xref: /netbsd-src/sys/netinet/ip_output.c (revision 9ddb6ab554e70fb9bbd90c3d96b812bc57755a14)
1 /*	$NetBSD: ip_output.c,v 1.213 2012/02/15 16:11:23 drochner Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.213 2012/02/15 16:11:23 drochner Exp $");
95 
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef FAST_IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114 
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118 
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127 
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131 
132 #ifdef KAME_IPSEC
133 #include <netinet6/ipsec.h>
134 #include <netinet6/ipsec_private.h>
135 #include <netkey/key.h>
136 #include <netkey/key_debug.h>
137 #endif /*KAME_IPSEC*/
138 
139 #ifdef FAST_IPSEC
140 #include <netipsec/ipsec.h>
141 #include <netipsec/key.h>
142 #include <netipsec/xform.h>
143 #endif	/* FAST_IPSEC*/
144 
145 #ifdef IPSEC_NAT_T
146 #include <netinet/udp.h>
147 #endif
148 
149 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
150 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
151 static void ip_mloopback(struct ifnet *, struct mbuf *,
152     const struct sockaddr_in *);
153 
154 #ifdef PFIL_HOOKS
155 extern struct pfil_head inet_pfil_hook;			/* XXX */
156 #endif
157 
158 int	ip_do_loopback_cksum = 0;
159 
160 /*
161  * IP output.  The packet in mbuf chain m contains a skeletal IP
162  * header (with len, off, ttl, proto, tos, src, dst).
163  * The mbuf chain containing the packet will be freed.
164  * The mbuf opt, if present, will not be freed.
165  */
166 int
167 ip_output(struct mbuf *m0, ...)
168 {
169 	struct rtentry *rt;
170 	struct ip *ip;
171 	struct ifnet *ifp;
172 	struct mbuf *m = m0;
173 	int hlen = sizeof (struct ip);
174 	int len, error = 0;
175 	struct route iproute;
176 	const struct sockaddr_in *dst;
177 	struct in_ifaddr *ia;
178 	struct ifaddr *xifa;
179 	struct mbuf *opt;
180 	struct route *ro;
181 	int flags, sw_csum;
182 	int *mtu_p;
183 	u_long mtu;
184 	struct ip_moptions *imo;
185 	struct socket *so;
186 	va_list ap;
187 #ifdef IPSEC_NAT_T
188 	int natt_frag = 0;
189 #endif
190 #ifdef KAME_IPSEC
191 	struct secpolicy *sp = NULL;
192 #endif /*KAME_IPSEC*/
193 #ifdef FAST_IPSEC
194 	struct inpcb *inp;
195 	struct secpolicy *sp = NULL;
196 	int s;
197 #endif
198 	u_int16_t ip_len;
199 	union {
200 		struct sockaddr		dst;
201 		struct sockaddr_in	dst4;
202 	} u;
203 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
204 					 * to the nexthop
205 					 */
206 
207 	len = 0;
208 	va_start(ap, m0);
209 	opt = va_arg(ap, struct mbuf *);
210 	ro = va_arg(ap, struct route *);
211 	flags = va_arg(ap, int);
212 	imo = va_arg(ap, struct ip_moptions *);
213 	so = va_arg(ap, struct socket *);
214 	if (flags & IP_RETURNMTU)
215 		mtu_p = va_arg(ap, int *);
216 	else
217 		mtu_p = NULL;
218 	va_end(ap);
219 
220 	MCLAIM(m, &ip_tx_mowner);
221 #ifdef FAST_IPSEC
222 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
223 		inp = (struct inpcb *)so->so_pcb;
224 	else
225 		inp = NULL;
226 #endif /* FAST_IPSEC */
227 
228 #ifdef	DIAGNOSTIC
229 	if ((m->m_flags & M_PKTHDR) == 0)
230 		panic("ip_output: no HDR");
231 
232 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
233 		panic("ip_output: IPv6 checksum offload flags: %d",
234 		    m->m_pkthdr.csum_flags);
235 	}
236 
237 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
238 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
239 		panic("ip_output: conflicting checksum offload flags: %d",
240 		    m->m_pkthdr.csum_flags);
241 	}
242 #endif
243 	if (opt) {
244 		m = ip_insertoptions(m, opt, &len);
245 		if (len >= sizeof(struct ip))
246 			hlen = len;
247 	}
248 	ip = mtod(m, struct ip *);
249 	/*
250 	 * Fill in IP header.
251 	 */
252 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
253 		ip->ip_v = IPVERSION;
254 		ip->ip_off = htons(0);
255 		/* ip->ip_id filled in after we find out source ia */
256 		ip->ip_hl = hlen >> 2;
257 		IP_STATINC(IP_STAT_LOCALOUT);
258 	} else {
259 		hlen = ip->ip_hl << 2;
260 	}
261 	/*
262 	 * Route packet.
263 	 */
264 	memset(&iproute, 0, sizeof(iproute));
265 	if (ro == NULL)
266 		ro = &iproute;
267 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
268 	dst = satocsin(rtcache_getdst(ro));
269 	/*
270 	 * If there is a cached route,
271 	 * check that it is to the same destination
272 	 * and is still up.  If not, free it and try again.
273 	 * The address family should also be checked in case of sharing the
274 	 * cache with IPv6.
275 	 */
276 	if (dst == NULL)
277 		;
278 	else if (dst->sin_family != AF_INET ||
279 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
280 		rtcache_free(ro);
281 
282 	if ((rt = rtcache_validate(ro)) == NULL &&
283 	    (rt = rtcache_update(ro, 1)) == NULL) {
284 		dst = &u.dst4;
285 		rtcache_setdst(ro, &u.dst);
286 	}
287 	/*
288 	 * If routing to interface only,
289 	 * short circuit routing lookup.
290 	 */
291 	if (flags & IP_ROUTETOIF) {
292 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
293 			IP_STATINC(IP_STAT_NOROUTE);
294 			error = ENETUNREACH;
295 			goto bad;
296 		}
297 		ifp = ia->ia_ifp;
298 		mtu = ifp->if_mtu;
299 		ip->ip_ttl = 1;
300 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
301 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
302 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
303 		ifp = imo->imo_multicast_ifp;
304 		mtu = ifp->if_mtu;
305 		IFP_TO_IA(ifp, ia);
306 	} else {
307 		if (rt == NULL)
308 			rt = rtcache_init(ro);
309 		if (rt == NULL) {
310 			IP_STATINC(IP_STAT_NOROUTE);
311 			error = EHOSTUNREACH;
312 			goto bad;
313 		}
314 		ia = ifatoia(rt->rt_ifa);
315 		ifp = rt->rt_ifp;
316 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
317 			mtu = ifp->if_mtu;
318 		rt->rt_use++;
319 		if (rt->rt_flags & RTF_GATEWAY)
320 			dst = satosin(rt->rt_gateway);
321 	}
322 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
323 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
324 		struct in_multi *inm;
325 
326 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
327 			M_BCAST : M_MCAST;
328 		/*
329 		 * See if the caller provided any multicast options
330 		 */
331 		if (imo != NULL)
332 			ip->ip_ttl = imo->imo_multicast_ttl;
333 		else
334 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
335 
336 		/*
337 		 * if we don't know the outgoing ifp yet, we can't generate
338 		 * output
339 		 */
340 		if (!ifp) {
341 			IP_STATINC(IP_STAT_NOROUTE);
342 			error = ENETUNREACH;
343 			goto bad;
344 		}
345 
346 		/*
347 		 * If the packet is multicast or broadcast, confirm that
348 		 * the outgoing interface can transmit it.
349 		 */
350 		if (((m->m_flags & M_MCAST) &&
351 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
352 		    ((m->m_flags & M_BCAST) &&
353 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
354 			IP_STATINC(IP_STAT_NOROUTE);
355 			error = ENETUNREACH;
356 			goto bad;
357 		}
358 		/*
359 		 * If source address not specified yet, use an address
360 		 * of outgoing interface.
361 		 */
362 		if (in_nullhost(ip->ip_src)) {
363 			struct in_ifaddr *xia;
364 
365 			IFP_TO_IA(ifp, xia);
366 			if (!xia) {
367 				error = EADDRNOTAVAIL;
368 				goto bad;
369 			}
370 			xifa = &xia->ia_ifa;
371 			if (xifa->ifa_getifa != NULL) {
372 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
373 			}
374 			ip->ip_src = xia->ia_addr.sin_addr;
375 		}
376 
377 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
378 		if (inm != NULL &&
379 		   (imo == NULL || imo->imo_multicast_loop)) {
380 			/*
381 			 * If we belong to the destination multicast group
382 			 * on the outgoing interface, and the caller did not
383 			 * forbid loopback, loop back a copy.
384 			 */
385 			ip_mloopback(ifp, m, &u.dst4);
386 		}
387 #ifdef MROUTING
388 		else {
389 			/*
390 			 * If we are acting as a multicast router, perform
391 			 * multicast forwarding as if the packet had just
392 			 * arrived on the interface to which we are about
393 			 * to send.  The multicast forwarding function
394 			 * recursively calls this function, using the
395 			 * IP_FORWARDING flag to prevent infinite recursion.
396 			 *
397 			 * Multicasts that are looped back by ip_mloopback(),
398 			 * above, will be forwarded by the ip_input() routine,
399 			 * if necessary.
400 			 */
401 			extern struct socket *ip_mrouter;
402 
403 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
404 				if (ip_mforward(m, ifp) != 0) {
405 					m_freem(m);
406 					goto done;
407 				}
408 			}
409 		}
410 #endif
411 		/*
412 		 * Multicasts with a time-to-live of zero may be looped-
413 		 * back, above, but must not be transmitted on a network.
414 		 * Also, multicasts addressed to the loopback interface
415 		 * are not sent -- the above call to ip_mloopback() will
416 		 * loop back a copy if this host actually belongs to the
417 		 * destination group on the loopback interface.
418 		 */
419 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
420 			m_freem(m);
421 			goto done;
422 		}
423 
424 		goto sendit;
425 	}
426 	/*
427 	 * If source address not specified yet, use address
428 	 * of outgoing interface.
429 	 */
430 	if (in_nullhost(ip->ip_src)) {
431 		xifa = &ia->ia_ifa;
432 		if (xifa->ifa_getifa != NULL)
433 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
434 		ip->ip_src = ia->ia_addr.sin_addr;
435 	}
436 
437 	/*
438 	 * packets with Class-D address as source are not valid per
439 	 * RFC 1112
440 	 */
441 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
442 		IP_STATINC(IP_STAT_ODROPPED);
443 		error = EADDRNOTAVAIL;
444 		goto bad;
445 	}
446 
447 	/*
448 	 * Look for broadcast address and
449 	 * and verify user is allowed to send
450 	 * such a packet.
451 	 */
452 	if (in_broadcast(dst->sin_addr, ifp)) {
453 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
454 			error = EADDRNOTAVAIL;
455 			goto bad;
456 		}
457 		if ((flags & IP_ALLOWBROADCAST) == 0) {
458 			error = EACCES;
459 			goto bad;
460 		}
461 		/* don't allow broadcast messages to be fragmented */
462 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
463 			error = EMSGSIZE;
464 			goto bad;
465 		}
466 		m->m_flags |= M_BCAST;
467 	} else
468 		m->m_flags &= ~M_BCAST;
469 
470 sendit:
471 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
472 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
473 			ip->ip_id = 0;
474 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
475 			ip->ip_id = ip_newid(ia);
476 		} else {
477 
478 			/*
479 			 * TSO capable interfaces (typically?) increment
480 			 * ip_id for each segment.
481 			 * "allocate" enough ids here to increase the chance
482 			 * for them to be unique.
483 			 *
484 			 * note that the following calculation is not
485 			 * needed to be precise.  wasting some ip_id is fine.
486 			 */
487 
488 			unsigned int segsz = m->m_pkthdr.segsz;
489 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
490 			unsigned int num = howmany(datasz, segsz);
491 
492 			ip->ip_id = ip_newid_range(ia, num);
493 		}
494 	}
495 	/*
496 	 * If we're doing Path MTU Discovery, we need to set DF unless
497 	 * the route's MTU is locked.
498 	 */
499 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
500 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
501 		ip->ip_off |= htons(IP_DF);
502 
503 	/* Remember the current ip_len */
504 	ip_len = ntohs(ip->ip_len);
505 
506 #ifdef KAME_IPSEC
507 	/* get SP for this packet */
508 	if (so == NULL)
509 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
510 		    flags, &error);
511 	else {
512 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
513 					 IPSEC_DIR_OUTBOUND))
514 			goto skip_ipsec;
515 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
516 	}
517 
518 	if (sp == NULL) {
519 		IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
520 		goto bad;
521 	}
522 
523 	error = 0;
524 
525 	/* check policy */
526 	switch (sp->policy) {
527 	case IPSEC_POLICY_DISCARD:
528 		/*
529 		 * This packet is just discarded.
530 		 */
531 		IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
532 		goto bad;
533 
534 	case IPSEC_POLICY_BYPASS:
535 	case IPSEC_POLICY_NONE:
536 		/* no need to do IPsec. */
537 		goto skip_ipsec;
538 
539 	case IPSEC_POLICY_IPSEC:
540 		if (sp->req == NULL) {
541 			/* XXX should be panic ? */
542 			printf("ip_output: No IPsec request specified.\n");
543 			error = EINVAL;
544 			goto bad;
545 		}
546 		break;
547 
548 	case IPSEC_POLICY_ENTRUST:
549 	default:
550 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
551 	}
552 
553 #ifdef IPSEC_NAT_T
554 	/*
555 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
556 	 * we'll do it on each fragmented packet.
557 	 */
558 	if (sp->req->sav &&
559 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
560 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
561 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
562 			natt_frag = 1;
563 			mtu = sp->req->sav->esp_frag;
564 			goto skip_ipsec;
565 		}
566 	}
567 #endif /* IPSEC_NAT_T */
568 
569 	/*
570 	 * ipsec4_output() expects ip_len and ip_off in network
571 	 * order.  They have been set to network order above.
572 	 */
573 
574     {
575 	struct ipsec_output_state state;
576 	memset(&state, 0, sizeof(state));
577 	state.m = m;
578 	if (flags & IP_ROUTETOIF) {
579 		state.ro = &iproute;
580 		memset(&iproute, 0, sizeof(iproute));
581 	} else
582 		state.ro = ro;
583 	state.dst = sintocsa(dst);
584 
585 	/*
586 	 * We can't defer the checksum of payload data if
587 	 * we're about to encrypt/authenticate it.
588 	 *
589 	 * XXX When we support crypto offloading functions of
590 	 * XXX network interfaces, we need to reconsider this,
591 	 * XXX since it's likely that they'll support checksumming,
592 	 * XXX as well.
593 	 */
594 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
595 		in_delayed_cksum(m);
596 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
597 	}
598 
599 	error = ipsec4_output(&state, sp, flags);
600 
601 	m = state.m;
602 	if (flags & IP_ROUTETOIF) {
603 		/*
604 		 * if we have tunnel mode SA, we may need to ignore
605 		 * IP_ROUTETOIF.
606 		 */
607 		if (state.ro != &iproute ||
608 		    rtcache_validate(state.ro) != NULL) {
609 			flags &= ~IP_ROUTETOIF;
610 			ro = state.ro;
611 		}
612 	} else
613 		ro = state.ro;
614 	dst = satocsin(state.dst);
615 	if (error) {
616 		/* mbuf is already reclaimed in ipsec4_output. */
617 		m0 = NULL;
618 		switch (error) {
619 		case EHOSTUNREACH:
620 		case ENETUNREACH:
621 		case EMSGSIZE:
622 		case ENOBUFS:
623 		case ENOMEM:
624 			break;
625 		default:
626 			printf("ip4_output (ipsec): error code %d\n", error);
627 			/*fall through*/
628 		case ENOENT:
629 			/* don't show these error codes to the user */
630 			error = 0;
631 			break;
632 		}
633 		goto bad;
634 	}
635 
636 	/* be sure to update variables that are affected by ipsec4_output() */
637 	ip = mtod(m, struct ip *);
638 	hlen = ip->ip_hl << 2;
639 	ip_len = ntohs(ip->ip_len);
640 
641 	if ((rt = rtcache_validate(ro)) == NULL) {
642 		if ((flags & IP_ROUTETOIF) == 0) {
643 			printf("ip_output: "
644 				"can't update route after IPsec processing\n");
645 			error = EHOSTUNREACH;	/*XXX*/
646 			goto bad;
647 		}
648 	} else {
649 		/* nobody uses ia beyond here */
650 		if (state.encap) {
651 			ifp = rt->rt_ifp;
652 			if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
653 				mtu = ifp->if_mtu;
654 		}
655 	}
656     }
657 skip_ipsec:
658 #endif /*KAME_IPSEC*/
659 #ifdef FAST_IPSEC
660 	/*
661 	 * Check the security policy (SP) for the packet and, if
662 	 * required, do IPsec-related processing.  There are two
663 	 * cases here; the first time a packet is sent through
664 	 * it will be untagged and handled by ipsec4_checkpolicy.
665 	 * If the packet is resubmitted to ip_output (e.g. after
666 	 * AH, ESP, etc. processing), there will be a tag to bypass
667 	 * the lookup and related policy checking.
668 	 */
669 	if (!ipsec_outdone(m)) {
670 		s = splsoftnet();
671 		if (inp != NULL &&
672 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
673 			splx(s);
674 			goto spd_done;
675 		}
676 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
677 				&error, inp);
678 		/*
679 		 * There are four return cases:
680 		 *    sp != NULL	 	    apply IPsec policy
681 		 *    sp == NULL, error == 0	    no IPsec handling needed
682 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
683 		 *    sp == NULL, error != 0	    discard packet, report error
684 		 */
685 		if (sp != NULL) {
686 #ifdef IPSEC_NAT_T
687 			/*
688 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
689 			 * we'll do it on each fragmented packet.
690 			 */
691 			if (sp->req->sav &&
692 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
693 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
694 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
695 					natt_frag = 1;
696 					mtu = sp->req->sav->esp_frag;
697 					splx(s);
698 					goto spd_done;
699 				}
700 			}
701 #endif /* IPSEC_NAT_T */
702 
703 			/*
704 			 * Do delayed checksums now because we send before
705 			 * this is done in the normal processing path.
706 			 */
707 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
708 				in_delayed_cksum(m);
709 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
710 			}
711 
712 #ifdef __FreeBSD__
713 			ip->ip_len = htons(ip->ip_len);
714 			ip->ip_off = htons(ip->ip_off);
715 #endif
716 
717 			/* NB: callee frees mbuf */
718 			error = ipsec4_process_packet(m, sp->req, flags, 0);
719 			/*
720 			 * Preserve KAME behaviour: ENOENT can be returned
721 			 * when an SA acquire is in progress.  Don't propagate
722 			 * this to user-level; it confuses applications.
723 			 *
724 			 * XXX this will go away when the SADB is redone.
725 			 */
726 			if (error == ENOENT)
727 				error = 0;
728 			splx(s);
729 			goto done;
730 		} else {
731 			splx(s);
732 
733 			if (error != 0) {
734 				/*
735 				 * Hack: -EINVAL is used to signal that a packet
736 				 * should be silently discarded.  This is typically
737 				 * because we asked key management for an SA and
738 				 * it was delayed (e.g. kicked up to IKE).
739 				 */
740 				if (error == -EINVAL)
741 					error = 0;
742 				goto bad;
743 			} else {
744 				/* No IPsec processing for this packet. */
745 			}
746 		}
747 	}
748 spd_done:
749 #endif /* FAST_IPSEC */
750 
751 #ifdef PFIL_HOOKS
752 	/*
753 	 * Run through list of hooks for output packets.
754 	 */
755 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
756 		goto done;
757 	if (m == NULL)
758 		goto done;
759 
760 	ip = mtod(m, struct ip *);
761 	hlen = ip->ip_hl << 2;
762 	ip_len = ntohs(ip->ip_len);
763 #endif /* PFIL_HOOKS */
764 
765 	m->m_pkthdr.csum_data |= hlen << 16;
766 
767 #if IFA_STATS
768 	/*
769 	 * search for the source address structure to
770 	 * maintain output statistics.
771 	 */
772 	INADDR_TO_IA(ip->ip_src, ia);
773 #endif
774 
775 	/* Maybe skip checksums on loopback interfaces. */
776 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
777 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
778 	}
779 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
780 	/*
781 	 * If small enough for mtu of path, or if using TCP segmentation
782 	 * offload, can just send directly.
783 	 */
784 	if (ip_len <= mtu ||
785 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
786 #if IFA_STATS
787 		if (ia)
788 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
789 #endif
790 		/*
791 		 * Always initialize the sum to 0!  Some HW assisted
792 		 * checksumming requires this.
793 		 */
794 		ip->ip_sum = 0;
795 
796 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
797 			/*
798 			 * Perform any checksums that the hardware can't do
799 			 * for us.
800 			 *
801 			 * XXX Does any hardware require the {th,uh}_sum
802 			 * XXX fields to be 0?
803 			 */
804 			if (sw_csum & M_CSUM_IPv4) {
805 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
806 				ip->ip_sum = in_cksum(m, hlen);
807 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
808 			}
809 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
810 				if (IN_NEED_CHECKSUM(ifp,
811 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
812 					in_delayed_cksum(m);
813 				}
814 				m->m_pkthdr.csum_flags &=
815 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
816 			}
817 		}
818 
819 #ifdef KAME_IPSEC
820 		/* clean ipsec history once it goes out of the node */
821 		ipsec_delaux(m);
822 #endif
823 
824 		if (__predict_true(
825 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
826 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
827 			KERNEL_LOCK(1, NULL);
828 			error =
829 			    (*ifp->if_output)(ifp, m,
830 				(m->m_flags & M_MCAST) ?
831 				    sintocsa(rdst) : sintocsa(dst),
832 				rt);
833 			KERNEL_UNLOCK_ONE(NULL);
834 		} else {
835 			error =
836 			    ip_tso_output(ifp, m,
837 				(m->m_flags & M_MCAST) ?
838 				    sintocsa(rdst) : sintocsa(dst),
839 				rt);
840 		}
841 		goto done;
842 	}
843 
844 	/*
845 	 * We can't use HW checksumming if we're about to
846 	 * to fragment the packet.
847 	 *
848 	 * XXX Some hardware can do this.
849 	 */
850 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
851 		if (IN_NEED_CHECKSUM(ifp,
852 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
853 			in_delayed_cksum(m);
854 		}
855 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
856 	}
857 
858 	/*
859 	 * Too large for interface; fragment if possible.
860 	 * Must be able to put at least 8 bytes per fragment.
861 	 */
862 	if (ntohs(ip->ip_off) & IP_DF) {
863 		if (flags & IP_RETURNMTU)
864 			*mtu_p = mtu;
865 		error = EMSGSIZE;
866 		IP_STATINC(IP_STAT_CANTFRAG);
867 		goto bad;
868 	}
869 
870 	error = ip_fragment(m, ifp, mtu);
871 	if (error) {
872 		m = NULL;
873 		goto bad;
874 	}
875 
876 	for (; m; m = m0) {
877 		m0 = m->m_nextpkt;
878 		m->m_nextpkt = 0;
879 		if (error == 0) {
880 #if IFA_STATS
881 			if (ia)
882 				ia->ia_ifa.ifa_data.ifad_outbytes +=
883 				    ntohs(ip->ip_len);
884 #endif
885 #ifdef KAME_IPSEC
886 			/* clean ipsec history once it goes out of the node */
887 			ipsec_delaux(m);
888 #endif /* KAME_IPSEC */
889 
890 #ifdef IPSEC_NAT_T
891 			/*
892 			 * If we get there, the packet has not been handeld by
893 			 * IPSec whereas it should have. Now that it has been
894 			 * fragmented, re-inject it in ip_output so that IPsec
895 			 * processing can occur.
896 			 */
897 			if (natt_frag) {
898 				error = ip_output(m, opt,
899 				    ro, flags | IP_RAWOUTPUT | IP_NOIPNEWID, imo, so, mtu_p);
900 			} else
901 #endif /* IPSEC_NAT_T */
902 			{
903 				KASSERT((m->m_pkthdr.csum_flags &
904 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
905 				KERNEL_LOCK(1, NULL);
906 				error = (*ifp->if_output)(ifp, m,
907 				    (m->m_flags & M_MCAST) ?
908 					sintocsa(rdst) : sintocsa(dst),
909 				    rt);
910 				KERNEL_UNLOCK_ONE(NULL);
911 			}
912 		} else
913 			m_freem(m);
914 	}
915 
916 	if (error == 0)
917 		IP_STATINC(IP_STAT_FRAGMENTED);
918 done:
919 	rtcache_free(&iproute);
920 
921 #ifdef KAME_IPSEC
922 	if (sp != NULL) {
923 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
924 			printf("DP ip_output call free SP:%p\n", sp));
925 		key_freesp(sp);
926 	}
927 #endif /* KAME_IPSEC */
928 #ifdef FAST_IPSEC
929 	if (sp != NULL)
930 		KEY_FREESP(&sp);
931 #endif /* FAST_IPSEC */
932 
933 	return (error);
934 bad:
935 	m_freem(m);
936 	goto done;
937 }
938 
939 int
940 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
941 {
942 	struct ip *ip, *mhip;
943 	struct mbuf *m0;
944 	int len, hlen, off;
945 	int mhlen, firstlen;
946 	struct mbuf **mnext;
947 	int sw_csum = m->m_pkthdr.csum_flags;
948 	int fragments = 0;
949 	int s;
950 	int error = 0;
951 
952 	ip = mtod(m, struct ip *);
953 	hlen = ip->ip_hl << 2;
954 	if (ifp != NULL)
955 		sw_csum &= ~ifp->if_csum_flags_tx;
956 
957 	len = (mtu - hlen) &~ 7;
958 	if (len < 8) {
959 		m_freem(m);
960 		return (EMSGSIZE);
961 	}
962 
963 	firstlen = len;
964 	mnext = &m->m_nextpkt;
965 
966 	/*
967 	 * Loop through length of segment after first fragment,
968 	 * make new header and copy data of each part and link onto chain.
969 	 */
970 	m0 = m;
971 	mhlen = sizeof (struct ip);
972 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
973 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
974 		if (m == 0) {
975 			error = ENOBUFS;
976 			IP_STATINC(IP_STAT_ODROPPED);
977 			goto sendorfree;
978 		}
979 		MCLAIM(m, m0->m_owner);
980 		*mnext = m;
981 		mnext = &m->m_nextpkt;
982 		m->m_data += max_linkhdr;
983 		mhip = mtod(m, struct ip *);
984 		*mhip = *ip;
985 		/* we must inherit MCAST and BCAST flags */
986 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
987 		if (hlen > sizeof (struct ip)) {
988 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
989 			mhip->ip_hl = mhlen >> 2;
990 		}
991 		m->m_len = mhlen;
992 		mhip->ip_off = ((off - hlen) >> 3) +
993 		    (ntohs(ip->ip_off) & ~IP_MF);
994 		if (ip->ip_off & htons(IP_MF))
995 			mhip->ip_off |= IP_MF;
996 		if (off + len >= ntohs(ip->ip_len))
997 			len = ntohs(ip->ip_len) - off;
998 		else
999 			mhip->ip_off |= IP_MF;
1000 		HTONS(mhip->ip_off);
1001 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
1002 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1003 		if (m->m_next == 0) {
1004 			error = ENOBUFS;	/* ??? */
1005 			IP_STATINC(IP_STAT_ODROPPED);
1006 			goto sendorfree;
1007 		}
1008 		m->m_pkthdr.len = mhlen + len;
1009 		m->m_pkthdr.rcvif = NULL;
1010 		mhip->ip_sum = 0;
1011 		KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1012 		if (sw_csum & M_CSUM_IPv4) {
1013 			mhip->ip_sum = in_cksum(m, mhlen);
1014 		} else {
1015 			/*
1016 			 * checksum is hw-offloaded or not necessary.
1017 			 */
1018 			m->m_pkthdr.csum_flags |=
1019 			    m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
1020 			m->m_pkthdr.csum_data |= mhlen << 16;
1021 			KASSERT(!(ifp != NULL &&
1022 			    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
1023 			    || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
1024 		}
1025 		IP_STATINC(IP_STAT_OFRAGMENTS);
1026 		fragments++;
1027 	}
1028 	/*
1029 	 * Update first fragment by trimming what's been copied out
1030 	 * and updating header, then send each fragment (in order).
1031 	 */
1032 	m = m0;
1033 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1034 	m->m_pkthdr.len = hlen + firstlen;
1035 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1036 	ip->ip_off |= htons(IP_MF);
1037 	ip->ip_sum = 0;
1038 	if (sw_csum & M_CSUM_IPv4) {
1039 		ip->ip_sum = in_cksum(m, hlen);
1040 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1041 	} else {
1042 		/*
1043 		 * checksum is hw-offloaded or not necessary.
1044 		 */
1045 		KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
1046 		   || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
1047 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1048 			sizeof(struct ip));
1049 	}
1050 sendorfree:
1051 	/*
1052 	 * If there is no room for all the fragments, don't queue
1053 	 * any of them.
1054 	 */
1055 	if (ifp != NULL) {
1056 		s = splnet();
1057 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1058 		    error == 0) {
1059 			error = ENOBUFS;
1060 			IP_STATINC(IP_STAT_ODROPPED);
1061 			IFQ_INC_DROPS(&ifp->if_snd);
1062 		}
1063 		splx(s);
1064 	}
1065 	if (error) {
1066 		for (m = m0; m; m = m0) {
1067 			m0 = m->m_nextpkt;
1068 			m->m_nextpkt = NULL;
1069 			m_freem(m);
1070 		}
1071 	}
1072 	return (error);
1073 }
1074 
1075 /*
1076  * Process a delayed payload checksum calculation.
1077  */
1078 void
1079 in_delayed_cksum(struct mbuf *m)
1080 {
1081 	struct ip *ip;
1082 	u_int16_t csum, offset;
1083 
1084 	ip = mtod(m, struct ip *);
1085 	offset = ip->ip_hl << 2;
1086 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1087 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1088 		csum = 0xffff;
1089 
1090 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1091 
1092 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
1093 		/* This happen when ip options were inserted
1094 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1095 		    m->m_len, offset, ip->ip_p);
1096 		 */
1097 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
1098 	} else
1099 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
1100 }
1101 
1102 /*
1103  * Determine the maximum length of the options to be inserted;
1104  * we would far rather allocate too much space rather than too little.
1105  */
1106 
1107 u_int
1108 ip_optlen(struct inpcb *inp)
1109 {
1110 	struct mbuf *m = inp->inp_options;
1111 
1112 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1113 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1114 	else
1115 		return 0;
1116 }
1117 
1118 
1119 /*
1120  * Insert IP options into preformed packet.
1121  * Adjust IP destination as required for IP source routing,
1122  * as indicated by a non-zero in_addr at the start of the options.
1123  */
1124 static struct mbuf *
1125 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1126 {
1127 	struct ipoption *p = mtod(opt, struct ipoption *);
1128 	struct mbuf *n;
1129 	struct ip *ip = mtod(m, struct ip *);
1130 	unsigned optlen;
1131 
1132 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1133 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1134 		return (m);		/* XXX should fail */
1135 	if (!in_nullhost(p->ipopt_dst))
1136 		ip->ip_dst = p->ipopt_dst;
1137 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1138 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1139 		if (n == 0)
1140 			return (m);
1141 		MCLAIM(n, m->m_owner);
1142 		M_MOVE_PKTHDR(n, m);
1143 		m->m_len -= sizeof(struct ip);
1144 		m->m_data += sizeof(struct ip);
1145 		n->m_next = m;
1146 		m = n;
1147 		m->m_len = optlen + sizeof(struct ip);
1148 		m->m_data += max_linkhdr;
1149 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1150 	} else {
1151 		m->m_data -= optlen;
1152 		m->m_len += optlen;
1153 		memmove(mtod(m, void *), ip, sizeof(struct ip));
1154 	}
1155 	m->m_pkthdr.len += optlen;
1156 	ip = mtod(m, struct ip *);
1157 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1158 	*phlen = sizeof(struct ip) + optlen;
1159 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1160 	return (m);
1161 }
1162 
1163 /*
1164  * Copy options from ip to jp,
1165  * omitting those not copied during fragmentation.
1166  */
1167 int
1168 ip_optcopy(struct ip *ip, struct ip *jp)
1169 {
1170 	u_char *cp, *dp;
1171 	int opt, optlen, cnt;
1172 
1173 	cp = (u_char *)(ip + 1);
1174 	dp = (u_char *)(jp + 1);
1175 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1176 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1177 		opt = cp[0];
1178 		if (opt == IPOPT_EOL)
1179 			break;
1180 		if (opt == IPOPT_NOP) {
1181 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1182 			*dp++ = IPOPT_NOP;
1183 			optlen = 1;
1184 			continue;
1185 		}
1186 #ifdef DIAGNOSTIC
1187 		if (cnt < IPOPT_OLEN + sizeof(*cp))
1188 			panic("malformed IPv4 option passed to ip_optcopy");
1189 #endif
1190 		optlen = cp[IPOPT_OLEN];
1191 #ifdef DIAGNOSTIC
1192 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1193 			panic("malformed IPv4 option passed to ip_optcopy");
1194 #endif
1195 		/* bogus lengths should have been caught by ip_dooptions */
1196 		if (optlen > cnt)
1197 			optlen = cnt;
1198 		if (IPOPT_COPIED(opt)) {
1199 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1200 			dp += optlen;
1201 		}
1202 	}
1203 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1204 		*dp++ = IPOPT_EOL;
1205 	return (optlen);
1206 }
1207 
1208 /*
1209  * IP socket option processing.
1210  */
1211 int
1212 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1213 {
1214 	struct inpcb *inp = sotoinpcb(so);
1215 	int optval = 0;
1216 	int error = 0;
1217 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1218 	struct lwp *l = curlwp;	/*XXX*/
1219 #endif
1220 
1221 	if (sopt->sopt_level != IPPROTO_IP) {
1222 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1223 			return 0;
1224 		return ENOPROTOOPT;
1225 	}
1226 
1227 	switch (op) {
1228 	case PRCO_SETOPT:
1229 		switch (sopt->sopt_name) {
1230 		case IP_OPTIONS:
1231 #ifdef notyet
1232 		case IP_RETOPTS:
1233 #endif
1234 			error = ip_pcbopts(&inp->inp_options, sopt);
1235 			break;
1236 
1237 		case IP_TOS:
1238 		case IP_TTL:
1239 		case IP_MINTTL:
1240 		case IP_RECVOPTS:
1241 		case IP_RECVRETOPTS:
1242 		case IP_RECVDSTADDR:
1243 		case IP_RECVIF:
1244 		case IP_RECVTTL:
1245 			error = sockopt_getint(sopt, &optval);
1246 			if (error)
1247 				break;
1248 
1249 			switch (sopt->sopt_name) {
1250 			case IP_TOS:
1251 				inp->inp_ip.ip_tos = optval;
1252 				break;
1253 
1254 			case IP_TTL:
1255 				inp->inp_ip.ip_ttl = optval;
1256 				break;
1257 
1258 			case IP_MINTTL:
1259 				if (optval > 0 && optval <= MAXTTL)
1260 					inp->inp_ip_minttl = optval;
1261 				else
1262 					error = EINVAL;
1263 				break;
1264 #define	OPTSET(bit) \
1265 	if (optval) \
1266 		inp->inp_flags |= bit; \
1267 	else \
1268 		inp->inp_flags &= ~bit;
1269 
1270 			case IP_RECVOPTS:
1271 				OPTSET(INP_RECVOPTS);
1272 				break;
1273 
1274 			case IP_RECVRETOPTS:
1275 				OPTSET(INP_RECVRETOPTS);
1276 				break;
1277 
1278 			case IP_RECVDSTADDR:
1279 				OPTSET(INP_RECVDSTADDR);
1280 				break;
1281 
1282 			case IP_RECVIF:
1283 				OPTSET(INP_RECVIF);
1284 				break;
1285 
1286 			case IP_RECVTTL:
1287 				OPTSET(INP_RECVTTL);
1288 				break;
1289 			}
1290 		break;
1291 #undef OPTSET
1292 
1293 		case IP_MULTICAST_IF:
1294 		case IP_MULTICAST_TTL:
1295 		case IP_MULTICAST_LOOP:
1296 		case IP_ADD_MEMBERSHIP:
1297 		case IP_DROP_MEMBERSHIP:
1298 			error = ip_setmoptions(&inp->inp_moptions, sopt);
1299 			break;
1300 
1301 		case IP_PORTRANGE:
1302 			error = sockopt_getint(sopt, &optval);
1303 			if (error)
1304 				break;
1305 
1306 			/* INP_LOCK(inp); */
1307 			switch (optval) {
1308 			case IP_PORTRANGE_DEFAULT:
1309 			case IP_PORTRANGE_HIGH:
1310 				inp->inp_flags &= ~(INP_LOWPORT);
1311 				break;
1312 
1313 			case IP_PORTRANGE_LOW:
1314 				inp->inp_flags |= INP_LOWPORT;
1315 				break;
1316 
1317 			default:
1318 				error = EINVAL;
1319 				break;
1320 			}
1321 			/* INP_UNLOCK(inp); */
1322 			break;
1323 
1324 #if defined(KAME_IPSEC) || defined(FAST_IPSEC)
1325 		case IP_IPSEC_POLICY:
1326 		    {
1327 			error = ipsec4_set_policy(inp, sopt->sopt_name,
1328 			    sopt->sopt_data, sopt->sopt_size, l->l_cred);
1329 			break;
1330 		    }
1331 #endif /*IPSEC*/
1332 
1333 		default:
1334 			error = ENOPROTOOPT;
1335 			break;
1336 		}
1337 		break;
1338 
1339 	case PRCO_GETOPT:
1340 		switch (sopt->sopt_name) {
1341 		case IP_OPTIONS:
1342 		case IP_RETOPTS:
1343 			if (inp->inp_options) {
1344 				struct mbuf *m;
1345 
1346 				m = m_copym(inp->inp_options, 0, M_COPYALL,
1347 				    M_DONTWAIT);
1348 				if (m == NULL) {
1349 					error = ENOBUFS;
1350 					break;
1351 				}
1352 
1353 				error = sockopt_setmbuf(sopt, m);
1354 			}
1355 			break;
1356 
1357 		case IP_TOS:
1358 		case IP_TTL:
1359 		case IP_MINTTL:
1360 		case IP_RECVOPTS:
1361 		case IP_RECVRETOPTS:
1362 		case IP_RECVDSTADDR:
1363 		case IP_RECVIF:
1364 		case IP_RECVTTL:
1365 		case IP_ERRORMTU:
1366 			switch (sopt->sopt_name) {
1367 			case IP_TOS:
1368 				optval = inp->inp_ip.ip_tos;
1369 				break;
1370 
1371 			case IP_TTL:
1372 				optval = inp->inp_ip.ip_ttl;
1373 				break;
1374 
1375 			case IP_MINTTL:
1376 				optval = inp->inp_ip_minttl;
1377 				break;
1378 
1379 			case IP_ERRORMTU:
1380 				optval = inp->inp_errormtu;
1381 				break;
1382 
1383 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1384 
1385 			case IP_RECVOPTS:
1386 				optval = OPTBIT(INP_RECVOPTS);
1387 				break;
1388 
1389 			case IP_RECVRETOPTS:
1390 				optval = OPTBIT(INP_RECVRETOPTS);
1391 				break;
1392 
1393 			case IP_RECVDSTADDR:
1394 				optval = OPTBIT(INP_RECVDSTADDR);
1395 				break;
1396 
1397 			case IP_RECVIF:
1398 				optval = OPTBIT(INP_RECVIF);
1399 				break;
1400 
1401 			case IP_RECVTTL:
1402 				optval = OPTBIT(INP_RECVTTL);
1403 				break;
1404 			}
1405 			error = sockopt_setint(sopt, optval);
1406 			break;
1407 
1408 #if 0	/* defined(KAME_IPSEC) || defined(FAST_IPSEC) */
1409 		case IP_IPSEC_POLICY:
1410 		{
1411 			struct mbuf *m = NULL;
1412 
1413 			/* XXX this will return EINVAL as sopt is empty */
1414 			error = ipsec4_get_policy(inp, sopt->sopt_data,
1415 			    sopt->sopt_size, &m);
1416 			if (error == 0)
1417 				error = sockopt_setmbuf(sopt, m);
1418 			break;
1419 		}
1420 #endif /*IPSEC*/
1421 
1422 		case IP_MULTICAST_IF:
1423 		case IP_MULTICAST_TTL:
1424 		case IP_MULTICAST_LOOP:
1425 		case IP_ADD_MEMBERSHIP:
1426 		case IP_DROP_MEMBERSHIP:
1427 			error = ip_getmoptions(inp->inp_moptions, sopt);
1428 			break;
1429 
1430 		case IP_PORTRANGE:
1431 			if (inp->inp_flags & INP_LOWPORT)
1432 				optval = IP_PORTRANGE_LOW;
1433 			else
1434 				optval = IP_PORTRANGE_DEFAULT;
1435 
1436 			error = sockopt_setint(sopt, optval);
1437 
1438 			break;
1439 
1440 		default:
1441 			error = ENOPROTOOPT;
1442 			break;
1443 		}
1444 		break;
1445 	}
1446 	return (error);
1447 }
1448 
1449 /*
1450  * Set up IP options in pcb for insertion in output packets.
1451  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1452  * with destination address if source routed.
1453  */
1454 int
1455 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1456 {
1457 	struct mbuf *m;
1458 	const u_char *cp;
1459 	u_char *dp;
1460 	int cnt;
1461 	uint8_t optval, olen, offset;
1462 
1463 	/* turn off any old options */
1464 	if (*pcbopt)
1465 		(void)m_free(*pcbopt);
1466 	*pcbopt = NULL;
1467 
1468 	cp = sopt->sopt_data;
1469 	cnt = sopt->sopt_size;
1470 
1471 	if (cnt == 0)
1472 		return (0);	/* Only turning off any previous options */
1473 
1474 #ifndef	__vax__
1475 	if (cnt % sizeof(int32_t))
1476 		return (EINVAL);
1477 #endif
1478 
1479 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1480 	if (m == NULL)
1481 		return (ENOBUFS);
1482 
1483 	dp = mtod(m, u_char *);
1484 	memset(dp, 0, sizeof(struct in_addr));
1485 	dp += sizeof(struct in_addr);
1486 	m->m_len = sizeof(struct in_addr);
1487 
1488 	/*
1489 	 * IP option list according to RFC791. Each option is of the form
1490 	 *
1491 	 *	[optval] [olen] [(olen - 2) data bytes]
1492 	 *
1493 	 * we validate the list and copy options to an mbuf for prepending
1494 	 * to data packets. The IP first-hop destination address will be
1495 	 * stored before actual options and is zero if unset.
1496 	 */
1497 	while (cnt > 0) {
1498 		optval = cp[IPOPT_OPTVAL];
1499 
1500 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1501 			olen = 1;
1502 		} else {
1503 			if (cnt < IPOPT_OLEN + 1)
1504 				goto bad;
1505 
1506 			olen = cp[IPOPT_OLEN];
1507 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
1508 				goto bad;
1509 		}
1510 
1511 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1512 			/*
1513 			 * user process specifies route as:
1514 			 *	->A->B->C->D
1515 			 * D must be our final destination (but we can't
1516 			 * check that since we may not have connected yet).
1517 			 * A is first hop destination, which doesn't appear in
1518 			 * actual IP option, but is stored before the options.
1519 			 */
1520 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1521 				goto bad;
1522 
1523 			offset = cp[IPOPT_OFFSET];
1524 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1525 			    sizeof(struct in_addr));
1526 
1527 			cp += sizeof(struct in_addr);
1528 			cnt -= sizeof(struct in_addr);
1529 			olen -= sizeof(struct in_addr);
1530 
1531 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1532 				goto bad;
1533 
1534 			memcpy(dp, cp, olen);
1535 			dp[IPOPT_OPTVAL] = optval;
1536 			dp[IPOPT_OLEN] = olen;
1537 			dp[IPOPT_OFFSET] = offset;
1538 			break;
1539 		} else {
1540 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1541 				goto bad;
1542 
1543 			memcpy(dp, cp, olen);
1544 			break;
1545 		}
1546 
1547 		dp += olen;
1548 		m->m_len += olen;
1549 
1550 		if (optval == IPOPT_EOL)
1551 			break;
1552 
1553 		cp += olen;
1554 		cnt -= olen;
1555 	}
1556 
1557 	*pcbopt = m;
1558 	return (0);
1559 
1560 bad:
1561 	(void)m_free(m);
1562 	return (EINVAL);
1563 }
1564 
1565 /*
1566  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1567  */
1568 static struct ifnet *
1569 ip_multicast_if(struct in_addr *a, int *ifindexp)
1570 {
1571 	int ifindex;
1572 	struct ifnet *ifp = NULL;
1573 	struct in_ifaddr *ia;
1574 
1575 	if (ifindexp)
1576 		*ifindexp = 0;
1577 	if (ntohl(a->s_addr) >> 24 == 0) {
1578 		ifindex = ntohl(a->s_addr) & 0xffffff;
1579 		if (ifindex < 0 || if_indexlim <= ifindex)
1580 			return NULL;
1581 		ifp = ifindex2ifnet[ifindex];
1582 		if (!ifp)
1583 			return NULL;
1584 		if (ifindexp)
1585 			*ifindexp = ifindex;
1586 	} else {
1587 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1588 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1589 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1590 				ifp = ia->ia_ifp;
1591 				break;
1592 			}
1593 		}
1594 	}
1595 	return ifp;
1596 }
1597 
1598 static int
1599 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1600 {
1601 	u_int tval;
1602 	u_char cval;
1603 	int error;
1604 
1605 	if (sopt == NULL)
1606 		return EINVAL;
1607 
1608 	switch (sopt->sopt_size) {
1609 	case sizeof(u_char):
1610 		error = sockopt_get(sopt, &cval, sizeof(u_char));
1611 		tval = cval;
1612 		break;
1613 
1614 	case sizeof(u_int):
1615 		error = sockopt_get(sopt, &tval, sizeof(u_int));
1616 		break;
1617 
1618 	default:
1619 		error = EINVAL;
1620 	}
1621 
1622 	if (error)
1623 		return error;
1624 
1625 	if (tval > maxval)
1626 		return EINVAL;
1627 
1628 	*val = tval;
1629 	return 0;
1630 }
1631 
1632 /*
1633  * Set the IP multicast options in response to user setsockopt().
1634  */
1635 int
1636 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1637 {
1638 	int error = 0;
1639 	int i;
1640 	struct in_addr addr;
1641 	struct ip_mreq lmreq, *mreq;
1642 	struct ifnet *ifp;
1643 	struct ip_moptions *imo = *imop;
1644 	int ifindex;
1645 
1646 	if (imo == NULL) {
1647 		/*
1648 		 * No multicast option buffer attached to the pcb;
1649 		 * allocate one and initialize to default values.
1650 		 */
1651 		imo = malloc(sizeof(*imo), M_IPMOPTS, M_NOWAIT);
1652 		if (imo == NULL)
1653 			return (ENOBUFS);
1654 
1655 		*imop = imo;
1656 		imo->imo_multicast_ifp = NULL;
1657 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1658 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1659 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1660 		imo->imo_num_memberships = 0;
1661 	}
1662 
1663 	switch (sopt->sopt_name) {
1664 	case IP_MULTICAST_IF:
1665 		/*
1666 		 * Select the interface for outgoing multicast packets.
1667 		 */
1668 		error = sockopt_get(sopt, &addr, sizeof(addr));
1669 		if (error)
1670 			break;
1671 
1672 		/*
1673 		 * INADDR_ANY is used to remove a previous selection.
1674 		 * When no interface is selected, a default one is
1675 		 * chosen every time a multicast packet is sent.
1676 		 */
1677 		if (in_nullhost(addr)) {
1678 			imo->imo_multicast_ifp = NULL;
1679 			break;
1680 		}
1681 		/*
1682 		 * The selected interface is identified by its local
1683 		 * IP address.  Find the interface and confirm that
1684 		 * it supports multicasting.
1685 		 */
1686 		ifp = ip_multicast_if(&addr, &ifindex);
1687 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1688 			error = EADDRNOTAVAIL;
1689 			break;
1690 		}
1691 		imo->imo_multicast_ifp = ifp;
1692 		if (ifindex)
1693 			imo->imo_multicast_addr = addr;
1694 		else
1695 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1696 		break;
1697 
1698 	case IP_MULTICAST_TTL:
1699 		/*
1700 		 * Set the IP time-to-live for outgoing multicast packets.
1701 		 */
1702 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1703 		break;
1704 
1705 	case IP_MULTICAST_LOOP:
1706 		/*
1707 		 * Set the loopback flag for outgoing multicast packets.
1708 		 * Must be zero or one.
1709 		 */
1710 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1711 		break;
1712 
1713 	case IP_ADD_MEMBERSHIP:
1714 		/*
1715 		 * Add a multicast group membership.
1716 		 * Group must be a valid IP multicast address.
1717 		 */
1718 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1719 		if (error)
1720 			break;
1721 
1722 		mreq = &lmreq;
1723 
1724 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1725 			error = EINVAL;
1726 			break;
1727 		}
1728 		/*
1729 		 * If no interface address was provided, use the interface of
1730 		 * the route to the given multicast address.
1731 		 */
1732 		if (in_nullhost(mreq->imr_interface)) {
1733 			struct rtentry *rt;
1734 			union {
1735 				struct sockaddr		dst;
1736 				struct sockaddr_in	dst4;
1737 			} u;
1738 			struct route ro;
1739 
1740 			memset(&ro, 0, sizeof(ro));
1741 
1742 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1743 			rtcache_setdst(&ro, &u.dst);
1744 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1745 			                                        : NULL;
1746 			rtcache_free(&ro);
1747 		} else {
1748 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1749 		}
1750 		/*
1751 		 * See if we found an interface, and confirm that it
1752 		 * supports multicast.
1753 		 */
1754 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1755 			error = EADDRNOTAVAIL;
1756 			break;
1757 		}
1758 		/*
1759 		 * See if the membership already exists or if all the
1760 		 * membership slots are full.
1761 		 */
1762 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1763 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1764 			    in_hosteq(imo->imo_membership[i]->inm_addr,
1765 				      mreq->imr_multiaddr))
1766 				break;
1767 		}
1768 		if (i < imo->imo_num_memberships) {
1769 			error = EADDRINUSE;
1770 			break;
1771 		}
1772 		if (i == IP_MAX_MEMBERSHIPS) {
1773 			error = ETOOMANYREFS;
1774 			break;
1775 		}
1776 		/*
1777 		 * Everything looks good; add a new record to the multicast
1778 		 * address list for the given interface.
1779 		 */
1780 		if ((imo->imo_membership[i] =
1781 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1782 			error = ENOBUFS;
1783 			break;
1784 		}
1785 		++imo->imo_num_memberships;
1786 		break;
1787 
1788 	case IP_DROP_MEMBERSHIP:
1789 		/*
1790 		 * Drop a multicast group membership.
1791 		 * Group must be a valid IP multicast address.
1792 		 */
1793 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1794 		if (error)
1795 			break;
1796 
1797 		mreq = &lmreq;
1798 
1799 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1800 			error = EINVAL;
1801 			break;
1802 		}
1803 		/*
1804 		 * If an interface address was specified, get a pointer
1805 		 * to its ifnet structure.
1806 		 */
1807 		if (in_nullhost(mreq->imr_interface))
1808 			ifp = NULL;
1809 		else {
1810 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1811 			if (ifp == NULL) {
1812 				error = EADDRNOTAVAIL;
1813 				break;
1814 			}
1815 		}
1816 		/*
1817 		 * Find the membership in the membership array.
1818 		 */
1819 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1820 			if ((ifp == NULL ||
1821 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1822 			     in_hosteq(imo->imo_membership[i]->inm_addr,
1823 				       mreq->imr_multiaddr))
1824 				break;
1825 		}
1826 		if (i == imo->imo_num_memberships) {
1827 			error = EADDRNOTAVAIL;
1828 			break;
1829 		}
1830 		/*
1831 		 * Give up the multicast address record to which the
1832 		 * membership points.
1833 		 */
1834 		in_delmulti(imo->imo_membership[i]);
1835 		/*
1836 		 * Remove the gap in the membership array.
1837 		 */
1838 		for (++i; i < imo->imo_num_memberships; ++i)
1839 			imo->imo_membership[i-1] = imo->imo_membership[i];
1840 		--imo->imo_num_memberships;
1841 		break;
1842 
1843 	default:
1844 		error = EOPNOTSUPP;
1845 		break;
1846 	}
1847 
1848 	/*
1849 	 * If all options have default values, no need to keep the mbuf.
1850 	 */
1851 	if (imo->imo_multicast_ifp == NULL &&
1852 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1853 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1854 	    imo->imo_num_memberships == 0) {
1855 		free(*imop, M_IPMOPTS);
1856 		*imop = NULL;
1857 	}
1858 
1859 	return (error);
1860 }
1861 
1862 /*
1863  * Return the IP multicast options in response to user getsockopt().
1864  */
1865 int
1866 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1867 {
1868 	struct in_addr addr;
1869 	struct in_ifaddr *ia;
1870 	int error;
1871 	uint8_t optval;
1872 
1873 	error = 0;
1874 
1875 	switch (sopt->sopt_name) {
1876 	case IP_MULTICAST_IF:
1877 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1878 			addr = zeroin_addr;
1879 		else if (imo->imo_multicast_addr.s_addr) {
1880 			/* return the value user has set */
1881 			addr = imo->imo_multicast_addr;
1882 		} else {
1883 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1884 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1885 		}
1886 		error = sockopt_set(sopt, &addr, sizeof(addr));
1887 		break;
1888 
1889 	case IP_MULTICAST_TTL:
1890 		optval = imo ? imo->imo_multicast_ttl
1891 			     : IP_DEFAULT_MULTICAST_TTL;
1892 
1893 		error = sockopt_set(sopt, &optval, sizeof(optval));
1894 		break;
1895 
1896 	case IP_MULTICAST_LOOP:
1897 		optval = imo ? imo->imo_multicast_loop
1898 			     : IP_DEFAULT_MULTICAST_LOOP;
1899 
1900 		error = sockopt_set(sopt, &optval, sizeof(optval));
1901 		break;
1902 
1903 	default:
1904 		error = EOPNOTSUPP;
1905 	}
1906 
1907 	return (error);
1908 }
1909 
1910 /*
1911  * Discard the IP multicast options.
1912  */
1913 void
1914 ip_freemoptions(struct ip_moptions *imo)
1915 {
1916 	int i;
1917 
1918 	if (imo != NULL) {
1919 		for (i = 0; i < imo->imo_num_memberships; ++i)
1920 			in_delmulti(imo->imo_membership[i]);
1921 		free(imo, M_IPMOPTS);
1922 	}
1923 }
1924 
1925 /*
1926  * Routine called from ip_output() to loop back a copy of an IP multicast
1927  * packet to the input queue of a specified interface.  Note that this
1928  * calls the output routine of the loopback "driver", but with an interface
1929  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1930  */
1931 static void
1932 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1933 {
1934 	struct ip *ip;
1935 	struct mbuf *copym;
1936 
1937 	copym = m_copypacket(m, M_DONTWAIT);
1938 	if (copym != NULL
1939 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1940 		copym = m_pullup(copym, sizeof(struct ip));
1941 	if (copym == NULL)
1942 		return;
1943 	/*
1944 	 * We don't bother to fragment if the IP length is greater
1945 	 * than the interface's MTU.  Can this possibly matter?
1946 	 */
1947 	ip = mtod(copym, struct ip *);
1948 
1949 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1950 		in_delayed_cksum(copym);
1951 		copym->m_pkthdr.csum_flags &=
1952 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1953 	}
1954 
1955 	ip->ip_sum = 0;
1956 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1957 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
1958 }
1959