1 /* $NetBSD: ip_output.c,v 1.285 2017/11/17 07:37:12 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1998 The NetBSD Foundation, Inc. 34 * All rights reserved. 35 * 36 * This code is derived from software contributed to The NetBSD Foundation 37 * by Public Access Networks Corporation ("Panix"). It was developed under 38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 59 * POSSIBILITY OF SUCH DAMAGE. 60 */ 61 62 /* 63 * Copyright (c) 1982, 1986, 1988, 1990, 1993 64 * The Regents of the University of California. All rights reserved. 65 * 66 * Redistribution and use in source and binary forms, with or without 67 * modification, are permitted provided that the following conditions 68 * are met: 69 * 1. Redistributions of source code must retain the above copyright 70 * notice, this list of conditions and the following disclaimer. 71 * 2. Redistributions in binary form must reproduce the above copyright 72 * notice, this list of conditions and the following disclaimer in the 73 * documentation and/or other materials provided with the distribution. 74 * 3. Neither the name of the University nor the names of its contributors 75 * may be used to endorse or promote products derived from this software 76 * without specific prior written permission. 77 * 78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 88 * SUCH DAMAGE. 89 * 90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 91 */ 92 93 #include <sys/cdefs.h> 94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.285 2017/11/17 07:37:12 ozaki-r Exp $"); 95 96 #ifdef _KERNEL_OPT 97 #include "opt_inet.h" 98 #include "opt_ipsec.h" 99 #include "opt_mrouting.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mpls.h" 102 #endif 103 104 #include "arp.h" 105 106 #include <sys/param.h> 107 #include <sys/kmem.h> 108 #include <sys/mbuf.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/kauth.h> 112 #include <sys/systm.h> 113 #include <sys/syslog.h> 114 115 #include <net/if.h> 116 #include <net/if_types.h> 117 #include <net/route.h> 118 #include <net/pfil.h> 119 120 #include <netinet/in.h> 121 #include <netinet/in_systm.h> 122 #include <netinet/ip.h> 123 #include <netinet/in_pcb.h> 124 #include <netinet/in_var.h> 125 #include <netinet/ip_var.h> 126 #include <netinet/ip_private.h> 127 #include <netinet/in_offload.h> 128 #include <netinet/portalgo.h> 129 #include <netinet/udp.h> 130 #include <netinet/udp_var.h> 131 132 #ifdef INET6 133 #include <netinet6/ip6_var.h> 134 #endif 135 136 #ifdef MROUTING 137 #include <netinet/ip_mroute.h> 138 #endif 139 140 #ifdef IPSEC 141 #include <netipsec/ipsec.h> 142 #include <netipsec/key.h> 143 #endif 144 145 #ifdef MPLS 146 #include <netmpls/mpls.h> 147 #include <netmpls/mpls_var.h> 148 #endif 149 150 static int ip_pcbopts(struct inpcb *, const struct sockopt *); 151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); 152 static struct ifnet *ip_multicast_if(struct in_addr *, int *); 153 static void ip_mloopback(struct ifnet *, struct mbuf *, 154 const struct sockaddr_in *); 155 static int ip_ifaddrvalid(const struct in_ifaddr *); 156 157 extern pfil_head_t *inet_pfil_hook; /* XXX */ 158 159 int ip_do_loopback_cksum = 0; 160 161 static int 162 ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m, 163 const struct rtentry *rt) 164 { 165 int error = 0; 166 #ifdef MPLS 167 union mpls_shim msh; 168 169 if (rt == NULL || rt_gettag(rt) == NULL || 170 rt_gettag(rt)->sa_family != AF_MPLS || 171 (m->m_flags & (M_MCAST | M_BCAST)) != 0 || 172 ifp->if_type != IFT_ETHER) 173 return 0; 174 175 msh.s_addr = MPLS_GETSADDR(rt); 176 if (msh.shim.label != MPLS_LABEL_IMPLNULL) { 177 struct m_tag *mtag; 178 /* 179 * XXX tentative solution to tell ether_output 180 * it's MPLS. Need some more efficient solution. 181 */ 182 mtag = m_tag_get(PACKET_TAG_MPLS, 183 sizeof(int) /* dummy */, 184 M_NOWAIT); 185 if (mtag == NULL) 186 return ENOMEM; 187 m_tag_prepend(m, mtag); 188 } 189 #endif 190 return error; 191 } 192 193 /* 194 * Send an IP packet to a host. 195 */ 196 int 197 ip_if_output(struct ifnet * const ifp, struct mbuf * const m, 198 const struct sockaddr * const dst, const struct rtentry *rt) 199 { 200 int error = 0; 201 202 if (rt != NULL) { 203 error = rt_check_reject_route(rt, ifp); 204 if (error != 0) { 205 m_freem(m); 206 return error; 207 } 208 } 209 210 error = ip_mark_mpls(ifp, m, rt); 211 if (error != 0) { 212 m_freem(m); 213 return error; 214 } 215 216 error = if_output_lock(ifp, ifp, m, dst, rt); 217 218 return error; 219 } 220 221 /* 222 * IP output. The packet in mbuf chain m contains a skeletal IP 223 * header (with len, off, ttl, proto, tos, src, dst). 224 * The mbuf chain containing the packet will be freed. 225 * The mbuf opt, if present, will not be freed. 226 */ 227 int 228 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags, 229 struct ip_moptions *imo, struct inpcb *inp) 230 { 231 struct rtentry *rt; 232 struct ip *ip; 233 struct ifnet *ifp, *mifp = NULL; 234 struct mbuf *m = m0; 235 int hlen = sizeof (struct ip); 236 int len, error = 0; 237 struct route iproute; 238 const struct sockaddr_in *dst; 239 struct in_ifaddr *ia = NULL; 240 struct ifaddr *ifa; 241 int isbroadcast; 242 int sw_csum; 243 u_long mtu; 244 bool natt_frag = false; 245 bool rtmtu_nolock; 246 union { 247 struct sockaddr sa; 248 struct sockaddr_in sin; 249 } udst, usrc; 250 struct sockaddr *rdst = &udst.sa; /* real IP destination, as 251 * opposed to the nexthop 252 */ 253 struct psref psref, psref_ia; 254 int bound; 255 bool bind_need_restore = false; 256 257 len = 0; 258 259 MCLAIM(m, &ip_tx_mowner); 260 261 KASSERT((m->m_flags & M_PKTHDR) != 0); 262 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0); 263 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 264 (M_CSUM_TCPv4|M_CSUM_UDPv4)); 265 266 if (opt) { 267 m = ip_insertoptions(m, opt, &len); 268 if (len >= sizeof(struct ip)) 269 hlen = len; 270 } 271 ip = mtod(m, struct ip *); 272 273 /* 274 * Fill in IP header. 275 */ 276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 277 ip->ip_v = IPVERSION; 278 ip->ip_off = htons(0); 279 /* ip->ip_id filled in after we find out source ia */ 280 ip->ip_hl = hlen >> 2; 281 IP_STATINC(IP_STAT_LOCALOUT); 282 } else { 283 hlen = ip->ip_hl << 2; 284 } 285 286 /* 287 * Route packet. 288 */ 289 if (ro == NULL) { 290 memset(&iproute, 0, sizeof(iproute)); 291 ro = &iproute; 292 } 293 sockaddr_in_init(&udst.sin, &ip->ip_dst, 0); 294 dst = satocsin(rtcache_getdst(ro)); 295 296 /* 297 * If there is a cached route, check that it is to the same 298 * destination and is still up. If not, free it and try again. 299 * The address family should also be checked in case of sharing 300 * the cache with IPv6. 301 */ 302 if (dst && (dst->sin_family != AF_INET || 303 !in_hosteq(dst->sin_addr, ip->ip_dst))) 304 rtcache_free(ro); 305 306 if ((rt = rtcache_validate(ro)) == NULL && 307 (rt = rtcache_update(ro, 1)) == NULL) { 308 dst = &udst.sin; 309 error = rtcache_setdst(ro, &udst.sa); 310 if (error != 0) 311 goto bad; 312 } 313 314 bound = curlwp_bind(); 315 bind_need_restore = true; 316 /* 317 * If routing to interface only, short circuit routing lookup. 318 */ 319 if (flags & IP_ROUTETOIF) { 320 ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia); 321 if (ifa == NULL) { 322 IP_STATINC(IP_STAT_NOROUTE); 323 error = ENETUNREACH; 324 goto bad; 325 } 326 /* ia is already referenced by psref_ia */ 327 ia = ifatoia(ifa); 328 329 ifp = ia->ia_ifp; 330 mtu = ifp->if_mtu; 331 ip->ip_ttl = 1; 332 isbroadcast = in_broadcast(dst->sin_addr, ifp); 333 } else if (((IN_MULTICAST(ip->ip_dst.s_addr) || 334 ip->ip_dst.s_addr == INADDR_BROADCAST) || 335 (flags & IP_ROUTETOIFINDEX)) && 336 imo != NULL && imo->imo_multicast_if_index != 0) { 337 ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref); 338 if (ifp == NULL) { 339 IP_STATINC(IP_STAT_NOROUTE); 340 error = ENETUNREACH; 341 goto bad; 342 } 343 mtu = ifp->if_mtu; 344 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia); 345 if (ia == NULL) { 346 error = EADDRNOTAVAIL; 347 goto bad; 348 } 349 if (IN_MULTICAST(ip->ip_dst.s_addr) || 350 ip->ip_dst.s_addr == INADDR_BROADCAST) { 351 isbroadcast = 0; 352 } else { 353 /* IP_ROUTETOIFINDEX */ 354 isbroadcast = in_broadcast(dst->sin_addr, ifp); 355 if ((isbroadcast == 0) && ((ifp->if_flags & 356 (IFF_LOOPBACK | IFF_POINTOPOINT)) == 0) && 357 (in_direct(dst->sin_addr, ifp) == 0)) { 358 /* gateway address required */ 359 if (rt == NULL) 360 rt = rtcache_init(ro); 361 if (rt == NULL || rt->rt_ifp != ifp) { 362 IP_STATINC(IP_STAT_NOROUTE); 363 error = EHOSTUNREACH; 364 goto bad; 365 } 366 rt->rt_use++; 367 if (rt->rt_flags & RTF_GATEWAY) 368 dst = satosin(rt->rt_gateway); 369 if (rt->rt_flags & RTF_HOST) 370 isbroadcast = 371 rt->rt_flags & RTF_BROADCAST; 372 } 373 } 374 } else { 375 if (rt == NULL) 376 rt = rtcache_init(ro); 377 if (rt == NULL) { 378 IP_STATINC(IP_STAT_NOROUTE); 379 error = EHOSTUNREACH; 380 goto bad; 381 } 382 if (ifa_is_destroying(rt->rt_ifa)) { 383 rtcache_unref(rt, ro); 384 rt = NULL; 385 IP_STATINC(IP_STAT_NOROUTE); 386 error = EHOSTUNREACH; 387 goto bad; 388 } 389 ifa_acquire(rt->rt_ifa, &psref_ia); 390 ia = ifatoia(rt->rt_ifa); 391 ifp = rt->rt_ifp; 392 if ((mtu = rt->rt_rmx.rmx_mtu) == 0) 393 mtu = ifp->if_mtu; 394 rt->rt_use++; 395 if (rt->rt_flags & RTF_GATEWAY) 396 dst = satosin(rt->rt_gateway); 397 if (rt->rt_flags & RTF_HOST) 398 isbroadcast = rt->rt_flags & RTF_BROADCAST; 399 else 400 isbroadcast = in_broadcast(dst->sin_addr, ifp); 401 } 402 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0; 403 404 if (IN_MULTICAST(ip->ip_dst.s_addr) || 405 (ip->ip_dst.s_addr == INADDR_BROADCAST)) { 406 bool inmgroup; 407 408 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ? 409 M_BCAST : M_MCAST; 410 /* 411 * See if the caller provided any multicast options 412 */ 413 if (imo != NULL) 414 ip->ip_ttl = imo->imo_multicast_ttl; 415 else 416 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 417 418 /* 419 * if we don't know the outgoing ifp yet, we can't generate 420 * output 421 */ 422 if (!ifp) { 423 IP_STATINC(IP_STAT_NOROUTE); 424 error = ENETUNREACH; 425 goto bad; 426 } 427 428 /* 429 * If the packet is multicast or broadcast, confirm that 430 * the outgoing interface can transmit it. 431 */ 432 if (((m->m_flags & M_MCAST) && 433 (ifp->if_flags & IFF_MULTICAST) == 0) || 434 ((m->m_flags & M_BCAST) && 435 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) { 436 IP_STATINC(IP_STAT_NOROUTE); 437 error = ENETUNREACH; 438 goto bad; 439 } 440 /* 441 * If source address not specified yet, use an address 442 * of outgoing interface. 443 */ 444 if (in_nullhost(ip->ip_src)) { 445 struct in_ifaddr *xia; 446 struct ifaddr *xifa; 447 struct psref _psref; 448 449 xia = in_get_ia_from_ifp_psref(ifp, &_psref); 450 if (!xia) { 451 error = EADDRNOTAVAIL; 452 goto bad; 453 } 454 xifa = &xia->ia_ifa; 455 if (xifa->ifa_getifa != NULL) { 456 ia4_release(xia, &_psref); 457 /* FIXME ifa_getifa is NOMPSAFE */ 458 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 459 if (xia == NULL) { 460 error = EADDRNOTAVAIL; 461 goto bad; 462 } 463 ia4_acquire(xia, &_psref); 464 } 465 ip->ip_src = xia->ia_addr.sin_addr; 466 ia4_release(xia, &_psref); 467 } 468 469 inmgroup = in_multi_group(ip->ip_dst, ifp, flags); 470 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) { 471 /* 472 * If we belong to the destination multicast group 473 * on the outgoing interface, and the caller did not 474 * forbid loopback, loop back a copy. 475 */ 476 ip_mloopback(ifp, m, &udst.sin); 477 } 478 #ifdef MROUTING 479 else { 480 /* 481 * If we are acting as a multicast router, perform 482 * multicast forwarding as if the packet had just 483 * arrived on the interface to which we are about 484 * to send. The multicast forwarding function 485 * recursively calls this function, using the 486 * IP_FORWARDING flag to prevent infinite recursion. 487 * 488 * Multicasts that are looped back by ip_mloopback(), 489 * above, will be forwarded by the ip_input() routine, 490 * if necessary. 491 */ 492 extern struct socket *ip_mrouter; 493 494 if (ip_mrouter && (flags & IP_FORWARDING) == 0) { 495 if (ip_mforward(m, ifp) != 0) { 496 m_freem(m); 497 goto done; 498 } 499 } 500 } 501 #endif 502 /* 503 * Multicasts with a time-to-live of zero may be looped- 504 * back, above, but must not be transmitted on a network. 505 * Also, multicasts addressed to the loopback interface 506 * are not sent -- the above call to ip_mloopback() will 507 * loop back a copy if this host actually belongs to the 508 * destination group on the loopback interface. 509 */ 510 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) { 511 m_freem(m); 512 goto done; 513 } 514 goto sendit; 515 } 516 517 /* 518 * If source address not specified yet, use address 519 * of outgoing interface. 520 */ 521 if (in_nullhost(ip->ip_src)) { 522 struct ifaddr *xifa; 523 524 xifa = &ia->ia_ifa; 525 if (xifa->ifa_getifa != NULL) { 526 ia4_release(ia, &psref_ia); 527 /* FIXME ifa_getifa is NOMPSAFE */ 528 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 529 if (ia == NULL) { 530 error = EADDRNOTAVAIL; 531 goto bad; 532 } 533 ia4_acquire(ia, &psref_ia); 534 } 535 ip->ip_src = ia->ia_addr.sin_addr; 536 } 537 538 /* 539 * packets with Class-D address as source are not valid per 540 * RFC 1112 541 */ 542 if (IN_MULTICAST(ip->ip_src.s_addr)) { 543 IP_STATINC(IP_STAT_ODROPPED); 544 error = EADDRNOTAVAIL; 545 goto bad; 546 } 547 548 /* 549 * Look for broadcast address and and verify user is allowed to 550 * send such a packet. 551 */ 552 if (isbroadcast) { 553 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 554 error = EADDRNOTAVAIL; 555 goto bad; 556 } 557 if ((flags & IP_ALLOWBROADCAST) == 0) { 558 error = EACCES; 559 goto bad; 560 } 561 /* don't allow broadcast messages to be fragmented */ 562 if (ntohs(ip->ip_len) > ifp->if_mtu) { 563 error = EMSGSIZE; 564 goto bad; 565 } 566 m->m_flags |= M_BCAST; 567 } else 568 m->m_flags &= ~M_BCAST; 569 570 sendit: 571 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) { 572 if (m->m_pkthdr.len < IP_MINFRAGSIZE) { 573 ip->ip_id = 0; 574 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 575 ip->ip_id = ip_newid(ia); 576 } else { 577 578 /* 579 * TSO capable interfaces (typically?) increment 580 * ip_id for each segment. 581 * "allocate" enough ids here to increase the chance 582 * for them to be unique. 583 * 584 * note that the following calculation is not 585 * needed to be precise. wasting some ip_id is fine. 586 */ 587 588 unsigned int segsz = m->m_pkthdr.segsz; 589 unsigned int datasz = ntohs(ip->ip_len) - hlen; 590 unsigned int num = howmany(datasz, segsz); 591 592 ip->ip_id = ip_newid_range(ia, num); 593 } 594 } 595 if (ia != NULL) { 596 ia4_release(ia, &psref_ia); 597 ia = NULL; 598 } 599 600 /* 601 * If we're doing Path MTU Discovery, we need to set DF unless 602 * the route's MTU is locked. 603 */ 604 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) { 605 ip->ip_off |= htons(IP_DF); 606 } 607 608 #ifdef IPSEC 609 if (ipsec_used) { 610 bool ipsec_done = false; 611 612 /* Perform IPsec processing, if any. */ 613 error = ipsec4_output(m, inp, flags, &mtu, &natt_frag, 614 &ipsec_done); 615 if (error || ipsec_done) 616 goto done; 617 } 618 #endif 619 620 /* 621 * Run through list of hooks for output packets. 622 */ 623 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT); 624 if (error) 625 goto done; 626 if (m == NULL) 627 goto done; 628 629 ip = mtod(m, struct ip *); 630 hlen = ip->ip_hl << 2; 631 632 m->m_pkthdr.csum_data |= hlen << 16; 633 634 /* 635 * search for the source address structure to 636 * maintain output statistics, and verify address 637 * validity 638 */ 639 KASSERT(ia == NULL); 640 sockaddr_in_init(&usrc.sin, &ip->ip_src, 0); 641 ifa = ifaof_ifpforaddr_psref(&usrc.sa, ifp, &psref_ia); 642 if (ifa != NULL) 643 ia = ifatoia(ifa); 644 645 /* 646 * Ensure we only send from a valid address. 647 * A NULL address is valid because the packet could be 648 * generated from a packet filter. 649 */ 650 if (ia != NULL && (flags & IP_FORWARDING) == 0 && 651 (error = ip_ifaddrvalid(ia)) != 0) 652 { 653 ARPLOG(LOG_ERR, 654 "refusing to send from invalid address %s (pid %d)\n", 655 ARPLOGADDR(&ip->ip_src), curproc->p_pid); 656 IP_STATINC(IP_STAT_ODROPPED); 657 if (error == 1) 658 /* 659 * Address exists, but is tentative or detached. 660 * We can't send from it because it's invalid, 661 * so we drop the packet. 662 */ 663 error = 0; 664 else 665 error = EADDRNOTAVAIL; 666 goto bad; 667 } 668 669 /* Maybe skip checksums on loopback interfaces. */ 670 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) { 671 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 672 } 673 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 674 /* 675 * If small enough for mtu of path, or if using TCP segmentation 676 * offload, can just send directly. 677 */ 678 if (ntohs(ip->ip_len) <= mtu || 679 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 680 const struct sockaddr *sa; 681 682 #if IFA_STATS 683 if (ia) 684 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len); 685 #endif 686 /* 687 * Always initialize the sum to 0! Some HW assisted 688 * checksumming requires this. 689 */ 690 ip->ip_sum = 0; 691 692 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 693 /* 694 * Perform any checksums that the hardware can't do 695 * for us. 696 * 697 * XXX Does any hardware require the {th,uh}_sum 698 * XXX fields to be 0? 699 */ 700 if (sw_csum & M_CSUM_IPv4) { 701 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)); 702 ip->ip_sum = in_cksum(m, hlen); 703 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 704 } 705 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 706 if (IN_NEED_CHECKSUM(ifp, 707 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 708 in_delayed_cksum(m); 709 } 710 m->m_pkthdr.csum_flags &= 711 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 712 } 713 } 714 715 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst); 716 if (__predict_true( 717 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 || 718 (ifp->if_capenable & IFCAP_TSOv4) != 0)) { 719 error = ip_if_output(ifp, m, sa, rt); 720 } else { 721 error = ip_tso_output(ifp, m, sa, rt); 722 } 723 goto done; 724 } 725 726 /* 727 * We can't use HW checksumming if we're about to 728 * fragment the packet. 729 * 730 * XXX Some hardware can do this. 731 */ 732 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 733 if (IN_NEED_CHECKSUM(ifp, 734 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 735 in_delayed_cksum(m); 736 } 737 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 738 } 739 740 /* 741 * Too large for interface; fragment if possible. 742 * Must be able to put at least 8 bytes per fragment. 743 */ 744 if (ntohs(ip->ip_off) & IP_DF) { 745 if (flags & IP_RETURNMTU) { 746 KASSERT(inp != NULL); 747 inp->inp_errormtu = mtu; 748 } 749 error = EMSGSIZE; 750 IP_STATINC(IP_STAT_CANTFRAG); 751 goto bad; 752 } 753 754 error = ip_fragment(m, ifp, mtu); 755 if (error) { 756 m = NULL; 757 goto bad; 758 } 759 760 for (; m; m = m0) { 761 m0 = m->m_nextpkt; 762 m->m_nextpkt = 0; 763 if (error) { 764 m_freem(m); 765 continue; 766 } 767 #if IFA_STATS 768 if (ia) 769 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len); 770 #endif 771 /* 772 * If we get there, the packet has not been handled by 773 * IPsec whereas it should have. Now that it has been 774 * fragmented, re-inject it in ip_output so that IPsec 775 * processing can occur. 776 */ 777 if (natt_frag) { 778 error = ip_output(m, opt, ro, 779 flags | IP_RAWOUTPUT | IP_NOIPNEWID, 780 imo, inp); 781 } else { 782 KASSERT((m->m_pkthdr.csum_flags & 783 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0); 784 error = ip_if_output(ifp, m, 785 (m->m_flags & M_MCAST) ? 786 sintocsa(rdst) : sintocsa(dst), rt); 787 } 788 } 789 if (error == 0) { 790 IP_STATINC(IP_STAT_FRAGMENTED); 791 } 792 done: 793 ia4_release(ia, &psref_ia); 794 rtcache_unref(rt, ro); 795 if (ro == &iproute) { 796 rtcache_free(&iproute); 797 } 798 if (mifp != NULL) { 799 if_put(mifp, &psref); 800 } 801 if (bind_need_restore) 802 curlwp_bindx(bound); 803 return error; 804 bad: 805 m_freem(m); 806 goto done; 807 } 808 809 int 810 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu) 811 { 812 struct ip *ip, *mhip; 813 struct mbuf *m0; 814 int len, hlen, off; 815 int mhlen, firstlen; 816 struct mbuf **mnext; 817 int sw_csum = m->m_pkthdr.csum_flags; 818 int fragments = 0; 819 int error = 0; 820 821 ip = mtod(m, struct ip *); 822 hlen = ip->ip_hl << 2; 823 if (ifp != NULL) 824 sw_csum &= ~ifp->if_csum_flags_tx; 825 826 len = (mtu - hlen) &~ 7; 827 if (len < 8) { 828 m_freem(m); 829 return (EMSGSIZE); 830 } 831 832 firstlen = len; 833 mnext = &m->m_nextpkt; 834 835 /* 836 * Loop through length of segment after first fragment, 837 * make new header and copy data of each part and link onto chain. 838 */ 839 m0 = m; 840 mhlen = sizeof (struct ip); 841 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) { 842 MGETHDR(m, M_DONTWAIT, MT_HEADER); 843 if (m == 0) { 844 error = ENOBUFS; 845 IP_STATINC(IP_STAT_ODROPPED); 846 goto sendorfree; 847 } 848 MCLAIM(m, m0->m_owner); 849 *mnext = m; 850 mnext = &m->m_nextpkt; 851 m->m_data += max_linkhdr; 852 mhip = mtod(m, struct ip *); 853 *mhip = *ip; 854 /* we must inherit MCAST and BCAST flags */ 855 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST); 856 if (hlen > sizeof (struct ip)) { 857 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 858 mhip->ip_hl = mhlen >> 2; 859 } 860 m->m_len = mhlen; 861 mhip->ip_off = ((off - hlen) >> 3) + 862 (ntohs(ip->ip_off) & ~IP_MF); 863 if (ip->ip_off & htons(IP_MF)) 864 mhip->ip_off |= IP_MF; 865 if (off + len >= ntohs(ip->ip_len)) 866 len = ntohs(ip->ip_len) - off; 867 else 868 mhip->ip_off |= IP_MF; 869 HTONS(mhip->ip_off); 870 mhip->ip_len = htons((u_int16_t)(len + mhlen)); 871 m->m_next = m_copym(m0, off, len, M_DONTWAIT); 872 if (m->m_next == 0) { 873 error = ENOBUFS; /* ??? */ 874 IP_STATINC(IP_STAT_ODROPPED); 875 goto sendorfree; 876 } 877 m->m_pkthdr.len = mhlen + len; 878 m_reset_rcvif(m); 879 mhip->ip_sum = 0; 880 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0); 881 if (sw_csum & M_CSUM_IPv4) { 882 mhip->ip_sum = in_cksum(m, mhlen); 883 } else { 884 /* 885 * checksum is hw-offloaded or not necessary. 886 */ 887 m->m_pkthdr.csum_flags |= 888 m0->m_pkthdr.csum_flags & M_CSUM_IPv4; 889 m->m_pkthdr.csum_data |= mhlen << 16; 890 KASSERT(!(ifp != NULL && 891 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) || 892 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0); 893 } 894 IP_STATINC(IP_STAT_OFRAGMENTS); 895 fragments++; 896 } 897 /* 898 * Update first fragment by trimming what's been copied out 899 * and updating header, then send each fragment (in order). 900 */ 901 m = m0; 902 m_adj(m, hlen + firstlen - ntohs(ip->ip_len)); 903 m->m_pkthdr.len = hlen + firstlen; 904 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len); 905 ip->ip_off |= htons(IP_MF); 906 ip->ip_sum = 0; 907 if (sw_csum & M_CSUM_IPv4) { 908 ip->ip_sum = in_cksum(m, hlen); 909 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 910 } else { 911 /* 912 * checksum is hw-offloaded or not necessary. 913 */ 914 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) || 915 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0); 916 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >= 917 sizeof(struct ip)); 918 } 919 sendorfree: 920 /* 921 * If there is no room for all the fragments, don't queue 922 * any of them. 923 */ 924 if (ifp != NULL) { 925 IFQ_LOCK(&ifp->if_snd); 926 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments && 927 error == 0) { 928 error = ENOBUFS; 929 IP_STATINC(IP_STAT_ODROPPED); 930 IFQ_INC_DROPS(&ifp->if_snd); 931 } 932 IFQ_UNLOCK(&ifp->if_snd); 933 } 934 if (error) { 935 for (m = m0; m; m = m0) { 936 m0 = m->m_nextpkt; 937 m->m_nextpkt = NULL; 938 m_freem(m); 939 } 940 } 941 return (error); 942 } 943 944 /* 945 * Process a delayed payload checksum calculation. 946 */ 947 void 948 in_delayed_cksum(struct mbuf *m) 949 { 950 struct ip *ip; 951 u_int16_t csum, offset; 952 953 ip = mtod(m, struct ip *); 954 offset = ip->ip_hl << 2; 955 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset); 956 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 957 csum = 0xffff; 958 959 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); 960 961 if ((offset + sizeof(u_int16_t)) > m->m_len) { 962 /* This happen when ip options were inserted 963 printf("in_delayed_cksum: pullup len %d off %d proto %d\n", 964 m->m_len, offset, ip->ip_p); 965 */ 966 m_copyback(m, offset, sizeof(csum), (void *) &csum); 967 } else 968 *(u_int16_t *)(mtod(m, char *) + offset) = csum; 969 } 970 971 /* 972 * Determine the maximum length of the options to be inserted; 973 * we would far rather allocate too much space rather than too little. 974 */ 975 976 u_int 977 ip_optlen(struct inpcb *inp) 978 { 979 struct mbuf *m = inp->inp_options; 980 981 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) { 982 return (m->m_len - offsetof(struct ipoption, ipopt_dst)); 983 } 984 return 0; 985 } 986 987 /* 988 * Insert IP options into preformed packet. 989 * Adjust IP destination as required for IP source routing, 990 * as indicated by a non-zero in_addr at the start of the options. 991 */ 992 static struct mbuf * 993 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) 994 { 995 struct ipoption *p = mtod(opt, struct ipoption *); 996 struct mbuf *n; 997 struct ip *ip = mtod(m, struct ip *); 998 unsigned optlen; 999 1000 optlen = opt->m_len - sizeof(p->ipopt_dst); 1001 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET) 1002 return (m); /* XXX should fail */ 1003 if (!in_nullhost(p->ipopt_dst)) 1004 ip->ip_dst = p->ipopt_dst; 1005 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) { 1006 MGETHDR(n, M_DONTWAIT, MT_HEADER); 1007 if (n == 0) 1008 return (m); 1009 MCLAIM(n, m->m_owner); 1010 M_MOVE_PKTHDR(n, m); 1011 m->m_len -= sizeof(struct ip); 1012 m->m_data += sizeof(struct ip); 1013 n->m_next = m; 1014 m = n; 1015 m->m_len = optlen + sizeof(struct ip); 1016 m->m_data += max_linkhdr; 1017 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip)); 1018 } else { 1019 m->m_data -= optlen; 1020 m->m_len += optlen; 1021 memmove(mtod(m, void *), ip, sizeof(struct ip)); 1022 } 1023 m->m_pkthdr.len += optlen; 1024 ip = mtod(m, struct ip *); 1025 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen); 1026 *phlen = sizeof(struct ip) + optlen; 1027 ip->ip_len = htons(ntohs(ip->ip_len) + optlen); 1028 return (m); 1029 } 1030 1031 /* 1032 * Copy options from ip to jp, 1033 * omitting those not copied during fragmentation. 1034 */ 1035 int 1036 ip_optcopy(struct ip *ip, struct ip *jp) 1037 { 1038 u_char *cp, *dp; 1039 int opt, optlen, cnt; 1040 1041 cp = (u_char *)(ip + 1); 1042 dp = (u_char *)(jp + 1); 1043 cnt = (ip->ip_hl << 2) - sizeof (struct ip); 1044 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1045 opt = cp[0]; 1046 if (opt == IPOPT_EOL) 1047 break; 1048 if (opt == IPOPT_NOP) { 1049 /* Preserve for IP mcast tunnel's LSRR alignment. */ 1050 *dp++ = IPOPT_NOP; 1051 optlen = 1; 1052 continue; 1053 } 1054 1055 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp)); 1056 optlen = cp[IPOPT_OLEN]; 1057 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt); 1058 1059 /* Invalid lengths should have been caught by ip_dooptions. */ 1060 if (optlen > cnt) 1061 optlen = cnt; 1062 if (IPOPT_COPIED(opt)) { 1063 bcopy((void *)cp, (void *)dp, (unsigned)optlen); 1064 dp += optlen; 1065 } 1066 } 1067 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) 1068 *dp++ = IPOPT_EOL; 1069 return (optlen); 1070 } 1071 1072 /* 1073 * IP socket option processing. 1074 */ 1075 int 1076 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1077 { 1078 struct inpcb *inp = sotoinpcb(so); 1079 struct ip *ip = &inp->inp_ip; 1080 int inpflags = inp->inp_flags; 1081 int optval = 0, error = 0; 1082 1083 KASSERT(solocked(so)); 1084 1085 if (sopt->sopt_level != IPPROTO_IP) { 1086 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER) 1087 return 0; 1088 return ENOPROTOOPT; 1089 } 1090 1091 switch (op) { 1092 case PRCO_SETOPT: 1093 switch (sopt->sopt_name) { 1094 case IP_OPTIONS: 1095 #ifdef notyet 1096 case IP_RETOPTS: 1097 #endif 1098 error = ip_pcbopts(inp, sopt); 1099 break; 1100 1101 case IP_TOS: 1102 case IP_TTL: 1103 case IP_MINTTL: 1104 case IP_PKTINFO: 1105 case IP_RECVOPTS: 1106 case IP_RECVRETOPTS: 1107 case IP_RECVDSTADDR: 1108 case IP_RECVIF: 1109 case IP_RECVPKTINFO: 1110 case IP_RECVTTL: 1111 error = sockopt_getint(sopt, &optval); 1112 if (error) 1113 break; 1114 1115 switch (sopt->sopt_name) { 1116 case IP_TOS: 1117 ip->ip_tos = optval; 1118 break; 1119 1120 case IP_TTL: 1121 ip->ip_ttl = optval; 1122 break; 1123 1124 case IP_MINTTL: 1125 if (optval > 0 && optval <= MAXTTL) 1126 inp->inp_ip_minttl = optval; 1127 else 1128 error = EINVAL; 1129 break; 1130 #define OPTSET(bit) \ 1131 if (optval) \ 1132 inpflags |= bit; \ 1133 else \ 1134 inpflags &= ~bit; 1135 1136 case IP_PKTINFO: 1137 OPTSET(INP_PKTINFO); 1138 break; 1139 1140 case IP_RECVOPTS: 1141 OPTSET(INP_RECVOPTS); 1142 break; 1143 1144 case IP_RECVPKTINFO: 1145 OPTSET(INP_RECVPKTINFO); 1146 break; 1147 1148 case IP_RECVRETOPTS: 1149 OPTSET(INP_RECVRETOPTS); 1150 break; 1151 1152 case IP_RECVDSTADDR: 1153 OPTSET(INP_RECVDSTADDR); 1154 break; 1155 1156 case IP_RECVIF: 1157 OPTSET(INP_RECVIF); 1158 break; 1159 1160 case IP_RECVTTL: 1161 OPTSET(INP_RECVTTL); 1162 break; 1163 } 1164 break; 1165 #undef OPTSET 1166 1167 case IP_MULTICAST_IF: 1168 case IP_MULTICAST_TTL: 1169 case IP_MULTICAST_LOOP: 1170 case IP_ADD_MEMBERSHIP: 1171 case IP_DROP_MEMBERSHIP: 1172 error = ip_setmoptions(&inp->inp_moptions, sopt); 1173 break; 1174 1175 case IP_PORTRANGE: 1176 error = sockopt_getint(sopt, &optval); 1177 if (error) 1178 break; 1179 1180 switch (optval) { 1181 case IP_PORTRANGE_DEFAULT: 1182 case IP_PORTRANGE_HIGH: 1183 inpflags &= ~(INP_LOWPORT); 1184 break; 1185 1186 case IP_PORTRANGE_LOW: 1187 inpflags |= INP_LOWPORT; 1188 break; 1189 1190 default: 1191 error = EINVAL; 1192 break; 1193 } 1194 break; 1195 1196 case IP_PORTALGO: 1197 error = sockopt_getint(sopt, &optval); 1198 if (error) 1199 break; 1200 1201 error = portalgo_algo_index_select( 1202 (struct inpcb_hdr *)inp, optval); 1203 break; 1204 1205 #if defined(IPSEC) 1206 case IP_IPSEC_POLICY: 1207 if (ipsec_enabled) { 1208 error = ipsec4_set_policy(inp, sopt->sopt_name, 1209 sopt->sopt_data, sopt->sopt_size, 1210 curlwp->l_cred); 1211 break; 1212 } 1213 /*FALLTHROUGH*/ 1214 #endif /* IPSEC */ 1215 1216 default: 1217 error = ENOPROTOOPT; 1218 break; 1219 } 1220 break; 1221 1222 case PRCO_GETOPT: 1223 switch (sopt->sopt_name) { 1224 case IP_OPTIONS: 1225 case IP_RETOPTS: { 1226 struct mbuf *mopts = inp->inp_options; 1227 1228 if (mopts) { 1229 struct mbuf *m; 1230 1231 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT); 1232 if (m == NULL) { 1233 error = ENOBUFS; 1234 break; 1235 } 1236 error = sockopt_setmbuf(sopt, m); 1237 } 1238 break; 1239 } 1240 case IP_PKTINFO: 1241 case IP_TOS: 1242 case IP_TTL: 1243 case IP_MINTTL: 1244 case IP_RECVOPTS: 1245 case IP_RECVRETOPTS: 1246 case IP_RECVDSTADDR: 1247 case IP_RECVIF: 1248 case IP_RECVPKTINFO: 1249 case IP_RECVTTL: 1250 case IP_ERRORMTU: 1251 switch (sopt->sopt_name) { 1252 case IP_TOS: 1253 optval = ip->ip_tos; 1254 break; 1255 1256 case IP_TTL: 1257 optval = ip->ip_ttl; 1258 break; 1259 1260 case IP_MINTTL: 1261 optval = inp->inp_ip_minttl; 1262 break; 1263 1264 case IP_ERRORMTU: 1265 optval = inp->inp_errormtu; 1266 break; 1267 1268 #define OPTBIT(bit) (inpflags & bit ? 1 : 0) 1269 1270 case IP_PKTINFO: 1271 optval = OPTBIT(INP_PKTINFO); 1272 break; 1273 1274 case IP_RECVOPTS: 1275 optval = OPTBIT(INP_RECVOPTS); 1276 break; 1277 1278 case IP_RECVPKTINFO: 1279 optval = OPTBIT(INP_RECVPKTINFO); 1280 break; 1281 1282 case IP_RECVRETOPTS: 1283 optval = OPTBIT(INP_RECVRETOPTS); 1284 break; 1285 1286 case IP_RECVDSTADDR: 1287 optval = OPTBIT(INP_RECVDSTADDR); 1288 break; 1289 1290 case IP_RECVIF: 1291 optval = OPTBIT(INP_RECVIF); 1292 break; 1293 1294 case IP_RECVTTL: 1295 optval = OPTBIT(INP_RECVTTL); 1296 break; 1297 } 1298 error = sockopt_setint(sopt, optval); 1299 break; 1300 1301 #if 0 /* defined(IPSEC) */ 1302 case IP_IPSEC_POLICY: 1303 { 1304 struct mbuf *m = NULL; 1305 1306 /* XXX this will return EINVAL as sopt is empty */ 1307 error = ipsec4_get_policy(inp, sopt->sopt_data, 1308 sopt->sopt_size, &m); 1309 if (error == 0) 1310 error = sockopt_setmbuf(sopt, m); 1311 break; 1312 } 1313 #endif /*IPSEC*/ 1314 1315 case IP_MULTICAST_IF: 1316 case IP_MULTICAST_TTL: 1317 case IP_MULTICAST_LOOP: 1318 case IP_ADD_MEMBERSHIP: 1319 case IP_DROP_MEMBERSHIP: 1320 error = ip_getmoptions(inp->inp_moptions, sopt); 1321 break; 1322 1323 case IP_PORTRANGE: 1324 if (inpflags & INP_LOWPORT) 1325 optval = IP_PORTRANGE_LOW; 1326 else 1327 optval = IP_PORTRANGE_DEFAULT; 1328 error = sockopt_setint(sopt, optval); 1329 break; 1330 1331 case IP_PORTALGO: 1332 optval = inp->inp_portalgo; 1333 error = sockopt_setint(sopt, optval); 1334 break; 1335 1336 default: 1337 error = ENOPROTOOPT; 1338 break; 1339 } 1340 break; 1341 } 1342 1343 if (!error) { 1344 inp->inp_flags = inpflags; 1345 } 1346 return error; 1347 } 1348 1349 static int 1350 ip_pktinfo_prepare(const struct in_pktinfo *pktinfo, struct ip_pktopts *pktopts, 1351 int *flags, kauth_cred_t cred) 1352 { 1353 struct ip_moptions *imo; 1354 int error = 0; 1355 bool addrset = false; 1356 1357 if (!in_nullhost(pktinfo->ipi_addr)) { 1358 pktopts->ippo_laddr.sin_addr = pktinfo->ipi_addr; 1359 /* EADDRNOTAVAIL? */ 1360 error = in_pcbbindableaddr(&pktopts->ippo_laddr, cred); 1361 if (error != 0) 1362 return error; 1363 addrset = true; 1364 } 1365 1366 if (pktinfo->ipi_ifindex != 0) { 1367 if (!addrset) { 1368 struct ifnet *ifp; 1369 struct in_ifaddr *ia; 1370 int s; 1371 1372 /* pick up primary address */ 1373 s = pserialize_read_enter(); 1374 ifp = if_byindex(pktinfo->ipi_ifindex); 1375 if (ifp == NULL) { 1376 pserialize_read_exit(s); 1377 return EADDRNOTAVAIL; 1378 } 1379 ia = in_get_ia_from_ifp(ifp); 1380 if (ia == NULL) { 1381 pserialize_read_exit(s); 1382 return EADDRNOTAVAIL; 1383 } 1384 pktopts->ippo_laddr.sin_addr = IA_SIN(ia)->sin_addr; 1385 pserialize_read_exit(s); 1386 } 1387 1388 /* 1389 * If specified ipi_ifindex, 1390 * use copied or locally initialized ip_moptions. 1391 * Original ip_moptions must not be modified. 1392 */ 1393 imo = &pktopts->ippo_imobuf; /* local buf in pktopts */ 1394 if (pktopts->ippo_imo != NULL) { 1395 memcpy(imo, pktopts->ippo_imo, sizeof(*imo)); 1396 } else { 1397 memset(imo, 0, sizeof(*imo)); 1398 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1399 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 1400 } 1401 imo->imo_multicast_if_index = pktinfo->ipi_ifindex; 1402 pktopts->ippo_imo = imo; 1403 *flags |= IP_ROUTETOIFINDEX; 1404 } 1405 return error; 1406 } 1407 1408 /* 1409 * Set up IP outgoing packet options. Even if control is NULL, 1410 * pktopts->ippo_laddr and pktopts->ippo_imo are set and used. 1411 */ 1412 int 1413 ip_setpktopts(struct mbuf *control, struct ip_pktopts *pktopts, int *flags, 1414 struct inpcb *inp, kauth_cred_t cred, int uproto) 1415 { 1416 struct inpcb *xinp; 1417 struct cmsghdr *cm; 1418 struct in_pktinfo *pktinfo; 1419 int error; 1420 1421 pktopts->ippo_imo = inp->inp_moptions; 1422 sockaddr_in_init(&pktopts->ippo_laddr, &inp->inp_laddr, 0); 1423 1424 if (control == NULL) 1425 return 0; 1426 1427 /* 1428 * XXX: Currently, we assume all the optional information is 1429 * stored in a single mbuf. 1430 */ 1431 if (control->m_next) 1432 return EINVAL; 1433 1434 for (; control->m_len > 0; 1435 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1436 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1437 cm = mtod(control, struct cmsghdr *); 1438 if ((control->m_len < sizeof(*cm)) || 1439 (cm->cmsg_len == 0) || 1440 (cm->cmsg_len > control->m_len)) { 1441 return EINVAL; 1442 } 1443 if (cm->cmsg_level != IPPROTO_IP) 1444 continue; 1445 1446 switch (cm->cmsg_type) { 1447 case IP_PKTINFO: 1448 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo))) 1449 return EINVAL; 1450 1451 pktinfo = (struct in_pktinfo *)CMSG_DATA(cm); 1452 error = ip_pktinfo_prepare(pktinfo, pktopts, flags, 1453 cred); 1454 if (error != 0) 1455 return error; 1456 1457 if ((uproto == IPPROTO_UDP) && 1458 !in_nullhost(pktopts->ippo_laddr.sin_addr)) { 1459 /* Checking laddr:port already in use? */ 1460 xinp = in_pcblookup_bind(&udbtable, 1461 pktopts->ippo_laddr.sin_addr, 1462 inp->inp_lport); 1463 if ((xinp != NULL) && (xinp != inp)) 1464 return EADDRINUSE; 1465 } 1466 break; 1467 default: 1468 return ENOPROTOOPT; 1469 } 1470 } 1471 return 0; 1472 } 1473 1474 /* 1475 * Set up IP options in pcb for insertion in output packets. 1476 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1477 * with destination address if source routed. 1478 */ 1479 static int 1480 ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt) 1481 { 1482 struct mbuf *m; 1483 const u_char *cp; 1484 u_char *dp; 1485 int cnt; 1486 1487 KASSERT(inp_locked(inp)); 1488 1489 /* Turn off any old options. */ 1490 if (inp->inp_options) { 1491 m_free(inp->inp_options); 1492 } 1493 inp->inp_options = NULL; 1494 if ((cnt = sopt->sopt_size) == 0) { 1495 /* Only turning off any previous options. */ 1496 return 0; 1497 } 1498 cp = sopt->sopt_data; 1499 1500 #ifndef __vax__ 1501 if (cnt % sizeof(int32_t)) 1502 return (EINVAL); 1503 #endif 1504 1505 m = m_get(M_DONTWAIT, MT_SOOPTS); 1506 if (m == NULL) 1507 return (ENOBUFS); 1508 1509 dp = mtod(m, u_char *); 1510 memset(dp, 0, sizeof(struct in_addr)); 1511 dp += sizeof(struct in_addr); 1512 m->m_len = sizeof(struct in_addr); 1513 1514 /* 1515 * IP option list according to RFC791. Each option is of the form 1516 * 1517 * [optval] [olen] [(olen - 2) data bytes] 1518 * 1519 * We validate the list and copy options to an mbuf for prepending 1520 * to data packets. The IP first-hop destination address will be 1521 * stored before actual options and is zero if unset. 1522 */ 1523 while (cnt > 0) { 1524 uint8_t optval, olen, offset; 1525 1526 optval = cp[IPOPT_OPTVAL]; 1527 1528 if (optval == IPOPT_EOL || optval == IPOPT_NOP) { 1529 olen = 1; 1530 } else { 1531 if (cnt < IPOPT_OLEN + 1) 1532 goto bad; 1533 1534 olen = cp[IPOPT_OLEN]; 1535 if (olen < IPOPT_OLEN + 1 || olen > cnt) 1536 goto bad; 1537 } 1538 1539 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) { 1540 /* 1541 * user process specifies route as: 1542 * ->A->B->C->D 1543 * D must be our final destination (but we can't 1544 * check that since we may not have connected yet). 1545 * A is first hop destination, which doesn't appear in 1546 * actual IP option, but is stored before the options. 1547 */ 1548 if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr)) 1549 goto bad; 1550 1551 offset = cp[IPOPT_OFFSET]; 1552 memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1, 1553 sizeof(struct in_addr)); 1554 1555 cp += sizeof(struct in_addr); 1556 cnt -= sizeof(struct in_addr); 1557 olen -= sizeof(struct in_addr); 1558 1559 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr)) 1560 goto bad; 1561 1562 memcpy(dp, cp, olen); 1563 dp[IPOPT_OPTVAL] = optval; 1564 dp[IPOPT_OLEN] = olen; 1565 dp[IPOPT_OFFSET] = offset; 1566 break; 1567 } else { 1568 if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr)) 1569 goto bad; 1570 1571 memcpy(dp, cp, olen); 1572 break; 1573 } 1574 1575 dp += olen; 1576 m->m_len += olen; 1577 1578 if (optval == IPOPT_EOL) 1579 break; 1580 1581 cp += olen; 1582 cnt -= olen; 1583 } 1584 1585 inp->inp_options = m; 1586 return 0; 1587 bad: 1588 (void)m_free(m); 1589 return EINVAL; 1590 } 1591 1592 /* 1593 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. 1594 * Must be called in a pserialize critical section. 1595 */ 1596 static struct ifnet * 1597 ip_multicast_if(struct in_addr *a, int *ifindexp) 1598 { 1599 int ifindex; 1600 struct ifnet *ifp = NULL; 1601 struct in_ifaddr *ia; 1602 1603 if (ifindexp) 1604 *ifindexp = 0; 1605 if (ntohl(a->s_addr) >> 24 == 0) { 1606 ifindex = ntohl(a->s_addr) & 0xffffff; 1607 ifp = if_byindex(ifindex); 1608 if (!ifp) 1609 return NULL; 1610 if (ifindexp) 1611 *ifindexp = ifindex; 1612 } else { 1613 IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) { 1614 if (in_hosteq(ia->ia_addr.sin_addr, *a) && 1615 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) { 1616 ifp = ia->ia_ifp; 1617 if (if_is_deactivated(ifp)) 1618 ifp = NULL; 1619 break; 1620 } 1621 } 1622 } 1623 return ifp; 1624 } 1625 1626 static int 1627 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval) 1628 { 1629 u_int tval; 1630 u_char cval; 1631 int error; 1632 1633 if (sopt == NULL) 1634 return EINVAL; 1635 1636 switch (sopt->sopt_size) { 1637 case sizeof(u_char): 1638 error = sockopt_get(sopt, &cval, sizeof(u_char)); 1639 tval = cval; 1640 break; 1641 1642 case sizeof(u_int): 1643 error = sockopt_get(sopt, &tval, sizeof(u_int)); 1644 break; 1645 1646 default: 1647 error = EINVAL; 1648 } 1649 1650 if (error) 1651 return error; 1652 1653 if (tval > maxval) 1654 return EINVAL; 1655 1656 *val = tval; 1657 return 0; 1658 } 1659 1660 static int 1661 ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 1662 struct psref *psref, struct in_addr *ia, bool add) 1663 { 1664 int error; 1665 struct ip_mreq mreq; 1666 1667 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 1668 if (error) 1669 return error; 1670 1671 if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr)) 1672 return EINVAL; 1673 1674 memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia)); 1675 1676 if (in_nullhost(mreq.imr_interface)) { 1677 union { 1678 struct sockaddr dst; 1679 struct sockaddr_in dst4; 1680 } u; 1681 struct route ro; 1682 1683 if (!add) { 1684 *ifp = NULL; 1685 return 0; 1686 } 1687 /* 1688 * If no interface address was provided, use the interface of 1689 * the route to the given multicast address. 1690 */ 1691 struct rtentry *rt; 1692 memset(&ro, 0, sizeof(ro)); 1693 1694 sockaddr_in_init(&u.dst4, ia, 0); 1695 error = rtcache_setdst(&ro, &u.dst); 1696 if (error != 0) 1697 return error; 1698 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL; 1699 if (*ifp != NULL) { 1700 if (if_is_deactivated(*ifp)) 1701 *ifp = NULL; 1702 else 1703 if_acquire(*ifp, psref); 1704 } 1705 rtcache_unref(rt, &ro); 1706 rtcache_free(&ro); 1707 } else { 1708 int s = pserialize_read_enter(); 1709 *ifp = ip_multicast_if(&mreq.imr_interface, NULL); 1710 if (!add && *ifp == NULL) { 1711 pserialize_read_exit(s); 1712 return EADDRNOTAVAIL; 1713 } 1714 if (*ifp != NULL) { 1715 if (if_is_deactivated(*ifp)) 1716 *ifp = NULL; 1717 else 1718 if_acquire(*ifp, psref); 1719 } 1720 pserialize_read_exit(s); 1721 } 1722 return 0; 1723 } 1724 1725 /* 1726 * Add a multicast group membership. 1727 * Group must be a valid IP multicast address. 1728 */ 1729 static int 1730 ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt) 1731 { 1732 struct ifnet *ifp = NULL; // XXX: gcc [ppc] 1733 struct in_addr ia; 1734 int i, error, bound; 1735 struct psref psref; 1736 1737 /* imo is protected by solock or referenced only by the caller */ 1738 1739 bound = curlwp_bind(); 1740 if (sopt->sopt_size == sizeof(struct ip_mreq)) 1741 error = ip_get_membership(sopt, &ifp, &psref, &ia, true); 1742 else 1743 #ifdef INET6 1744 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 1745 #else 1746 error = EINVAL; 1747 goto out; 1748 #endif 1749 1750 if (error) 1751 goto out; 1752 1753 /* 1754 * See if we found an interface, and confirm that it 1755 * supports multicast. 1756 */ 1757 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1758 error = EADDRNOTAVAIL; 1759 goto out; 1760 } 1761 1762 /* 1763 * See if the membership already exists or if all the 1764 * membership slots are full. 1765 */ 1766 for (i = 0; i < imo->imo_num_memberships; ++i) { 1767 if (imo->imo_membership[i]->inm_ifp == ifp && 1768 in_hosteq(imo->imo_membership[i]->inm_addr, ia)) 1769 break; 1770 } 1771 if (i < imo->imo_num_memberships) { 1772 error = EADDRINUSE; 1773 goto out; 1774 } 1775 1776 if (i == IP_MAX_MEMBERSHIPS) { 1777 error = ETOOMANYREFS; 1778 goto out; 1779 } 1780 1781 /* 1782 * Everything looks good; add a new record to the multicast 1783 * address list for the given interface. 1784 */ 1785 if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL) { 1786 error = ENOBUFS; 1787 goto out; 1788 } 1789 1790 ++imo->imo_num_memberships; 1791 error = 0; 1792 out: 1793 if_put(ifp, &psref); 1794 curlwp_bindx(bound); 1795 return error; 1796 } 1797 1798 /* 1799 * Drop a multicast group membership. 1800 * Group must be a valid IP multicast address. 1801 */ 1802 static int 1803 ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt) 1804 { 1805 struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc] 1806 struct ifnet *ifp = NULL; // XXX: gcc [ppc] 1807 int i, error, bound; 1808 struct psref psref; 1809 1810 /* imo is protected by solock or referenced only by the caller */ 1811 1812 bound = curlwp_bind(); 1813 if (sopt->sopt_size == sizeof(struct ip_mreq)) 1814 error = ip_get_membership(sopt, &ifp, &psref, &ia, false); 1815 else 1816 #ifdef INET6 1817 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 1818 #else 1819 error = EINVAL; 1820 goto out; 1821 #endif 1822 1823 if (error) 1824 goto out; 1825 1826 /* 1827 * Find the membership in the membership array. 1828 */ 1829 for (i = 0; i < imo->imo_num_memberships; ++i) { 1830 if ((ifp == NULL || 1831 imo->imo_membership[i]->inm_ifp == ifp) && 1832 in_hosteq(imo->imo_membership[i]->inm_addr, ia)) 1833 break; 1834 } 1835 if (i == imo->imo_num_memberships) { 1836 error = EADDRNOTAVAIL; 1837 goto out; 1838 } 1839 1840 /* 1841 * Give up the multicast address record to which the 1842 * membership points. 1843 */ 1844 in_delmulti(imo->imo_membership[i]); 1845 1846 /* 1847 * Remove the gap in the membership array. 1848 */ 1849 for (++i; i < imo->imo_num_memberships; ++i) 1850 imo->imo_membership[i-1] = imo->imo_membership[i]; 1851 --imo->imo_num_memberships; 1852 error = 0; 1853 out: 1854 if_put(ifp, &psref); 1855 curlwp_bindx(bound); 1856 return error; 1857 } 1858 1859 /* 1860 * Set the IP multicast options in response to user setsockopt(). 1861 */ 1862 int 1863 ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt) 1864 { 1865 struct ip_moptions *imo = *pimo; 1866 struct in_addr addr; 1867 struct ifnet *ifp; 1868 int ifindex, error = 0; 1869 1870 /* The passed imo isn't NULL, it should be protected by solock */ 1871 1872 if (!imo) { 1873 /* 1874 * No multicast option buffer attached to the pcb; 1875 * allocate one and initialize to default values. 1876 */ 1877 imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP); 1878 if (imo == NULL) 1879 return ENOBUFS; 1880 1881 imo->imo_multicast_if_index = 0; 1882 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1883 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1884 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 1885 imo->imo_num_memberships = 0; 1886 *pimo = imo; 1887 } 1888 1889 switch (sopt->sopt_name) { 1890 case IP_MULTICAST_IF: { 1891 int s; 1892 /* 1893 * Select the interface for outgoing multicast packets. 1894 */ 1895 error = sockopt_get(sopt, &addr, sizeof(addr)); 1896 if (error) 1897 break; 1898 1899 /* 1900 * INADDR_ANY is used to remove a previous selection. 1901 * When no interface is selected, a default one is 1902 * chosen every time a multicast packet is sent. 1903 */ 1904 if (in_nullhost(addr)) { 1905 imo->imo_multicast_if_index = 0; 1906 break; 1907 } 1908 /* 1909 * The selected interface is identified by its local 1910 * IP address. Find the interface and confirm that 1911 * it supports multicasting. 1912 */ 1913 s = pserialize_read_enter(); 1914 ifp = ip_multicast_if(&addr, &ifindex); 1915 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1916 pserialize_read_exit(s); 1917 error = EADDRNOTAVAIL; 1918 break; 1919 } 1920 imo->imo_multicast_if_index = ifp->if_index; 1921 pserialize_read_exit(s); 1922 if (ifindex) 1923 imo->imo_multicast_addr = addr; 1924 else 1925 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1926 break; 1927 } 1928 1929 case IP_MULTICAST_TTL: 1930 /* 1931 * Set the IP time-to-live for outgoing multicast packets. 1932 */ 1933 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL); 1934 break; 1935 1936 case IP_MULTICAST_LOOP: 1937 /* 1938 * Set the loopback flag for outgoing multicast packets. 1939 * Must be zero or one. 1940 */ 1941 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1); 1942 break; 1943 1944 case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */ 1945 error = ip_add_membership(imo, sopt); 1946 break; 1947 1948 case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */ 1949 error = ip_drop_membership(imo, sopt); 1950 break; 1951 1952 default: 1953 error = EOPNOTSUPP; 1954 break; 1955 } 1956 1957 /* 1958 * If all options have default values, no need to keep the mbuf. 1959 */ 1960 if (imo->imo_multicast_if_index == 0 && 1961 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL && 1962 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP && 1963 imo->imo_num_memberships == 0) { 1964 kmem_intr_free(imo, sizeof(*imo)); 1965 *pimo = NULL; 1966 } 1967 1968 return error; 1969 } 1970 1971 /* 1972 * Return the IP multicast options in response to user getsockopt(). 1973 */ 1974 int 1975 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt) 1976 { 1977 struct in_addr addr; 1978 uint8_t optval; 1979 int error = 0; 1980 1981 /* imo is protected by solock or refereced only by the caller */ 1982 1983 switch (sopt->sopt_name) { 1984 case IP_MULTICAST_IF: 1985 if (imo == NULL || imo->imo_multicast_if_index == 0) 1986 addr = zeroin_addr; 1987 else if (imo->imo_multicast_addr.s_addr) { 1988 /* return the value user has set */ 1989 addr = imo->imo_multicast_addr; 1990 } else { 1991 struct ifnet *ifp; 1992 struct in_ifaddr *ia = NULL; 1993 int s = pserialize_read_enter(); 1994 1995 ifp = if_byindex(imo->imo_multicast_if_index); 1996 if (ifp != NULL) { 1997 ia = in_get_ia_from_ifp(ifp); 1998 } 1999 addr = ia ? ia->ia_addr.sin_addr : zeroin_addr; 2000 pserialize_read_exit(s); 2001 } 2002 error = sockopt_set(sopt, &addr, sizeof(addr)); 2003 break; 2004 2005 case IP_MULTICAST_TTL: 2006 optval = imo ? imo->imo_multicast_ttl 2007 : IP_DEFAULT_MULTICAST_TTL; 2008 2009 error = sockopt_set(sopt, &optval, sizeof(optval)); 2010 break; 2011 2012 case IP_MULTICAST_LOOP: 2013 optval = imo ? imo->imo_multicast_loop 2014 : IP_DEFAULT_MULTICAST_LOOP; 2015 2016 error = sockopt_set(sopt, &optval, sizeof(optval)); 2017 break; 2018 2019 default: 2020 error = EOPNOTSUPP; 2021 } 2022 2023 return error; 2024 } 2025 2026 /* 2027 * Discard the IP multicast options. 2028 */ 2029 void 2030 ip_freemoptions(struct ip_moptions *imo) 2031 { 2032 int i; 2033 2034 /* The owner of imo (inp) should be protected by solock */ 2035 2036 if (imo != NULL) { 2037 for (i = 0; i < imo->imo_num_memberships; ++i) 2038 in_delmulti(imo->imo_membership[i]); 2039 kmem_intr_free(imo, sizeof(*imo)); 2040 } 2041 } 2042 2043 /* 2044 * Routine called from ip_output() to loop back a copy of an IP multicast 2045 * packet to the input queue of a specified interface. Note that this 2046 * calls the output routine of the loopback "driver", but with an interface 2047 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 2048 */ 2049 static void 2050 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst) 2051 { 2052 struct ip *ip; 2053 struct mbuf *copym; 2054 2055 copym = m_copypacket(m, M_DONTWAIT); 2056 if (copym != NULL && 2057 (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip))) 2058 copym = m_pullup(copym, sizeof(struct ip)); 2059 if (copym == NULL) 2060 return; 2061 /* 2062 * We don't bother to fragment if the IP length is greater 2063 * than the interface's MTU. Can this possibly matter? 2064 */ 2065 ip = mtod(copym, struct ip *); 2066 2067 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 2068 in_delayed_cksum(copym); 2069 copym->m_pkthdr.csum_flags &= 2070 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 2071 } 2072 2073 ip->ip_sum = 0; 2074 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2); 2075 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2076 (void)looutput(ifp, copym, sintocsa(dst), NULL); 2077 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2078 } 2079 2080 /* 2081 * Ensure sending address is valid. 2082 * Returns 0 on success, -1 if an error should be sent back or 1 2083 * if the packet could be dropped without error (protocol dependent). 2084 */ 2085 static int 2086 ip_ifaddrvalid(const struct in_ifaddr *ia) 2087 { 2088 2089 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY) 2090 return 0; 2091 2092 if (ia->ia4_flags & IN_IFF_DUPLICATED) 2093 return -1; 2094 else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED)) 2095 return 1; 2096 2097 return 0; 2098 } 2099