address
477 	 * of outgoing interface.
478 	 */
479 	if (in_nullhost(ip->ip_src))
480 		ip->ip_src = ia->ia_addr.sin_addr;
481 #endif
482 
483 	/*
484 	 * packets with Class-D address as source are not valid per
485 	 * RFC 1112
486 	 */
487 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
488 		ipstat.ips_odropped++;
489 		error = EADDRNOTAVAIL;
490 		goto bad;
491 	}
492 
493 	/*
494 	 * Look for broadcast address and
495 	 * and verify user is allowed to send
496 	 * such a packet.
497 	 */
498 	if (in_broadcast(dst->sin_addr, ifp)) {
499 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
500 			error = EADDRNOTAVAIL;
501 			goto bad;
502 		}
503 		if ((flags & IP_ALLOWBROADCAST) == 0) {
504 			error = EACCES;
505 			goto bad;
506 		}
507 		/* don't allow broadcast messages to be fragmented */
508 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
509 			error = EMSGSIZE;
510 			goto bad;
511 		}
512 		m->m_flags |= M_BCAST;
513 	} else
514 		m->m_flags &= ~M_BCAST;
515 
516 sendit:
517 	/*
518 	 * If we're doing Path MTU Discovery, we need to set DF unless
519 	 * the route's MTU is locked.
520 	 */
521 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
522 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
523 		ip->ip_off |= htons(IP_DF);
524 
525 	/* Remember the current ip_len */
526 	ip_len = ntohs(ip->ip_len);
527 
528 #ifdef IPSEC
529 	/* get SP for this packet */
530 	if (so == NULL)
531 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
532 		    flags, &error);
533 	else {
534 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
535 					 IPSEC_DIR_OUTBOUND))
536 			goto skip_ipsec;
537 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
538 	}
539 
540 	if (sp == NULL) {
541 		ipsecstat.out_inval++;
542 		goto bad;
543 	}
544 
545 	error = 0;
546 
547 	/* check policy */
548 	switch (sp->policy) {
549 	case IPSEC_POLICY_DISCARD:
550 		/*
551 		 * This packet is just discarded.
552 		 */
553 		ipsecstat.out_polvio++;
554 		goto bad;
555 
556 	case IPSEC_POLICY_BYPASS:
557 	case IPSEC_POLICY_NONE:
558 		/* no need to do IPsec. */
559 		goto skip_ipsec;
560 
561 	case IPSEC_POLICY_IPSEC:
562 		if (sp->req == NULL) {
563 			/* XXX should be panic ? */
564 			printf("ip_output: No IPsec request specified.\n");
565 			error = EINVAL;
566 			goto bad;
567 		}
568 		break;
569 
570 	case IPSEC_POLICY_ENTRUST:
571 	default:
572 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
573 	}
574 
575 #ifdef IPSEC_NAT_T
576 	/*
577 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
578 	 * we'll do it on each fragmented packet.
579 	 */
580 	if (sp->req->sav &&
581 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
582 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
583 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
584 			natt_frag = 1;
585 			mtu = sp->req->sav->esp_frag;
586 			goto skip_ipsec;
587 		}
588 	}
589 #endif /* IPSEC_NAT_T */
590 
591 	/*
592 	 * ipsec4_output() expects ip_len and ip_off in network
593 	 * order.  They have been set to network order above.
594 	 */
595 
596     {
597 	struct ipsec_output_state state;
598 	bzero(&state, sizeof(state));
599 	state.m = m;
600 	if (flags & IP_ROUTETOIF) {
601 		state.ro = &iproute;
602 		bzero(&iproute, sizeof(iproute));
603 	} else
604 		state.ro = ro;
605 	state.dst = (struct sockaddr *)dst;
606 
607 	/*
608 	 * We can't defer the checksum of payload data if
609 	 * we're about to encrypt/authenticate it.
610 	 *
611 	 * XXX When we support crypto offloading functions of
612 	 * XXX network interfaces, we need to reconsider this,
613 	 * XXX since it's likely that they'll support checksumming,
614 	 * XXX as well.
615 	 */
616 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
617 		in_delayed_cksum(m);
618 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
619 	}
620 
621 	error = ipsec4_output(&state, sp, flags);
622 
623 	m = state.m;
624 	if (flags & IP_ROUTETOIF) {
625 		/*
626 		 * if we have tunnel mode SA, we may need to ignore
627 		 * IP_ROUTETOIF.
628 		 */
629 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
630 			flags &= ~IP_ROUTETOIF;
631 			ro = state.ro;
632 		}
633 	} else
634 		ro = state.ro;
635 	dst = (struct sockaddr_in *)state.dst;
636 	if (error) {
637 		/* mbuf is already reclaimed in ipsec4_output. */
638 		m0 = NULL;
639 		switch (error) {
640 		case EHOSTUNREACH:
641 		case ENETUNREACH:
642 		case EMSGSIZE:
643 		case ENOBUFS:
644 		case ENOMEM:
645 			break;
646 		default:
647 			printf("ip4_output (ipsec): error code %d\n", error);
648 			/*fall through*/
649 		case ENOENT:
650 			/* don't show these error codes to the user */
651 			error = 0;
652 			break;
653 		}
654 		goto bad;
655 	}
656 
657 	/* be sure to update variables that are affected by ipsec4_output() */
658 	ip = mtod(m, struct ip *);
659 	hlen = ip->ip_hl << 2;
660 	ip_len = ntohs(ip->ip_len);
661 
662 	if (ro->ro_rt == NULL) {
663 		if ((flags & IP_ROUTETOIF) == 0) {
664 			printf("ip_output: "
665 				"can't update route after IPsec processing\n");
666 			error = EHOSTUNREACH;	/*XXX*/
667 			goto bad;
668 		}
669 	} else {
670 		/* nobody uses ia beyond here */
671 		if (state.encap) {
672 			ifp = ro->ro_rt->rt_ifp;
673 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
674 				mtu = ifp->if_mtu;
675 		}
676 	}
677     }
678 skip_ipsec:
679 #endif /*IPSEC*/
680 #ifdef FAST_IPSEC
681 	/*
682 	 * Check the security policy (SP) for the packet and, if
683 	 * required, do IPsec-related processing.  There are two
684 	 * cases here; the first time a packet is sent through
685 	 * it will be untagged and handled by ipsec4_checkpolicy.
686 	 * If the packet is resubmitted to ip_output (e.g. after
687 	 * AH, ESP, etc. processing), there will be a tag to bypass
688 	 * the lookup and related policy checking.
689 	 */
690 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
691 	s = splsoftnet();
692 	if (mtag != NULL) {
693 		tdbi = (struct tdb_ident *)(mtag + 1);
694 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
695 		if (sp == NULL)
696 			error = -EINVAL;	/* force silent drop */
697 		m_tag_delete(m, mtag);
698 	} else {
699 		if (inp != NULL &&
700 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
701 			goto spd_done;
702 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
703 					&error, inp);
704 	}
705 	/*
706 	 * There are four return cases:
707 	 *    sp != NULL	 	    apply IPsec policy
708 	 *    sp == NULL, error == 0	    no IPsec handling needed
709 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
710 	 *    sp == NULL, error != 0	    discard packet, report error
711 	 */
712 	if (sp != NULL) {
713 		/* Loop detection, check if ipsec processing already done */
714 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
715 		for (mtag = m_tag_first(m); mtag != NULL;
716 		     mtag = m_tag_next(m, mtag)) {
717 #ifdef MTAG_ABI_COMPAT
718 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
719 				continue;
720 #endif
721 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
722 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
723 				continue;
724 			/*
725 			 * Check if policy has an SA associated with it.
726 			 * This can happen when an SP has yet to acquire
727 			 * an SA; e.g. on first reference.  If it occurs,
728 			 * then we let ipsec4_process_packet do its thing.
729 			 */
730 			if (sp->req->sav == NULL)
731 				break;
732 			tdbi = (struct tdb_ident *)(mtag + 1);
733 			if (tdbi->spi == sp->req->sav->spi &&
734 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
735 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
736 				 sizeof (union sockaddr_union)) == 0) {
737 				/*
738 				 * No IPsec processing is needed, free
739 				 * reference to SP.
740 				 *
741 				 * NB: null pointer to avoid free at
742 				 *     done: below.
743 				 */
744 				KEY_FREESP(&sp), sp = NULL;
745 				splx(s);
746 				goto spd_done;
747 			}
748 		}
749 
750 		/*
751 		 * Do delayed checksums now because we send before
752 		 * this is done in the normal processing path.
753 		 */
754 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
755 			in_delayed_cksum(m);
756 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
757 		}
758 
759 #ifdef __FreeBSD__
760 		ip->ip_len = htons(ip->ip_len);
761 		ip->ip_off = htons(ip->ip_off);
762 #endif
763 
764 		/* NB: callee frees mbuf */
765 		error = ipsec4_process_packet(m, sp->req, flags, 0);
766 		/*
767 		 * Preserve KAME behaviour: ENOENT can be returned
768 		 * when an SA acquire is in progress.  Don't propagate
769 		 * this to user-level; it confuses applications.
770 		 *
771 		 * XXX this will go away when the SADB is redone.
772 		 */
773 		if (error == ENOENT)
774 			error = 0;
775 		splx(s);
776 		goto done;
777 	} else {
778 		splx(s);
779 
780 		if (error != 0) {
781 			/*
782 			 * Hack: -EINVAL is used to signal that a packet
783 			 * should be silently discarded.  This is typically
784 			 * because we asked key management for an SA and
785 			 * it was delayed (e.g. kicked up to IKE).
786 			 */
787 			if (error == -EINVAL)
788 				error = 0;
789 			goto bad;
790 		} else {
791 			/* No IPsec processing for this packet. */
792 		}
793 #ifdef notyet
794 		/*
795 		 * If deferred crypto processing is needed, check that
796 		 * the interface supports it.
797 		 */
798 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
799 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
800 			/* notify IPsec to do its own crypto */
801 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
802 			error = EHOSTUNREACH;
803 			goto bad;
804 		}
805 #endif
806 	}
807 spd_done:
808 #endif /* FAST_IPSEC */
809 
810 #ifdef PFIL_HOOKS
811 	/*
812 	 * Run through list of hooks for output packets.
813 	 */
814 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
815 		goto done;
816 	if (m == NULL)
817 		goto done;
818 
819 	ip = mtod(m, struct ip *);
820 	hlen = ip->ip_hl << 2;
821 #endif /* PFIL_HOOKS */
822 
823 	m->m_pkthdr.csum_data |= hlen << 16;
824 
825 #if IFA_STATS
826 	/*
827 	 * search for the source address structure to
828 	 * maintain output statistics.
829 	 */
830 	INADDR_TO_IA(ip->ip_src, ia);
831 #endif
832 
833 	/* Maybe skip checksums on loopback interfaces. */
834 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
835 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
836 	}
837 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
838 	/*
839 	 * If small enough for mtu of path, or if using TCP segmentation
840 	 * offload, can just send directly.
841 	 */
842 	if (ip_len <= mtu ||
843 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
844 #if IFA_STATS
845 		if (ia)
846 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
847 #endif
848 		/*
849 		 * Always initialize the sum to 0!  Some HW assisted
850 		 * checksumming requires this.
851 		 */
852 		ip->ip_sum = 0;
853 
854 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
855 			/*
856 			 * Perform any checksums that the hardware can't do
857 			 * for us.
858 			 *
859 			 * XXX Does any hardware require the {th,uh}_sum
860 			 * XXX fields to be 0?
861 			 */
862 			if (sw_csum & M_CSUM_IPv4) {
863 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
864 				ip->ip_sum = in_cksum(m, hlen);
865 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
866 			}
867 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
868 				if (IN_NEED_CHECKSUM(ifp,
869 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
870 					in_delayed_cksum(m);
871 				}
872 				m->m_pkthdr.csum_flags &=
873 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
874 			}
875 		}
876 
877 #ifdef IPSEC
878 		/* clean ipsec history once it goes out of the node */
879 		ipsec_delaux(m);
880 #endif
881 
882 		if (__predict_true(
883 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
884 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
885 			error =
886 			    (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
887 		} else {
888 			error =
889 			    ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
890 		}
891 		goto done;
892 	}
893 
894 	/*
895 	 * We can't use HW checksumming if we're about to
896 	 * to fragment the packet.
897 	 *
898 	 * XXX Some hardware can do this.
899 	 */
900 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
901 		if (IN_NEED_CHECKSUM(ifp,
902 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
903 			in_delayed_cksum(m);
904 		}
905 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
906 	}
907 
908 	/*
909 	 * Too large for interface; fragment if possible.
910 	 * Must be able to put at least 8 bytes per fragment.
911 	 */
912 	if (ntohs(ip->ip_off) & IP_DF) {
913 		if (flags & IP_RETURNMTU)
914 			*mtu_p = mtu;
915 		error = EMSGSIZE;
916 		ipstat.ips_cantfrag++;
917 		goto bad;
918 	}
919 
920 	error = ip_fragment(m, ifp, mtu);
921 	if (error) {
922 		m = NULL;
923 		goto bad;
924 	}
925 
926 	for (; m; m = m0) {
927 		m0 = m->m_nextpkt;
928 		m->m_nextpkt = 0;
929 		if (error == 0) {
930 #if IFA_STATS
931 			if (ia)
932 				ia->ia_ifa.ifa_data.ifad_outbytes +=
933 				    ntohs(ip->ip_len);
934 #endif
935 #ifdef IPSEC
936 			/* clean ipsec history once it goes out of the node */
937 			ipsec_delaux(m);
938 
939 #ifdef IPSEC_NAT_T
940 			/*
941 			 * If we get there, the packet has not been handeld by
942 			 * IPSec whereas it should have. Now that it has been
943 			 * fragmented, re-inject it in ip_output so that IPsec
944 			 * processing can occur.
945 			 */
946 			if (natt_frag) {
947 				error = ip_output(m, opt,
948 				    ro, flags, imo, so, mtu_p);
949 			} else
950 #endif /* IPSEC_NAT_T */
951 #endif /* IPSEC */
952 			{
953 				KASSERT((m->m_pkthdr.csum_flags &
954 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
955 				error = (*ifp->if_output)(ifp, m, sintosa(dst),
956 				    ro->ro_rt);
957 			}
958 		} else
959 			m_freem(m);
960 	}
961 
962 	if (error == 0)
963 		ipstat.ips_fragmented++;
964 done:
965 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
966 		RTFREE(ro->ro_rt);
967 		ro->ro_rt = 0;
968 	}
969 
970 #ifdef IPSEC
971 	if (sp != NULL) {
972 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
973 			printf("DP ip_output call free SP:%p\n", sp));
974 		key_freesp(sp);
975 	}
976 #endif /* IPSEC */
977 #ifdef FAST_IPSEC
978 	if (sp != NULL)
979 		KEY_FREESP(&sp);
980 #endif /* FAST_IPSEC */
981 
982 	return (error);
983 bad:
984 	m_freem(m);
985 	goto done;
986 }
987 
988 int
989 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
990 {
991 	struct ip *ip, *mhip;
992 	struct mbuf *m0;
993 	int len, hlen, off;
994 	int mhlen, firstlen;
995 	struct mbuf **mnext;
996 	int sw_csum = m->m_pkthdr.csum_flags;
997 	int fragments = 0;
998 	int s;
999 	int error = 0;
1000 
1001 	ip = mtod(m, struct ip *);
1002 	hlen = ip->ip_hl << 2;
1003 	if (ifp != NULL)
1004 		sw_csum &= ~ifp->if_csum_flags_tx;
1005 
1006 	len = (mtu - hlen) &~ 7;
1007 	if (len < 8) {
1008 		m_freem(m);
1009 		return (EMSGSIZE);
1010 	}
1011 
1012 	firstlen = len;
1013 	mnext = &m->m_nextpkt;
1014 
1015 	/*
1016 	 * Loop through length of segment after first fragment,
1017 	 * make new header and copy data of each part and link onto chain.
1018 	 */
1019 	m0 = m;
1020 	mhlen = sizeof (struct ip);
1021 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1022 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1023 		if (m == 0) {
1024 			error = ENOBUFS;
1025 			ipstat.ips_odropped++;
1026 			goto sendorfree;
1027 		}
1028 		MCLAIM(m, m0->m_owner);
1029 		*mnext = m;
1030 		mnext = &m->m_nextpkt;
1031 		m->m_data += max_linkhdr;
1032 		mhip = mtod(m, struct ip *);
1033 		*mhip = *ip;
1034 		/* we must inherit MCAST and BCAST flags */
1035 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1036 		if (hlen > sizeof (struct ip)) {
1037 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1038 			mhip->ip_hl = mhlen >> 2;
1039 		}
1040 		m->m_len = mhlen;
1041 		mhip->ip_off = ((off - hlen) >> 3) +
1042 		    (ntohs(ip->ip_off) & ~IP_MF);
1043 		if (ip->ip_off & htons(IP_MF))
1044 			mhip->ip_off |= IP_MF;
1045 		if (off + len >= ntohs(ip->ip_len))
1046 			len = ntohs(ip->ip_len) - off;
1047 		else
1048 			mhip->ip_off |= IP_MF;
1049 		HTONS(mhip->ip_off);
1050 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
1051 		m->m_next = m_copy(m0, off, len);
1052 		if (m->m_next == 0) {
1053 			error = ENOBUFS;	/* ??? */
1054 			ipstat.ips_odropped++;
1055 			goto sendorfree;
1056 		}
1057 		m->m_pkthdr.len = mhlen + len;
1058 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1059 		mhip->ip_sum = 0;
1060 		if (sw_csum & M_CSUM_IPv4) {
1061 			mhip->ip_sum = in_cksum(m, mhlen);
1062 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1063 		} else {
1064 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1065 			m->m_pkthdr.csum_data |= mhlen << 16;
1066 		}
1067 		ipstat.ips_ofragments++;
1068 		fragments++;
1069 	}
1070 	/*
1071 	 * Update first fragment by trimming what's been copied out
1072 	 * and updating header, then send each fragment (in order).
1073 	 */
1074 	m = m0;
1075 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1076 	m->m_pkthdr.len = hlen + firstlen;
1077 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1078 	ip->ip_off |= htons(IP_MF);
1079 	ip->ip_sum = 0;
1080 	if (sw_csum & M_CSUM_IPv4) {
1081 		ip->ip_sum = in_cksum(m, hlen);
1082 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1083 	} else {
1084 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1085 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1086 			sizeof(struct ip));
1087 	}
1088 sendorfree:
1089 	/*
1090 	 * If there is no room for all the fragments, don't queue
1091 	 * any of them.
1092 	 */
1093 	if (ifp != NULL) {
1094 		s = splnet();
1095 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1096 		    error == 0) {
1097 			error = ENOBUFS;
1098 			ipstat.ips_odropped++;
1099 			IFQ_INC_DROPS(&ifp->if_snd);
1100 		}
1101 		splx(s);
1102 	}
1103 	if (error) {
1104 		for (m = m0; m; m = m0) {
1105 			m0 = m->m_nextpkt;
1106 			m->m_nextpkt = NULL;
1107 			m_freem(m);
1108 		}
1109 	}
1110 	return (error);
1111 }
1112 
1113 /*
1114  * Process a delayed payload checksum calculation.
1115  */
1116 void
1117 in_delayed_cksum(struct mbuf *m)
1118 {
1119 	struct ip *ip;
1120 	u_int16_t csum, offset;
1121 
1122 	ip = mtod(m, struct ip *);
1123 	offset = ip->ip_hl << 2;
1124 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1125 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1126 		csum = 0xffff;
1127 
1128 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1129 
1130 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
1131 		/* This happen when ip options were inserted
1132 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1133 		    m->m_len, offset, ip->ip_p);
1134 		 */
1135 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1136 	} else
1137 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1138 }
1139 
1140 /*
1141  * Determine the maximum length of the options to be inserted;
1142  * we would far rather allocate too much space rather than too little.
1143  */
1144 
1145 u_int
1146 ip_optlen(struct inpcb *inp)
1147 {
1148 	struct mbuf *m = inp->inp_options;
1149 
1150 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1151 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1152 	else
1153 		return 0;
1154 }
1155 
1156 
1157 /*
1158  * Insert IP options into preformed packet.
1159  * Adjust IP destination as required for IP source routing,
1160  * as indicated by a non-zero in_addr at the start of the options.
1161  */
1162 static struct mbuf *
1163 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1164 {
1165 	struct ipoption *p = mtod(opt, struct ipoption *);
1166 	struct mbuf *n;
1167 	struct ip *ip = mtod(m, struct ip *);
1168 	unsigned optlen;
1169 
1170 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1171 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1172 		return (m);		/* XXX should fail */
1173 	if (!in_nullhost(p->ipopt_dst))
1174 		ip->ip_dst = p->ipopt_dst;
1175 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1176 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1177 		if (n == 0)
1178 			return (m);
1179 		MCLAIM(n, m->m_owner);
1180 		M_COPY_PKTHDR(n, m);
1181 		m_tag_delete_chain(m, NULL);
1182 		m->m_flags &= ~M_PKTHDR;
1183 		m->m_len -= sizeof(struct ip);
1184 		m->m_data += sizeof(struct ip);
1185 		n->m_next = m;
1186 		m = n;
1187 		m->m_len = optlen + sizeof(struct ip);
1188 		m->m_data += max_linkhdr;
1189 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1190 	} else {
1191 		m->m_data -= optlen;
1192 		m->m_len += optlen;
1193 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1194 	}
1195 	m->m_pkthdr.len += optlen;
1196 	ip = mtod(m, struct ip *);
1197 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1198 	*phlen = sizeof(struct ip) + optlen;
1199 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1200 	return (m);
1201 }
1202 
1203 /*
1204  * Copy options from ip to jp,
1205  * omitting those not copied during fragmentation.
1206  */
1207 int
1208 ip_optcopy(struct ip *ip, struct ip *jp)
1209 {
1210 	u_char *cp, *dp;
1211 	int opt, optlen, cnt;
1212 
1213 	cp = (u_char *)(ip + 1);
1214 	dp = (u_char *)(jp + 1);
1215 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1216 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1217 		opt = cp[0];
1218 		if (opt == IPOPT_EOL)
1219 			break;
1220 		if (opt == IPOPT_NOP) {
1221 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1222 			*dp++ = IPOPT_NOP;
1223 			optlen = 1;
1224 			continue;
1225 		}
1226 #ifdef DIAGNOSTIC
1227 		if (cnt < IPOPT_OLEN + sizeof(*cp))
1228 			panic("malformed IPv4 option passed to ip_optcopy");
1229 #endif
1230 		optlen = cp[IPOPT_OLEN];
1231 #ifdef DIAGNOSTIC
1232 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1233 			panic("malformed IPv4 option passed to ip_optcopy");
1234 #endif
1235 		/* bogus lengths should have been caught by ip_dooptions */
1236 		if (optlen > cnt)
1237 			optlen = cnt;
1238 		if (IPOPT_COPIED(opt)) {
1239 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1240 			dp += optlen;
1241 		}
1242 	}
1243 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1244 		*dp++ = IPOPT_EOL;
1245 	return (optlen);
1246 }
1247 
1248 /*
1249  * IP socket option processing.
1250  */
1251 int
1252 ip_ctloutput(int op, struct socket *so, int level, int optname,
1253     struct mbuf **mp)
1254 {
1255 	struct inpcb *inp = sotoinpcb(so);
1256 	struct mbuf *m = *mp;
1257 	int optval = 0;
1258 	int error = 0;
1259 #if defined(IPSEC) || defined(FAST_IPSEC)
1260 	struct proc *p = curproc;	/*XXX*/
1261 #endif
1262 
1263 	if (level != IPPROTO_IP) {
1264 		error = EINVAL;
1265 		if (op == PRCO_SETOPT && *mp)
1266 			(void) m_free(*mp);
1267 	} else switch (op) {
1268 
1269 	case PRCO_SETOPT:
1270 		switch (optname) {
1271 		case IP_OPTIONS:
1272 #ifdef notyet
1273 		case IP_RETOPTS:
1274 			return (ip_pcbopts(optname, &inp->inp_options, m));
1275 #else
1276 			return (ip_pcbopts(&inp->inp_options, m));
1277 #endif
1278 
1279 		case IP_TOS:
1280 		case IP_TTL:
1281 		case IP_RECVOPTS:
1282 		case IP_RECVRETOPTS:
1283 		case IP_RECVDSTADDR:
1284 		case IP_RECVIF:
1285 			if (m == NULL || m->m_len != sizeof(int))
1286 				error = EINVAL;
1287 			else {
1288 				optval = *mtod(m, int *);
1289 				switch (optname) {
1290 
1291 				case IP_TOS:
1292 					inp->inp_ip.ip_tos = optval;
1293 					break;
1294 
1295 				case IP_TTL:
1296 					inp->inp_ip.ip_ttl = optval;
1297 					break;
1298 #define	OPTSET(bit) \
1299 	if (optval) \
1300 		inp->inp_flags |= bit; \
1301 	else \
1302 		inp->inp_flags &= ~bit;
1303 
1304 				case IP_RECVOPTS:
1305 					OPTSET(INP_RECVOPTS);
1306 					break;
1307 
1308 				case IP_RECVRETOPTS:
1309 					OPTSET(INP_RECVRETOPTS);
1310 					break;
1311 
1312 				case IP_RECVDSTADDR:
1313 					OPTSET(INP_RECVDSTADDR);
1314 					break;
1315 
1316 				case IP_RECVIF:
1317 					OPTSET(INP_RECVIF);
1318 					break;
1319 				}
1320 			}
1321 			break;
1322 #undef OPTSET
1323 
1324 		case IP_MULTICAST_IF:
1325 		case IP_MULTICAST_TTL:
1326 		case IP_MULTICAST_LOOP:
1327 		case IP_ADD_MEMBERSHIP:
1328 		case IP_DROP_MEMBERSHIP:
1329 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
1330 			break;
1331 
1332 		case IP_PORTRANGE:
1333 			if (m == 0 || m->m_len != sizeof(int))
1334 				error = EINVAL;
1335 			else {
1336 				optval = *mtod(m, int *);
1337 
1338 				switch (optval) {
1339 
1340 				case IP_PORTRANGE_DEFAULT:
1341 				case IP_PORTRANGE_HIGH:
1342 					inp->inp_flags &= ~(INP_LOWPORT);
1343 					break;
1344 
1345 				case IP_PORTRANGE_LOW:
1346 					inp->inp_flags |= INP_LOWPORT;
1347 					break;
1348 
1349 				default:
1350 					error = EINVAL;
1351 					break;
1352 				}
1353 			}
1354 			break;
1355 
1356 #if defined(IPSEC) || defined(FAST_IPSEC)
1357 		case IP_IPSEC_POLICY:
1358 		{
1359 			caddr_t req = NULL;
1360 			size_t len = 0;
1361 			int priv = 0;
1362 
1363 #ifdef __NetBSD__
1364 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1365 				priv = 0;
1366 			else
1367 				priv = 1;
1368 #else
1369 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
1370 #endif
1371 			if (m) {
1372 				req = mtod(m, caddr_t);
1373 				len = m->m_len;
1374 			}
1375 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1376 			break;
1377 		    }
1378 #endif /*IPSEC*/
1379 
1380 		default:
1381 			error = ENOPROTOOPT;
1382 			break;
1383 		}
1384 		if (m)
1385 			(void)m_free(m);
1386 		break;
1387 
1388 	case PRCO_GETOPT:
1389 		switch (optname) {
1390 		case IP_OPTIONS:
1391 		case IP_RETOPTS:
1392 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1393 			MCLAIM(m, so->so_mowner);
1394 			if (inp->inp_options) {
1395 				m->m_len = inp->inp_options->m_len;
1396 				bcopy(mtod(inp->inp_options, caddr_t),
1397 				    mtod(m, caddr_t), (unsigned)m->m_len);
1398 			} else
1399 				m->m_len = 0;
1400 			break;
1401 
1402 		case IP_TOS:
1403 		case IP_TTL:
1404 		case IP_RECVOPTS:
1405 		case IP_RECVRETOPTS:
1406 		case IP_RECVDSTADDR:
1407 		case IP_RECVIF:
1408 		case IP_ERRORMTU:
1409 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1410 			MCLAIM(m, so->so_mowner);
1411 			m->m_len = sizeof(int);
1412 			switch (optname) {
1413 
1414 			case IP_TOS:
1415 				optval = inp->inp_ip.ip_tos;
1416 				break;
1417 
1418 			case IP_TTL:
1419 				optval = inp->inp_ip.ip_ttl;
1420 				break;
1421 
1422 			case IP_ERRORMTU:
1423 				optval = inp->inp_errormtu;
1424 				break;
1425 
1426 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1427 
1428 			case IP_RECVOPTS:
1429 				optval = OPTBIT(INP_RECVOPTS);
1430 				break;
1431 
1432 			case IP_RECVRETOPTS:
1433 				optval = OPTBIT(INP_RECVRETOPTS);
1434 				break;
1435 
1436 			case IP_RECVDSTADDR:
1437 				optval = OPTBIT(INP_RECVDSTADDR);
1438 				break;
1439 
1440 			case IP_RECVIF:
1441 				optval = OPTBIT(INP_RECVIF);
1442 				break;
1443 			}
1444 			*mtod(m, int *) = optval;
1445 			break;
1446 
1447 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
1448 		/* XXX: code broken */
1449 		case IP_IPSEC_POLICY:
1450 		{
1451 			caddr_t req = NULL;
1452 			size_t len = 0;
1453 
1454 			if (m) {
1455 				req = mtod(m, caddr_t);
1456 				len = m->m_len;
1457 			}
1458 			error = ipsec4_get_policy(inp, req, len, mp);
1459 			break;
1460 		}
1461 #endif /*IPSEC*/
1462 
1463 		case IP_MULTICAST_IF:
1464 		case IP_MULTICAST_TTL:
1465 		case IP_MULTICAST_LOOP:
1466 		case IP_ADD_MEMBERSHIP:
1467 		case IP_DROP_MEMBERSHIP:
1468 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
1469 			if (*mp)
1470 				MCLAIM(*mp, so->so_mowner);
1471 			break;
1472 
1473 		case IP_PORTRANGE:
1474 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1475 			MCLAIM(m, so->so_mowner);
1476 			m->m_len = sizeof(int);
1477 
1478 			if (inp->inp_flags & INP_LOWPORT)
1479 				optval = IP_PORTRANGE_LOW;
1480 			else
1481 				optval = IP_PORTRANGE_DEFAULT;
1482 
1483 			*mtod(m, int *) = optval;
1484 			break;
1485 
1486 		default:
1487 			error = ENOPROTOOPT;
1488 			break;
1489 		}
1490 		break;
1491 	}
1492 	return (error);
1493 }
1494 
1495 /*
1496  * Set up IP options in pcb for insertion in output packets.
1497  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1498  * with destination address if source routed.
1499  */
1500 int
1501 #ifdef notyet
1502 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1503 #else
1504 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1505 #endif
1506 {
1507 	int cnt, optlen;
1508 	u_char *cp;
1509 	u_char opt;
1510 
1511 	/* turn off any old options */
1512 	if (*pcbopt)
1513 		(void)m_free(*pcbopt);
1514 	*pcbopt = 0;
1515 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1516 		/*
1517 		 * Only turning off any previous options.
1518 		 */
1519 		if (m)
1520 			(void)m_free(m);
1521 		return (0);
1522 	}
1523 
1524 #ifndef	__vax__
1525 	if (m->m_len % sizeof(int32_t))
1526 		goto bad;
1527 #endif
1528 	/*
1529 	 * IP first-hop destination address will be stored before
1530 	 * actual options; move other options back
1531 	 * and clear it when none present.
1532 	 */
1533 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1534 		goto bad;
1535 	cnt = m->m_len;
1536 	m->m_len += sizeof(struct in_addr);
1537 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1538 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1539 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1540 
1541 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1542 		opt = cp[IPOPT_OPTVAL];
1543 		if (opt == IPOPT_EOL)
1544 			break;
1545 		if (opt == IPOPT_NOP)
1546 			optlen = 1;
1547 		else {
1548 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1549 				goto bad;
1550 			optlen = cp[IPOPT_OLEN];
1551 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1552 				goto bad;
1553 		}
1554 		switch (opt) {
1555 
1556 		default:
1557 			break;
1558 
1559 		case IPOPT_LSRR:
1560 		case IPOPT_SSRR:
1561 			/*
1562 			 * user process specifies route as:
1563 			 *	->A->B->C->D
1564 			 * D must be our final destination (but we can't
1565 			 * check that since we may not have connected yet).
1566 			 * A is first hop destination, which doesn't appear in
1567 			 * actual IP option, but is stored before the options.
1568 			 */
1569 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1570 				goto bad;
1571 			m->m_len -= sizeof(struct in_addr);
1572 			cnt -= sizeof(struct in_addr);
1573 			optlen -= sizeof(struct in_addr);
1574 			cp[IPOPT_OLEN] = optlen;
1575 			/*
1576 			 * Move first hop before start of options.
1577 			 */
1578 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1579 			    sizeof(struct in_addr));
1580 			/*
1581 			 * Then copy rest of options back
1582 			 * to close up the deleted entry.
1583 			 */
1584 			(void)memmove(&cp[IPOPT_OFFSET+1],
1585 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1586 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1587 			break;
1588 		}
1589 	}
1590 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1591 		goto bad;
1592 	*pcbopt = m;
1593 	return (0);
1594 
1595 bad:
1596 	(void)m_free(m);
1597 	return (EINVAL);
1598 }
1599 
1600 /*
1601  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1602  */
1603 static struct ifnet *
1604 ip_multicast_if(struct in_addr *a, int *ifindexp)
1605 {
1606 	int ifindex;
1607 	struct ifnet *ifp = NULL;
1608 	struct in_ifaddr *ia;
1609 
1610 	if (ifindexp)
1611 		*ifindexp = 0;
1612 	if (ntohl(a->s_addr) >> 24 == 0) {
1613 		ifindex = ntohl(a->s_addr) & 0xffffff;
1614 		if (ifindex < 0 || if_indexlim <= ifindex)
1615 			return NULL;
1616 		ifp = ifindex2ifnet[ifindex];
1617 		if (!ifp)
1618 			return NULL;
1619 		if (ifindexp)
1620 			*ifindexp = ifindex;
1621 	} else {
1622 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1623 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1624 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1625 				ifp = ia->ia_ifp;
1626 				break;
1627 			}
1628 		}
1629 	}
1630 	return ifp;
1631 }
1632 
1633 /*
1634  * Set the IP multicast options in response to user setsockopt().
1635  */
1636 int
1637 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1638 {
1639 	int error = 0;
1640 	u_char loop;
1641 	int i;
1642 	struct in_addr addr;
1643 	struct ip_mreq *mreq;
1644 	struct ifnet *ifp;
1645 	struct ip_moptions *imo = *imop;
1646 	struct route ro;
1647 	struct sockaddr_in *dst;
1648 	int ifindex;
1649 
1650 	if (imo == NULL) {
1651 		/*
1652 		 * No multicast option buffer attached to the pcb;
1653 		 * allocate one and initialize to default values.
1654 		 */
1655 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1656 		    M_WAITOK);
1657 
1658 		if (imo == NULL)
1659 			return (ENOBUFS);
1660 		*imop = imo;
1661 		imo->imo_multicast_ifp = NULL;
1662 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1663 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1664 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1665 		imo->imo_num_memberships = 0;
1666 	}
1667 
1668 	switch (optname) {
1669 
1670 	case IP_MULTICAST_IF:
1671 		/*
1672 		 * Select the interface for outgoing multicast packets.
1673 		 */
1674 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1675 			error = EINVAL;
1676 			break;
1677 		}
1678 		addr = *(mtod(m, struct in_addr *));
1679 		/*
1680 		 * INADDR_ANY is used to remove a previous selection.
1681 		 * When no interface is selected, a default one is
1682 		 * chosen every time a multicast packet is sent.
1683 		 */
1684 		if (in_nullhost(addr)) {
1685 			imo->imo_multicast_ifp = NULL;
1686 			break;
1687 		}
1688 		/*
1689 		 * The selected interface is identified by its local
1690 		 * IP address.  Find the interface and confirm that
1691 		 * it supports multicasting.
1692 		 */
1693 		ifp = ip_multicast_if(&addr, &ifindex);
1694 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1695 			error = EADDRNOTAVAIL;
1696 			break;
1697 		}
1698 		imo->imo_multicast_ifp = ifp;
1699 		if (ifindex)
1700 			imo->imo_multicast_addr = addr;
1701 		else
1702 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1703 		break;
1704 
1705 	case IP_MULTICAST_TTL:
1706 		/*
1707 		 * Set the IP time-to-live for outgoing multicast packets.
1708 		 */
1709 		if (m == NULL || m->m_len != 1) {
1710 			error = EINVAL;
1711 			break;
1712 		}
1713 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
1714 		break;
1715 
1716 	case IP_MULTICAST_LOOP:
1717 		/*
1718 		 * Set the loopback flag for outgoing multicast packets.
1719 		 * Must be zero or one.
1720 		 */
1721 		if (m == NULL || m->m_len != 1 ||
1722 		   (loop = *(mtod(m, u_char *))) > 1) {
1723 			error = EINVAL;
1724 			break;
1725 		}
1726 		imo->imo_multicast_loop = loop;
1727 		break;
1728 
1729 	case IP_ADD_MEMBERSHIP:
1730 		/*
1731 		 * Add a multicast group membership.
1732 		 * Group must be a valid IP multicast address.
1733 		 */
1734 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1735 			error = EINVAL;
1736 			break;
1737 		}
1738 		mreq = mtod(m, struct ip_mreq *);
1739 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1740 			error = EINVAL;
1741 			break;
1742 		}
1743 		/*
1744 		 * If no interface address was provided, use the interface of
1745 		 * the route to the given multicast address.
1746 		 */
1747 		if (in_nullhost(mreq->imr_interface)) {
1748 			bzero((caddr_t)&ro, sizeof(ro));
1749 			ro.ro_rt = NULL;
1750 			dst = satosin(&ro.ro_dst);
1751 			dst->sin_len = sizeof(*dst);
1752 			dst->sin_family = AF_INET;
1753 			dst->sin_addr = mreq->imr_multiaddr;
1754 			rtalloc(&ro);
1755 			if (ro.ro_rt == NULL) {
1756 				error = EADDRNOTAVAIL;
1757 				break;
1758 			}
1759 			ifp = ro.ro_rt->rt_ifp;
1760 			rtfree(ro.ro_rt);
1761 		} else {
1762 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1763 		}
1764 		/*
1765 		 * See if we found an interface, and confirm that it
1766 		 * supports multicast.
1767 		 */
1768 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1769 			error = EADDRNOTAVAIL;
1770 			break;
1771 		}
1772 		/*
1773 		 * See if the membership already exists or if all the
1774 		 * membership slots are full.
1775 		 */
1776 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1777 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1778 			    in_hosteq(imo->imo_membership[i]->inm_addr,
1779 				      mreq->imr_multiaddr))
1780 				break;
1781 		}
1782 		if (i < imo->imo_num_memberships) {
1783 			error = EADDRINUSE;
1784 			break;
1785 		}
1786 		if (i == IP_MAX_MEMBERSHIPS) {
1787 			error = ETOOMANYREFS;
1788 			break;
1789 		}
1790 		/*
1791 		 * Everything looks good; add a new record to the multicast
1792 		 * address list for the given interface.
1793 		 */
1794 		if ((imo->imo_membership[i] =
1795 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1796 			error = ENOBUFS;
1797 			break;
1798 		}
1799 		++imo->imo_num_memberships;
1800 		break;
1801 
1802 	case IP_DROP_MEMBERSHIP:
1803 		/*
1804 		 * Drop a multicast group membership.
1805 		 * Group must be a valid IP multicast address.
1806 		 */
1807 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1808 			error = EINVAL;
1809 			break;
1810 		}
1811 		mreq = mtod(m, struct ip_mreq *);
1812 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1813 			error = EINVAL;
1814 			break;
1815 		}
1816 		/*
1817 		 * If an interface address was specified, get a pointer
1818 		 * to its ifnet structure.
1819 		 */
1820 		if (in_nullhost(mreq->imr_interface))
1821 			ifp = NULL;
1822 		else {
1823 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1824 			if (ifp == NULL) {
1825 				error = EADDRNOTAVAIL;
1826 				break;
1827 			}
1828 		}
1829 		/*
1830 		 * Find the membership in the membership array.
1831 		 */
1832 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1833 			if ((ifp == NULL ||
1834 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1835 			     in_hosteq(imo->imo_membership[i]->inm_addr,
1836 				       mreq->imr_multiaddr))
1837 				break;
1838 		}
1839 		if (i == imo->imo_num_memberships) {
1840 			error = EADDRNOTAVAIL;
1841 			break;
1842 		}
1843 		/*
1844 		 * Give up the multicast address record to which the
1845 		 * membership points.
1846 		 */
1847 		in_delmulti(imo->imo_membership[i]);
1848 		/*
1849 		 * Remove the gap in the membership array.
1850 		 */
1851 		for (++i; i < imo->imo_num_memberships; ++i)
1852 			imo->imo_membership[i-1] = imo->imo_membership[i];
1853 		--imo->imo_num_memberships;
1854 		break;
1855 
1856 	default:
1857 		error = EOPNOTSUPP;
1858 		break;
1859 	}
1860 
1861 	/*
1862 	 * If all options have default values, no need to keep the mbuf.
1863 	 */
1864 	if (imo->imo_multicast_ifp == NULL &&
1865 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1866 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1867 	    imo->imo_num_memberships == 0) {
1868 		free(*imop, M_IPMOPTS);
1869 		*imop = NULL;
1870 	}
1871 
1872 	return (error);
1873 }
1874 
1875 /*
1876  * Return the IP multicast options in response to user getsockopt().
1877  */
1878 int
1879 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1880 {
1881 	u_char *ttl;
1882 	u_char *loop;
1883 	struct in_addr *addr;
1884 	struct in_ifaddr *ia;
1885 
1886 	*mp = m_get(M_WAIT, MT_SOOPTS);
1887 
1888 	switch (optname) {
1889 
1890 	case IP_MULTICAST_IF:
1891 		addr = mtod(*mp, struct in_addr *);
1892 		(*mp)->m_len = sizeof(struct in_addr);
1893 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1894 			*addr = zeroin_addr;
1895 		else if (imo->imo_multicast_addr.s_addr) {
1896 			/* return the value user has set */
1897 			*addr = imo->imo_multicast_addr;
1898 		} else {
1899 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1900 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1901 		}
1902 		return (0);
1903 
1904 	case IP_MULTICAST_TTL:
1905 		ttl = mtod(*mp, u_char *);
1906 		(*mp)->m_len = 1;
1907 		*ttl = imo ? imo->imo_multicast_ttl
1908 			   : IP_DEFAULT_MULTICAST_TTL;
1909 		return (0);
1910 
1911 	case IP_MULTICAST_LOOP:
1912 		loop = mtod(*mp, u_char *);
1913 		(*mp)->m_len = 1;
1914 		*loop = imo ? imo->imo_multicast_loop
1915 			    : IP_DEFAULT_MULTICAST_LOOP;
1916 		return (0);
1917 
1918 	default:
1919 		return (EOPNOTSUPP);
1920 	}
1921 }
1922 
1923 /*
1924  * Discard the IP multicast options.
1925  */
1926 void
1927 ip_freemoptions(struct ip_moptions *imo)
1928 {
1929 	int i;
1930 
1931 	if (imo != NULL) {
1932 		for (i = 0; i < imo->imo_num_memberships; ++i)
1933 			in_delmulti(imo->imo_membership[i]);
1934 		free(imo, M_IPMOPTS);
1935 	}
1936 }
1937 
1938 /*
1939  * Routine called from ip_output() to loop back a copy of an IP multicast
1940  * packet to the input queue of a specified interface.  Note that this
1941  * calls the output routine of the loopback "driver", but with an interface
1942  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1943  */
1944 static void
1945 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1946 {
1947 	struct ip *ip;
1948 	struct mbuf *copym;
1949 
1950 	copym = m_copy(m, 0, M_COPYALL);
1951 	if (copym != NULL
1952 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1953 		copym = m_pullup(copym, sizeof(struct ip));
1954 	if (copym != NULL) {
1955 		/*
1956 		 * We don't bother to fragment if the IP length is greater
1957 		 * than the interface's MTU.  Can this possibly matter?
1958 		 */
1959 		ip = mtod(copym, struct ip *);
1960 
1961 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1962 			in_delayed_cksum(copym);
1963 			copym->m_pkthdr.csum_flags &=
1964 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1965 		}
1966 
1967 		ip->ip_sum = 0;
1968 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1969 		(void) looutput(ifp, copym, sintosa(dst), NULL);
1970 	}
1971 }
1972