1 /* $NetBSD: ip_output.c,v 1.157 2005/09/11 22:15:19 seb Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1998 The NetBSD Foundation, Inc. 34 * All rights reserved. 35 * 36 * This code is derived from software contributed to The NetBSD Foundation 37 * by Public Access Networks Corporation ("Panix"). It was developed under 38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. All advertising materials mentioning features or use of this software 49 * must display the following acknowledgement: 50 * This product includes software developed by the NetBSD 51 * Foundation, Inc. and its contributors. 52 * 4. Neither the name of The NetBSD Foundation nor the names of its 53 * contributors may be used to endorse or promote products derived 54 * from this software without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 66 * POSSIBILITY OF SUCH DAMAGE. 67 */ 68 69 /* 70 * Copyright (c) 1982, 1986, 1988, 1990, 1993 71 * The Regents of the University of California. All rights reserved. 72 * 73 * Redistribution and use in source and binary forms, with or without 74 * modification, are permitted provided that the following conditions 75 * are met: 76 * 1. Redistributions of source code must retain the above copyright 77 * notice, this list of conditions and the following disclaimer. 78 * 2. Redistributions in binary form must reproduce the above copyright 79 * notice, this list of conditions and the following disclaimer in the 80 * documentation and/or other materials provided with the distribution. 81 * 3. Neither the name of the University nor the names of its contributors 82 * may be used to endorse or promote products derived from this software 83 * without specific prior written permission. 84 * 85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 95 * SUCH DAMAGE. 96 * 97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 98 */ 99 100 #include <sys/cdefs.h> 101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.157 2005/09/11 22:15:19 seb Exp $"); 102 103 #include "opt_pfil_hooks.h" 104 #include "opt_inet.h" 105 #include "opt_ipsec.h" 106 #include "opt_mrouting.h" 107 108 #include <sys/param.h> 109 #include <sys/malloc.h> 110 #include <sys/mbuf.h> 111 #include <sys/errno.h> 112 #include <sys/protosw.h> 113 #include <sys/socket.h> 114 #include <sys/socketvar.h> 115 #ifdef FAST_IPSEC 116 #include <sys/domain.h> 117 #endif 118 #include <sys/systm.h> 119 #include <sys/proc.h> 120 121 #include <net/if.h> 122 #include <net/route.h> 123 #include <net/pfil.h> 124 125 #include <netinet/in.h> 126 #include <netinet/in_systm.h> 127 #include <netinet/ip.h> 128 #include <netinet/in_pcb.h> 129 #include <netinet/in_var.h> 130 #include <netinet/ip_var.h> 131 #include <netinet/in_offload.h> 132 133 #ifdef MROUTING 134 #include <netinet/ip_mroute.h> 135 #endif 136 137 #include <machine/stdarg.h> 138 139 #ifdef IPSEC 140 #include <netinet6/ipsec.h> 141 #include <netkey/key.h> 142 #include <netkey/key_debug.h> 143 #ifdef IPSEC_NAT_T 144 #include <netinet/udp.h> 145 #endif 146 #endif /*IPSEC*/ 147 148 #ifdef FAST_IPSEC 149 #include <netipsec/ipsec.h> 150 #include <netipsec/key.h> 151 #include <netipsec/xform.h> 152 #endif /* FAST_IPSEC*/ 153 154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); 155 static struct ifnet *ip_multicast_if(struct in_addr *, int *); 156 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *); 157 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int); 158 159 #ifdef PFIL_HOOKS 160 extern struct pfil_head inet_pfil_hook; /* XXX */ 161 #endif 162 163 int ip_do_loopback_cksum = 0; 164 165 #define IN_NEED_CHECKSUM(ifp, csum_flags) \ 166 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \ 167 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \ 168 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \ 169 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum))) 170 171 struct ip_tso_output_args { 172 struct ifnet *ifp; 173 struct sockaddr *sa; 174 struct rtentry *rt; 175 }; 176 177 static int ip_tso_output_callback(void *, struct mbuf *); 178 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *, 179 struct rtentry *); 180 181 static int 182 ip_tso_output_callback(void *vp, struct mbuf *m) 183 { 184 struct ip_tso_output_args *args = vp; 185 struct ifnet *ifp = args->ifp; 186 187 return (*ifp->if_output)(ifp, m, args->sa, args->rt); 188 } 189 190 static int 191 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa, 192 struct rtentry *rt) 193 { 194 struct ip_tso_output_args args; 195 196 args.ifp = ifp; 197 args.sa = sa; 198 args.rt = rt; 199 200 return tcp4_segment(m, ip_tso_output_callback, &args); 201 } 202 203 /* 204 * IP output. The packet in mbuf chain m contains a skeletal IP 205 * header (with len, off, ttl, proto, tos, src, dst). 206 * The mbuf chain containing the packet will be freed. 207 * The mbuf opt, if present, will not be freed. 208 */ 209 int 210 ip_output(struct mbuf *m0, ...) 211 { 212 struct ip *ip; 213 struct ifnet *ifp; 214 struct mbuf *m = m0; 215 int hlen = sizeof (struct ip); 216 int len, error = 0; 217 struct route iproute; 218 struct sockaddr_in *dst; 219 struct in_ifaddr *ia; 220 struct mbuf *opt; 221 struct route *ro; 222 int flags, sw_csum; 223 int *mtu_p; 224 u_long mtu; 225 struct ip_moptions *imo; 226 struct socket *so; 227 va_list ap; 228 #ifdef IPSEC 229 struct secpolicy *sp = NULL; 230 #ifdef IPSEC_NAT_T 231 int natt_frag = 0; 232 #endif 233 #endif /*IPSEC*/ 234 #ifdef FAST_IPSEC 235 struct inpcb *inp; 236 struct m_tag *mtag; 237 struct secpolicy *sp = NULL; 238 struct tdb_ident *tdbi; 239 int s; 240 #endif 241 u_int16_t ip_len; 242 243 len = 0; 244 va_start(ap, m0); 245 opt = va_arg(ap, struct mbuf *); 246 ro = va_arg(ap, struct route *); 247 flags = va_arg(ap, int); 248 imo = va_arg(ap, struct ip_moptions *); 249 so = va_arg(ap, struct socket *); 250 if (flags & IP_RETURNMTU) 251 mtu_p = va_arg(ap, int *); 252 else 253 mtu_p = NULL; 254 va_end(ap); 255 256 MCLAIM(m, &ip_tx_mowner); 257 #ifdef FAST_IPSEC 258 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET) 259 inp = (struct inpcb *)so->so_pcb; 260 else 261 inp = NULL; 262 #endif /* FAST_IPSEC */ 263 264 #ifdef DIAGNOSTIC 265 if ((m->m_flags & M_PKTHDR) == 0) 266 panic("ip_output no HDR"); 267 #endif 268 if (opt) { 269 m = ip_insertoptions(m, opt, &len); 270 if (len >= sizeof(struct ip)) 271 hlen = len; 272 } 273 ip = mtod(m, struct ip *); 274 /* 275 * Fill in IP header. 276 */ 277 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 278 ip->ip_v = IPVERSION; 279 ip->ip_off = htons(0); 280 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 281 ip->ip_id = ip_newid(); 282 } else { 283 284 /* 285 * TSO capable interfaces (typically?) increment 286 * ip_id for each segment. 287 * "allocate" enough ids here to increase the chance 288 * for them to be unique. 289 * 290 * note that the following calculation is not 291 * needed to be precise. wasting some ip_id is fine. 292 */ 293 294 unsigned int segsz = m->m_pkthdr.segsz; 295 unsigned int datasz = ntohs(ip->ip_len) - hlen; 296 unsigned int num = howmany(datasz, segsz); 297 298 ip->ip_id = ip_newid_range(num); 299 } 300 ip->ip_hl = hlen >> 2; 301 ipstat.ips_localout++; 302 } else { 303 hlen = ip->ip_hl << 2; 304 } 305 /* 306 * Route packet. 307 */ 308 if (ro == 0) { 309 ro = &iproute; 310 bzero((caddr_t)ro, sizeof (*ro)); 311 } 312 dst = satosin(&ro->ro_dst); 313 /* 314 * If there is a cached route, 315 * check that it is to the same destination 316 * and is still up. If not, free it and try again. 317 * The address family should also be checked in case of sharing the 318 * cache with IPv6. 319 */ 320 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 321 dst->sin_family != AF_INET || 322 !in_hosteq(dst->sin_addr, ip->ip_dst))) { 323 RTFREE(ro->ro_rt); 324 ro->ro_rt = (struct rtentry *)0; 325 } 326 if (ro->ro_rt == 0) { 327 bzero(dst, sizeof(*dst)); 328 dst->sin_family = AF_INET; 329 dst->sin_len = sizeof(*dst); 330 dst->sin_addr = ip->ip_dst; 331 } 332 /* 333 * If routing to interface only, 334 * short circuit routing lookup. 335 */ 336 if (flags & IP_ROUTETOIF) { 337 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) { 338 ipstat.ips_noroute++; 339 error = ENETUNREACH; 340 goto bad; 341 } 342 ifp = ia->ia_ifp; 343 mtu = ifp->if_mtu; 344 ip->ip_ttl = 1; 345 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) || 346 ip->ip_dst.s_addr == INADDR_BROADCAST) && 347 imo != NULL && imo->imo_multicast_ifp != NULL) { 348 ifp = imo->imo_multicast_ifp; 349 mtu = ifp->if_mtu; 350 IFP_TO_IA(ifp, ia); 351 } else { 352 if (ro->ro_rt == 0) 353 rtalloc(ro); 354 if (ro->ro_rt == 0) { 355 ipstat.ips_noroute++; 356 error = EHOSTUNREACH; 357 goto bad; 358 } 359 ia = ifatoia(ro->ro_rt->rt_ifa); 360 ifp = ro->ro_rt->rt_ifp; 361 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0) 362 mtu = ifp->if_mtu; 363 ro->ro_rt->rt_use++; 364 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 365 dst = satosin(ro->ro_rt->rt_gateway); 366 } 367 if (IN_MULTICAST(ip->ip_dst.s_addr) || 368 (ip->ip_dst.s_addr == INADDR_BROADCAST)) { 369 struct in_multi *inm; 370 371 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ? 372 M_BCAST : M_MCAST; 373 /* 374 * IP destination address is multicast. Make sure "dst" 375 * still points to the address in "ro". (It may have been 376 * changed to point to a gateway address, above.) 377 */ 378 dst = satosin(&ro->ro_dst); 379 /* 380 * See if the caller provided any multicast options 381 */ 382 if (imo != NULL) 383 ip->ip_ttl = imo->imo_multicast_ttl; 384 else 385 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 386 387 /* 388 * if we don't know the outgoing ifp yet, we can't generate 389 * output 390 */ 391 if (!ifp) { 392 ipstat.ips_noroute++; 393 error = ENETUNREACH; 394 goto bad; 395 } 396 397 /* 398 * If the packet is multicast or broadcast, confirm that 399 * the outgoing interface can transmit it. 400 */ 401 if (((m->m_flags & M_MCAST) && 402 (ifp->if_flags & IFF_MULTICAST) == 0) || 403 ((m->m_flags & M_BCAST) && 404 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) { 405 ipstat.ips_noroute++; 406 error = ENETUNREACH; 407 goto bad; 408 } 409 /* 410 * If source address not specified yet, use an address 411 * of outgoing interface. 412 */ 413 if (in_nullhost(ip->ip_src)) { 414 struct in_ifaddr *xia; 415 416 IFP_TO_IA(ifp, xia); 417 if (!xia) { 418 error = EADDRNOTAVAIL; 419 goto bad; 420 } 421 ip->ip_src = xia->ia_addr.sin_addr; 422 } 423 424 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm); 425 if (inm != NULL && 426 (imo == NULL || imo->imo_multicast_loop)) { 427 /* 428 * If we belong to the destination multicast group 429 * on the outgoing interface, and the caller did not 430 * forbid loopback, loop back a copy. 431 */ 432 ip_mloopback(ifp, m, dst); 433 } 434 #ifdef MROUTING 435 else { 436 /* 437 * If we are acting as a multicast router, perform 438 * multicast forwarding as if the packet had just 439 * arrived on the interface to which we are about 440 * to send. The multicast forwarding function 441 * recursively calls this function, using the 442 * IP_FORWARDING flag to prevent infinite recursion. 443 * 444 * Multicasts that are looped back by ip_mloopback(), 445 * above, will be forwarded by the ip_input() routine, 446 * if necessary. 447 */ 448 extern struct socket *ip_mrouter; 449 450 if (ip_mrouter && (flags & IP_FORWARDING) == 0) { 451 if (ip_mforward(m, ifp) != 0) { 452 m_freem(m); 453 goto done; 454 } 455 } 456 } 457 #endif 458 /* 459 * Multicasts with a time-to-live of zero may be looped- 460 * back, above, but must not be transmitted on a network. 461 * Also, multicasts addressed to the loopback interface 462 * are not sent -- the above call to ip_mloopback() will 463 * loop back a copy if this host actually belongs to the 464 * destination group on the loopback interface. 465 */ 466 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) { 467 m_freem(m); 468 goto done; 469 } 470 471 goto sendit; 472 } 473 #ifndef notdef 474 /* 475 * If source address not specified yet, use address 476 * of outgoing interface. 477 */ 478 if (in_nullhost(ip->ip_src)) 479 ip->ip_src = ia->ia_addr.sin_addr; 480 #endif 481 482 /* 483 * packets with Class-D address as source are not valid per 484 * RFC 1112 485 */ 486 if (IN_MULTICAST(ip->ip_src.s_addr)) { 487 ipstat.ips_odropped++; 488 error = EADDRNOTAVAIL; 489 goto bad; 490 } 491 492 /* 493 * Look for broadcast address and 494 * and verify user is allowed to send 495 * such a packet. 496 */ 497 if (in_broadcast(dst->sin_addr, ifp)) { 498 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 499 error = EADDRNOTAVAIL; 500 goto bad; 501 } 502 if ((flags & IP_ALLOWBROADCAST) == 0) { 503 error = EACCES; 504 goto bad; 505 } 506 /* don't allow broadcast messages to be fragmented */ 507 if (ntohs(ip->ip_len) > ifp->if_mtu) { 508 error = EMSGSIZE; 509 goto bad; 510 } 511 m->m_flags |= M_BCAST; 512 } else 513 m->m_flags &= ~M_BCAST; 514 515 sendit: 516 /* 517 * If we're doing Path MTU Discovery, we need to set DF unless 518 * the route's MTU is locked. 519 */ 520 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL && 521 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 522 ip->ip_off |= htons(IP_DF); 523 524 /* Remember the current ip_len */ 525 ip_len = ntohs(ip->ip_len); 526 527 #ifdef IPSEC 528 /* get SP for this packet */ 529 if (so == NULL) 530 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 531 flags, &error); 532 else { 533 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp, 534 IPSEC_DIR_OUTBOUND)) 535 goto skip_ipsec; 536 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 537 } 538 539 if (sp == NULL) { 540 ipsecstat.out_inval++; 541 goto bad; 542 } 543 544 error = 0; 545 546 /* check policy */ 547 switch (sp->policy) { 548 case IPSEC_POLICY_DISCARD: 549 /* 550 * This packet is just discarded. 551 */ 552 ipsecstat.out_polvio++; 553 goto bad; 554 555 case IPSEC_POLICY_BYPASS: 556 case IPSEC_POLICY_NONE: 557 /* no need to do IPsec. */ 558 goto skip_ipsec; 559 560 case IPSEC_POLICY_IPSEC: 561 if (sp->req == NULL) { 562 /* XXX should be panic ? */ 563 printf("ip_output: No IPsec request specified.\n"); 564 error = EINVAL; 565 goto bad; 566 } 567 break; 568 569 case IPSEC_POLICY_ENTRUST: 570 default: 571 printf("ip_output: Invalid policy found. %d\n", sp->policy); 572 } 573 574 #ifdef IPSEC_NAT_T 575 /* 576 * NAT-T ESP fragmentation: don't do IPSec processing now, 577 * we'll do it on each fragmented packet. 578 */ 579 if (sp->req->sav && 580 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) || 581 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) { 582 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) { 583 natt_frag = 1; 584 mtu = sp->req->sav->esp_frag; 585 goto skip_ipsec; 586 } 587 } 588 #endif /* IPSEC_NAT_T */ 589 590 /* 591 * ipsec4_output() expects ip_len and ip_off in network 592 * order. They have been set to network order above. 593 */ 594 595 { 596 struct ipsec_output_state state; 597 bzero(&state, sizeof(state)); 598 state.m = m; 599 if (flags & IP_ROUTETOIF) { 600 state.ro = &iproute; 601 bzero(&iproute, sizeof(iproute)); 602 } else 603 state.ro = ro; 604 state.dst = (struct sockaddr *)dst; 605 606 /* 607 * We can't defer the checksum of payload data if 608 * we're about to encrypt/authenticate it. 609 * 610 * XXX When we support crypto offloading functions of 611 * XXX network interfaces, we need to reconsider this, 612 * XXX since it's likely that they'll support checksumming, 613 * XXX as well. 614 */ 615 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 616 in_delayed_cksum(m); 617 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 618 } 619 620 error = ipsec4_output(&state, sp, flags); 621 622 m = state.m; 623 if (flags & IP_ROUTETOIF) { 624 /* 625 * if we have tunnel mode SA, we may need to ignore 626 * IP_ROUTETOIF. 627 */ 628 if (state.ro != &iproute || state.ro->ro_rt != NULL) { 629 flags &= ~IP_ROUTETOIF; 630 ro = state.ro; 631 } 632 } else 633 ro = state.ro; 634 dst = (struct sockaddr_in *)state.dst; 635 if (error) { 636 /* mbuf is already reclaimed in ipsec4_output. */ 637 m0 = NULL; 638 switch (error) { 639 case EHOSTUNREACH: 640 case ENETUNREACH: 641 case EMSGSIZE: 642 case ENOBUFS: 643 case ENOMEM: 644 break; 645 default: 646 printf("ip4_output (ipsec): error code %d\n", error); 647 /*fall through*/ 648 case ENOENT: 649 /* don't show these error codes to the user */ 650 error = 0; 651 break; 652 } 653 goto bad; 654 } 655 656 /* be sure to update variables that are affected by ipsec4_output() */ 657 ip = mtod(m, struct ip *); 658 hlen = ip->ip_hl << 2; 659 ip_len = ntohs(ip->ip_len); 660 661 if (ro->ro_rt == NULL) { 662 if ((flags & IP_ROUTETOIF) == 0) { 663 printf("ip_output: " 664 "can't update route after IPsec processing\n"); 665 error = EHOSTUNREACH; /*XXX*/ 666 goto bad; 667 } 668 } else { 669 /* nobody uses ia beyond here */ 670 if (state.encap) { 671 ifp = ro->ro_rt->rt_ifp; 672 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0) 673 mtu = ifp->if_mtu; 674 } 675 } 676 } 677 skip_ipsec: 678 #endif /*IPSEC*/ 679 #ifdef FAST_IPSEC 680 /* 681 * Check the security policy (SP) for the packet and, if 682 * required, do IPsec-related processing. There are two 683 * cases here; the first time a packet is sent through 684 * it will be untagged and handled by ipsec4_checkpolicy. 685 * If the packet is resubmitted to ip_output (e.g. after 686 * AH, ESP, etc. processing), there will be a tag to bypass 687 * the lookup and related policy checking. 688 */ 689 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL); 690 s = splsoftnet(); 691 if (mtag != NULL) { 692 tdbi = (struct tdb_ident *)(mtag + 1); 693 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND); 694 if (sp == NULL) 695 error = -EINVAL; /* force silent drop */ 696 m_tag_delete(m, mtag); 697 } else { 698 if (inp != NULL && 699 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) 700 goto spd_done; 701 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags, 702 &error, inp); 703 } 704 /* 705 * There are four return cases: 706 * sp != NULL apply IPsec policy 707 * sp == NULL, error == 0 no IPsec handling needed 708 * sp == NULL, error == -EINVAL discard packet w/o error 709 * sp == NULL, error != 0 discard packet, report error 710 */ 711 if (sp != NULL) { 712 /* Loop detection, check if ipsec processing already done */ 713 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request")); 714 for (mtag = m_tag_first(m); mtag != NULL; 715 mtag = m_tag_next(m, mtag)) { 716 #ifdef MTAG_ABI_COMPAT 717 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT) 718 continue; 719 #endif 720 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE && 721 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED) 722 continue; 723 /* 724 * Check if policy has an SA associated with it. 725 * This can happen when an SP has yet to acquire 726 * an SA; e.g. on first reference. If it occurs, 727 * then we let ipsec4_process_packet do its thing. 728 */ 729 if (sp->req->sav == NULL) 730 break; 731 tdbi = (struct tdb_ident *)(mtag + 1); 732 if (tdbi->spi == sp->req->sav->spi && 733 tdbi->proto == sp->req->sav->sah->saidx.proto && 734 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst, 735 sizeof (union sockaddr_union)) == 0) { 736 /* 737 * No IPsec processing is needed, free 738 * reference to SP. 739 * 740 * NB: null pointer to avoid free at 741 * done: below. 742 */ 743 KEY_FREESP(&sp), sp = NULL; 744 splx(s); 745 goto spd_done; 746 } 747 } 748 749 /* 750 * Do delayed checksums now because we send before 751 * this is done in the normal processing path. 752 */ 753 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 754 in_delayed_cksum(m); 755 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 756 } 757 758 #ifdef __FreeBSD__ 759 ip->ip_len = htons(ip->ip_len); 760 ip->ip_off = htons(ip->ip_off); 761 #endif 762 763 /* NB: callee frees mbuf */ 764 error = ipsec4_process_packet(m, sp->req, flags, 0); 765 /* 766 * Preserve KAME behaviour: ENOENT can be returned 767 * when an SA acquire is in progress. Don't propagate 768 * this to user-level; it confuses applications. 769 * 770 * XXX this will go away when the SADB is redone. 771 */ 772 if (error == ENOENT) 773 error = 0; 774 splx(s); 775 goto done; 776 } else { 777 splx(s); 778 779 if (error != 0) { 780 /* 781 * Hack: -EINVAL is used to signal that a packet 782 * should be silently discarded. This is typically 783 * because we asked key management for an SA and 784 * it was delayed (e.g. kicked up to IKE). 785 */ 786 if (error == -EINVAL) 787 error = 0; 788 goto bad; 789 } else { 790 /* No IPsec processing for this packet. */ 791 } 792 #ifdef notyet 793 /* 794 * If deferred crypto processing is needed, check that 795 * the interface supports it. 796 */ 797 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL); 798 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) { 799 /* notify IPsec to do its own crypto */ 800 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1)); 801 error = EHOSTUNREACH; 802 goto bad; 803 } 804 #endif 805 } 806 spd_done: 807 #endif /* FAST_IPSEC */ 808 809 #ifdef PFIL_HOOKS 810 /* 811 * Run through list of hooks for output packets. 812 */ 813 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 814 goto done; 815 if (m == NULL) 816 goto done; 817 818 ip = mtod(m, struct ip *); 819 hlen = ip->ip_hl << 2; 820 #endif /* PFIL_HOOKS */ 821 822 m->m_pkthdr.csum_data |= hlen << 16; 823 824 #if IFA_STATS 825 /* 826 * search for the source address structure to 827 * maintain output statistics. 828 */ 829 INADDR_TO_IA(ip->ip_src, ia); 830 #endif 831 832 /* Maybe skip checksums on loopback interfaces. */ 833 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) { 834 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 835 } 836 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 837 /* 838 * If small enough for mtu of path, or if using TCP segmentation 839 * offload, can just send directly. 840 */ 841 if (ip_len <= mtu || 842 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 843 #if IFA_STATS 844 if (ia) 845 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len; 846 #endif 847 /* 848 * Always initialize the sum to 0! Some HW assisted 849 * checksumming requires this. 850 */ 851 ip->ip_sum = 0; 852 853 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 854 /* 855 * Perform any checksums that the hardware can't do 856 * for us. 857 * 858 * XXX Does any hardware require the {th,uh}_sum 859 * XXX fields to be 0? 860 */ 861 if (sw_csum & M_CSUM_IPv4) { 862 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)); 863 ip->ip_sum = in_cksum(m, hlen); 864 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 865 } 866 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 867 if (IN_NEED_CHECKSUM(ifp, 868 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 869 in_delayed_cksum(m); 870 } 871 m->m_pkthdr.csum_flags &= 872 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 873 } 874 } 875 876 #ifdef IPSEC 877 /* clean ipsec history once it goes out of the node */ 878 ipsec_delaux(m); 879 #endif 880 881 if (__predict_true( 882 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 || 883 (ifp->if_capenable & IFCAP_TSOv4) != 0)) { 884 error = 885 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt); 886 } else { 887 error = 888 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt); 889 } 890 goto done; 891 } 892 893 /* 894 * We can't use HW checksumming if we're about to 895 * to fragment the packet. 896 * 897 * XXX Some hardware can do this. 898 */ 899 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 900 if (IN_NEED_CHECKSUM(ifp, 901 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 902 in_delayed_cksum(m); 903 } 904 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 905 } 906 907 /* 908 * Too large for interface; fragment if possible. 909 * Must be able to put at least 8 bytes per fragment. 910 */ 911 if (ntohs(ip->ip_off) & IP_DF) { 912 if (flags & IP_RETURNMTU) 913 *mtu_p = mtu; 914 error = EMSGSIZE; 915 ipstat.ips_cantfrag++; 916 goto bad; 917 } 918 919 error = ip_fragment(m, ifp, mtu); 920 if (error) { 921 m = NULL; 922 goto bad; 923 } 924 925 for (; m; m = m0) { 926 m0 = m->m_nextpkt; 927 m->m_nextpkt = 0; 928 if (error == 0) { 929 #if IFA_STATS 930 if (ia) 931 ia->ia_ifa.ifa_data.ifad_outbytes += 932 ntohs(ip->ip_len); 933 #endif 934 #ifdef IPSEC 935 /* clean ipsec history once it goes out of the node */ 936 ipsec_delaux(m); 937 938 #ifdef IPSEC_NAT_T 939 /* 940 * If we get there, the packet has not been handeld by 941 * IPSec whereas it should have. Now that it has been 942 * fragmented, re-inject it in ip_output so that IPsec 943 * processing can occur. 944 */ 945 if (natt_frag) { 946 error = ip_output(m, opt, 947 ro, flags, imo, so, mtu_p); 948 } else 949 #endif /* IPSEC_NAT_T */ 950 #endif /* IPSEC */ 951 { 952 KASSERT((m->m_pkthdr.csum_flags & 953 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0); 954 error = (*ifp->if_output)(ifp, m, sintosa(dst), 955 ro->ro_rt); 956 } 957 } else 958 m_freem(m); 959 } 960 961 if (error == 0) 962 ipstat.ips_fragmented++; 963 done: 964 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) { 965 RTFREE(ro->ro_rt); 966 ro->ro_rt = 0; 967 } 968 969 #ifdef IPSEC 970 if (sp != NULL) { 971 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 972 printf("DP ip_output call free SP:%p\n", sp)); 973 key_freesp(sp); 974 } 975 #endif /* IPSEC */ 976 #ifdef FAST_IPSEC 977 if (sp != NULL) 978 KEY_FREESP(&sp); 979 #endif /* FAST_IPSEC */ 980 981 return (error); 982 bad: 983 m_freem(m); 984 goto done; 985 } 986 987 int 988 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu) 989 { 990 struct ip *ip, *mhip; 991 struct mbuf *m0; 992 int len, hlen, off; 993 int mhlen, firstlen; 994 struct mbuf **mnext; 995 int sw_csum = m->m_pkthdr.csum_flags; 996 int fragments = 0; 997 int s; 998 int error = 0; 999 1000 ip = mtod(m, struct ip *); 1001 hlen = ip->ip_hl << 2; 1002 if (ifp != NULL) 1003 sw_csum &= ~ifp->if_csum_flags_tx; 1004 1005 len = (mtu - hlen) &~ 7; 1006 if (len < 8) { 1007 m_freem(m); 1008 return (EMSGSIZE); 1009 } 1010 1011 firstlen = len; 1012 mnext = &m->m_nextpkt; 1013 1014 /* 1015 * Loop through length of segment after first fragment, 1016 * make new header and copy data of each part and link onto chain. 1017 */ 1018 m0 = m; 1019 mhlen = sizeof (struct ip); 1020 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) { 1021 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1022 if (m == 0) { 1023 error = ENOBUFS; 1024 ipstat.ips_odropped++; 1025 goto sendorfree; 1026 } 1027 MCLAIM(m, m0->m_owner); 1028 *mnext = m; 1029 mnext = &m->m_nextpkt; 1030 m->m_data += max_linkhdr; 1031 mhip = mtod(m, struct ip *); 1032 *mhip = *ip; 1033 /* we must inherit MCAST and BCAST flags */ 1034 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST); 1035 if (hlen > sizeof (struct ip)) { 1036 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 1037 mhip->ip_hl = mhlen >> 2; 1038 } 1039 m->m_len = mhlen; 1040 mhip->ip_off = ((off - hlen) >> 3) + 1041 (ntohs(ip->ip_off) & ~IP_MF); 1042 if (ip->ip_off & htons(IP_MF)) 1043 mhip->ip_off |= IP_MF; 1044 if (off + len >= ntohs(ip->ip_len)) 1045 len = ntohs(ip->ip_len) - off; 1046 else 1047 mhip->ip_off |= IP_MF; 1048 HTONS(mhip->ip_off); 1049 mhip->ip_len = htons((u_int16_t)(len + mhlen)); 1050 m->m_next = m_copy(m0, off, len); 1051 if (m->m_next == 0) { 1052 error = ENOBUFS; /* ??? */ 1053 ipstat.ips_odropped++; 1054 goto sendorfree; 1055 } 1056 m->m_pkthdr.len = mhlen + len; 1057 m->m_pkthdr.rcvif = (struct ifnet *)0; 1058 mhip->ip_sum = 0; 1059 if (sw_csum & M_CSUM_IPv4) { 1060 mhip->ip_sum = in_cksum(m, mhlen); 1061 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0); 1062 } else { 1063 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1064 m->m_pkthdr.csum_data |= mhlen << 16; 1065 } 1066 ipstat.ips_ofragments++; 1067 fragments++; 1068 } 1069 /* 1070 * Update first fragment by trimming what's been copied out 1071 * and updating header, then send each fragment (in order). 1072 */ 1073 m = m0; 1074 m_adj(m, hlen + firstlen - ntohs(ip->ip_len)); 1075 m->m_pkthdr.len = hlen + firstlen; 1076 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len); 1077 ip->ip_off |= htons(IP_MF); 1078 ip->ip_sum = 0; 1079 if (sw_csum & M_CSUM_IPv4) { 1080 ip->ip_sum = in_cksum(m, hlen); 1081 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 1082 } else { 1083 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4); 1084 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >= 1085 sizeof(struct ip)); 1086 } 1087 sendorfree: 1088 /* 1089 * If there is no room for all the fragments, don't queue 1090 * any of them. 1091 */ 1092 if (ifp != NULL) { 1093 s = splnet(); 1094 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments && 1095 error == 0) { 1096 error = ENOBUFS; 1097 ipstat.ips_odropped++; 1098 IFQ_INC_DROPS(&ifp->if_snd); 1099 } 1100 splx(s); 1101 } 1102 if (error) { 1103 for (m = m0; m; m = m0) { 1104 m0 = m->m_nextpkt; 1105 m->m_nextpkt = NULL; 1106 m_freem(m); 1107 } 1108 } 1109 return (error); 1110 } 1111 1112 /* 1113 * Process a delayed payload checksum calculation. 1114 */ 1115 void 1116 in_delayed_cksum(struct mbuf *m) 1117 { 1118 struct ip *ip; 1119 u_int16_t csum, offset; 1120 1121 ip = mtod(m, struct ip *); 1122 offset = ip->ip_hl << 2; 1123 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset); 1124 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 1125 csum = 0xffff; 1126 1127 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); 1128 1129 if ((offset + sizeof(u_int16_t)) > m->m_len) { 1130 /* This happen when ip options were inserted 1131 printf("in_delayed_cksum: pullup len %d off %d proto %d\n", 1132 m->m_len, offset, ip->ip_p); 1133 */ 1134 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum); 1135 } else 1136 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 1137 } 1138 1139 /* 1140 * Determine the maximum length of the options to be inserted; 1141 * we would far rather allocate too much space rather than too little. 1142 */ 1143 1144 u_int 1145 ip_optlen(struct inpcb *inp) 1146 { 1147 struct mbuf *m = inp->inp_options; 1148 1149 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) 1150 return (m->m_len - offsetof(struct ipoption, ipopt_dst)); 1151 else 1152 return 0; 1153 } 1154 1155 1156 /* 1157 * Insert IP options into preformed packet. 1158 * Adjust IP destination as required for IP source routing, 1159 * as indicated by a non-zero in_addr at the start of the options. 1160 */ 1161 static struct mbuf * 1162 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) 1163 { 1164 struct ipoption *p = mtod(opt, struct ipoption *); 1165 struct mbuf *n; 1166 struct ip *ip = mtod(m, struct ip *); 1167 unsigned optlen; 1168 1169 optlen = opt->m_len - sizeof(p->ipopt_dst); 1170 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET) 1171 return (m); /* XXX should fail */ 1172 if (!in_nullhost(p->ipopt_dst)) 1173 ip->ip_dst = p->ipopt_dst; 1174 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) { 1175 MGETHDR(n, M_DONTWAIT, MT_HEADER); 1176 if (n == 0) 1177 return (m); 1178 MCLAIM(n, m->m_owner); 1179 M_MOVE_PKTHDR(n, m); 1180 m->m_len -= sizeof(struct ip); 1181 m->m_data += sizeof(struct ip); 1182 n->m_next = m; 1183 m = n; 1184 m->m_len = optlen + sizeof(struct ip); 1185 m->m_data += max_linkhdr; 1186 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 1187 } else { 1188 m->m_data -= optlen; 1189 m->m_len += optlen; 1190 memmove(mtod(m, caddr_t), ip, sizeof(struct ip)); 1191 } 1192 m->m_pkthdr.len += optlen; 1193 ip = mtod(m, struct ip *); 1194 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen); 1195 *phlen = sizeof(struct ip) + optlen; 1196 ip->ip_len = htons(ntohs(ip->ip_len) + optlen); 1197 return (m); 1198 } 1199 1200 /* 1201 * Copy options from ip to jp, 1202 * omitting those not copied during fragmentation. 1203 */ 1204 int 1205 ip_optcopy(struct ip *ip, struct ip *jp) 1206 { 1207 u_char *cp, *dp; 1208 int opt, optlen, cnt; 1209 1210 cp = (u_char *)(ip + 1); 1211 dp = (u_char *)(jp + 1); 1212 cnt = (ip->ip_hl << 2) - sizeof (struct ip); 1213 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1214 opt = cp[0]; 1215 if (opt == IPOPT_EOL) 1216 break; 1217 if (opt == IPOPT_NOP) { 1218 /* Preserve for IP mcast tunnel's LSRR alignment. */ 1219 *dp++ = IPOPT_NOP; 1220 optlen = 1; 1221 continue; 1222 } 1223 #ifdef DIAGNOSTIC 1224 if (cnt < IPOPT_OLEN + sizeof(*cp)) 1225 panic("malformed IPv4 option passed to ip_optcopy"); 1226 #endif 1227 optlen = cp[IPOPT_OLEN]; 1228 #ifdef DIAGNOSTIC 1229 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) 1230 panic("malformed IPv4 option passed to ip_optcopy"); 1231 #endif 1232 /* bogus lengths should have been caught by ip_dooptions */ 1233 if (optlen > cnt) 1234 optlen = cnt; 1235 if (IPOPT_COPIED(opt)) { 1236 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen); 1237 dp += optlen; 1238 } 1239 } 1240 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) 1241 *dp++ = IPOPT_EOL; 1242 return (optlen); 1243 } 1244 1245 /* 1246 * IP socket option processing. 1247 */ 1248 int 1249 ip_ctloutput(int op, struct socket *so, int level, int optname, 1250 struct mbuf **mp) 1251 { 1252 struct inpcb *inp = sotoinpcb(so); 1253 struct mbuf *m = *mp; 1254 int optval = 0; 1255 int error = 0; 1256 #if defined(IPSEC) || defined(FAST_IPSEC) 1257 struct proc *p = curproc; /*XXX*/ 1258 #endif 1259 1260 if (level != IPPROTO_IP) { 1261 error = EINVAL; 1262 if (op == PRCO_SETOPT && *mp) 1263 (void) m_free(*mp); 1264 } else switch (op) { 1265 1266 case PRCO_SETOPT: 1267 switch (optname) { 1268 case IP_OPTIONS: 1269 #ifdef notyet 1270 case IP_RETOPTS: 1271 return (ip_pcbopts(optname, &inp->inp_options, m)); 1272 #else 1273 return (ip_pcbopts(&inp->inp_options, m)); 1274 #endif 1275 1276 case IP_TOS: 1277 case IP_TTL: 1278 case IP_RECVOPTS: 1279 case IP_RECVRETOPTS: 1280 case IP_RECVDSTADDR: 1281 case IP_RECVIF: 1282 if (m == NULL || m->m_len != sizeof(int)) 1283 error = EINVAL; 1284 else { 1285 optval = *mtod(m, int *); 1286 switch (optname) { 1287 1288 case IP_TOS: 1289 inp->inp_ip.ip_tos = optval; 1290 break; 1291 1292 case IP_TTL: 1293 inp->inp_ip.ip_ttl = optval; 1294 break; 1295 #define OPTSET(bit) \ 1296 if (optval) \ 1297 inp->inp_flags |= bit; \ 1298 else \ 1299 inp->inp_flags &= ~bit; 1300 1301 case IP_RECVOPTS: 1302 OPTSET(INP_RECVOPTS); 1303 break; 1304 1305 case IP_RECVRETOPTS: 1306 OPTSET(INP_RECVRETOPTS); 1307 break; 1308 1309 case IP_RECVDSTADDR: 1310 OPTSET(INP_RECVDSTADDR); 1311 break; 1312 1313 case IP_RECVIF: 1314 OPTSET(INP_RECVIF); 1315 break; 1316 } 1317 } 1318 break; 1319 #undef OPTSET 1320 1321 case IP_MULTICAST_IF: 1322 case IP_MULTICAST_TTL: 1323 case IP_MULTICAST_LOOP: 1324 case IP_ADD_MEMBERSHIP: 1325 case IP_DROP_MEMBERSHIP: 1326 error = ip_setmoptions(optname, &inp->inp_moptions, m); 1327 break; 1328 1329 case IP_PORTRANGE: 1330 if (m == 0 || m->m_len != sizeof(int)) 1331 error = EINVAL; 1332 else { 1333 optval = *mtod(m, int *); 1334 1335 switch (optval) { 1336 1337 case IP_PORTRANGE_DEFAULT: 1338 case IP_PORTRANGE_HIGH: 1339 inp->inp_flags &= ~(INP_LOWPORT); 1340 break; 1341 1342 case IP_PORTRANGE_LOW: 1343 inp->inp_flags |= INP_LOWPORT; 1344 break; 1345 1346 default: 1347 error = EINVAL; 1348 break; 1349 } 1350 } 1351 break; 1352 1353 #if defined(IPSEC) || defined(FAST_IPSEC) 1354 case IP_IPSEC_POLICY: 1355 { 1356 caddr_t req = NULL; 1357 size_t len = 0; 1358 int priv = 0; 1359 1360 #ifdef __NetBSD__ 1361 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1362 priv = 0; 1363 else 1364 priv = 1; 1365 #else 1366 priv = (in6p->in6p_socket->so_state & SS_PRIV); 1367 #endif 1368 if (m) { 1369 req = mtod(m, caddr_t); 1370 len = m->m_len; 1371 } 1372 error = ipsec4_set_policy(inp, optname, req, len, priv); 1373 break; 1374 } 1375 #endif /*IPSEC*/ 1376 1377 default: 1378 error = ENOPROTOOPT; 1379 break; 1380 } 1381 if (m) 1382 (void)m_free(m); 1383 break; 1384 1385 case PRCO_GETOPT: 1386 switch (optname) { 1387 case IP_OPTIONS: 1388 case IP_RETOPTS: 1389 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1390 MCLAIM(m, so->so_mowner); 1391 if (inp->inp_options) { 1392 m->m_len = inp->inp_options->m_len; 1393 bcopy(mtod(inp->inp_options, caddr_t), 1394 mtod(m, caddr_t), (unsigned)m->m_len); 1395 } else 1396 m->m_len = 0; 1397 break; 1398 1399 case IP_TOS: 1400 case IP_TTL: 1401 case IP_RECVOPTS: 1402 case IP_RECVRETOPTS: 1403 case IP_RECVDSTADDR: 1404 case IP_RECVIF: 1405 case IP_ERRORMTU: 1406 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1407 MCLAIM(m, so->so_mowner); 1408 m->m_len = sizeof(int); 1409 switch (optname) { 1410 1411 case IP_TOS: 1412 optval = inp->inp_ip.ip_tos; 1413 break; 1414 1415 case IP_TTL: 1416 optval = inp->inp_ip.ip_ttl; 1417 break; 1418 1419 case IP_ERRORMTU: 1420 optval = inp->inp_errormtu; 1421 break; 1422 1423 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1424 1425 case IP_RECVOPTS: 1426 optval = OPTBIT(INP_RECVOPTS); 1427 break; 1428 1429 case IP_RECVRETOPTS: 1430 optval = OPTBIT(INP_RECVRETOPTS); 1431 break; 1432 1433 case IP_RECVDSTADDR: 1434 optval = OPTBIT(INP_RECVDSTADDR); 1435 break; 1436 1437 case IP_RECVIF: 1438 optval = OPTBIT(INP_RECVIF); 1439 break; 1440 } 1441 *mtod(m, int *) = optval; 1442 break; 1443 1444 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */ 1445 /* XXX: code broken */ 1446 case IP_IPSEC_POLICY: 1447 { 1448 caddr_t req = NULL; 1449 size_t len = 0; 1450 1451 if (m) { 1452 req = mtod(m, caddr_t); 1453 len = m->m_len; 1454 } 1455 error = ipsec4_get_policy(inp, req, len, mp); 1456 break; 1457 } 1458 #endif /*IPSEC*/ 1459 1460 case IP_MULTICAST_IF: 1461 case IP_MULTICAST_TTL: 1462 case IP_MULTICAST_LOOP: 1463 case IP_ADD_MEMBERSHIP: 1464 case IP_DROP_MEMBERSHIP: 1465 error = ip_getmoptions(optname, inp->inp_moptions, mp); 1466 if (*mp) 1467 MCLAIM(*mp, so->so_mowner); 1468 break; 1469 1470 case IP_PORTRANGE: 1471 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1472 MCLAIM(m, so->so_mowner); 1473 m->m_len = sizeof(int); 1474 1475 if (inp->inp_flags & INP_LOWPORT) 1476 optval = IP_PORTRANGE_LOW; 1477 else 1478 optval = IP_PORTRANGE_DEFAULT; 1479 1480 *mtod(m, int *) = optval; 1481 break; 1482 1483 default: 1484 error = ENOPROTOOPT; 1485 break; 1486 } 1487 break; 1488 } 1489 return (error); 1490 } 1491 1492 /* 1493 * Set up IP options in pcb for insertion in output packets. 1494 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1495 * with destination address if source routed. 1496 */ 1497 int 1498 #ifdef notyet 1499 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m) 1500 #else 1501 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m) 1502 #endif 1503 { 1504 int cnt, optlen; 1505 u_char *cp; 1506 u_char opt; 1507 1508 /* turn off any old options */ 1509 if (*pcbopt) 1510 (void)m_free(*pcbopt); 1511 *pcbopt = 0; 1512 if (m == (struct mbuf *)0 || m->m_len == 0) { 1513 /* 1514 * Only turning off any previous options. 1515 */ 1516 if (m) 1517 (void)m_free(m); 1518 return (0); 1519 } 1520 1521 #ifndef __vax__ 1522 if (m->m_len % sizeof(int32_t)) 1523 goto bad; 1524 #endif 1525 /* 1526 * IP first-hop destination address will be stored before 1527 * actual options; move other options back 1528 * and clear it when none present. 1529 */ 1530 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN]) 1531 goto bad; 1532 cnt = m->m_len; 1533 m->m_len += sizeof(struct in_addr); 1534 cp = mtod(m, u_char *) + sizeof(struct in_addr); 1535 memmove(cp, mtod(m, caddr_t), (unsigned)cnt); 1536 bzero(mtod(m, caddr_t), sizeof(struct in_addr)); 1537 1538 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1539 opt = cp[IPOPT_OPTVAL]; 1540 if (opt == IPOPT_EOL) 1541 break; 1542 if (opt == IPOPT_NOP) 1543 optlen = 1; 1544 else { 1545 if (cnt < IPOPT_OLEN + sizeof(*cp)) 1546 goto bad; 1547 optlen = cp[IPOPT_OLEN]; 1548 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) 1549 goto bad; 1550 } 1551 switch (opt) { 1552 1553 default: 1554 break; 1555 1556 case IPOPT_LSRR: 1557 case IPOPT_SSRR: 1558 /* 1559 * user process specifies route as: 1560 * ->A->B->C->D 1561 * D must be our final destination (but we can't 1562 * check that since we may not have connected yet). 1563 * A is first hop destination, which doesn't appear in 1564 * actual IP option, but is stored before the options. 1565 */ 1566 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr)) 1567 goto bad; 1568 m->m_len -= sizeof(struct in_addr); 1569 cnt -= sizeof(struct in_addr); 1570 optlen -= sizeof(struct in_addr); 1571 cp[IPOPT_OLEN] = optlen; 1572 /* 1573 * Move first hop before start of options. 1574 */ 1575 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t), 1576 sizeof(struct in_addr)); 1577 /* 1578 * Then copy rest of options back 1579 * to close up the deleted entry. 1580 */ 1581 (void)memmove(&cp[IPOPT_OFFSET+1], 1582 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr), 1583 (unsigned)cnt - (IPOPT_MINOFF - 1)); 1584 break; 1585 } 1586 } 1587 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr)) 1588 goto bad; 1589 *pcbopt = m; 1590 return (0); 1591 1592 bad: 1593 (void)m_free(m); 1594 return (EINVAL); 1595 } 1596 1597 /* 1598 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index. 1599 */ 1600 static struct ifnet * 1601 ip_multicast_if(struct in_addr *a, int *ifindexp) 1602 { 1603 int ifindex; 1604 struct ifnet *ifp = NULL; 1605 struct in_ifaddr *ia; 1606 1607 if (ifindexp) 1608 *ifindexp = 0; 1609 if (ntohl(a->s_addr) >> 24 == 0) { 1610 ifindex = ntohl(a->s_addr) & 0xffffff; 1611 if (ifindex < 0 || if_indexlim <= ifindex) 1612 return NULL; 1613 ifp = ifindex2ifnet[ifindex]; 1614 if (!ifp) 1615 return NULL; 1616 if (ifindexp) 1617 *ifindexp = ifindex; 1618 } else { 1619 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) { 1620 if (in_hosteq(ia->ia_addr.sin_addr, *a) && 1621 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) { 1622 ifp = ia->ia_ifp; 1623 break; 1624 } 1625 } 1626 } 1627 return ifp; 1628 } 1629 1630 static int 1631 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval) 1632 { 1633 u_int tval; 1634 1635 if (m == NULL) 1636 return EINVAL; 1637 1638 switch (m->m_len) { 1639 case sizeof(u_char): 1640 tval = *(mtod(m, u_char *)); 1641 break; 1642 case sizeof(u_int): 1643 tval = *(mtod(m, u_int *)); 1644 break; 1645 default: 1646 return EINVAL; 1647 } 1648 1649 if (tval > maxval) 1650 return EINVAL; 1651 1652 *val = tval; 1653 return 0; 1654 } 1655 1656 /* 1657 * Set the IP multicast options in response to user setsockopt(). 1658 */ 1659 int 1660 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m) 1661 { 1662 int error = 0; 1663 int i; 1664 struct in_addr addr; 1665 struct ip_mreq *mreq; 1666 struct ifnet *ifp; 1667 struct ip_moptions *imo = *imop; 1668 struct route ro; 1669 struct sockaddr_in *dst; 1670 int ifindex; 1671 1672 if (imo == NULL) { 1673 /* 1674 * No multicast option buffer attached to the pcb; 1675 * allocate one and initialize to default values. 1676 */ 1677 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS, 1678 M_WAITOK); 1679 1680 if (imo == NULL) 1681 return (ENOBUFS); 1682 *imop = imo; 1683 imo->imo_multicast_ifp = NULL; 1684 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1685 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1686 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 1687 imo->imo_num_memberships = 0; 1688 } 1689 1690 switch (optname) { 1691 1692 case IP_MULTICAST_IF: 1693 /* 1694 * Select the interface for outgoing multicast packets. 1695 */ 1696 if (m == NULL || m->m_len != sizeof(struct in_addr)) { 1697 error = EINVAL; 1698 break; 1699 } 1700 addr = *(mtod(m, struct in_addr *)); 1701 /* 1702 * INADDR_ANY is used to remove a previous selection. 1703 * When no interface is selected, a default one is 1704 * chosen every time a multicast packet is sent. 1705 */ 1706 if (in_nullhost(addr)) { 1707 imo->imo_multicast_ifp = NULL; 1708 break; 1709 } 1710 /* 1711 * The selected interface is identified by its local 1712 * IP address. Find the interface and confirm that 1713 * it supports multicasting. 1714 */ 1715 ifp = ip_multicast_if(&addr, &ifindex); 1716 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1717 error = EADDRNOTAVAIL; 1718 break; 1719 } 1720 imo->imo_multicast_ifp = ifp; 1721 if (ifindex) 1722 imo->imo_multicast_addr = addr; 1723 else 1724 imo->imo_multicast_addr.s_addr = INADDR_ANY; 1725 break; 1726 1727 case IP_MULTICAST_TTL: 1728 /* 1729 * Set the IP time-to-live for outgoing multicast packets. 1730 */ 1731 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL); 1732 break; 1733 1734 case IP_MULTICAST_LOOP: 1735 /* 1736 * Set the loopback flag for outgoing multicast packets. 1737 * Must be zero or one. 1738 */ 1739 error = ip_getoptval(m, &imo->imo_multicast_loop, 1); 1740 break; 1741 1742 case IP_ADD_MEMBERSHIP: 1743 /* 1744 * Add a multicast group membership. 1745 * Group must be a valid IP multicast address. 1746 */ 1747 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) { 1748 error = EINVAL; 1749 break; 1750 } 1751 mreq = mtod(m, struct ip_mreq *); 1752 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) { 1753 error = EINVAL; 1754 break; 1755 } 1756 /* 1757 * If no interface address was provided, use the interface of 1758 * the route to the given multicast address. 1759 */ 1760 if (in_nullhost(mreq->imr_interface)) { 1761 bzero((caddr_t)&ro, sizeof(ro)); 1762 ro.ro_rt = NULL; 1763 dst = satosin(&ro.ro_dst); 1764 dst->sin_len = sizeof(*dst); 1765 dst->sin_family = AF_INET; 1766 dst->sin_addr = mreq->imr_multiaddr; 1767 rtalloc(&ro); 1768 if (ro.ro_rt == NULL) { 1769 error = EADDRNOTAVAIL; 1770 break; 1771 } 1772 ifp = ro.ro_rt->rt_ifp; 1773 rtfree(ro.ro_rt); 1774 } else { 1775 ifp = ip_multicast_if(&mreq->imr_interface, NULL); 1776 } 1777 /* 1778 * See if we found an interface, and confirm that it 1779 * supports multicast. 1780 */ 1781 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1782 error = EADDRNOTAVAIL; 1783 break; 1784 } 1785 /* 1786 * See if the membership already exists or if all the 1787 * membership slots are full. 1788 */ 1789 for (i = 0; i < imo->imo_num_memberships; ++i) { 1790 if (imo->imo_membership[i]->inm_ifp == ifp && 1791 in_hosteq(imo->imo_membership[i]->inm_addr, 1792 mreq->imr_multiaddr)) 1793 break; 1794 } 1795 if (i < imo->imo_num_memberships) { 1796 error = EADDRINUSE; 1797 break; 1798 } 1799 if (i == IP_MAX_MEMBERSHIPS) { 1800 error = ETOOMANYREFS; 1801 break; 1802 } 1803 /* 1804 * Everything looks good; add a new record to the multicast 1805 * address list for the given interface. 1806 */ 1807 if ((imo->imo_membership[i] = 1808 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) { 1809 error = ENOBUFS; 1810 break; 1811 } 1812 ++imo->imo_num_memberships; 1813 break; 1814 1815 case IP_DROP_MEMBERSHIP: 1816 /* 1817 * Drop a multicast group membership. 1818 * Group must be a valid IP multicast address. 1819 */ 1820 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) { 1821 error = EINVAL; 1822 break; 1823 } 1824 mreq = mtod(m, struct ip_mreq *); 1825 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) { 1826 error = EINVAL; 1827 break; 1828 } 1829 /* 1830 * If an interface address was specified, get a pointer 1831 * to its ifnet structure. 1832 */ 1833 if (in_nullhost(mreq->imr_interface)) 1834 ifp = NULL; 1835 else { 1836 ifp = ip_multicast_if(&mreq->imr_interface, NULL); 1837 if (ifp == NULL) { 1838 error = EADDRNOTAVAIL; 1839 break; 1840 } 1841 } 1842 /* 1843 * Find the membership in the membership array. 1844 */ 1845 for (i = 0; i < imo->imo_num_memberships; ++i) { 1846 if ((ifp == NULL || 1847 imo->imo_membership[i]->inm_ifp == ifp) && 1848 in_hosteq(imo->imo_membership[i]->inm_addr, 1849 mreq->imr_multiaddr)) 1850 break; 1851 } 1852 if (i == imo->imo_num_memberships) { 1853 error = EADDRNOTAVAIL; 1854 break; 1855 } 1856 /* 1857 * Give up the multicast address record to which the 1858 * membership points. 1859 */ 1860 in_delmulti(imo->imo_membership[i]); 1861 /* 1862 * Remove the gap in the membership array. 1863 */ 1864 for (++i; i < imo->imo_num_memberships; ++i) 1865 imo->imo_membership[i-1] = imo->imo_membership[i]; 1866 --imo->imo_num_memberships; 1867 break; 1868 1869 default: 1870 error = EOPNOTSUPP; 1871 break; 1872 } 1873 1874 /* 1875 * If all options have default values, no need to keep the mbuf. 1876 */ 1877 if (imo->imo_multicast_ifp == NULL && 1878 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL && 1879 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP && 1880 imo->imo_num_memberships == 0) { 1881 free(*imop, M_IPMOPTS); 1882 *imop = NULL; 1883 } 1884 1885 return (error); 1886 } 1887 1888 /* 1889 * Return the IP multicast options in response to user getsockopt(). 1890 */ 1891 int 1892 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp) 1893 { 1894 u_char *ttl; 1895 u_char *loop; 1896 struct in_addr *addr; 1897 struct in_ifaddr *ia; 1898 1899 *mp = m_get(M_WAIT, MT_SOOPTS); 1900 1901 switch (optname) { 1902 1903 case IP_MULTICAST_IF: 1904 addr = mtod(*mp, struct in_addr *); 1905 (*mp)->m_len = sizeof(struct in_addr); 1906 if (imo == NULL || imo->imo_multicast_ifp == NULL) 1907 *addr = zeroin_addr; 1908 else if (imo->imo_multicast_addr.s_addr) { 1909 /* return the value user has set */ 1910 *addr = imo->imo_multicast_addr; 1911 } else { 1912 IFP_TO_IA(imo->imo_multicast_ifp, ia); 1913 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr; 1914 } 1915 return (0); 1916 1917 case IP_MULTICAST_TTL: 1918 ttl = mtod(*mp, u_char *); 1919 (*mp)->m_len = 1; 1920 *ttl = imo ? imo->imo_multicast_ttl 1921 : IP_DEFAULT_MULTICAST_TTL; 1922 return (0); 1923 1924 case IP_MULTICAST_LOOP: 1925 loop = mtod(*mp, u_char *); 1926 (*mp)->m_len = 1; 1927 *loop = imo ? imo->imo_multicast_loop 1928 : IP_DEFAULT_MULTICAST_LOOP; 1929 return (0); 1930 1931 default: 1932 return (EOPNOTSUPP); 1933 } 1934 } 1935 1936 /* 1937 * Discard the IP multicast options. 1938 */ 1939 void 1940 ip_freemoptions(struct ip_moptions *imo) 1941 { 1942 int i; 1943 1944 if (imo != NULL) { 1945 for (i = 0; i < imo->imo_num_memberships; ++i) 1946 in_delmulti(imo->imo_membership[i]); 1947 free(imo, M_IPMOPTS); 1948 } 1949 } 1950 1951 /* 1952 * Routine called from ip_output() to loop back a copy of an IP multicast 1953 * packet to the input queue of a specified interface. Note that this 1954 * calls the output routine of the loopback "driver", but with an interface 1955 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 1956 */ 1957 static void 1958 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst) 1959 { 1960 struct ip *ip; 1961 struct mbuf *copym; 1962 1963 copym = m_copy(m, 0, M_COPYALL); 1964 if (copym != NULL 1965 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip))) 1966 copym = m_pullup(copym, sizeof(struct ip)); 1967 if (copym != NULL) { 1968 /* 1969 * We don't bother to fragment if the IP length is greater 1970 * than the interface's MTU. Can this possibly matter? 1971 */ 1972 ip = mtod(copym, struct ip *); 1973 1974 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1975 in_delayed_cksum(copym); 1976 copym->m_pkthdr.csum_flags &= 1977 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1978 } 1979 1980 ip->ip_sum = 0; 1981 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2); 1982 (void) looutput(ifp, copym, sintosa(dst), NULL); 1983 } 1984 } 1985