1 /* $NetBSD: ip_output.c,v 1.185 2007/11/28 04:14:11 dyoung Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1998 The NetBSD Foundation, Inc. 34 * All rights reserved. 35 * 36 * This code is derived from software contributed to The NetBSD Foundation 37 * by Public Access Networks Corporation ("Panix"). It was developed under 38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. All advertising materials mentioning features or use of this software 49 * must display the following acknowledgement: 50 * This product includes software developed by the NetBSD 51 * Foundation, Inc. and its contributors. 52 * 4. Neither the name of The NetBSD Foundation nor the names of its 53 * contributors may be used to endorse or promote products derived 54 * from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 66 * POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 /* 70 * Copyright (c) 1982, 1986, 1988, 1990, 1993 71 * The Regents of the University of California. All rights reserved. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions 75 * are met: 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 2. Redistributions in binary form must reproduce the above copyright 79 * notice, this list of conditions and the following disclaimer in the 80 * documentation and/or other materials provided with the distribution. 81 * 3. Neither the name of the University nor the names of its contributors 82 * may be used to endorse or promote products derived from this software 83 * without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 95 * SUCH DAMAGE. 96 * 97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 98 */ 99 100 #include <sys/cdefs.h> 101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.185 2007/11/28 04:14:11 dyoung Exp $"); 102 103 #include "opt_pfil_hooks.h" 104 #include "opt_inet.h" 105 #include "opt_ipsec.h" 106 #include "opt_mrouting.h" 107 108 #include <sys/param.h> 109 #include <sys/malloc.h> 110 #include <sys/mbuf.h> 111 #include <sys/errno.h> 112 #include <sys/protosw.h> 113 #include <sys/socket.h> 114 #include <sys/socketvar.h> 115 #include <sys/kauth.h> 116 #ifdef FAST_IPSEC 117 #include <sys/domain.h> 118 #endif 119 #include <sys/systm.h> 120 #include <sys/proc.h> 121 122 #include <net/if.h> 123 #include <net/route.h> 124 #include <net/pfil.h> 125 126 #include <netinet/in.h> 127 #include <netinet/in_systm.h> 128 #include <netinet/ip.h> 129 #include <netinet/in_pcb.h> 130 #include <netinet/in_var.h> 131 #include <netinet/ip_var.h> 132 #include <netinet/in_offload.h> 133 134 #ifdef MROUTING 135 #include <netinet/ip_mroute.h> 136 #endif 137 138 #include <machine/stdarg.h> 139 140 #ifdef IPSEC 141 #include <netinet6/ipsec.h> 142 #include <netkey/key.h> 143 #include <netkey/key_debug.h> 144 #endif /*IPSEC*/ 145 146 #ifdef FAST_IPSEC 147 #include <netipsec/ipsec.h> 148 #include <netipsec/key.h> 149 #include <netipsec/xform.h> 150 #endif /* FAST_IPSEC*/ 151 152 #ifdef IPSEC_NAT_T 153 #include <netinet/udp.h> 154 #endif 155 156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); 157 static struct ifnet *ip_multicast_if(struct in_addr *, int *); 158 static void ip_mloopback(struct ifnet *, struct mbuf *, 159 const struct sockaddr_in *); 160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int); 161 162 #ifdef PFIL_HOOKS 163 extern struct pfil_head inet_pfil_hook; /* XXX */ 164 #endif 165 166 int ip_do_loopback_cksum = 0; 167 168 /* 169 * IP output. The packet in mbuf chain m contains a skeletal IP 170 * header (with len, off, ttl, proto, tos, src, dst). 171 * The mbuf chain containing the packet will be freed. 172 * The mbuf opt, if present, will not be freed. 173 */ 174 int 175 ip_output(struct mbuf *m0, ...) 176 { 177 struct ip *ip; 178 struct ifnet *ifp; 179 struct mbuf *m = m0; 180 int hlen = sizeof (struct ip); 181 int len, error = 0; 182 struct route iproute; 183 const struct sockaddr_in *dst; 184 struct in_ifaddr *ia; 185 struct ifaddr *xifa; 186 struct mbuf *opt; 187 struct route *ro; 188 int flags, sw_csum; 189 int *mtu_p; 190 u_long mtu; 191 struct ip_moptions *imo; 192 struct socket *so; 193 va_list ap; 194 #ifdef IPSEC_NAT_T 195 int natt_frag = 0; 196 #endif 197 #ifdef IPSEC 198 struct secpolicy *sp = NULL; 199 #endif /*IPSEC*/ 200 #ifdef FAST_IPSEC 201 struct inpcb *inp; 202 struct m_tag *mtag; 203 struct secpolicy *sp = NULL; 204 struct tdb_ident *tdbi; 205 int s; 206 #endif 207 u_int16_t ip_len; 208 union { 209 struct sockaddr dst; 210 struct sockaddr_in dst4; 211 } u; 212 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed 213 * to the nexthop 214 */ 215 216 len = 0; 217 va_start(ap, m0); 218 opt = va_arg(ap, struct mbuf *); 219 ro = va_arg(ap, struct route *); 220 flags = va_arg(ap, int); 221 imo = va_arg(ap, struct ip_moptions *); 222 so = va_arg(ap, struct socket *); 223 if (flags & IP_RETURNMTU) 224 mtu_p = va_arg(ap, int *); 225 else 226 mtu_p = NULL; 227 va_end(ap); 228 229 MCLAIM(m, &ip_tx_mowner); 230 #ifdef FAST_IPSEC 231 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET) 232 inp = (struct inpcb *)so->so_pcb; 233 else 234 inp = NULL; 235 #endif /* FAST_IPSEC */ 236 237 #ifdef DIAGNOSTIC 238 if ((m->m_flags & M_PKTHDR) == 0) 239 panic("ip_output: no HDR"); 240 241 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) { 242 panic("ip_output: IPv6 checksum offload flags: %d", 243 m->m_pkthdr.csum_flags); 244 } 245 246 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) == 247 (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 248 panic("ip_output: conflicting checksum offload flags: %d", 249 m->m_pkthdr.csum_flags); 250 } 251 #endif 252 if (opt) { 253 m = ip_insertoptions(m, opt, &len); 254 if (len >= sizeof(struct ip)) 255 hlen = len; 256 } 257 ip = mtod(m, struct ip *); 258 /* 259 * Fill in IP header. 260 */ 261 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 262 ip->ip_v = IPVERSION; 263 ip->ip_off = htons(0); 264 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 265 ip->ip_id = ip_newid(); 266 } else { 267 268 /* 269 * TSO capable interfaces (typically?) increment 270 * ip_id for each segment. 271 * "allocate" enough ids here to increase the chance 272 * for them to be unique. 273 * 274 * note that the following calculation is not 275 * needed to be precise. wasting some ip_id is fine. 276 */ 277 278 unsigned int segsz = m->m_pkthdr.segsz; 279 unsigned int datasz = ntohs(ip->ip_len) - hlen; 280 unsigned int num = howmany(datasz, segsz); 281 282 ip->ip_id = ip_newid_range(num); 283 } 284 ip->ip_hl = hlen >> 2; 285 ipstat.ips_localout++; 286 } else { 287 hlen = ip->ip_hl << 2; 288 } 289 /* 290 * Route packet. 291 */ 292 memset(&iproute, 0, sizeof(iproute)); 293 if (ro == NULL) 294 ro = &iproute; 295 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0); 296 dst = satocsin(rtcache_getdst(ro)); 297 /* 298 * If there is a cached route, 299 * check that it is to the same destination 300 * and is still up. If not, free it and try again. 301 * The address family should also be checked in case of sharing the 302 * cache with IPv6. 303 */ 304 if (dst == NULL) 305 ; 306 else if (dst->sin_family != AF_INET || 307 !in_hosteq(dst->sin_addr, ip->ip_dst)) 308 rtcache_free(ro); 309 else 310 rtcache_check(ro); 311 if (ro->ro_rt == NULL) { 312 dst = &u.dst4; 313 rtcache_setdst(ro, &u.dst); 314 } 315 /* 316 * If routing to interface only, 317 * short circuit routing lookup. 318 */ 319 if (flags & IP_ROUTETOIF) { 320 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) { 321 ipstat.ips_noroute++; 322 error = ENETUNREACH; 323 goto bad; 324 } 325 ifp = ia->ia_ifp; 326 mtu = ifp->if_mtu; 327 ip->ip_ttl = 1; 328 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) || 329 ip->ip_dst.s_addr == INADDR_BROADCAST) && 330 imo != NULL && imo->imo_multicast_ifp != NULL) { 331 ifp = imo->imo_multicast_ifp; 332 mtu = ifp->if_mtu; 333 IFP_TO_IA(ifp, ia); 334 } else { 335 if (ro->ro_rt == NULL) 336 rtcache_init(ro); 337 if (ro->ro_rt == NULL) { 338 ipstat.ips_noroute++; 339 error = EHOSTUNREACH; 340 goto bad; 341 } 342 ia = ifatoia(ro->ro_rt->rt_ifa); 343 ifp = ro->ro_rt->rt_ifp; 344 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0) 345 mtu = ifp->if_mtu; 346 ro->ro_rt->rt_use++; 347 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 348 dst = satosin(ro->ro_rt->rt_gateway); 349 } 350 if (IN_MULTICAST(ip->ip_dst.s_addr) || 351 (ip->ip_dst.s_addr == INADDR_BROADCAST)) { 352 struct in_multi *inm; 353 354 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ? 355 M_BCAST : M_MCAST; 356 /* 357 * See if the caller provided any multicast options 358 */ 359 if (imo != NULL) 360 ip->ip_ttl = imo->imo_multicast_ttl; 361 else 362 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 363 364 /* 365 * if we don't know the outgoing ifp yet, we can't generate 366 * output 367 */ 368 if (!ifp) { 369 ipstat.ips_noroute++; 370 error = ENETUNREACH; 371 goto bad; 372 } 373 374 /* 375 * If the packet is multicast or broadcast, confirm that 376 * the outgoing interface can transmit it. 377 */ 378 if (((m->m_flags & M_MCAST) && 379 (ifp->if_flags & IFF_MULTICAST) == 0) || 380 ((m->m_flags & M_BCAST) && 381 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) { 382 ipstat.ips_noroute++; 383 error = ENETUNREACH; 384 goto bad; 385 } 386 /* 387 * If source address not specified yet, use an address 388 * of outgoing interface. 389 */ 390 if (in_nullhost(ip->ip_src)) { 391 struct in_ifaddr *xia; 392 393 IFP_TO_IA(ifp, xia); 394 if (!xia) { 395 error = EADDRNOTAVAIL; 396 goto bad; 397 } 398 xifa = &xia->ia_ifa; 399 if (xifa->ifa_getifa != NULL) { 400 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 401 } 402 ip->ip_src = xia->ia_addr.sin_addr; 403 } 404 405 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm); 406 if (inm != NULL && 407 (imo == NULL || imo->imo_multicast_loop)) { 408 /* 409 * If we belong to the destination multicast group 410 * on the outgoing interface, and the caller did not 411 * forbid loopback, loop back a copy. 412 */ 413 ip_mloopback(ifp, m, &u.dst4); 414 } 415 #ifdef MROUTING 416 else { 417 /* 418 * If we are acting as a multicast router, perform 419 * multicast forwarding as if the packet had just 420 * arrived on the interface to which we are about 421 * to send. The multicast forwarding function 422 * recursively calls this function, using the 423 * IP_FORWARDING flag to prevent infinite recursion. 424 * 425 * Multicasts that are looped back by ip_mloopback(), 426 * above, will be forwarded by the ip_input() routine, 427 * if necessary. 428 */ 429 extern struct socket *ip_mrouter; 430 431 if (ip_mrouter && (flags & IP_FORWARDING) == 0) { 432 if (ip_mforward(m, ifp) != 0) { 433 m_freem(m); 434 goto done; 435 } 436 } 437 } 438 #endif 439 /* 440 * Multicasts with a time-to-live of zero may be looped- 441 * back, above, but must not be transmitted on a network. 442 * Also, multicasts addressed to the loopback interface 443 * are not sent -- the above call to ip_mloopback() will 444 * loop back a copy if this host actually belongs to the 445 * destination group on the loopback interface. 446 */ 447 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) { 448 m_freem(m); 449 goto done; 450 } 451 452 goto sendit; 453 } 454 /* 455 * If source address not specified yet, use address 456 * of outgoing interface. 457 */ 458 if (in_nullhost(ip->ip_src)) { 459 xifa = &ia->ia_ifa; 460 if (xifa->ifa_getifa != NULL) 461 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 462 ip->ip_src = ia->ia_addr.sin_addr; 463 } 464 465 /* 466 * packets with Class-D address as source are not valid per 467 * RFC 1112 468 */ 469 if (IN_MULTICAST(ip->ip_src.s_addr)) { 470 ipstat.ips_odropped++; 471 error = EADDRNOTAVAIL; 472 goto bad; 473 } 474 475 /* 476 * Look for broadcast address and 477 * and verify user is allowed to send 478 * such a packet. 479 */ 480 if (in_broadcast(dst->sin_addr, ifp)) { 481 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 482 error = EADDRNOTAVAIL; 483 goto bad; 484 } 485 if ((flags & IP_ALLOWBROADCAST) == 0) { 486 error = EACCES; 487 goto bad; 488 } 489 /* don't allow broadcast messages to be fragmented */ 490 if (ntohs(ip->ip_len) > ifp->if_mtu) { 491 error = EMSGSIZE; 492 goto bad; 493 } 494 m->m_flags |= M_BCAST; 495 } else 496 m->m_flags &= ~M_BCAST; 497 498 sendit: 499 /* 500 * If we're doing Path MTU Discovery, we need to set DF unless 501 * the route's MTU is locked. 502 */ 503 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL && 504 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 505 ip->ip_off |= htons(IP_DF); 506 507 /* Remember the current ip_len */ 508 ip_len = ntohs(ip->ip_len); 509 510 #ifdef IPSEC 511 /* get SP for this packet */ 512 if (so == NULL) 513 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 514 flags, &error); 515 else { 516 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp, 517 IPSEC_DIR_OUTBOUND)) 518 goto skip_ipsec; 519 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 520 } 521 522 if (sp == NULL) { 523 ipsecstat.out_inval++; 524 goto bad; 525 } 526 527 error = 0; 528 529 /* check policy */ 530 switch (sp->policy) { 531 case IPSEC_POLICY_DISCARD: 532 /* 533 * This packet is just discarded. 534 */ 535 ipsecstat.out_polvio++; 536 goto bad; 537 538 case IPSEC_POLICY_BYPASS: 539 case IPSEC_POLICY_NONE: 540 /* no need to do IPsec. */ 541 goto skip_ipsec; 542 543 case IPSEC_POLICY_IPSEC: 544 if (sp->req == NULL) { 545 /* XXX should be panic ? */ 546 printf("ip_output: No IPsec request specified.\n"); 547 error = EINVAL; 548 goto bad; 549 } 550 break; 551 552 case IPSEC_POLICY_ENTRUST: 553 default: 554 printf("ip_output: Invalid policy found. %d\n", sp->policy); 555 } 556 557 #ifdef IPSEC_NAT_T 558 /* 559 * NAT-T ESP fragmentation: don't do IPSec processing now, 560 * we'll do it on each fragmented packet. 561 */ 562 if (sp->req->sav && 563 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) || 564 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) { 565 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) { 566 natt_frag = 1; 567 mtu = sp->req->sav->esp_frag; 568 goto skip_ipsec; 569 } 570 } 571 #endif /* IPSEC_NAT_T */ 572 573 /* 574 * ipsec4_output() expects ip_len and ip_off in network 575 * order. They have been set to network order above. 576 */ 577 578 { 579 struct ipsec_output_state state; 580 bzero(&state, sizeof(state)); 581 state.m = m; 582 if (flags & IP_ROUTETOIF) { 583 state.ro = &iproute; 584 memset(&iproute, 0, sizeof(iproute)); 585 } else 586 state.ro = ro; 587 state.dst = sintocsa(dst); 588 589 /* 590 * We can't defer the checksum of payload data if 591 * we're about to encrypt/authenticate it. 592 * 593 * XXX When we support crypto offloading functions of 594 * XXX network interfaces, we need to reconsider this, 595 * XXX since it's likely that they'll support checksumming, 596 * XXX as well. 597 */ 598 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 599 in_delayed_cksum(m); 600 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 601 } 602 603 error = ipsec4_output(&state, sp, flags); 604 605 m = state.m; 606 if (flags & IP_ROUTETOIF) { 607 /* 608 * if we have tunnel mode SA, we may need to ignore 609 * IP_ROUTETOIF. 610 */ 611 if (state.ro != &iproute || state.ro->ro_rt != NULL) { 612 flags &= ~IP_ROUTETOIF; 613 ro = state.ro; 614 } 615 } else 616 ro = state.ro; 617 dst = satocsin(state.dst); 618 if (error) { 619 /* mbuf is already reclaimed in ipsec4_output. */ 620 m0 = NULL; 621 switch (error) { 622 case EHOSTUNREACH: 623 case ENETUNREACH: 624 case EMSGSIZE: 625 case ENOBUFS: 626 case ENOMEM: 627 break; 628 default: 629 printf("ip4_output (ipsec): error code %d\n", error); 630 /*fall through*/ 631 case ENOENT: 632 /* don't show these error codes to the user */ 633 error = 0; 634 break; 635 } 636 goto bad; 637 } 638 639 /* be sure to update variables that are affected by ipsec4_output() */ 640 ip = mtod(m, struct ip *); 641 hlen = ip->ip_hl << 2; 642 ip_len = ntohs(ip->ip_len); 643 644 if (ro->ro_rt == NULL) { 645 if ((flags & IP_ROUTETOIF) == 0) { 646 printf("ip_output: " 647 "can't update route after IPsec processing\n"); 648 error = EHOSTUNREACH; /*XXX*/ 649 goto bad; 650 } 651 } else { 652 /* nobody uses ia beyond here */ 653 if (state.encap) { 654 ifp = ro->ro_rt->rt_ifp; 655 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0) 656 mtu = ifp->if_mtu; 657 } 658 } 659 } 660 skip_ipsec: 661 #endif /*IPSEC*/ 662 #ifdef FAST_IPSEC 663 /* 664 * Check the security policy (SP) for the packet and, if 665 * required, do IPsec-related processing. There are two 666 * cases here; the first time a packet is sent through 667 * it will be untagged and handled by ipsec4_checkpolicy. 668 * If the packet is resubmitted to ip_output (e.g. after 669 * AH, ESP, etc. processing), there will be a tag to bypass 670 * the lookup and related policy checking. 671 */ 672 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL); 673 s = splsoftnet(); 674 if (mtag != NULL) { 675 tdbi = (struct tdb_ident *)(mtag + 1); 676 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND); 677 if (sp == NULL) 678 error = -EINVAL; /* force silent drop */ 679 m_tag_delete(m, mtag); 680 } else { 681 if (inp != NULL && 682 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) 683 goto spd_done; 684 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, 685 &error, inp); 686 } 687 /* 688 * There are four return cases: 689 * sp != NULL apply IPsec policy 690 * sp == NULL, error == 0 no IPsec handling needed 691 * sp == NULL, error == -EINVAL discard packet w/o error 692 * sp == NULL, error != 0 discard packet, report error 693 */ 694 if (sp != NULL) { 695 #ifdef IPSEC_NAT_T 696 /* 697 * NAT-T ESP fragmentation: don't do IPSec processing now, 698 * we'll do it on each fragmented packet. 699 */ 700 if (sp->req->sav && 701 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) || 702 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) { 703 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) { 704 natt_frag = 1; 705 mtu = sp->req->sav->esp_frag; 706 goto spd_done; 707 } 708 } 709 #endif /* IPSEC_NAT_T */ 710 /* Loop detection, check if ipsec processing already done */ 711 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request")); 712 for (mtag = m_tag_first(m); mtag != NULL; 713 mtag = m_tag_next(m, mtag)) { 714 #ifdef MTAG_ABI_COMPAT 715 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT) 716 continue; 717 #endif 718 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE && 719 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED) 720 continue; 721 /* 722 * Check if policy has an SA associated with it. 723 * This can happen when an SP has yet to acquire 724 * an SA; e.g. on first reference. If it occurs, 725 * then we let ipsec4_process_packet do its thing. 726 */ 727 if (sp->req->sav == NULL) 728 break; 729 tdbi = (struct tdb_ident *)(mtag + 1); 730 if (tdbi->spi == sp->req->sav->spi && 731 tdbi->proto == sp->req->sav->sah->saidx.proto && 732 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst, 733 sizeof (union sockaddr_union)) == 0) { 734 /* 735 * No IPsec processing is needed, free 736 * reference to SP. 737 * 738 * NB: null pointer to avoid free at 739 * done: below. 740 */ 741 KEY_FREESP(&sp), sp = NULL; 742 splx(s); 743 goto spd_done; 744 } 745 } 746 747 /* 748 * Do delayed checksums now because we send before 749 * this is done in the normal processing path. 750 */ 751 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 752 in_delayed_cksum(m); 753 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 754 } 755 756 #ifdef __FreeBSD__ 757 ip->ip_len = htons(ip->ip_len); 758 ip->ip_off = htons(ip->ip_off); 759 #endif 760 761 /* NB: callee frees mbuf */ 762 error = ipsec4_process_packet(m, sp->req, flags, 0); 763 /* 764 * Preserve KAME behaviour: ENOENT can be returned 765 * when an SA acquire is in progress. Don't propagate 766 * this to user-level; it confuses applications. 767 * 768 * XXX this will go away when the SADB is redone. 769 */ 770 if (error == ENOENT) 771 error = 0; 772 splx(s); 773 goto done; 774 } else { 775 splx(s); 776 777 if (error != 0) { 778 /* 779 * Hack: -EINVAL is used to signal that a packet 780 * should be silently discarded. This is typically 781 * because we asked key management for an SA and 782 * it was delayed (e.g. kicked up to IKE). 783 */ 784 if (error == -EINVAL) 785 error = 0; 786 goto bad; 787 } else { 788 /* No IPsec processing for this packet. */ 789 } 790 #ifdef notyet 791 /* 792 * If deferred crypto processing is needed, check that 793 * the interface supports it. 794 */ 795 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL); 796 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) { 797 /* notify IPsec to do its own crypto */ 798 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1)); 799 error = EHOSTUNREACH; 800 goto bad; 801 } 802 #endif 803 } 804 spd_done: 805 #endif /* FAST_IPSEC */ 806 807 #ifdef PFIL_HOOKS 808 /* 809 * Run through list of hooks for output packets. 810 */ 811 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 812 goto done; 813 if (m == NULL) 814 goto done; 815 816 ip = mtod(m, struct ip *); 817 hlen = ip->ip_hl << 2; 818 ip_len = ntohs(ip->ip_len); 819 #endif /* PFIL_HOOKS */ 820 821 m->m_pkthdr.csum_data |= hlen << 16; 822 823 #if IFA_STATS 824 /* 825 * search for the source address structure to 826 * maintain output statistics. 827 */ 828 INADDR_TO_IA(ip->ip_src, ia); 829 #endif 830 831 /* Maybe skip checksums on loopback interfaces. */ 832 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) { 833 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 834 } 835 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 836 /* 837 * If small enough for mtu of path, or if using TCP segmentation 838 * offload, can just send directly. 839 */ 840 if (ip_len <= mtu || 841 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 842 #if IFA_STATS 843 if (ia) 844 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len; 845 #endif 846 /* 847 * Always initialize the sum to 0! Some HW assisted 848 * checksumming requires this. 849 */ 850 ip->ip_sum = 0; 851 852 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 853 /* 854 * Perform any checksums that the hardware can't do 855 * for us. 856 * 857 * XXX Does any hardware require the {th,uh}_sum 858 * XXX fields to be 0? 859 */ 860 if (sw_csum & M_CSUM_IPv4) { 861 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)); 862 ip->ip_sum = in_cksum(m, hlen); 863 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 864 } 865 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 866 if (IN_NEED_CHECKSUM(ifp, 867 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 868 in_delayed_cksum(m); 869 } 870 m->m_pkthdr.csum_flags &= 871 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 872 } 873 } 874 875 #ifdef IPSEC 876 /* clean ipsec history once it goes out of the node */ 877 ipsec_delaux(m); 878 #endif 879 880 if (__predict_true( 881 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 || 882 (ifp->if_capenable & IFCAP_TSOv4) != 0)) { 883 error = 884 (*ifp->if_output)(ifp, m, 885 (m->m_flags & M_MCAST) ? 886 sintocsa(rdst) : sintocsa(dst), 887 ro->ro_rt); 888 } else { 889 error = 890 ip_tso_output(ifp, m, 891 (m->m_flags & M_MCAST) ? 892 sintocsa(rdst) : sintocsa(dst), 893 ro->ro_rt); 894 } 895 goto done; 896 } 897 898 /* 899 * We can't use HW checksumming if we're about to 900 * to fragment the packet. 901 * 902 * XXX Some hardware can do this. 903 */ 904 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 905 if (IN_NEED_CHECKSUM(ifp, 906 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 907 in_delayed_cksum(m); 908 } 909 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 910 } 911 912 /* 913 * Too large for interface; fragment if possible. 914 * Must be able to put at least 8 bytes per fragment. 915 */ 916 if (ntohs(ip->ip_off) & IP_DF) { 917 if (flags & IP_RETURNMTU) 918 *mtu_p = mtu; 919 error = EMSGSIZE; 920 ipstat.ips_cantfrag++; 921 goto bad; 922 } 923 924 error = ip_fragment(m, ifp, mtu); 925 if (error) { 926 m = NULL; 927 goto bad; 928 } 929 930 for (; m; m = m0) { 931 m0 = m->m_nextpkt; 932 m->m_nextpkt = 0; 933 if (error == 0) { 934 #if IFA_STATS 935 if (ia) 936 ia->ia_ifa.ifa_data.ifad_outbytes += 937 ntohs(ip->ip_len); 938 #endif 939 #ifdef IPSEC 940 /* clean ipsec history once it goes out of the node */ 941 ipsec_delaux(m); 942 #endif /* IPSEC */ 943 944 #ifdef IPSEC_NAT_T 945 /* 946 * If we get there, the packet has not been handeld by 947 * IPSec whereas it should have. Now that it has been 948 * fragmented, re-inject it in ip_output so that IPsec 949 * processing can occur. 950 */ 951 if (natt_frag) { 952 error = ip_output(m, opt, 953 ro, flags, imo, so, mtu_p); 954 } else 955 #endif /* IPSEC_NAT_T */ 956 { 957 KASSERT((m->m_pkthdr.csum_flags & 958 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0); 959 error = (*ifp->if_output)(ifp, m, 960 (m->m_flags & M_MCAST) ? 961 sintocsa(rdst) : sintocsa(dst), 962 ro->ro_rt); 963 } 964 } else 965 m_freem(m); 966 } 967 968 if (error == 0) 969 ipstat.ips_fragmented++; 970 done: 971 rtcache_free(&iproute); 972 973 #ifdef IPSEC 974 if (sp != NULL) { 975 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 976 printf("DP ip_output call free SP:%p\n", sp)); 977 key_freesp(sp); 978 } 979 #endif /* IPSEC */ 980 #ifdef FAST_IPSEC 981 if (sp != NULL) 982 KEY_FREESP(&sp); 983 #endif /* FAST_IPSEC */ 984 985 return (error); 986 bad: 987 m_freem(m); 988 goto done; 989 } 990 991 int 992 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu) 993 { 994 struct ip *ip, *mhip; 995 struct mbuf *m0; 996 int len, hlen, off; 997 int mhlen, firstlen; 998 struct mbuf **mnext; 999 int sw_csum = m->m_pkthdr.csum_flags; 1000 int fragments = 0; 1001 int s; 1002 int error = 0; 1003 1004 ip = mtod(m, struct ip *); 1005 hlen = ip->ip_hl << 2; 1006 if (ifp != NULL) 1007 sw_csum &= ~ifp->if_csum_flags_tx; 1008 1009 len = (mtu - hlen) &~ 7; 1010 if (len < 8) { 1011 m_freem(m); 1012 return (EMSGSIZE); 1013 } 1014 1015 firstlen = len; 1016 mnext = &m->m_nextpkt; 1017 1018 /* 1019 * Loop through length of segment after first fragment, 1020 * make new header and copy data of each part and link onto chain. 1021 */ 1022 m0 = m; 1023 mhlen = sizeof (struct ip); 1024 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) { 1025 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1026 if (m == 0) { 1027 error = ENOBUFS; 1028 ipstat.ips_odropped++; 1029 goto sendorfree; 1030 } 1031 MCLAIM(m, m0->m_owner); 1032 *mnext = m; 1033 mnext = &m->m_nextpkt; 1034 m->m_data += max_linkhdr; 1035 mhip = mtod(m, struct ip *); 1036 *mhip = *ip; 1037 /* we must inherit MCAST and BCAST flags */ 1038 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST); 1039 if (hlen > sizeof (struct ip)) { 1040 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1041 mhip->ip_hl = mhlen >> 2; 1042 } 1043 m->m_len = mhlen; 1044 mhip->ip_off = ((off - hlen) >> 3) + 1045 (ntohs(ip->ip_off) & ~IP_MF); 1046 if (ip->ip_off & htons(IP_MF)) 1047 mhip->ip_off |= IP_MF; 1048 if (off + len >= ntohs(ip->ip_len)) 1049 len = ntohs(ip->ip_len) - off; 1050 else 1051 mhip->ip_off |= IP_MF; 1052 HTONS(mhip->ip_off); 1053 mhip->ip_len = htons((u_int16_t)(len + mhlen)); 1054 m->m_next = m_copym(m0, off, len, M_DONTWAIT); 1055 if (m->m_next == 0) { 1056 error = ENOBUFS; /* ??? */ 1057 ipstat.ips_odropped++; 1058 goto sendorfree; 1059 } 1060 m->m_pkthdr.len = mhlen + len; 1061 m->m_pkthdr.rcvif = (struct ifnet *)0; 1062 mhip->ip_sum = 0; 1063 if (sw_csum & M_CSUM_IPv4) { 1064 mhip->ip_sum = in_cksum(m, mhlen); 1065 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0); 1066 } else { 1067 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1068 m->m_pkthdr.csum_data |= mhlen << 16; 1069 } 1070 ipstat.ips_ofragments++; 1071 fragments++; 1072 } 1073 /* 1074 * Update first fragment by trimming what's been copied out 1075 * and updating header, then send each fragment (in order). 1076 */ 1077 m = m0; 1078 m_adj(m, hlen + firstlen - ntohs(ip->ip_len)); 1079 m->m_pkthdr.len = hlen + firstlen; 1080 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len); 1081 ip->ip_off |= htons(IP_MF); 1082 ip->ip_sum = 0; 1083 if (sw_csum & M_CSUM_IPv4) { 1084 ip->ip_sum = in_cksum(m, hlen); 1085 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 1086 } else { 1087 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4); 1088 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >= 1089 sizeof(struct ip)); 1090 } 1091 sendorfree: 1092 /* 1093 * If there is no room for all the fragments, don't queue 1094 * any of them. 1095 */ 1096 if (ifp != NULL) { 1097 s = splnet(); 1098 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments && 1099 error == 0) { 1100 error = ENOBUFS; 1101 ipstat.ips_odropped++; 1102 IFQ_INC_DROPS(&ifp->if_snd); 1103 } 1104 splx(s); 1105 } 1106 if (error) { 1107 for (m = m0; m; m = m0) { 1108 m0 = m->m_nextpkt; 1109 m->m_nextpkt = NULL; 1110 m_freem(m); 1111 } 1112 } 1113 return (error); 1114 } 1115 1116 /* 1117 * Process a delayed payload checksum calculation. 1118 */ 1119 void 1120 in_delayed_cksum(struct mbuf *m) 1121 { 1122 struct ip *ip; 1123 u_int16_t csum, offset; 1124 1125 ip = mtod(m, struct ip *); 1126 offset = ip->ip_hl << 2; 1127 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset); 1128 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 1129 csum = 0xffff; 1130 1131 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); 1132 1133 if ((offset + sizeof(u_int16_t)) > m->m_len) { 1134 /* This happen when ip options were inserted 1135 printf("in_delayed_cksum: pullup len %d off %d proto %d\n", 1136 m->m_len, offset, ip->ip_p); 1137 */ 1138 m_copyback(m, offset, sizeof(csum), (void *) &csum); 1139 } else 1140 *(u_int16_t *)(mtod(m, char *) + offset) = csum; 1141 } 1142 1143 /* 1144 * Determine the maximum length of the options to be inserted; 1145 * we would far rather allocate too much space rather than too little. 1146 */ 1147 1148 u_int 1149 ip_optlen(struct inpcb *inp) 1150 { 1151 struct mbuf *m = inp->inp_options; 1152 1153 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) 1154 return (m->m_len - offsetof(struct ipoption, ipopt_dst)); 1155 else 1156 return 0; 1157 } 1158 1159 1160 /* 1161 * Insert IP options into preformed packet. 1162 * Adjust IP destination as required for IP source routing, 1163 * as indicated by a non-zero in_addr at the start of the options. 1164 */ 1165 static struct mbuf * 1166 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) 1167 { 1168 struct ipoption *p = mtod(opt, struct ipoption *); 1169 struct mbuf *n; 1170 struct ip *ip = mtod(m, struct ip *); 1171 unsigned optlen; 1172 1173 optlen = opt->m_len - sizeof(p->ipopt_dst); 1174 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET) 1175 return (m); /* XXX should fail */ 1176 if (!in_nullhost(p->ipopt_dst)) 1177 ip->ip_dst = p->ipopt_dst; 1178 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) { 1179 MGETHDR(n, M_DONTWAIT, MT_HEADER); 1180 if (n == 0) 1181 return (m); 1182 MCLAIM(n, m->m_owner); 1183 M_MOVE_PKTHDR(n, m); 1184 m->m_len -= sizeof(struct ip); 1185 m->m_data += sizeof(struct ip); 1186 n->m_next = m; 1187 m = n; 1188 m->m_len = optlen + sizeof(struct ip); 1189 m->m_data += max_linkhdr; 1190 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip)); 1191 } else { 1192 m->m_data -= optlen; 1193 m->m_len += optlen; 1194 memmove(mtod(m, void *), ip, sizeof(struct ip)); 1195 } 1196 m->m_pkthdr.len += optlen; 1197 ip = mtod(m, struct ip *); 1198 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen); 1199 *phlen = sizeof(struct ip) + optlen; 1200 ip->ip_len = htons(ntohs(ip->ip_len) + optlen); 1201 return (m); 1202 } 1203 1204 /* 1205 * Copy options from ip to jp, 1206 * omitting those not copied during fragmentation. 1207 */ 1208 int 1209 ip_optcopy(struct ip *ip, struct ip *jp) 1210 { 1211 u_char *cp, *dp; 1212 int opt, optlen, cnt; 1213 1214 cp = (u_char *)(ip + 1); 1215 dp = (u_char *)(jp + 1); 1216 cnt = (ip->ip_hl << 2) - sizeof (struct ip); 1217 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1218 opt = cp[0]; 1219 if (opt == IPOPT_EOL) 1220 break; 1221 if (opt == IPOPT_NOP) { 1222 /* Preserve for IP mcast tunnel's LSRR alignment. */ 1223 *dp++ = IPOPT_NOP; 1224 optlen = 1; 1225 continue; 1226 } 1227 #ifdef DIAGNOSTIC 1228 if (cnt < IPOPT_OLEN + sizeof(*cp)) 1229 panic("malformed IPv4 option passed to ip_optcopy"); 1230 #endif 1231 optlen = cp[IPOPT_OLEN]; 1232 #ifdef DIAGNOSTIC 1233 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) 1234 panic("malformed IPv4 option passed to ip_optcopy"); 1235 #endif 1236 /* bogus lengths should have been caught by ip_dooptions */ 1237 if (optlen > cnt) 1238 optlen = cnt; 1239 if (IPOPT_COPIED(opt)) { 1240 bcopy((void *)cp, (void *)dp, (unsigned)optlen); 1241 dp += optlen; 1242 } 1243 } 1244 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) 1245 *dp++ = IPOPT_EOL; 1246 return (optlen); 1247 } 1248 1249 /* 1250 * IP socket option processing. 1251 */ 1252 int 1253 ip_ctloutput(int op, struct socket *so, int level, int optname, 1254 struct mbuf **mp) 1255 { 1256 struct inpcb *inp = sotoinpcb(so); 1257 struct mbuf *m = *mp; 1258 int optval = 0; 1259 int error = 0; 1260 #if defined(IPSEC) || defined(FAST_IPSEC) 1261 struct lwp *l = curlwp; /*XXX*/ 1262 #endif 1263 1264 if (level != IPPROTO_IP) { 1265 if (op == PRCO_SETOPT && *mp) 1266 (void) m_free(*mp); 1267 if (level == SOL_SOCKET && optname == SO_NOHEADER) 1268 return 0; 1269 return ENOPROTOOPT; 1270 } 1271 1272 switch (op) { 1273 1274 case PRCO_SETOPT: 1275 switch (optname) { 1276 case IP_OPTIONS: 1277 #ifdef notyet 1278 case IP_RETOPTS: 1279 return (ip_pcbopts(optname, &inp->inp_options, m)); 1280 #else 1281 return (ip_pcbopts(&inp->inp_options, m)); 1282 #endif 1283 1284 case IP_TOS: 1285 case IP_TTL: 1286 case IP_RECVOPTS: 1287 case IP_RECVRETOPTS: 1288 case IP_RECVDSTADDR: 1289 case IP_RECVIF: 1290 if (m == NULL || m->m_len != sizeof(int)) 1291 error = EINVAL; 1292 else { 1293 optval = *mtod(m, int *); 1294 switch (optname) { 1295 1296 case IP_TOS: 1297 inp->inp_ip.ip_tos = optval; 1298 break; 1299 1300 case IP_TTL: 1301 inp->inp_ip.ip_ttl = optval; 1302 break; 1303 #define OPTSET(bit) \ 1304 if (optval) \ 1305 inp->inp_flags |= bit; \ 1306 else \ 1307 inp->inp_flags &= ~bit; 1308 1309 case IP_RECVOPTS: 1310 OPTSET(INP_RECVOPTS); 1311 break; 1312 1313 case IP_RECVRETOPTS: 1314 OPTSET(INP_RECVRETOPTS); 1315 break; 1316 1317 case IP_RECVDSTADDR: 1318 OPTSET(INP_RECVDSTADDR); 1319 break; 1320 1321 case IP_RECVIF: 1322 OPTSET(INP_RECVIF); 1323 break; 1324 } 1325 } 1326 break; 1327 #undef OPTSET 1328 1329 case IP_MULTICAST_IF: 1330 case IP_MULTICAST_TTL: 1331 case IP_MULTICAST_LOOP: 1332 case IP_ADD_MEMBERSHIP: 1333 case IP_DROP_MEMBERSHIP: 1334 error = ip_setmoptions(optname, &inp->inp_moptions, m); 1335 break; 1336 1337 case IP_PORTRANGE: 1338 if (m == 0 || m->m_len != sizeof(int)) 1339 error = EINVAL; 1340 else { 1341 optval = *mtod(m, int *); 1342 1343 switch (optval) { 1344 1345 case IP_PORTRANGE_DEFAULT: 1346 case IP_PORTRANGE_HIGH: 1347 inp->inp_flags &= ~(INP_LOWPORT); 1348 break; 1349 1350 case IP_PORTRANGE_LOW: 1351 inp->inp_flags |= INP_LOWPORT; 1352 break; 1353 1354 default: 1355 error = EINVAL; 1356 break; 1357 } 1358 } 1359 break; 1360 1361 #if defined(IPSEC) || defined(FAST_IPSEC) 1362 case IP_IPSEC_POLICY: 1363 { 1364 void *req = NULL; 1365 size_t len = 0; 1366 int priv = 0; 1367 1368 #ifdef __NetBSD__ 1369 if (l == 0 || kauth_authorize_generic(l->l_cred, 1370 KAUTH_GENERIC_ISSUSER, NULL)) 1371 priv = 0; 1372 else 1373 priv = 1; 1374 #else 1375 priv = (in6p->in6p_socket->so_state & SS_PRIV); 1376 #endif 1377 if (m) { 1378 req = mtod(m, void *); 1379 len = m->m_len; 1380 } 1381 error = ipsec4_set_policy(inp, optname, req, len, priv); 1382 break; 1383 } 1384 #endif /*IPSEC*/ 1385 1386 default: 1387 error = ENOPROTOOPT; 1388 break; 1389 } 1390 if (m) 1391 (void)m_free(m); 1392 break; 1393 1394 case PRCO_GETOPT: 1395 switch (optname) { 1396 case IP_OPTIONS: 1397 case IP_RETOPTS: 1398 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1399 MCLAIM(m, so->so_mowner); 1400 if (inp->inp_options) { 1401 m->m_len = inp->inp_options->m_len; 1402 bcopy(mtod(inp->inp_options, void *), 1403 mtod(m, void *), (unsigned)m->m_len); 1404 } else 1405 m->m_len = 0; 1406 break; 1407 1408 case IP_TOS: 1409 case IP_TTL: 1410 case IP_RECVOPTS: 1411 case IP_RECVRETOPTS: 1412 case IP_RECVDSTADDR: 1413 case IP_RECVIF: 1414 case IP_ERRORMTU: 1415 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1416 MCLAIM(m, so->so_mowner); 1417 m->m_len = sizeof(int); 1418 switch (optname) { 1419 1420 case IP_TOS: 1421 optval = inp->inp_ip.ip_tos; 1422 break; 1423 1424 case IP_TTL: 1425 optval = inp->inp_ip.ip_ttl; 1426 break; 1427 1428 case IP_ERRORMTU: 1429 optval = inp->inp_errormtu; 1430 break; 1431 1432 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1433 1434 case IP_RECVOPTS: 1435 optval = OPTBIT(INP_RECVOPTS); 1436 break; 1437 1438 case IP_RECVRETOPTS: 1439 optval = OPTBIT(INP_RECVRETOPTS); 1440 break; 1441 1442 case IP_RECVDSTADDR: 1443 optval = OPTBIT(INP_RECVDSTADDR); 1444 break; 1445 1446 case IP_RECVIF: 1447 optval = OPTBIT(INP_RECVIF); 1448 break; 1449 } 1450 *mtod(m, int *) = optval; 1451 break; 1452 1453 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */ 1454 /* XXX: code broken */ 1455 case IP_IPSEC_POLICY: 1456 { 1457 void *req = NULL; 1458 size_t len = 0; 1459 1460 if (m) { 1461 req = mtod(m, void *); 1462 len = m->m_len; 1463 } 1464 error = ipsec4_get_policy(inp, req, len, mp); 1465 break; 1466 } 1467 #endif /*IPSEC*/ 1468 1469 case IP_MULTICAST_IF: 1470 case IP_MULTICAST_TTL: 1471 case IP_MULTICAST_LOOP: 1472 case IP_ADD_MEMBERSHIP: 1473 case IP_DROP_MEMBERSHIP: 1474 error = ip_getmoptions(optname, inp->inp_moptions, mp); 1475 if (*mp) 1476 MCLAIM(*mp, so->so_mowner); 1477 break; 1478 1479 case IP_PORTRANGE: 1480 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1481 MCLAIM(m, so->so_mowner); 1482 m->m_len = sizeof(int); 1483 1484 if (inp->inp_flags & INP_LOWPORT) 1485 optval = IP_PORTRANGE_LOW; 1486 else 1487 optval = IP_PORTRANGE_DEFAULT; 1488 1489 *mtod(m, int *) = optval; 1490 break; 1491 1492 default: 1493 error = ENOPROTOOPT; 1494 break; 1495 } 1496 break; 1497 } 1498 return (error); 1499 } 1500 1501 /* 1502 * Set up IP options in pcb for insertion in output packets. 1503 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1504 * with destination address if source routed. 1505 */ 1506 int 1507 #ifdef notyet 1508 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m) 1509 #else 1510 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m) 1511 #endif 1512 { 1513 int cnt, optlen; 1514 u_char *cp; 1515 u_char opt; 1516 1517 /* turn off any old options */ 1518 if (*pcbopt) 1519 (void)m_free(*pcbopt); 1520 *pcbopt = 0; 1521 if (m == (struct mbuf *)0 || m->m_len == 0) { 1522 /* 1523 * Only turning off any previous options. 1524 */ 1525 if (m) 1526 (void)m_free(m); 1527 return (0); 1528 } 1529 1530 #ifndef __vax__ 1531 if (m->m_len % sizeof(int32_t)) 1532 goto bad; 1533 #endif 1534 /* 1535 * IP first-hop destination address will be stored before 1536 * actual options; move other options back 1537 * and clear it when none present. 1538 */ 1539 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN]) 1540 goto bad; 1541 cnt = m->m_len; 1542 m->m_len += sizeof(struct in_addr); 1543 cp = mtod(m, u_char *) + sizeof(struct in_addr); 1544 memmove(cp, mtod(m, void *), (unsigned)cnt); 1545 bzero(mtod(m, void *), sizeof(struct in_addr)); 1546 1547 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1548 opt = cp[IPOPT_OPTVAL]; 1549 if (opt == IPOPT_EOL) 1550 break; 1551 if (opt == IPOPT_NOP) 1552 optlen = 1; 1553 else { 1554 if (cnt < IPOPT_OLEN + sizeof(*cp)) 1555 goto bad; 1556 optlen = cp[IPOPT_OLEN]; 1557 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) 1558 goto bad; 1559 } 1560 switch (opt) { 1561 1562 default: 1563 break; 1564 1565 case IPOPT_LSRR: 1566 case IPOPT_SSRR: 1567 /* 1568 * user process specifies route as: 1569 * ->A->B->C->D 1570 * D must be our final destination (but we can't 1571 * check that since we may not have connected yet). 1572 * A is first hop destination, which doesn't appear in 1573 * actual IP option, but is stored before the options. 1574 */ 1575 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr)) 1576 goto bad; 1577 m->m_len -= sizeof(struct in_addr); 1578 cnt -= sizeof(struct in_addr); 1579 optlen -= sizeof(struct in_addr); 1580 cp[IPOPT_OLEN] = optlen; 1581 /* 1582 * Move first hop before start of options. 1583 */ 1584 bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *), 1585 sizeof(struct in_addr)); 1586 /* 1587 * Then copy rest of options back 1588 * to close up the deleted entry. 1589 */ 1590 (void)memmove(&cp[IPOPT_OFFSET+1], 1591 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr), 1592 (unsigned)cnt - (IPOPT_MINOFF - 1)); 1593 break; 1594 } 1595 } 1596 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr)) 1597 goto bad; 1598 *pcbopt = m; 1599 return (0); 1600 1601 bad: 1602 (void)m_free(m); 1603 return (EINVAL); 1604 } 1605 1606 /* 1607 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. 1608 */ 1609 static struct ifnet * 1610 ip_multicast_if(struct in_addr *a, int *ifindexp) 1611 { 1612 int ifindex; 1613 struct ifnet *ifp = NULL; 1614 struct in_ifaddr *ia; 1615 1616 if (ifindexp) 1617 *ifindexp = 0; 1618 if (ntohl(a->s_addr) >> 24 == 0) { 1619 ifindex = ntohl(a->s_addr) & 0xffffff; 1620 if (ifindex < 0 || if_indexlim <= ifindex) 1621 return NULL; 1622 ifp = ifindex2ifnet[ifindex]; 1623 if (!ifp) 1624 return NULL; 1625 if (ifindexp) 1626 *ifindexp = ifindex; 1627 } else { 1628 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) { 1629 if (in_hosteq(ia->ia_addr.sin_addr, *a) && 1630 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) { 1631 ifp = ia->ia_ifp; 1632 break; 1633 } 1634 } 1635 } 1636 return ifp; 1637 } 1638 1639 static int 1640 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval) 1641 { 1642 u_int tval; 1643 1644 if (m == NULL) 1645 return EINVAL; 1646 1647 switch (m->m_len) { 1648 case sizeof(u_char): 1649 tval = *(mtod(m, u_char *)); 1650 break; 1651 case sizeof(u_int): 1652 tval = *(mtod(m, u_int *)); 1653 break; 1654 default: 1655 return EINVAL; 1656 } 1657 1658 if (tval > maxval) 1659 return EINVAL; 1660 1661 *val = tval; 1662 return 0; 1663 } 1664 1665 /* 1666 * Set the IP multicast options in response to user setsockopt(). 1667 */ 1668 int 1669 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m) 1670 { 1671 int error = 0; 1672 int i; 1673 struct in_addr addr; 1674 struct ip_mreq *mreq; 1675 struct ifnet *ifp; 1676 struct ip_moptions *imo = *imop; 1677 int ifindex; 1678 1679 if (imo == NULL) { 1680 /* 1681 * No multicast option buffer attached to the pcb; 1682 * allocate one and initialize to default values. 1683 */ 1684 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS, 1685 M_WAITOK); 1686 1687 if (imo == NULL) 1688 return (ENOBUFS); 1689 *imop = imo; 1690 imo->imo_multicast_ifp = NULL; 1691 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1692 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1693 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 1694 imo->imo_num_memberships = 0; 1695 } 1696 1697 switch (optname) { 1698 1699 case IP_MULTICAST_IF: 1700 /* 1701 * Select the interface for outgoing multicast packets. 1702 */ 1703 if (m == NULL || m->m_len != sizeof(struct in_addr)) { 1704 error = EINVAL; 1705 break; 1706 } 1707 addr = *(mtod(m, struct in_addr *)); 1708 /* 1709 * INADDR_ANY is used to remove a previous selection. 1710 * When no interface is selected, a default one is 1711 * chosen every time a multicast packet is sent. 1712 */ 1713 if (in_nullhost(addr)) { 1714 imo->imo_multicast_ifp = NULL; 1715 break; 1716 } 1717 /* 1718 * The selected interface is identified by its local 1719 * IP address. Find the interface and confirm that 1720 * it supports multicasting. 1721 */ 1722 ifp = ip_multicast_if(&addr, &ifindex); 1723 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1724 error = EADDRNOTAVAIL; 1725 break; 1726 } 1727 imo->imo_multicast_ifp = ifp; 1728 if (ifindex) 1729 imo->imo_multicast_addr = addr; 1730 else 1731 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1732 break; 1733 1734 case IP_MULTICAST_TTL: 1735 /* 1736 * Set the IP time-to-live for outgoing multicast packets. 1737 */ 1738 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL); 1739 break; 1740 1741 case IP_MULTICAST_LOOP: 1742 /* 1743 * Set the loopback flag for outgoing multicast packets. 1744 * Must be zero or one. 1745 */ 1746 error = ip_getoptval(m, &imo->imo_multicast_loop, 1); 1747 break; 1748 1749 case IP_ADD_MEMBERSHIP: 1750 /* 1751 * Add a multicast group membership. 1752 * Group must be a valid IP multicast address. 1753 */ 1754 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) { 1755 error = EINVAL; 1756 break; 1757 } 1758 mreq = mtod(m, struct ip_mreq *); 1759 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) { 1760 error = EINVAL; 1761 break; 1762 } 1763 /* 1764 * If no interface address was provided, use the interface of 1765 * the route to the given multicast address. 1766 */ 1767 if (in_nullhost(mreq->imr_interface)) { 1768 union { 1769 struct sockaddr dst; 1770 struct sockaddr_in dst4; 1771 } u; 1772 struct route ro; 1773 1774 memset(&ro, 0, sizeof(ro)); 1775 1776 sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0); 1777 rtcache_setdst(&ro, &u.dst); 1778 rtcache_init(&ro); 1779 ifp = (ro.ro_rt != NULL) ? ro.ro_rt->rt_ifp : NULL; 1780 rtcache_free(&ro); 1781 } else { 1782 ifp = ip_multicast_if(&mreq->imr_interface, NULL); 1783 } 1784 /* 1785 * See if we found an interface, and confirm that it 1786 * supports multicast. 1787 */ 1788 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1789 error = EADDRNOTAVAIL; 1790 break; 1791 } 1792 /* 1793 * See if the membership already exists or if all the 1794 * membership slots are full. 1795 */ 1796 for (i = 0; i < imo->imo_num_memberships; ++i) { 1797 if (imo->imo_membership[i]->inm_ifp == ifp && 1798 in_hosteq(imo->imo_membership[i]->inm_addr, 1799 mreq->imr_multiaddr)) 1800 break; 1801 } 1802 if (i < imo->imo_num_memberships) { 1803 error = EADDRINUSE; 1804 break; 1805 } 1806 if (i == IP_MAX_MEMBERSHIPS) { 1807 error = ETOOMANYREFS; 1808 break; 1809 } 1810 /* 1811 * Everything looks good; add a new record to the multicast 1812 * address list for the given interface. 1813 */ 1814 if ((imo->imo_membership[i] = 1815 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) { 1816 error = ENOBUFS; 1817 break; 1818 } 1819 ++imo->imo_num_memberships; 1820 break; 1821 1822 case IP_DROP_MEMBERSHIP: 1823 /* 1824 * Drop a multicast group membership. 1825 * Group must be a valid IP multicast address. 1826 */ 1827 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) { 1828 error = EINVAL; 1829 break; 1830 } 1831 mreq = mtod(m, struct ip_mreq *); 1832 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) { 1833 error = EINVAL; 1834 break; 1835 } 1836 /* 1837 * If an interface address was specified, get a pointer 1838 * to its ifnet structure. 1839 */ 1840 if (in_nullhost(mreq->imr_interface)) 1841 ifp = NULL; 1842 else { 1843 ifp = ip_multicast_if(&mreq->imr_interface, NULL); 1844 if (ifp == NULL) { 1845 error = EADDRNOTAVAIL; 1846 break; 1847 } 1848 } 1849 /* 1850 * Find the membership in the membership array. 1851 */ 1852 for (i = 0; i < imo->imo_num_memberships; ++i) { 1853 if ((ifp == NULL || 1854 imo->imo_membership[i]->inm_ifp == ifp) && 1855 in_hosteq(imo->imo_membership[i]->inm_addr, 1856 mreq->imr_multiaddr)) 1857 break; 1858 } 1859 if (i == imo->imo_num_memberships) { 1860 error = EADDRNOTAVAIL; 1861 break; 1862 } 1863 /* 1864 * Give up the multicast address record to which the 1865 * membership points. 1866 */ 1867 in_delmulti(imo->imo_membership[i]); 1868 /* 1869 * Remove the gap in the membership array. 1870 */ 1871 for (++i; i < imo->imo_num_memberships; ++i) 1872 imo->imo_membership[i-1] = imo->imo_membership[i]; 1873 --imo->imo_num_memberships; 1874 break; 1875 1876 default: 1877 error = EOPNOTSUPP; 1878 break; 1879 } 1880 1881 /* 1882 * If all options have default values, no need to keep the mbuf. 1883 */ 1884 if (imo->imo_multicast_ifp == NULL && 1885 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL && 1886 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP && 1887 imo->imo_num_memberships == 0) { 1888 free(*imop, M_IPMOPTS); 1889 *imop = NULL; 1890 } 1891 1892 return (error); 1893 } 1894 1895 /* 1896 * Return the IP multicast options in response to user getsockopt(). 1897 */ 1898 int 1899 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp) 1900 { 1901 u_char *ttl; 1902 u_char *loop; 1903 struct in_addr *addr; 1904 struct in_ifaddr *ia; 1905 1906 *mp = m_get(M_WAIT, MT_SOOPTS); 1907 1908 switch (optname) { 1909 1910 case IP_MULTICAST_IF: 1911 addr = mtod(*mp, struct in_addr *); 1912 (*mp)->m_len = sizeof(struct in_addr); 1913 if (imo == NULL || imo->imo_multicast_ifp == NULL) 1914 *addr = zeroin_addr; 1915 else if (imo->imo_multicast_addr.s_addr) { 1916 /* return the value user has set */ 1917 *addr = imo->imo_multicast_addr; 1918 } else { 1919 IFP_TO_IA(imo->imo_multicast_ifp, ia); 1920 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr; 1921 } 1922 return (0); 1923 1924 case IP_MULTICAST_TTL: 1925 ttl = mtod(*mp, u_char *); 1926 (*mp)->m_len = 1; 1927 *ttl = imo ? imo->imo_multicast_ttl 1928 : IP_DEFAULT_MULTICAST_TTL; 1929 return (0); 1930 1931 case IP_MULTICAST_LOOP: 1932 loop = mtod(*mp, u_char *); 1933 (*mp)->m_len = 1; 1934 *loop = imo ? imo->imo_multicast_loop 1935 : IP_DEFAULT_MULTICAST_LOOP; 1936 return (0); 1937 1938 default: 1939 return (EOPNOTSUPP); 1940 } 1941 } 1942 1943 /* 1944 * Discard the IP multicast options. 1945 */ 1946 void 1947 ip_freemoptions(struct ip_moptions *imo) 1948 { 1949 int i; 1950 1951 if (imo != NULL) { 1952 for (i = 0; i < imo->imo_num_memberships; ++i) 1953 in_delmulti(imo->imo_membership[i]); 1954 free(imo, M_IPMOPTS); 1955 } 1956 } 1957 1958 /* 1959 * Routine called from ip_output() to loop back a copy of an IP multicast 1960 * packet to the input queue of a specified interface. Note that this 1961 * calls the output routine of the loopback "driver", but with an interface 1962 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 1963 */ 1964 static void 1965 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst) 1966 { 1967 struct ip *ip; 1968 struct mbuf *copym; 1969 1970 copym = m_copypacket(m, M_DONTWAIT); 1971 if (copym != NULL 1972 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip))) 1973 copym = m_pullup(copym, sizeof(struct ip)); 1974 if (copym == NULL) 1975 return; 1976 /* 1977 * We don't bother to fragment if the IP length is greater 1978 * than the interface's MTU. Can this possibly matter? 1979 */ 1980 ip = mtod(copym, struct ip *); 1981 1982 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1983 in_delayed_cksum(copym); 1984 copym->m_pkthdr.csum_flags &= 1985 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1986 } 1987 1988 ip->ip_sum = 0; 1989 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2); 1990 (void)looutput(ifp, copym, sintocsa(dst), NULL); 1991 } 1992