xref: /netbsd-src/sys/netinet/ip_output.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: ip_output.c,v 1.184 2007/09/19 04:33:43 dyoung Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.184 2007/09/19 04:33:43 dyoung Exp $");
102 
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107 
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121 
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125 
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133 
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137 
138 #include <machine/stdarg.h>
139 
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145 
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif	/* FAST_IPSEC*/
151 
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155 
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *,
159     const struct sockaddr_in *);
160 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
161 
162 #ifdef PFIL_HOOKS
163 extern struct pfil_head inet_pfil_hook;			/* XXX */
164 #endif
165 
166 int	ip_do_loopback_cksum = 0;
167 
168 #define	IN_NEED_CHECKSUM(ifp, csum_flags) \
169 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
170 	(((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
171 	(((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
172 	(((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
173 
174 /*
175  * IP output.  The packet in mbuf chain m contains a skeletal IP
176  * header (with len, off, ttl, proto, tos, src, dst).
177  * The mbuf chain containing the packet will be freed.
178  * The mbuf opt, if present, will not be freed.
179  */
180 int
181 ip_output(struct mbuf *m0, ...)
182 {
183 	struct ip *ip;
184 	struct ifnet *ifp;
185 	struct mbuf *m = m0;
186 	int hlen = sizeof (struct ip);
187 	int len, error = 0;
188 	struct route iproute;
189 	const struct sockaddr_in *dst;
190 	struct in_ifaddr *ia;
191 	struct ifaddr *xifa;
192 	struct mbuf *opt;
193 	struct route *ro;
194 	int flags, sw_csum;
195 	int *mtu_p;
196 	u_long mtu;
197 	struct ip_moptions *imo;
198 	struct socket *so;
199 	va_list ap;
200 #ifdef IPSEC_NAT_T
201 	int natt_frag = 0;
202 #endif
203 #ifdef IPSEC
204 	struct secpolicy *sp = NULL;
205 #endif /*IPSEC*/
206 #ifdef FAST_IPSEC
207 	struct inpcb *inp;
208 	struct m_tag *mtag;
209 	struct secpolicy *sp = NULL;
210 	struct tdb_ident *tdbi;
211 	int s;
212 #endif
213 	u_int16_t ip_len;
214 	union {
215 		struct sockaddr		dst;
216 		struct sockaddr_in	dst4;
217 	} u;
218 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
219 					 * to the nexthop
220 					 */
221 
222 	len = 0;
223 	va_start(ap, m0);
224 	opt = va_arg(ap, struct mbuf *);
225 	ro = va_arg(ap, struct route *);
226 	flags = va_arg(ap, int);
227 	imo = va_arg(ap, struct ip_moptions *);
228 	so = va_arg(ap, struct socket *);
229 	if (flags & IP_RETURNMTU)
230 		mtu_p = va_arg(ap, int *);
231 	else
232 		mtu_p = NULL;
233 	va_end(ap);
234 
235 	MCLAIM(m, &ip_tx_mowner);
236 #ifdef FAST_IPSEC
237 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
238 		inp = (struct inpcb *)so->so_pcb;
239 	else
240 		inp = NULL;
241 #endif /* FAST_IPSEC */
242 
243 #ifdef	DIAGNOSTIC
244 	if ((m->m_flags & M_PKTHDR) == 0)
245 		panic("ip_output: no HDR");
246 
247 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
248 		panic("ip_output: IPv6 checksum offload flags: %d",
249 		    m->m_pkthdr.csum_flags);
250 	}
251 
252 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
253 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
254 		panic("ip_output: conflicting checksum offload flags: %d",
255 		    m->m_pkthdr.csum_flags);
256 	}
257 #endif
258 	if (opt) {
259 		m = ip_insertoptions(m, opt, &len);
260 		if (len >= sizeof(struct ip))
261 			hlen = len;
262 	}
263 	ip = mtod(m, struct ip *);
264 	/*
265 	 * Fill in IP header.
266 	 */
267 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
268 		ip->ip_v = IPVERSION;
269 		ip->ip_off = htons(0);
270 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
271 			ip->ip_id = ip_newid();
272 		} else {
273 
274 			/*
275 			 * TSO capable interfaces (typically?) increment
276 			 * ip_id for each segment.
277 			 * "allocate" enough ids here to increase the chance
278 			 * for them to be unique.
279 			 *
280 			 * note that the following calculation is not
281 			 * needed to be precise.  wasting some ip_id is fine.
282 			 */
283 
284 			unsigned int segsz = m->m_pkthdr.segsz;
285 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
286 			unsigned int num = howmany(datasz, segsz);
287 
288 			ip->ip_id = ip_newid_range(num);
289 		}
290 		ip->ip_hl = hlen >> 2;
291 		ipstat.ips_localout++;
292 	} else {
293 		hlen = ip->ip_hl << 2;
294 	}
295 	/*
296 	 * Route packet.
297 	 */
298 	memset(&iproute, 0, sizeof(iproute));
299 	if (ro == NULL)
300 		ro = &iproute;
301 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
302 	dst = satocsin(rtcache_getdst(ro));
303 	/*
304 	 * If there is a cached route,
305 	 * check that it is to the same destination
306 	 * and is still up.  If not, free it and try again.
307 	 * The address family should also be checked in case of sharing the
308 	 * cache with IPv6.
309 	 */
310 	if (dst == NULL)
311 		;
312 	else if (dst->sin_family != AF_INET ||
313 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
314 		rtcache_free(ro);
315 	else
316 		rtcache_check(ro);
317 	if (ro->ro_rt == NULL) {
318 		dst = &u.dst4;
319 		rtcache_setdst(ro, &u.dst);
320 	}
321 	/*
322 	 * If routing to interface only,
323 	 * short circuit routing lookup.
324 	 */
325 	if (flags & IP_ROUTETOIF) {
326 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
327 			ipstat.ips_noroute++;
328 			error = ENETUNREACH;
329 			goto bad;
330 		}
331 		ifp = ia->ia_ifp;
332 		mtu = ifp->if_mtu;
333 		ip->ip_ttl = 1;
334 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
335 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
336 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
337 		ifp = imo->imo_multicast_ifp;
338 		mtu = ifp->if_mtu;
339 		IFP_TO_IA(ifp, ia);
340 	} else {
341 		if (ro->ro_rt == NULL)
342 			rtcache_init(ro);
343 		if (ro->ro_rt == NULL) {
344 			ipstat.ips_noroute++;
345 			error = EHOSTUNREACH;
346 			goto bad;
347 		}
348 		ia = ifatoia(ro->ro_rt->rt_ifa);
349 		ifp = ro->ro_rt->rt_ifp;
350 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
351 			mtu = ifp->if_mtu;
352 		ro->ro_rt->rt_use++;
353 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
354 			dst = satosin(ro->ro_rt->rt_gateway);
355 	}
356 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
357 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
358 		struct in_multi *inm;
359 
360 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
361 			M_BCAST : M_MCAST;
362 		/*
363 		 * See if the caller provided any multicast options
364 		 */
365 		if (imo != NULL)
366 			ip->ip_ttl = imo->imo_multicast_ttl;
367 		else
368 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
369 
370 		/*
371 		 * if we don't know the outgoing ifp yet, we can't generate
372 		 * output
373 		 */
374 		if (!ifp) {
375 			ipstat.ips_noroute++;
376 			error = ENETUNREACH;
377 			goto bad;
378 		}
379 
380 		/*
381 		 * If the packet is multicast or broadcast, confirm that
382 		 * the outgoing interface can transmit it.
383 		 */
384 		if (((m->m_flags & M_MCAST) &&
385 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
386 		    ((m->m_flags & M_BCAST) &&
387 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
388 			ipstat.ips_noroute++;
389 			error = ENETUNREACH;
390 			goto bad;
391 		}
392 		/*
393 		 * If source address not specified yet, use an address
394 		 * of outgoing interface.
395 		 */
396 		if (in_nullhost(ip->ip_src)) {
397 			struct in_ifaddr *xia;
398 
399 			IFP_TO_IA(ifp, xia);
400 			if (!xia) {
401 				error = EADDRNOTAVAIL;
402 				goto bad;
403 			}
404 			xifa = &xia->ia_ifa;
405 			if (xifa->ifa_getifa != NULL) {
406 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
407 			}
408 			ip->ip_src = xia->ia_addr.sin_addr;
409 		}
410 
411 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
412 		if (inm != NULL &&
413 		   (imo == NULL || imo->imo_multicast_loop)) {
414 			/*
415 			 * If we belong to the destination multicast group
416 			 * on the outgoing interface, and the caller did not
417 			 * forbid loopback, loop back a copy.
418 			 */
419 			ip_mloopback(ifp, m, &u.dst4);
420 		}
421 #ifdef MROUTING
422 		else {
423 			/*
424 			 * If we are acting as a multicast router, perform
425 			 * multicast forwarding as if the packet had just
426 			 * arrived on the interface to which we are about
427 			 * to send.  The multicast forwarding function
428 			 * recursively calls this function, using the
429 			 * IP_FORWARDING flag to prevent infinite recursion.
430 			 *
431 			 * Multicasts that are looped back by ip_mloopback(),
432 			 * above, will be forwarded by the ip_input() routine,
433 			 * if necessary.
434 			 */
435 			extern struct socket *ip_mrouter;
436 
437 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
438 				if (ip_mforward(m, ifp) != 0) {
439 					m_freem(m);
440 					goto done;
441 				}
442 			}
443 		}
444 #endif
445 		/*
446 		 * Multicasts with a time-to-live of zero may be looped-
447 		 * back, above, but must not be transmitted on a network.
448 		 * Also, multicasts addressed to the loopback interface
449 		 * are not sent -- the above call to ip_mloopback() will
450 		 * loop back a copy if this host actually belongs to the
451 		 * destination group on the loopback interface.
452 		 */
453 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
454 			m_freem(m);
455 			goto done;
456 		}
457 
458 		goto sendit;
459 	}
460 	/*
461 	 * If source address not specified yet, use address
462 	 * of outgoing interface.
463 	 */
464 	if (in_nullhost(ip->ip_src)) {
465 		xifa = &ia->ia_ifa;
466 		if (xifa->ifa_getifa != NULL)
467 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
468 		ip->ip_src = ia->ia_addr.sin_addr;
469 	}
470 
471 	/*
472 	 * packets with Class-D address as source are not valid per
473 	 * RFC 1112
474 	 */
475 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
476 		ipstat.ips_odropped++;
477 		error = EADDRNOTAVAIL;
478 		goto bad;
479 	}
480 
481 	/*
482 	 * Look for broadcast address and
483 	 * and verify user is allowed to send
484 	 * such a packet.
485 	 */
486 	if (in_broadcast(dst->sin_addr, ifp)) {
487 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
488 			error = EADDRNOTAVAIL;
489 			goto bad;
490 		}
491 		if ((flags & IP_ALLOWBROADCAST) == 0) {
492 			error = EACCES;
493 			goto bad;
494 		}
495 		/* don't allow broadcast messages to be fragmented */
496 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
497 			error = EMSGSIZE;
498 			goto bad;
499 		}
500 		m->m_flags |= M_BCAST;
501 	} else
502 		m->m_flags &= ~M_BCAST;
503 
504 sendit:
505 	/*
506 	 * If we're doing Path MTU Discovery, we need to set DF unless
507 	 * the route's MTU is locked.
508 	 */
509 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
510 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
511 		ip->ip_off |= htons(IP_DF);
512 
513 	/* Remember the current ip_len */
514 	ip_len = ntohs(ip->ip_len);
515 
516 #ifdef IPSEC
517 	/* get SP for this packet */
518 	if (so == NULL)
519 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
520 		    flags, &error);
521 	else {
522 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
523 					 IPSEC_DIR_OUTBOUND))
524 			goto skip_ipsec;
525 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
526 	}
527 
528 	if (sp == NULL) {
529 		ipsecstat.out_inval++;
530 		goto bad;
531 	}
532 
533 	error = 0;
534 
535 	/* check policy */
536 	switch (sp->policy) {
537 	case IPSEC_POLICY_DISCARD:
538 		/*
539 		 * This packet is just discarded.
540 		 */
541 		ipsecstat.out_polvio++;
542 		goto bad;
543 
544 	case IPSEC_POLICY_BYPASS:
545 	case IPSEC_POLICY_NONE:
546 		/* no need to do IPsec. */
547 		goto skip_ipsec;
548 
549 	case IPSEC_POLICY_IPSEC:
550 		if (sp->req == NULL) {
551 			/* XXX should be panic ? */
552 			printf("ip_output: No IPsec request specified.\n");
553 			error = EINVAL;
554 			goto bad;
555 		}
556 		break;
557 
558 	case IPSEC_POLICY_ENTRUST:
559 	default:
560 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
561 	}
562 
563 #ifdef IPSEC_NAT_T
564 	/*
565 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
566 	 * we'll do it on each fragmented packet.
567 	 */
568 	if (sp->req->sav &&
569 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
570 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
571 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
572 			natt_frag = 1;
573 			mtu = sp->req->sav->esp_frag;
574 			goto skip_ipsec;
575 		}
576 	}
577 #endif /* IPSEC_NAT_T */
578 
579 	/*
580 	 * ipsec4_output() expects ip_len and ip_off in network
581 	 * order.  They have been set to network order above.
582 	 */
583 
584     {
585 	struct ipsec_output_state state;
586 	bzero(&state, sizeof(state));
587 	state.m = m;
588 	if (flags & IP_ROUTETOIF) {
589 		state.ro = &iproute;
590 		memset(&iproute, 0, sizeof(iproute));
591 	} else
592 		state.ro = ro;
593 	state.dst = sintocsa(dst);
594 
595 	/*
596 	 * We can't defer the checksum of payload data if
597 	 * we're about to encrypt/authenticate it.
598 	 *
599 	 * XXX When we support crypto offloading functions of
600 	 * XXX network interfaces, we need to reconsider this,
601 	 * XXX since it's likely that they'll support checksumming,
602 	 * XXX as well.
603 	 */
604 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
605 		in_delayed_cksum(m);
606 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
607 	}
608 
609 	error = ipsec4_output(&state, sp, flags);
610 
611 	m = state.m;
612 	if (flags & IP_ROUTETOIF) {
613 		/*
614 		 * if we have tunnel mode SA, we may need to ignore
615 		 * IP_ROUTETOIF.
616 		 */
617 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
618 			flags &= ~IP_ROUTETOIF;
619 			ro = state.ro;
620 		}
621 	} else
622 		ro = state.ro;
623 	dst = satocsin(state.dst);
624 	if (error) {
625 		/* mbuf is already reclaimed in ipsec4_output. */
626 		m0 = NULL;
627 		switch (error) {
628 		case EHOSTUNREACH:
629 		case ENETUNREACH:
630 		case EMSGSIZE:
631 		case ENOBUFS:
632 		case ENOMEM:
633 			break;
634 		default:
635 			printf("ip4_output (ipsec): error code %d\n", error);
636 			/*fall through*/
637 		case ENOENT:
638 			/* don't show these error codes to the user */
639 			error = 0;
640 			break;
641 		}
642 		goto bad;
643 	}
644 
645 	/* be sure to update variables that are affected by ipsec4_output() */
646 	ip = mtod(m, struct ip *);
647 	hlen = ip->ip_hl << 2;
648 	ip_len = ntohs(ip->ip_len);
649 
650 	if (ro->ro_rt == NULL) {
651 		if ((flags & IP_ROUTETOIF) == 0) {
652 			printf("ip_output: "
653 				"can't update route after IPsec processing\n");
654 			error = EHOSTUNREACH;	/*XXX*/
655 			goto bad;
656 		}
657 	} else {
658 		/* nobody uses ia beyond here */
659 		if (state.encap) {
660 			ifp = ro->ro_rt->rt_ifp;
661 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
662 				mtu = ifp->if_mtu;
663 		}
664 	}
665     }
666 skip_ipsec:
667 #endif /*IPSEC*/
668 #ifdef FAST_IPSEC
669 	/*
670 	 * Check the security policy (SP) for the packet and, if
671 	 * required, do IPsec-related processing.  There are two
672 	 * cases here; the first time a packet is sent through
673 	 * it will be untagged and handled by ipsec4_checkpolicy.
674 	 * If the packet is resubmitted to ip_output (e.g. after
675 	 * AH, ESP, etc. processing), there will be a tag to bypass
676 	 * the lookup and related policy checking.
677 	 */
678 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
679 	s = splsoftnet();
680 	if (mtag != NULL) {
681 		tdbi = (struct tdb_ident *)(mtag + 1);
682 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
683 		if (sp == NULL)
684 			error = -EINVAL;	/* force silent drop */
685 		m_tag_delete(m, mtag);
686 	} else {
687 		if (inp != NULL &&
688 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
689 			goto spd_done;
690 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
691 					&error, inp);
692 	}
693 	/*
694 	 * There are four return cases:
695 	 *    sp != NULL	 	    apply IPsec policy
696 	 *    sp == NULL, error == 0	    no IPsec handling needed
697 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
698 	 *    sp == NULL, error != 0	    discard packet, report error
699 	 */
700 	if (sp != NULL) {
701 #ifdef IPSEC_NAT_T
702 		/*
703 		 * NAT-T ESP fragmentation: don't do IPSec processing now,
704 		 * we'll do it on each fragmented packet.
705 		 */
706 		if (sp->req->sav &&
707 		    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
708 		     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
709 			if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
710 				natt_frag = 1;
711 				mtu = sp->req->sav->esp_frag;
712 				goto spd_done;
713 			}
714 		}
715 #endif /* IPSEC_NAT_T */
716 		/* Loop detection, check if ipsec processing already done */
717 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
718 		for (mtag = m_tag_first(m); mtag != NULL;
719 		     mtag = m_tag_next(m, mtag)) {
720 #ifdef MTAG_ABI_COMPAT
721 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
722 				continue;
723 #endif
724 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
725 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
726 				continue;
727 			/*
728 			 * Check if policy has an SA associated with it.
729 			 * This can happen when an SP has yet to acquire
730 			 * an SA; e.g. on first reference.  If it occurs,
731 			 * then we let ipsec4_process_packet do its thing.
732 			 */
733 			if (sp->req->sav == NULL)
734 				break;
735 			tdbi = (struct tdb_ident *)(mtag + 1);
736 			if (tdbi->spi == sp->req->sav->spi &&
737 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
738 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
739 				 sizeof (union sockaddr_union)) == 0) {
740 				/*
741 				 * No IPsec processing is needed, free
742 				 * reference to SP.
743 				 *
744 				 * NB: null pointer to avoid free at
745 				 *     done: below.
746 				 */
747 				KEY_FREESP(&sp), sp = NULL;
748 				splx(s);
749 				goto spd_done;
750 			}
751 		}
752 
753 		/*
754 		 * Do delayed checksums now because we send before
755 		 * this is done in the normal processing path.
756 		 */
757 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
758 			in_delayed_cksum(m);
759 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
760 		}
761 
762 #ifdef __FreeBSD__
763 		ip->ip_len = htons(ip->ip_len);
764 		ip->ip_off = htons(ip->ip_off);
765 #endif
766 
767 		/* NB: callee frees mbuf */
768 		error = ipsec4_process_packet(m, sp->req, flags, 0);
769 		/*
770 		 * Preserve KAME behaviour: ENOENT can be returned
771 		 * when an SA acquire is in progress.  Don't propagate
772 		 * this to user-level; it confuses applications.
773 		 *
774 		 * XXX this will go away when the SADB is redone.
775 		 */
776 		if (error == ENOENT)
777 			error = 0;
778 		splx(s);
779 		goto done;
780 	} else {
781 		splx(s);
782 
783 		if (error != 0) {
784 			/*
785 			 * Hack: -EINVAL is used to signal that a packet
786 			 * should be silently discarded.  This is typically
787 			 * because we asked key management for an SA and
788 			 * it was delayed (e.g. kicked up to IKE).
789 			 */
790 			if (error == -EINVAL)
791 				error = 0;
792 			goto bad;
793 		} else {
794 			/* No IPsec processing for this packet. */
795 		}
796 #ifdef notyet
797 		/*
798 		 * If deferred crypto processing is needed, check that
799 		 * the interface supports it.
800 		 */
801 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
802 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
803 			/* notify IPsec to do its own crypto */
804 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
805 			error = EHOSTUNREACH;
806 			goto bad;
807 		}
808 #endif
809 	}
810 spd_done:
811 #endif /* FAST_IPSEC */
812 
813 #ifdef PFIL_HOOKS
814 	/*
815 	 * Run through list of hooks for output packets.
816 	 */
817 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
818 		goto done;
819 	if (m == NULL)
820 		goto done;
821 
822 	ip = mtod(m, struct ip *);
823 	hlen = ip->ip_hl << 2;
824 	ip_len = ntohs(ip->ip_len);
825 #endif /* PFIL_HOOKS */
826 
827 	m->m_pkthdr.csum_data |= hlen << 16;
828 
829 #if IFA_STATS
830 	/*
831 	 * search for the source address structure to
832 	 * maintain output statistics.
833 	 */
834 	INADDR_TO_IA(ip->ip_src, ia);
835 #endif
836 
837 	/* Maybe skip checksums on loopback interfaces. */
838 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
839 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
840 	}
841 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
842 	/*
843 	 * If small enough for mtu of path, or if using TCP segmentation
844 	 * offload, can just send directly.
845 	 */
846 	if (ip_len <= mtu ||
847 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
848 #if IFA_STATS
849 		if (ia)
850 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
851 #endif
852 		/*
853 		 * Always initialize the sum to 0!  Some HW assisted
854 		 * checksumming requires this.
855 		 */
856 		ip->ip_sum = 0;
857 
858 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
859 			/*
860 			 * Perform any checksums that the hardware can't do
861 			 * for us.
862 			 *
863 			 * XXX Does any hardware require the {th,uh}_sum
864 			 * XXX fields to be 0?
865 			 */
866 			if (sw_csum & M_CSUM_IPv4) {
867 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
868 				ip->ip_sum = in_cksum(m, hlen);
869 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
870 			}
871 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
872 				if (IN_NEED_CHECKSUM(ifp,
873 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
874 					in_delayed_cksum(m);
875 				}
876 				m->m_pkthdr.csum_flags &=
877 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
878 			}
879 		}
880 
881 #ifdef IPSEC
882 		/* clean ipsec history once it goes out of the node */
883 		ipsec_delaux(m);
884 #endif
885 
886 		if (__predict_true(
887 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
888 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
889 			error =
890 			    (*ifp->if_output)(ifp, m,
891 				(m->m_flags & M_MCAST) ?
892 				    sintocsa(rdst) : sintocsa(dst),
893 				ro->ro_rt);
894 		} else {
895 			error =
896 			    ip_tso_output(ifp, m,
897 				(m->m_flags & M_MCAST) ?
898 				    sintocsa(rdst) : sintocsa(dst),
899 				ro->ro_rt);
900 		}
901 		goto done;
902 	}
903 
904 	/*
905 	 * We can't use HW checksumming if we're about to
906 	 * to fragment the packet.
907 	 *
908 	 * XXX Some hardware can do this.
909 	 */
910 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
911 		if (IN_NEED_CHECKSUM(ifp,
912 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
913 			in_delayed_cksum(m);
914 		}
915 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
916 	}
917 
918 	/*
919 	 * Too large for interface; fragment if possible.
920 	 * Must be able to put at least 8 bytes per fragment.
921 	 */
922 	if (ntohs(ip->ip_off) & IP_DF) {
923 		if (flags & IP_RETURNMTU)
924 			*mtu_p = mtu;
925 		error = EMSGSIZE;
926 		ipstat.ips_cantfrag++;
927 		goto bad;
928 	}
929 
930 	error = ip_fragment(m, ifp, mtu);
931 	if (error) {
932 		m = NULL;
933 		goto bad;
934 	}
935 
936 	for (; m; m = m0) {
937 		m0 = m->m_nextpkt;
938 		m->m_nextpkt = 0;
939 		if (error == 0) {
940 #if IFA_STATS
941 			if (ia)
942 				ia->ia_ifa.ifa_data.ifad_outbytes +=
943 				    ntohs(ip->ip_len);
944 #endif
945 #ifdef IPSEC
946 			/* clean ipsec history once it goes out of the node */
947 			ipsec_delaux(m);
948 #endif /* IPSEC */
949 
950 #ifdef IPSEC_NAT_T
951 			/*
952 			 * If we get there, the packet has not been handeld by
953 			 * IPSec whereas it should have. Now that it has been
954 			 * fragmented, re-inject it in ip_output so that IPsec
955 			 * processing can occur.
956 			 */
957 			if (natt_frag) {
958 				error = ip_output(m, opt,
959 				    ro, flags, imo, so, mtu_p);
960 			} else
961 #endif /* IPSEC_NAT_T */
962 			{
963 				KASSERT((m->m_pkthdr.csum_flags &
964 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
965 				error = (*ifp->if_output)(ifp, m,
966 				    (m->m_flags & M_MCAST) ?
967 					sintocsa(rdst) : sintocsa(dst),
968 				    ro->ro_rt);
969 			}
970 		} else
971 			m_freem(m);
972 	}
973 
974 	if (error == 0)
975 		ipstat.ips_fragmented++;
976 done:
977 	rtcache_free(&iproute);
978 
979 #ifdef IPSEC
980 	if (sp != NULL) {
981 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
982 			printf("DP ip_output call free SP:%p\n", sp));
983 		key_freesp(sp);
984 	}
985 #endif /* IPSEC */
986 #ifdef FAST_IPSEC
987 	if (sp != NULL)
988 		KEY_FREESP(&sp);
989 #endif /* FAST_IPSEC */
990 
991 	return (error);
992 bad:
993 	m_freem(m);
994 	goto done;
995 }
996 
997 int
998 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
999 {
1000 	struct ip *ip, *mhip;
1001 	struct mbuf *m0;
1002 	int len, hlen, off;
1003 	int mhlen, firstlen;
1004 	struct mbuf **mnext;
1005 	int sw_csum = m->m_pkthdr.csum_flags;
1006 	int fragments = 0;
1007 	int s;
1008 	int error = 0;
1009 
1010 	ip = mtod(m, struct ip *);
1011 	hlen = ip->ip_hl << 2;
1012 	if (ifp != NULL)
1013 		sw_csum &= ~ifp->if_csum_flags_tx;
1014 
1015 	len = (mtu - hlen) &~ 7;
1016 	if (len < 8) {
1017 		m_freem(m);
1018 		return (EMSGSIZE);
1019 	}
1020 
1021 	firstlen = len;
1022 	mnext = &m->m_nextpkt;
1023 
1024 	/*
1025 	 * Loop through length of segment after first fragment,
1026 	 * make new header and copy data of each part and link onto chain.
1027 	 */
1028 	m0 = m;
1029 	mhlen = sizeof (struct ip);
1030 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1031 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1032 		if (m == 0) {
1033 			error = ENOBUFS;
1034 			ipstat.ips_odropped++;
1035 			goto sendorfree;
1036 		}
1037 		MCLAIM(m, m0->m_owner);
1038 		*mnext = m;
1039 		mnext = &m->m_nextpkt;
1040 		m->m_data += max_linkhdr;
1041 		mhip = mtod(m, struct ip *);
1042 		*mhip = *ip;
1043 		/* we must inherit MCAST and BCAST flags */
1044 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1045 		if (hlen > sizeof (struct ip)) {
1046 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1047 			mhip->ip_hl = mhlen >> 2;
1048 		}
1049 		m->m_len = mhlen;
1050 		mhip->ip_off = ((off - hlen) >> 3) +
1051 		    (ntohs(ip->ip_off) & ~IP_MF);
1052 		if (ip->ip_off & htons(IP_MF))
1053 			mhip->ip_off |= IP_MF;
1054 		if (off + len >= ntohs(ip->ip_len))
1055 			len = ntohs(ip->ip_len) - off;
1056 		else
1057 			mhip->ip_off |= IP_MF;
1058 		HTONS(mhip->ip_off);
1059 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
1060 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1061 		if (m->m_next == 0) {
1062 			error = ENOBUFS;	/* ??? */
1063 			ipstat.ips_odropped++;
1064 			goto sendorfree;
1065 		}
1066 		m->m_pkthdr.len = mhlen + len;
1067 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1068 		mhip->ip_sum = 0;
1069 		if (sw_csum & M_CSUM_IPv4) {
1070 			mhip->ip_sum = in_cksum(m, mhlen);
1071 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1072 		} else {
1073 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1074 			m->m_pkthdr.csum_data |= mhlen << 16;
1075 		}
1076 		ipstat.ips_ofragments++;
1077 		fragments++;
1078 	}
1079 	/*
1080 	 * Update first fragment by trimming what's been copied out
1081 	 * and updating header, then send each fragment (in order).
1082 	 */
1083 	m = m0;
1084 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1085 	m->m_pkthdr.len = hlen + firstlen;
1086 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1087 	ip->ip_off |= htons(IP_MF);
1088 	ip->ip_sum = 0;
1089 	if (sw_csum & M_CSUM_IPv4) {
1090 		ip->ip_sum = in_cksum(m, hlen);
1091 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1092 	} else {
1093 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1094 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1095 			sizeof(struct ip));
1096 	}
1097 sendorfree:
1098 	/*
1099 	 * If there is no room for all the fragments, don't queue
1100 	 * any of them.
1101 	 */
1102 	if (ifp != NULL) {
1103 		s = splnet();
1104 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1105 		    error == 0) {
1106 			error = ENOBUFS;
1107 			ipstat.ips_odropped++;
1108 			IFQ_INC_DROPS(&ifp->if_snd);
1109 		}
1110 		splx(s);
1111 	}
1112 	if (error) {
1113 		for (m = m0; m; m = m0) {
1114 			m0 = m->m_nextpkt;
1115 			m->m_nextpkt = NULL;
1116 			m_freem(m);
1117 		}
1118 	}
1119 	return (error);
1120 }
1121 
1122 /*
1123  * Process a delayed payload checksum calculation.
1124  */
1125 void
1126 in_delayed_cksum(struct mbuf *m)
1127 {
1128 	struct ip *ip;
1129 	u_int16_t csum, offset;
1130 
1131 	ip = mtod(m, struct ip *);
1132 	offset = ip->ip_hl << 2;
1133 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1134 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1135 		csum = 0xffff;
1136 
1137 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1138 
1139 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
1140 		/* This happen when ip options were inserted
1141 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1142 		    m->m_len, offset, ip->ip_p);
1143 		 */
1144 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
1145 	} else
1146 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
1147 }
1148 
1149 /*
1150  * Determine the maximum length of the options to be inserted;
1151  * we would far rather allocate too much space rather than too little.
1152  */
1153 
1154 u_int
1155 ip_optlen(struct inpcb *inp)
1156 {
1157 	struct mbuf *m = inp->inp_options;
1158 
1159 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1160 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1161 	else
1162 		return 0;
1163 }
1164 
1165 
1166 /*
1167  * Insert IP options into preformed packet.
1168  * Adjust IP destination as required for IP source routing,
1169  * as indicated by a non-zero in_addr at the start of the options.
1170  */
1171 static struct mbuf *
1172 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1173 {
1174 	struct ipoption *p = mtod(opt, struct ipoption *);
1175 	struct mbuf *n;
1176 	struct ip *ip = mtod(m, struct ip *);
1177 	unsigned optlen;
1178 
1179 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1180 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1181 		return (m);		/* XXX should fail */
1182 	if (!in_nullhost(p->ipopt_dst))
1183 		ip->ip_dst = p->ipopt_dst;
1184 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1185 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1186 		if (n == 0)
1187 			return (m);
1188 		MCLAIM(n, m->m_owner);
1189 		M_MOVE_PKTHDR(n, m);
1190 		m->m_len -= sizeof(struct ip);
1191 		m->m_data += sizeof(struct ip);
1192 		n->m_next = m;
1193 		m = n;
1194 		m->m_len = optlen + sizeof(struct ip);
1195 		m->m_data += max_linkhdr;
1196 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1197 	} else {
1198 		m->m_data -= optlen;
1199 		m->m_len += optlen;
1200 		memmove(mtod(m, void *), ip, sizeof(struct ip));
1201 	}
1202 	m->m_pkthdr.len += optlen;
1203 	ip = mtod(m, struct ip *);
1204 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1205 	*phlen = sizeof(struct ip) + optlen;
1206 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1207 	return (m);
1208 }
1209 
1210 /*
1211  * Copy options from ip to jp,
1212  * omitting those not copied during fragmentation.
1213  */
1214 int
1215 ip_optcopy(struct ip *ip, struct ip *jp)
1216 {
1217 	u_char *cp, *dp;
1218 	int opt, optlen, cnt;
1219 
1220 	cp = (u_char *)(ip + 1);
1221 	dp = (u_char *)(jp + 1);
1222 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1223 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1224 		opt = cp[0];
1225 		if (opt == IPOPT_EOL)
1226 			break;
1227 		if (opt == IPOPT_NOP) {
1228 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1229 			*dp++ = IPOPT_NOP;
1230 			optlen = 1;
1231 			continue;
1232 		}
1233 #ifdef DIAGNOSTIC
1234 		if (cnt < IPOPT_OLEN + sizeof(*cp))
1235 			panic("malformed IPv4 option passed to ip_optcopy");
1236 #endif
1237 		optlen = cp[IPOPT_OLEN];
1238 #ifdef DIAGNOSTIC
1239 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1240 			panic("malformed IPv4 option passed to ip_optcopy");
1241 #endif
1242 		/* bogus lengths should have been caught by ip_dooptions */
1243 		if (optlen > cnt)
1244 			optlen = cnt;
1245 		if (IPOPT_COPIED(opt)) {
1246 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1247 			dp += optlen;
1248 		}
1249 	}
1250 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1251 		*dp++ = IPOPT_EOL;
1252 	return (optlen);
1253 }
1254 
1255 /*
1256  * IP socket option processing.
1257  */
1258 int
1259 ip_ctloutput(int op, struct socket *so, int level, int optname,
1260     struct mbuf **mp)
1261 {
1262 	struct inpcb *inp = sotoinpcb(so);
1263 	struct mbuf *m = *mp;
1264 	int optval = 0;
1265 	int error = 0;
1266 #if defined(IPSEC) || defined(FAST_IPSEC)
1267 	struct lwp *l = curlwp;	/*XXX*/
1268 #endif
1269 
1270 	if (level != IPPROTO_IP) {
1271 		if (op == PRCO_SETOPT && *mp)
1272 			(void) m_free(*mp);
1273 		if (level == SOL_SOCKET && optname == SO_NOHEADER)
1274 			return 0;
1275 		return ENOPROTOOPT;
1276 	}
1277 
1278 	switch (op) {
1279 
1280 	case PRCO_SETOPT:
1281 		switch (optname) {
1282 		case IP_OPTIONS:
1283 #ifdef notyet
1284 		case IP_RETOPTS:
1285 			return (ip_pcbopts(optname, &inp->inp_options, m));
1286 #else
1287 			return (ip_pcbopts(&inp->inp_options, m));
1288 #endif
1289 
1290 		case IP_TOS:
1291 		case IP_TTL:
1292 		case IP_RECVOPTS:
1293 		case IP_RECVRETOPTS:
1294 		case IP_RECVDSTADDR:
1295 		case IP_RECVIF:
1296 			if (m == NULL || m->m_len != sizeof(int))
1297 				error = EINVAL;
1298 			else {
1299 				optval = *mtod(m, int *);
1300 				switch (optname) {
1301 
1302 				case IP_TOS:
1303 					inp->inp_ip.ip_tos = optval;
1304 					break;
1305 
1306 				case IP_TTL:
1307 					inp->inp_ip.ip_ttl = optval;
1308 					break;
1309 #define	OPTSET(bit) \
1310 	if (optval) \
1311 		inp->inp_flags |= bit; \
1312 	else \
1313 		inp->inp_flags &= ~bit;
1314 
1315 				case IP_RECVOPTS:
1316 					OPTSET(INP_RECVOPTS);
1317 					break;
1318 
1319 				case IP_RECVRETOPTS:
1320 					OPTSET(INP_RECVRETOPTS);
1321 					break;
1322 
1323 				case IP_RECVDSTADDR:
1324 					OPTSET(INP_RECVDSTADDR);
1325 					break;
1326 
1327 				case IP_RECVIF:
1328 					OPTSET(INP_RECVIF);
1329 					break;
1330 				}
1331 			}
1332 			break;
1333 #undef OPTSET
1334 
1335 		case IP_MULTICAST_IF:
1336 		case IP_MULTICAST_TTL:
1337 		case IP_MULTICAST_LOOP:
1338 		case IP_ADD_MEMBERSHIP:
1339 		case IP_DROP_MEMBERSHIP:
1340 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
1341 			break;
1342 
1343 		case IP_PORTRANGE:
1344 			if (m == 0 || m->m_len != sizeof(int))
1345 				error = EINVAL;
1346 			else {
1347 				optval = *mtod(m, int *);
1348 
1349 				switch (optval) {
1350 
1351 				case IP_PORTRANGE_DEFAULT:
1352 				case IP_PORTRANGE_HIGH:
1353 					inp->inp_flags &= ~(INP_LOWPORT);
1354 					break;
1355 
1356 				case IP_PORTRANGE_LOW:
1357 					inp->inp_flags |= INP_LOWPORT;
1358 					break;
1359 
1360 				default:
1361 					error = EINVAL;
1362 					break;
1363 				}
1364 			}
1365 			break;
1366 
1367 #if defined(IPSEC) || defined(FAST_IPSEC)
1368 		case IP_IPSEC_POLICY:
1369 		{
1370 			void *req = NULL;
1371 			size_t len = 0;
1372 			int priv = 0;
1373 
1374 #ifdef __NetBSD__
1375 			if (l == 0 || kauth_authorize_generic(l->l_cred,
1376 			    KAUTH_GENERIC_ISSUSER, NULL))
1377 				priv = 0;
1378 			else
1379 				priv = 1;
1380 #else
1381 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
1382 #endif
1383 			if (m) {
1384 				req = mtod(m, void *);
1385 				len = m->m_len;
1386 			}
1387 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1388 			break;
1389 		    }
1390 #endif /*IPSEC*/
1391 
1392 		default:
1393 			error = ENOPROTOOPT;
1394 			break;
1395 		}
1396 		if (m)
1397 			(void)m_free(m);
1398 		break;
1399 
1400 	case PRCO_GETOPT:
1401 		switch (optname) {
1402 		case IP_OPTIONS:
1403 		case IP_RETOPTS:
1404 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1405 			MCLAIM(m, so->so_mowner);
1406 			if (inp->inp_options) {
1407 				m->m_len = inp->inp_options->m_len;
1408 				bcopy(mtod(inp->inp_options, void *),
1409 				    mtod(m, void *), (unsigned)m->m_len);
1410 			} else
1411 				m->m_len = 0;
1412 			break;
1413 
1414 		case IP_TOS:
1415 		case IP_TTL:
1416 		case IP_RECVOPTS:
1417 		case IP_RECVRETOPTS:
1418 		case IP_RECVDSTADDR:
1419 		case IP_RECVIF:
1420 		case IP_ERRORMTU:
1421 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1422 			MCLAIM(m, so->so_mowner);
1423 			m->m_len = sizeof(int);
1424 			switch (optname) {
1425 
1426 			case IP_TOS:
1427 				optval = inp->inp_ip.ip_tos;
1428 				break;
1429 
1430 			case IP_TTL:
1431 				optval = inp->inp_ip.ip_ttl;
1432 				break;
1433 
1434 			case IP_ERRORMTU:
1435 				optval = inp->inp_errormtu;
1436 				break;
1437 
1438 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1439 
1440 			case IP_RECVOPTS:
1441 				optval = OPTBIT(INP_RECVOPTS);
1442 				break;
1443 
1444 			case IP_RECVRETOPTS:
1445 				optval = OPTBIT(INP_RECVRETOPTS);
1446 				break;
1447 
1448 			case IP_RECVDSTADDR:
1449 				optval = OPTBIT(INP_RECVDSTADDR);
1450 				break;
1451 
1452 			case IP_RECVIF:
1453 				optval = OPTBIT(INP_RECVIF);
1454 				break;
1455 			}
1456 			*mtod(m, int *) = optval;
1457 			break;
1458 
1459 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
1460 		/* XXX: code broken */
1461 		case IP_IPSEC_POLICY:
1462 		{
1463 			void *req = NULL;
1464 			size_t len = 0;
1465 
1466 			if (m) {
1467 				req = mtod(m, void *);
1468 				len = m->m_len;
1469 			}
1470 			error = ipsec4_get_policy(inp, req, len, mp);
1471 			break;
1472 		}
1473 #endif /*IPSEC*/
1474 
1475 		case IP_MULTICAST_IF:
1476 		case IP_MULTICAST_TTL:
1477 		case IP_MULTICAST_LOOP:
1478 		case IP_ADD_MEMBERSHIP:
1479 		case IP_DROP_MEMBERSHIP:
1480 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
1481 			if (*mp)
1482 				MCLAIM(*mp, so->so_mowner);
1483 			break;
1484 
1485 		case IP_PORTRANGE:
1486 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1487 			MCLAIM(m, so->so_mowner);
1488 			m->m_len = sizeof(int);
1489 
1490 			if (inp->inp_flags & INP_LOWPORT)
1491 				optval = IP_PORTRANGE_LOW;
1492 			else
1493 				optval = IP_PORTRANGE_DEFAULT;
1494 
1495 			*mtod(m, int *) = optval;
1496 			break;
1497 
1498 		default:
1499 			error = ENOPROTOOPT;
1500 			break;
1501 		}
1502 		break;
1503 	}
1504 	return (error);
1505 }
1506 
1507 /*
1508  * Set up IP options in pcb for insertion in output packets.
1509  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1510  * with destination address if source routed.
1511  */
1512 int
1513 #ifdef notyet
1514 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1515 #else
1516 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1517 #endif
1518 {
1519 	int cnt, optlen;
1520 	u_char *cp;
1521 	u_char opt;
1522 
1523 	/* turn off any old options */
1524 	if (*pcbopt)
1525 		(void)m_free(*pcbopt);
1526 	*pcbopt = 0;
1527 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1528 		/*
1529 		 * Only turning off any previous options.
1530 		 */
1531 		if (m)
1532 			(void)m_free(m);
1533 		return (0);
1534 	}
1535 
1536 #ifndef	__vax__
1537 	if (m->m_len % sizeof(int32_t))
1538 		goto bad;
1539 #endif
1540 	/*
1541 	 * IP first-hop destination address will be stored before
1542 	 * actual options; move other options back
1543 	 * and clear it when none present.
1544 	 */
1545 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1546 		goto bad;
1547 	cnt = m->m_len;
1548 	m->m_len += sizeof(struct in_addr);
1549 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1550 	memmove(cp, mtod(m, void *), (unsigned)cnt);
1551 	bzero(mtod(m, void *), sizeof(struct in_addr));
1552 
1553 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1554 		opt = cp[IPOPT_OPTVAL];
1555 		if (opt == IPOPT_EOL)
1556 			break;
1557 		if (opt == IPOPT_NOP)
1558 			optlen = 1;
1559 		else {
1560 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1561 				goto bad;
1562 			optlen = cp[IPOPT_OLEN];
1563 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1564 				goto bad;
1565 		}
1566 		switch (opt) {
1567 
1568 		default:
1569 			break;
1570 
1571 		case IPOPT_LSRR:
1572 		case IPOPT_SSRR:
1573 			/*
1574 			 * user process specifies route as:
1575 			 *	->A->B->C->D
1576 			 * D must be our final destination (but we can't
1577 			 * check that since we may not have connected yet).
1578 			 * A is first hop destination, which doesn't appear in
1579 			 * actual IP option, but is stored before the options.
1580 			 */
1581 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1582 				goto bad;
1583 			m->m_len -= sizeof(struct in_addr);
1584 			cnt -= sizeof(struct in_addr);
1585 			optlen -= sizeof(struct in_addr);
1586 			cp[IPOPT_OLEN] = optlen;
1587 			/*
1588 			 * Move first hop before start of options.
1589 			 */
1590 			bcopy((void *)&cp[IPOPT_OFFSET+1], mtod(m, void *),
1591 			    sizeof(struct in_addr));
1592 			/*
1593 			 * Then copy rest of options back
1594 			 * to close up the deleted entry.
1595 			 */
1596 			(void)memmove(&cp[IPOPT_OFFSET+1],
1597 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1598 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1599 			break;
1600 		}
1601 	}
1602 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1603 		goto bad;
1604 	*pcbopt = m;
1605 	return (0);
1606 
1607 bad:
1608 	(void)m_free(m);
1609 	return (EINVAL);
1610 }
1611 
1612 /*
1613  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1614  */
1615 static struct ifnet *
1616 ip_multicast_if(struct in_addr *a, int *ifindexp)
1617 {
1618 	int ifindex;
1619 	struct ifnet *ifp = NULL;
1620 	struct in_ifaddr *ia;
1621 
1622 	if (ifindexp)
1623 		*ifindexp = 0;
1624 	if (ntohl(a->s_addr) >> 24 == 0) {
1625 		ifindex = ntohl(a->s_addr) & 0xffffff;
1626 		if (ifindex < 0 || if_indexlim <= ifindex)
1627 			return NULL;
1628 		ifp = ifindex2ifnet[ifindex];
1629 		if (!ifp)
1630 			return NULL;
1631 		if (ifindexp)
1632 			*ifindexp = ifindex;
1633 	} else {
1634 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1635 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1636 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1637 				ifp = ia->ia_ifp;
1638 				break;
1639 			}
1640 		}
1641 	}
1642 	return ifp;
1643 }
1644 
1645 static int
1646 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1647 {
1648 	u_int tval;
1649 
1650 	if (m == NULL)
1651 		return EINVAL;
1652 
1653 	switch (m->m_len) {
1654 	case sizeof(u_char):
1655 		tval = *(mtod(m, u_char *));
1656 		break;
1657 	case sizeof(u_int):
1658 		tval = *(mtod(m, u_int *));
1659 		break;
1660 	default:
1661 		return EINVAL;
1662 	}
1663 
1664 	if (tval > maxval)
1665 		return EINVAL;
1666 
1667 	*val = tval;
1668 	return 0;
1669 }
1670 
1671 /*
1672  * Set the IP multicast options in response to user setsockopt().
1673  */
1674 int
1675 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1676 {
1677 	int error = 0;
1678 	int i;
1679 	struct in_addr addr;
1680 	struct ip_mreq *mreq;
1681 	struct ifnet *ifp;
1682 	struct ip_moptions *imo = *imop;
1683 	int ifindex;
1684 
1685 	if (imo == NULL) {
1686 		/*
1687 		 * No multicast option buffer attached to the pcb;
1688 		 * allocate one and initialize to default values.
1689 		 */
1690 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1691 		    M_WAITOK);
1692 
1693 		if (imo == NULL)
1694 			return (ENOBUFS);
1695 		*imop = imo;
1696 		imo->imo_multicast_ifp = NULL;
1697 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1698 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1699 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1700 		imo->imo_num_memberships = 0;
1701 	}
1702 
1703 	switch (optname) {
1704 
1705 	case IP_MULTICAST_IF:
1706 		/*
1707 		 * Select the interface for outgoing multicast packets.
1708 		 */
1709 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1710 			error = EINVAL;
1711 			break;
1712 		}
1713 		addr = *(mtod(m, struct in_addr *));
1714 		/*
1715 		 * INADDR_ANY is used to remove a previous selection.
1716 		 * When no interface is selected, a default one is
1717 		 * chosen every time a multicast packet is sent.
1718 		 */
1719 		if (in_nullhost(addr)) {
1720 			imo->imo_multicast_ifp = NULL;
1721 			break;
1722 		}
1723 		/*
1724 		 * The selected interface is identified by its local
1725 		 * IP address.  Find the interface and confirm that
1726 		 * it supports multicasting.
1727 		 */
1728 		ifp = ip_multicast_if(&addr, &ifindex);
1729 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1730 			error = EADDRNOTAVAIL;
1731 			break;
1732 		}
1733 		imo->imo_multicast_ifp = ifp;
1734 		if (ifindex)
1735 			imo->imo_multicast_addr = addr;
1736 		else
1737 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1738 		break;
1739 
1740 	case IP_MULTICAST_TTL:
1741 		/*
1742 		 * Set the IP time-to-live for outgoing multicast packets.
1743 		 */
1744 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1745 		break;
1746 
1747 	case IP_MULTICAST_LOOP:
1748 		/*
1749 		 * Set the loopback flag for outgoing multicast packets.
1750 		 * Must be zero or one.
1751 		 */
1752 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1753 		break;
1754 
1755 	case IP_ADD_MEMBERSHIP:
1756 		/*
1757 		 * Add a multicast group membership.
1758 		 * Group must be a valid IP multicast address.
1759 		 */
1760 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1761 			error = EINVAL;
1762 			break;
1763 		}
1764 		mreq = mtod(m, struct ip_mreq *);
1765 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1766 			error = EINVAL;
1767 			break;
1768 		}
1769 		/*
1770 		 * If no interface address was provided, use the interface of
1771 		 * the route to the given multicast address.
1772 		 */
1773 		if (in_nullhost(mreq->imr_interface)) {
1774 			union {
1775 				struct sockaddr		dst;
1776 				struct sockaddr_in	dst4;
1777 			} u;
1778 			struct route ro;
1779 
1780 			memset(&ro, 0, sizeof(ro));
1781 
1782 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1783 			rtcache_setdst(&ro, &u.dst);
1784 			rtcache_init(&ro);
1785 			ifp = (ro.ro_rt != NULL) ? ro.ro_rt->rt_ifp : NULL;
1786 			rtcache_free(&ro);
1787 		} else {
1788 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1789 		}
1790 		/*
1791 		 * See if we found an interface, and confirm that it
1792 		 * supports multicast.
1793 		 */
1794 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1795 			error = EADDRNOTAVAIL;
1796 			break;
1797 		}
1798 		/*
1799 		 * See if the membership already exists or if all the
1800 		 * membership slots are full.
1801 		 */
1802 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1803 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1804 			    in_hosteq(imo->imo_membership[i]->inm_addr,
1805 				      mreq->imr_multiaddr))
1806 				break;
1807 		}
1808 		if (i < imo->imo_num_memberships) {
1809 			error = EADDRINUSE;
1810 			break;
1811 		}
1812 		if (i == IP_MAX_MEMBERSHIPS) {
1813 			error = ETOOMANYREFS;
1814 			break;
1815 		}
1816 		/*
1817 		 * Everything looks good; add a new record to the multicast
1818 		 * address list for the given interface.
1819 		 */
1820 		if ((imo->imo_membership[i] =
1821 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1822 			error = ENOBUFS;
1823 			break;
1824 		}
1825 		++imo->imo_num_memberships;
1826 		break;
1827 
1828 	case IP_DROP_MEMBERSHIP:
1829 		/*
1830 		 * Drop a multicast group membership.
1831 		 * Group must be a valid IP multicast address.
1832 		 */
1833 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1834 			error = EINVAL;
1835 			break;
1836 		}
1837 		mreq = mtod(m, struct ip_mreq *);
1838 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1839 			error = EINVAL;
1840 			break;
1841 		}
1842 		/*
1843 		 * If an interface address was specified, get a pointer
1844 		 * to its ifnet structure.
1845 		 */
1846 		if (in_nullhost(mreq->imr_interface))
1847 			ifp = NULL;
1848 		else {
1849 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1850 			if (ifp == NULL) {
1851 				error = EADDRNOTAVAIL;
1852 				break;
1853 			}
1854 		}
1855 		/*
1856 		 * Find the membership in the membership array.
1857 		 */
1858 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1859 			if ((ifp == NULL ||
1860 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1861 			     in_hosteq(imo->imo_membership[i]->inm_addr,
1862 				       mreq->imr_multiaddr))
1863 				break;
1864 		}
1865 		if (i == imo->imo_num_memberships) {
1866 			error = EADDRNOTAVAIL;
1867 			break;
1868 		}
1869 		/*
1870 		 * Give up the multicast address record to which the
1871 		 * membership points.
1872 		 */
1873 		in_delmulti(imo->imo_membership[i]);
1874 		/*
1875 		 * Remove the gap in the membership array.
1876 		 */
1877 		for (++i; i < imo->imo_num_memberships; ++i)
1878 			imo->imo_membership[i-1] = imo->imo_membership[i];
1879 		--imo->imo_num_memberships;
1880 		break;
1881 
1882 	default:
1883 		error = EOPNOTSUPP;
1884 		break;
1885 	}
1886 
1887 	/*
1888 	 * If all options have default values, no need to keep the mbuf.
1889 	 */
1890 	if (imo->imo_multicast_ifp == NULL &&
1891 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1892 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1893 	    imo->imo_num_memberships == 0) {
1894 		free(*imop, M_IPMOPTS);
1895 		*imop = NULL;
1896 	}
1897 
1898 	return (error);
1899 }
1900 
1901 /*
1902  * Return the IP multicast options in response to user getsockopt().
1903  */
1904 int
1905 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1906 {
1907 	u_char *ttl;
1908 	u_char *loop;
1909 	struct in_addr *addr;
1910 	struct in_ifaddr *ia;
1911 
1912 	*mp = m_get(M_WAIT, MT_SOOPTS);
1913 
1914 	switch (optname) {
1915 
1916 	case IP_MULTICAST_IF:
1917 		addr = mtod(*mp, struct in_addr *);
1918 		(*mp)->m_len = sizeof(struct in_addr);
1919 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1920 			*addr = zeroin_addr;
1921 		else if (imo->imo_multicast_addr.s_addr) {
1922 			/* return the value user has set */
1923 			*addr = imo->imo_multicast_addr;
1924 		} else {
1925 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1926 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1927 		}
1928 		return (0);
1929 
1930 	case IP_MULTICAST_TTL:
1931 		ttl = mtod(*mp, u_char *);
1932 		(*mp)->m_len = 1;
1933 		*ttl = imo ? imo->imo_multicast_ttl
1934 			   : IP_DEFAULT_MULTICAST_TTL;
1935 		return (0);
1936 
1937 	case IP_MULTICAST_LOOP:
1938 		loop = mtod(*mp, u_char *);
1939 		(*mp)->m_len = 1;
1940 		*loop = imo ? imo->imo_multicast_loop
1941 			    : IP_DEFAULT_MULTICAST_LOOP;
1942 		return (0);
1943 
1944 	default:
1945 		return (EOPNOTSUPP);
1946 	}
1947 }
1948 
1949 /*
1950  * Discard the IP multicast options.
1951  */
1952 void
1953 ip_freemoptions(struct ip_moptions *imo)
1954 {
1955 	int i;
1956 
1957 	if (imo != NULL) {
1958 		for (i = 0; i < imo->imo_num_memberships; ++i)
1959 			in_delmulti(imo->imo_membership[i]);
1960 		free(imo, M_IPMOPTS);
1961 	}
1962 }
1963 
1964 /*
1965  * Routine called from ip_output() to loop back a copy of an IP multicast
1966  * packet to the input queue of a specified interface.  Note that this
1967  * calls the output routine of the loopback "driver", but with an interface
1968  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1969  */
1970 static void
1971 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1972 {
1973 	struct ip *ip;
1974 	struct mbuf *copym;
1975 
1976 	copym = m_copypacket(m, M_DONTWAIT);
1977 	if (copym != NULL
1978 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1979 		copym = m_pullup(copym, sizeof(struct ip));
1980 	if (copym == NULL)
1981 		return;
1982 	/*
1983 	 * We don't bother to fragment if the IP length is greater
1984 	 * than the interface's MTU.  Can this possibly matter?
1985 	 */
1986 	ip = mtod(copym, struct ip *);
1987 
1988 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1989 		in_delayed_cksum(copym);
1990 		copym->m_pkthdr.csum_flags &=
1991 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1992 	}
1993 
1994 	ip->ip_sum = 0;
1995 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1996 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
1997 }
1998