xref: /netbsd-src/sys/netinet/ip_output.c (revision 20e85ad185ab16980f1219a557c42e057edb42ea)
1 /*	$NetBSD: ip_output.c,v 1.150 2005/04/07 12:22:47 yamt Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. All advertising materials mentioning features or use of this software
49  *    must display the following acknowledgement:
50  *	This product includes software developed by the NetBSD
51  *	Foundation, Inc. and its contributors.
52  * 4. Neither the name of The NetBSD Foundation nor the names of its
53  *    contributors may be used to endorse or promote products derived
54  *    from this software without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66  * POSSIBILITY OF SUCH DAMAGE.
67  */
68 
69 /*
70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
71  *	The Regents of the University of California.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  * 1. Redistributions of source code must retain the above copyright
77  *    notice, this list of conditions and the following disclaimer.
78  * 2. Redistributions in binary form must reproduce the above copyright
79  *    notice, this list of conditions and the following disclaimer in the
80  *    documentation and/or other materials provided with the distribution.
81  * 3. Neither the name of the University nor the names of its contributors
82  *    may be used to endorse or promote products derived from this software
83  *    without specific prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.150 2005/04/07 12:22:47 yamt Exp $");
102 
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107 
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120 
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124 
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135 
136 #include <machine/stdarg.h>
137 
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146 
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif	/* FAST_IPSEC*/
152 
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156 
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook;			/* XXX */
159 #endif
160 
161 /*
162  * IP output.  The packet in mbuf chain m contains a skeletal IP
163  * header (with len, off, ttl, proto, tos, src, dst).
164  * The mbuf chain containing the packet will be freed.
165  * The mbuf opt, if present, will not be freed.
166  */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 	struct ip *ip;
171 	struct ifnet *ifp;
172 	struct mbuf *m = m0;
173 	int hlen = sizeof (struct ip);
174 	int len, error = 0;
175 	struct route iproute;
176 	struct sockaddr_in *dst;
177 	struct in_ifaddr *ia;
178 	struct mbuf *opt;
179 	struct route *ro;
180 	int flags, sw_csum;
181 	int *mtu_p;
182 	u_long mtu;
183 	struct ip_moptions *imo;
184 	struct socket *so;
185 	va_list ap;
186 #ifdef IPSEC
187 	struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 	int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 	struct inpcb *inp;
194 	struct m_tag *mtag;
195 	struct secpolicy *sp = NULL;
196 	struct tdb_ident *tdbi;
197 	int s;
198 #endif
199 	u_int16_t ip_len;
200 
201 	len = 0;
202 	va_start(ap, m0);
203 	opt = va_arg(ap, struct mbuf *);
204 	ro = va_arg(ap, struct route *);
205 	flags = va_arg(ap, int);
206 	imo = va_arg(ap, struct ip_moptions *);
207 	so = va_arg(ap, struct socket *);
208 	if (flags & IP_RETURNMTU)
209 		mtu_p = va_arg(ap, int *);
210 	else
211 		mtu_p = NULL;
212 	va_end(ap);
213 
214 	MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 		inp = (struct inpcb *)so->so_pcb;
218 	else
219 		inp = NULL;
220 #endif /* FAST_IPSEC */
221 
222 #ifdef	DIAGNOSTIC
223 	if ((m->m_flags & M_PKTHDR) == 0)
224 		panic("ip_output no HDR");
225 #endif
226 	if (opt) {
227 		m = ip_insertoptions(m, opt, &len);
228 		if (len >= sizeof(struct ip))
229 			hlen = len;
230 	}
231 	ip = mtod(m, struct ip *);
232 	/*
233 	 * Fill in IP header.
234 	 */
235 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 		ip->ip_v = IPVERSION;
237 		ip->ip_off = htons(0);
238 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
239 			ip->ip_id = ip_newid();
240 		} else {
241 
242 			/*
243 			 * TSO capable interfaces (typically?) increment
244 			 * ip_id for each segment.
245 			 * "allocate" enough ids here to increase the chance
246 			 * for them to be unique.
247 			 *
248 			 * note that the following calculation is not
249 			 * needed to be precise.  wasting some ip_id is fine.
250 			 */
251 
252 			unsigned int segsz = m->m_pkthdr.segsz;
253 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
254 			unsigned int num = howmany(datasz, segsz);
255 
256 			ip->ip_id = ip_newid_range(num);
257 		}
258 		ip->ip_hl = hlen >> 2;
259 		ipstat.ips_localout++;
260 	} else {
261 		hlen = ip->ip_hl << 2;
262 	}
263 	/*
264 	 * Route packet.
265 	 */
266 	if (ro == 0) {
267 		ro = &iproute;
268 		bzero((caddr_t)ro, sizeof (*ro));
269 	}
270 	dst = satosin(&ro->ro_dst);
271 	/*
272 	 * If there is a cached route,
273 	 * check that it is to the same destination
274 	 * and is still up.  If not, free it and try again.
275 	 * The address family should also be checked in case of sharing the
276 	 * cache with IPv6.
277 	 */
278 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
279 	    dst->sin_family != AF_INET ||
280 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
281 		RTFREE(ro->ro_rt);
282 		ro->ro_rt = (struct rtentry *)0;
283 	}
284 	if (ro->ro_rt == 0) {
285 		bzero(dst, sizeof(*dst));
286 		dst->sin_family = AF_INET;
287 		dst->sin_len = sizeof(*dst);
288 		dst->sin_addr = ip->ip_dst;
289 	}
290 	/*
291 	 * If routing to interface only,
292 	 * short circuit routing lookup.
293 	 */
294 	if (flags & IP_ROUTETOIF) {
295 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
296 			ipstat.ips_noroute++;
297 			error = ENETUNREACH;
298 			goto bad;
299 		}
300 		ifp = ia->ia_ifp;
301 		mtu = ifp->if_mtu;
302 		ip->ip_ttl = 1;
303 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
304 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
305 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
306 		ifp = imo->imo_multicast_ifp;
307 		mtu = ifp->if_mtu;
308 		IFP_TO_IA(ifp, ia);
309 	} else {
310 		if (ro->ro_rt == 0)
311 			rtalloc(ro);
312 		if (ro->ro_rt == 0) {
313 			ipstat.ips_noroute++;
314 			error = EHOSTUNREACH;
315 			goto bad;
316 		}
317 		ia = ifatoia(ro->ro_rt->rt_ifa);
318 		ifp = ro->ro_rt->rt_ifp;
319 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
320 			mtu = ifp->if_mtu;
321 		ro->ro_rt->rt_use++;
322 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
323 			dst = satosin(ro->ro_rt->rt_gateway);
324 	}
325 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
326 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
327 		struct in_multi *inm;
328 
329 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
330 			M_BCAST : M_MCAST;
331 		/*
332 		 * IP destination address is multicast.  Make sure "dst"
333 		 * still points to the address in "ro".  (It may have been
334 		 * changed to point to a gateway address, above.)
335 		 */
336 		dst = satosin(&ro->ro_dst);
337 		/*
338 		 * See if the caller provided any multicast options
339 		 */
340 		if (imo != NULL)
341 			ip->ip_ttl = imo->imo_multicast_ttl;
342 		else
343 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
344 
345 		/*
346 		 * if we don't know the outgoing ifp yet, we can't generate
347 		 * output
348 		 */
349 		if (!ifp) {
350 			ipstat.ips_noroute++;
351 			error = ENETUNREACH;
352 			goto bad;
353 		}
354 
355 		/*
356 		 * If the packet is multicast or broadcast, confirm that
357 		 * the outgoing interface can transmit it.
358 		 */
359 		if (((m->m_flags & M_MCAST) &&
360 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
361 		    ((m->m_flags & M_BCAST) &&
362 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
363 			ipstat.ips_noroute++;
364 			error = ENETUNREACH;
365 			goto bad;
366 		}
367 		/*
368 		 * If source address not specified yet, use an address
369 		 * of outgoing interface.
370 		 */
371 		if (in_nullhost(ip->ip_src)) {
372 			struct in_ifaddr *ia;
373 
374 			IFP_TO_IA(ifp, ia);
375 			if (!ia) {
376 				error = EADDRNOTAVAIL;
377 				goto bad;
378 			}
379 			ip->ip_src = ia->ia_addr.sin_addr;
380 		}
381 
382 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
383 		if (inm != NULL &&
384 		   (imo == NULL || imo->imo_multicast_loop)) {
385 			/*
386 			 * If we belong to the destination multicast group
387 			 * on the outgoing interface, and the caller did not
388 			 * forbid loopback, loop back a copy.
389 			 */
390 			ip_mloopback(ifp, m, dst);
391 		}
392 #ifdef MROUTING
393 		else {
394 			/*
395 			 * If we are acting as a multicast router, perform
396 			 * multicast forwarding as if the packet had just
397 			 * arrived on the interface to which we are about
398 			 * to send.  The multicast forwarding function
399 			 * recursively calls this function, using the
400 			 * IP_FORWARDING flag to prevent infinite recursion.
401 			 *
402 			 * Multicasts that are looped back by ip_mloopback(),
403 			 * above, will be forwarded by the ip_input() routine,
404 			 * if necessary.
405 			 */
406 			extern struct socket *ip_mrouter;
407 
408 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
409 				if (ip_mforward(m, ifp) != 0) {
410 					m_freem(m);
411 					goto done;
412 				}
413 			}
414 		}
415 #endif
416 		/*
417 		 * Multicasts with a time-to-live of zero may be looped-
418 		 * back, above, but must not be transmitted on a network.
419 		 * Also, multicasts addressed to the loopback interface
420 		 * are not sent -- the above call to ip_mloopback() will
421 		 * loop back a copy if this host actually belongs to the
422 		 * destination group on the loopback interface.
423 		 */
424 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
425 			m_freem(m);
426 			goto done;
427 		}
428 
429 		goto sendit;
430 	}
431 #ifndef notdef
432 	/*
433 	 * If source address not specified yet, use address
434 	 * of outgoing interface.
435 	 */
436 	if (in_nullhost(ip->ip_src))
437 		ip->ip_src = ia->ia_addr.sin_addr;
438 #endif
439 
440 	/*
441 	 * packets with Class-D address as source are not valid per
442 	 * RFC 1112
443 	 */
444 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
445 		ipstat.ips_odropped++;
446 		error = EADDRNOTAVAIL;
447 		goto bad;
448 	}
449 
450 	/*
451 	 * Look for broadcast address and
452 	 * and verify user is allowed to send
453 	 * such a packet.
454 	 */
455 	if (in_broadcast(dst->sin_addr, ifp)) {
456 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
457 			error = EADDRNOTAVAIL;
458 			goto bad;
459 		}
460 		if ((flags & IP_ALLOWBROADCAST) == 0) {
461 			error = EACCES;
462 			goto bad;
463 		}
464 		/* don't allow broadcast messages to be fragmented */
465 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
466 			error = EMSGSIZE;
467 			goto bad;
468 		}
469 		m->m_flags |= M_BCAST;
470 	} else
471 		m->m_flags &= ~M_BCAST;
472 
473 sendit:
474 	/*
475 	 * If we're doing Path MTU Discovery, we need to set DF unless
476 	 * the route's MTU is locked.
477 	 */
478 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
479 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
480 		ip->ip_off |= htons(IP_DF);
481 
482 	/* Remember the current ip_len */
483 	ip_len = ntohs(ip->ip_len);
484 
485 #ifdef IPSEC
486 	/* get SP for this packet */
487 	if (so == NULL)
488 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
489 		    flags, &error);
490 	else {
491 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
492 					 IPSEC_DIR_OUTBOUND))
493 			goto skip_ipsec;
494 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
495 	}
496 
497 	if (sp == NULL) {
498 		ipsecstat.out_inval++;
499 		goto bad;
500 	}
501 
502 	error = 0;
503 
504 	/* check policy */
505 	switch (sp->policy) {
506 	case IPSEC_POLICY_DISCARD:
507 		/*
508 		 * This packet is just discarded.
509 		 */
510 		ipsecstat.out_polvio++;
511 		goto bad;
512 
513 	case IPSEC_POLICY_BYPASS:
514 	case IPSEC_POLICY_NONE:
515 		/* no need to do IPsec. */
516 		goto skip_ipsec;
517 
518 	case IPSEC_POLICY_IPSEC:
519 		if (sp->req == NULL) {
520 			/* XXX should be panic ? */
521 			printf("ip_output: No IPsec request specified.\n");
522 			error = EINVAL;
523 			goto bad;
524 		}
525 		break;
526 
527 	case IPSEC_POLICY_ENTRUST:
528 	default:
529 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
530 	}
531 
532 #ifdef IPSEC_NAT_T
533 	/*
534 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
535 	 * we'll do it on each fragmented packet.
536 	 */
537 	if (sp->req->sav &&
538 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
539 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
540 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
541 			natt_frag = 1;
542 			mtu = sp->req->sav->esp_frag;
543 			goto skip_ipsec;
544 		}
545 	}
546 #endif /* IPSEC_NAT_T */
547 
548 	/*
549 	 * ipsec4_output() expects ip_len and ip_off in network
550 	 * order.  They have been set to network order above.
551 	 */
552 
553     {
554 	struct ipsec_output_state state;
555 	bzero(&state, sizeof(state));
556 	state.m = m;
557 	if (flags & IP_ROUTETOIF) {
558 		state.ro = &iproute;
559 		bzero(&iproute, sizeof(iproute));
560 	} else
561 		state.ro = ro;
562 	state.dst = (struct sockaddr *)dst;
563 
564 	/*
565 	 * We can't defer the checksum of payload data if
566 	 * we're about to encrypt/authenticate it.
567 	 *
568 	 * XXX When we support crypto offloading functions of
569 	 * XXX network interfaces, we need to reconsider this,
570 	 * XXX since it's likely that they'll support checksumming,
571 	 * XXX as well.
572 	 */
573 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
574 		in_delayed_cksum(m);
575 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
576 	}
577 
578 	error = ipsec4_output(&state, sp, flags);
579 
580 	m = state.m;
581 	if (flags & IP_ROUTETOIF) {
582 		/*
583 		 * if we have tunnel mode SA, we may need to ignore
584 		 * IP_ROUTETOIF.
585 		 */
586 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
587 			flags &= ~IP_ROUTETOIF;
588 			ro = state.ro;
589 		}
590 	} else
591 		ro = state.ro;
592 	dst = (struct sockaddr_in *)state.dst;
593 	if (error) {
594 		/* mbuf is already reclaimed in ipsec4_output. */
595 		m0 = NULL;
596 		switch (error) {
597 		case EHOSTUNREACH:
598 		case ENETUNREACH:
599 		case EMSGSIZE:
600 		case ENOBUFS:
601 		case ENOMEM:
602 			break;
603 		default:
604 			printf("ip4_output (ipsec): error code %d\n", error);
605 			/*fall through*/
606 		case ENOENT:
607 			/* don't show these error codes to the user */
608 			error = 0;
609 			break;
610 		}
611 		goto bad;
612 	}
613 
614 	/* be sure to update variables that are affected by ipsec4_output() */
615 	ip = mtod(m, struct ip *);
616 	hlen = ip->ip_hl << 2;
617 	ip_len = ntohs(ip->ip_len);
618 
619 	if (ro->ro_rt == NULL) {
620 		if ((flags & IP_ROUTETOIF) == 0) {
621 			printf("ip_output: "
622 				"can't update route after IPsec processing\n");
623 			error = EHOSTUNREACH;	/*XXX*/
624 			goto bad;
625 		}
626 	} else {
627 		/* nobody uses ia beyond here */
628 		if (state.encap) {
629 			ifp = ro->ro_rt->rt_ifp;
630 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
631 				mtu = ifp->if_mtu;
632 		}
633 	}
634     }
635 skip_ipsec:
636 #endif /*IPSEC*/
637 #ifdef FAST_IPSEC
638 	/*
639 	 * Check the security policy (SP) for the packet and, if
640 	 * required, do IPsec-related processing.  There are two
641 	 * cases here; the first time a packet is sent through
642 	 * it will be untagged and handled by ipsec4_checkpolicy.
643 	 * If the packet is resubmitted to ip_output (e.g. after
644 	 * AH, ESP, etc. processing), there will be a tag to bypass
645 	 * the lookup and related policy checking.
646 	 */
647 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
648 	s = splsoftnet();
649 	if (mtag != NULL) {
650 		tdbi = (struct tdb_ident *)(mtag + 1);
651 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
652 		if (sp == NULL)
653 			error = -EINVAL;	/* force silent drop */
654 		m_tag_delete(m, mtag);
655 	} else {
656 		if (inp != NULL &&
657 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
658 			goto spd_done;
659 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
660 					&error, inp);
661 	}
662 	/*
663 	 * There are four return cases:
664 	 *    sp != NULL	 	    apply IPsec policy
665 	 *    sp == NULL, error == 0	    no IPsec handling needed
666 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
667 	 *    sp == NULL, error != 0	    discard packet, report error
668 	 */
669 	if (sp != NULL) {
670 		/* Loop detection, check if ipsec processing already done */
671 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
672 		for (mtag = m_tag_first(m); mtag != NULL;
673 		     mtag = m_tag_next(m, mtag)) {
674 #ifdef MTAG_ABI_COMPAT
675 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
676 				continue;
677 #endif
678 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
679 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
680 				continue;
681 			/*
682 			 * Check if policy has an SA associated with it.
683 			 * This can happen when an SP has yet to acquire
684 			 * an SA; e.g. on first reference.  If it occurs,
685 			 * then we let ipsec4_process_packet do its thing.
686 			 */
687 			if (sp->req->sav == NULL)
688 				break;
689 			tdbi = (struct tdb_ident *)(mtag + 1);
690 			if (tdbi->spi == sp->req->sav->spi &&
691 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
692 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
693 				 sizeof (union sockaddr_union)) == 0) {
694 				/*
695 				 * No IPsec processing is needed, free
696 				 * reference to SP.
697 				 *
698 				 * NB: null pointer to avoid free at
699 				 *     done: below.
700 				 */
701 				KEY_FREESP(&sp), sp = NULL;
702 				splx(s);
703 				goto spd_done;
704 			}
705 		}
706 
707 		/*
708 		 * Do delayed checksums now because we send before
709 		 * this is done in the normal processing path.
710 		 */
711 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
712 			in_delayed_cksum(m);
713 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 		}
715 
716 #ifdef __FreeBSD__
717 		ip->ip_len = htons(ip->ip_len);
718 		ip->ip_off = htons(ip->ip_off);
719 #endif
720 
721 		/* NB: callee frees mbuf */
722 		error = ipsec4_process_packet(m, sp->req, flags, 0);
723 		/*
724 		 * Preserve KAME behaviour: ENOENT can be returned
725 		 * when an SA acquire is in progress.  Don't propagate
726 		 * this to user-level; it confuses applications.
727 		 *
728 		 * XXX this will go away when the SADB is redone.
729 		 */
730 		if (error == ENOENT)
731 			error = 0;
732 		splx(s);
733 		goto done;
734 	} else {
735 		splx(s);
736 
737 		if (error != 0) {
738 			/*
739 			 * Hack: -EINVAL is used to signal that a packet
740 			 * should be silently discarded.  This is typically
741 			 * because we asked key management for an SA and
742 			 * it was delayed (e.g. kicked up to IKE).
743 			 */
744 			if (error == -EINVAL)
745 				error = 0;
746 			goto bad;
747 		} else {
748 			/* No IPsec processing for this packet. */
749 		}
750 #ifdef notyet
751 		/*
752 		 * If deferred crypto processing is needed, check that
753 		 * the interface supports it.
754 		 */
755 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
756 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
757 			/* notify IPsec to do its own crypto */
758 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
759 			error = EHOSTUNREACH;
760 			goto bad;
761 		}
762 #endif
763 	}
764 spd_done:
765 #endif /* FAST_IPSEC */
766 
767 #ifdef PFIL_HOOKS
768 	/*
769 	 * Run through list of hooks for output packets.
770 	 */
771 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
772 		goto done;
773 	if (m == NULL)
774 		goto done;
775 
776 	ip = mtod(m, struct ip *);
777 	hlen = ip->ip_hl << 2;
778 #endif /* PFIL_HOOKS */
779 
780 	m->m_pkthdr.csum_data |= hlen << 16;
781 
782 #if IFA_STATS
783 	/*
784 	 * search for the source address structure to
785 	 * maintain output statistics.
786 	 */
787 	INADDR_TO_IA(ip->ip_src, ia);
788 #endif
789 
790 	/* Maybe skip checksums on loopback interfaces. */
791 	if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
792 			   ip_do_loopback_cksum))
793 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
794 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
795 	/*
796 	 * If small enough for mtu of path, or if using TCP segmentation
797 	 * offload, can just send directly.
798 	 */
799 	if (ip_len <= mtu ||
800 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
801 #if IFA_STATS
802 		if (ia)
803 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
804 #endif
805 		/*
806 		 * Always initialize the sum to 0!  Some HW assisted
807 		 * checksumming requires this.
808 		 */
809 		ip->ip_sum = 0;
810 
811 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
812 			/*
813 			 * Perform any checksums that the hardware can't do
814 			 * for us.
815 			 *
816 			 * XXX Does any hardware require the {th,uh}_sum
817 			 * XXX fields to be 0?
818 			 */
819 			if (sw_csum & M_CSUM_IPv4) {
820 				ip->ip_sum = in_cksum(m, hlen);
821 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
822 			}
823 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
824 				in_delayed_cksum(m);
825 				m->m_pkthdr.csum_flags &=
826 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
827 			}
828 		}
829 
830 #ifdef IPSEC
831 		/* clean ipsec history once it goes out of the node */
832 		ipsec_delaux(m);
833 #endif
834 		error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
835 		goto done;
836 	}
837 
838 	/*
839 	 * We can't use HW checksumming if we're about to
840 	 * to fragment the packet.
841 	 *
842 	 * XXX Some hardware can do this.
843 	 */
844 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
845 		in_delayed_cksum(m);
846 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
847 	}
848 
849 	/*
850 	 * Too large for interface; fragment if possible.
851 	 * Must be able to put at least 8 bytes per fragment.
852 	 */
853 	if (ntohs(ip->ip_off) & IP_DF) {
854 		if (flags & IP_RETURNMTU)
855 			*mtu_p = mtu;
856 		error = EMSGSIZE;
857 		ipstat.ips_cantfrag++;
858 		goto bad;
859 	}
860 
861 	error = ip_fragment(m, ifp, mtu);
862 	if (error) {
863 		m = NULL;
864 		goto bad;
865 	}
866 
867 	for (; m; m = m0) {
868 		m0 = m->m_nextpkt;
869 		m->m_nextpkt = 0;
870 		if (error == 0) {
871 #if IFA_STATS
872 			if (ia)
873 				ia->ia_ifa.ifa_data.ifad_outbytes +=
874 				    ntohs(ip->ip_len);
875 #endif
876 #ifdef IPSEC
877 			/* clean ipsec history once it goes out of the node */
878 			ipsec_delaux(m);
879 
880 #ifdef IPSEC_NAT_T
881 			/*
882 			 * If we get there, the packet has not been handeld by
883 			 * IPSec whereas it should have. Now that it has been
884 			 * fragmented, re-inject it in ip_output so that IPsec
885 			 * processing can occur.
886 			 */
887 			if (natt_frag) {
888 				error = ip_output(m, opt,
889 				    ro, flags, imo, so, mtu_p);
890 			} else
891 #endif /* IPSEC_NAT_T */
892 #endif /* IPSEC */
893 			{
894 				KASSERT((m->m_pkthdr.csum_flags &
895 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
896 				error = (*ifp->if_output)(ifp, m, sintosa(dst),
897 				    ro->ro_rt);
898 			}
899 		} else
900 			m_freem(m);
901 	}
902 
903 	if (error == 0)
904 		ipstat.ips_fragmented++;
905 done:
906 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
907 		RTFREE(ro->ro_rt);
908 		ro->ro_rt = 0;
909 	}
910 
911 #ifdef IPSEC
912 	if (sp != NULL) {
913 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
914 			printf("DP ip_output call free SP:%p\n", sp));
915 		key_freesp(sp);
916 	}
917 #endif /* IPSEC */
918 #ifdef FAST_IPSEC
919 	if (sp != NULL)
920 		KEY_FREESP(&sp);
921 #endif /* FAST_IPSEC */
922 
923 	return (error);
924 bad:
925 	m_freem(m);
926 	goto done;
927 }
928 
929 int
930 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
931 {
932 	struct ip *ip, *mhip;
933 	struct mbuf *m0;
934 	int len, hlen, off;
935 	int mhlen, firstlen;
936 	struct mbuf **mnext;
937 	int sw_csum = m->m_pkthdr.csum_flags;
938 	int fragments = 0;
939 	int s;
940 	int error = 0;
941 
942 	ip = mtod(m, struct ip *);
943 	hlen = ip->ip_hl << 2;
944 	if (ifp != NULL)
945 		sw_csum &= ~ifp->if_csum_flags_tx;
946 
947 	len = (mtu - hlen) &~ 7;
948 	if (len < 8) {
949 		m_freem(m);
950 		return (EMSGSIZE);
951 	}
952 
953 	firstlen = len;
954 	mnext = &m->m_nextpkt;
955 
956 	/*
957 	 * Loop through length of segment after first fragment,
958 	 * make new header and copy data of each part and link onto chain.
959 	 */
960 	m0 = m;
961 	mhlen = sizeof (struct ip);
962 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
963 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
964 		if (m == 0) {
965 			error = ENOBUFS;
966 			ipstat.ips_odropped++;
967 			goto sendorfree;
968 		}
969 		MCLAIM(m, m0->m_owner);
970 		*mnext = m;
971 		mnext = &m->m_nextpkt;
972 		m->m_data += max_linkhdr;
973 		mhip = mtod(m, struct ip *);
974 		*mhip = *ip;
975 		/* we must inherit MCAST and BCAST flags */
976 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
977 		if (hlen > sizeof (struct ip)) {
978 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
979 			mhip->ip_hl = mhlen >> 2;
980 		}
981 		m->m_len = mhlen;
982 		mhip->ip_off = ((off - hlen) >> 3) +
983 		    (ntohs(ip->ip_off) & ~IP_MF);
984 		if (ip->ip_off & htons(IP_MF))
985 			mhip->ip_off |= IP_MF;
986 		if (off + len >= ntohs(ip->ip_len))
987 			len = ntohs(ip->ip_len) - off;
988 		else
989 			mhip->ip_off |= IP_MF;
990 		HTONS(mhip->ip_off);
991 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
992 		m->m_next = m_copy(m0, off, len);
993 		if (m->m_next == 0) {
994 			error = ENOBUFS;	/* ??? */
995 			ipstat.ips_odropped++;
996 			goto sendorfree;
997 		}
998 		m->m_pkthdr.len = mhlen + len;
999 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1000 		mhip->ip_sum = 0;
1001 		if (sw_csum & M_CSUM_IPv4) {
1002 			mhip->ip_sum = in_cksum(m, mhlen);
1003 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1004 		} else {
1005 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1006 			m->m_pkthdr.csum_data |= mhlen << 16;
1007 		}
1008 		ipstat.ips_ofragments++;
1009 		fragments++;
1010 	}
1011 	/*
1012 	 * Update first fragment by trimming what's been copied out
1013 	 * and updating header, then send each fragment (in order).
1014 	 */
1015 	m = m0;
1016 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1017 	m->m_pkthdr.len = hlen + firstlen;
1018 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1019 	ip->ip_off |= htons(IP_MF);
1020 	ip->ip_sum = 0;
1021 	if (sw_csum & M_CSUM_IPv4) {
1022 		ip->ip_sum = in_cksum(m, hlen);
1023 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1024 	} else {
1025 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1026 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1027 			sizeof(struct ip));
1028 	}
1029 sendorfree:
1030 	/*
1031 	 * If there is no room for all the fragments, don't queue
1032 	 * any of them.
1033 	 */
1034 	if (ifp != NULL) {
1035 		s = splnet();
1036 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1037 		    error == 0) {
1038 			error = ENOBUFS;
1039 			ipstat.ips_odropped++;
1040 			IFQ_INC_DROPS(&ifp->if_snd);
1041 		}
1042 		splx(s);
1043 	}
1044 	if (error) {
1045 		for (m = m0; m; m = m0) {
1046 			m0 = m->m_nextpkt;
1047 			m->m_nextpkt = NULL;
1048 			m_freem(m);
1049 		}
1050 	}
1051 	return (error);
1052 }
1053 
1054 /*
1055  * Process a delayed payload checksum calculation.
1056  */
1057 void
1058 in_delayed_cksum(struct mbuf *m)
1059 {
1060 	struct ip *ip;
1061 	u_int16_t csum, offset;
1062 
1063 	ip = mtod(m, struct ip *);
1064 	offset = ip->ip_hl << 2;
1065 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1066 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1067 		csum = 0xffff;
1068 
1069 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1070 
1071 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
1072 		/* This happen when ip options were inserted
1073 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1074 		    m->m_len, offset, ip->ip_p);
1075 		 */
1076 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1077 	} else
1078 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1079 }
1080 
1081 /*
1082  * Determine the maximum length of the options to be inserted;
1083  * we would far rather allocate too much space rather than too little.
1084  */
1085 
1086 u_int
1087 ip_optlen(struct inpcb *inp)
1088 {
1089 	struct mbuf *m = inp->inp_options;
1090 
1091 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1092 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1093 	else
1094 		return 0;
1095 }
1096 
1097 
1098 /*
1099  * Insert IP options into preformed packet.
1100  * Adjust IP destination as required for IP source routing,
1101  * as indicated by a non-zero in_addr at the start of the options.
1102  */
1103 static struct mbuf *
1104 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1105 {
1106 	struct ipoption *p = mtod(opt, struct ipoption *);
1107 	struct mbuf *n;
1108 	struct ip *ip = mtod(m, struct ip *);
1109 	unsigned optlen;
1110 
1111 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1112 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1113 		return (m);		/* XXX should fail */
1114 	if (!in_nullhost(p->ipopt_dst))
1115 		ip->ip_dst = p->ipopt_dst;
1116 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1117 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1118 		if (n == 0)
1119 			return (m);
1120 		MCLAIM(n, m->m_owner);
1121 		M_COPY_PKTHDR(n, m);
1122 		m_tag_delete_chain(m, NULL);
1123 		m->m_flags &= ~M_PKTHDR;
1124 		m->m_len -= sizeof(struct ip);
1125 		m->m_data += sizeof(struct ip);
1126 		n->m_next = m;
1127 		m = n;
1128 		m->m_len = optlen + sizeof(struct ip);
1129 		m->m_data += max_linkhdr;
1130 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1131 	} else {
1132 		m->m_data -= optlen;
1133 		m->m_len += optlen;
1134 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1135 	}
1136 	m->m_pkthdr.len += optlen;
1137 	ip = mtod(m, struct ip *);
1138 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1139 	*phlen = sizeof(struct ip) + optlen;
1140 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1141 	return (m);
1142 }
1143 
1144 /*
1145  * Copy options from ip to jp,
1146  * omitting those not copied during fragmentation.
1147  */
1148 int
1149 ip_optcopy(struct ip *ip, struct ip *jp)
1150 {
1151 	u_char *cp, *dp;
1152 	int opt, optlen, cnt;
1153 
1154 	cp = (u_char *)(ip + 1);
1155 	dp = (u_char *)(jp + 1);
1156 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1157 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1158 		opt = cp[0];
1159 		if (opt == IPOPT_EOL)
1160 			break;
1161 		if (opt == IPOPT_NOP) {
1162 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1163 			*dp++ = IPOPT_NOP;
1164 			optlen = 1;
1165 			continue;
1166 		}
1167 #ifdef DIAGNOSTIC
1168 		if (cnt < IPOPT_OLEN + sizeof(*cp))
1169 			panic("malformed IPv4 option passed to ip_optcopy");
1170 #endif
1171 		optlen = cp[IPOPT_OLEN];
1172 #ifdef DIAGNOSTIC
1173 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1174 			panic("malformed IPv4 option passed to ip_optcopy");
1175 #endif
1176 		/* bogus lengths should have been caught by ip_dooptions */
1177 		if (optlen > cnt)
1178 			optlen = cnt;
1179 		if (IPOPT_COPIED(opt)) {
1180 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1181 			dp += optlen;
1182 		}
1183 	}
1184 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1185 		*dp++ = IPOPT_EOL;
1186 	return (optlen);
1187 }
1188 
1189 /*
1190  * IP socket option processing.
1191  */
1192 int
1193 ip_ctloutput(int op, struct socket *so, int level, int optname,
1194     struct mbuf **mp)
1195 {
1196 	struct inpcb *inp = sotoinpcb(so);
1197 	struct mbuf *m = *mp;
1198 	int optval = 0;
1199 	int error = 0;
1200 #if defined(IPSEC) || defined(FAST_IPSEC)
1201 	struct proc *p = curproc;	/*XXX*/
1202 #endif
1203 
1204 	if (level != IPPROTO_IP) {
1205 		error = EINVAL;
1206 		if (op == PRCO_SETOPT && *mp)
1207 			(void) m_free(*mp);
1208 	} else switch (op) {
1209 
1210 	case PRCO_SETOPT:
1211 		switch (optname) {
1212 		case IP_OPTIONS:
1213 #ifdef notyet
1214 		case IP_RETOPTS:
1215 			return (ip_pcbopts(optname, &inp->inp_options, m));
1216 #else
1217 			return (ip_pcbopts(&inp->inp_options, m));
1218 #endif
1219 
1220 		case IP_TOS:
1221 		case IP_TTL:
1222 		case IP_RECVOPTS:
1223 		case IP_RECVRETOPTS:
1224 		case IP_RECVDSTADDR:
1225 		case IP_RECVIF:
1226 			if (m == NULL || m->m_len != sizeof(int))
1227 				error = EINVAL;
1228 			else {
1229 				optval = *mtod(m, int *);
1230 				switch (optname) {
1231 
1232 				case IP_TOS:
1233 					inp->inp_ip.ip_tos = optval;
1234 					break;
1235 
1236 				case IP_TTL:
1237 					inp->inp_ip.ip_ttl = optval;
1238 					break;
1239 #define	OPTSET(bit) \
1240 	if (optval) \
1241 		inp->inp_flags |= bit; \
1242 	else \
1243 		inp->inp_flags &= ~bit;
1244 
1245 				case IP_RECVOPTS:
1246 					OPTSET(INP_RECVOPTS);
1247 					break;
1248 
1249 				case IP_RECVRETOPTS:
1250 					OPTSET(INP_RECVRETOPTS);
1251 					break;
1252 
1253 				case IP_RECVDSTADDR:
1254 					OPTSET(INP_RECVDSTADDR);
1255 					break;
1256 
1257 				case IP_RECVIF:
1258 					OPTSET(INP_RECVIF);
1259 					break;
1260 				}
1261 			}
1262 			break;
1263 #undef OPTSET
1264 
1265 		case IP_MULTICAST_IF:
1266 		case IP_MULTICAST_TTL:
1267 		case IP_MULTICAST_LOOP:
1268 		case IP_ADD_MEMBERSHIP:
1269 		case IP_DROP_MEMBERSHIP:
1270 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
1271 			break;
1272 
1273 		case IP_PORTRANGE:
1274 			if (m == 0 || m->m_len != sizeof(int))
1275 				error = EINVAL;
1276 			else {
1277 				optval = *mtod(m, int *);
1278 
1279 				switch (optval) {
1280 
1281 				case IP_PORTRANGE_DEFAULT:
1282 				case IP_PORTRANGE_HIGH:
1283 					inp->inp_flags &= ~(INP_LOWPORT);
1284 					break;
1285 
1286 				case IP_PORTRANGE_LOW:
1287 					inp->inp_flags |= INP_LOWPORT;
1288 					break;
1289 
1290 				default:
1291 					error = EINVAL;
1292 					break;
1293 				}
1294 			}
1295 			break;
1296 
1297 #if defined(IPSEC) || defined(FAST_IPSEC)
1298 		case IP_IPSEC_POLICY:
1299 		{
1300 			caddr_t req = NULL;
1301 			size_t len = 0;
1302 			int priv = 0;
1303 
1304 #ifdef __NetBSD__
1305 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1306 				priv = 0;
1307 			else
1308 				priv = 1;
1309 #else
1310 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
1311 #endif
1312 			if (m) {
1313 				req = mtod(m, caddr_t);
1314 				len = m->m_len;
1315 			}
1316 			error = ipsec4_set_policy(inp, optname, req, len, priv);
1317 			break;
1318 		    }
1319 #endif /*IPSEC*/
1320 
1321 		default:
1322 			error = ENOPROTOOPT;
1323 			break;
1324 		}
1325 		if (m)
1326 			(void)m_free(m);
1327 		break;
1328 
1329 	case PRCO_GETOPT:
1330 		switch (optname) {
1331 		case IP_OPTIONS:
1332 		case IP_RETOPTS:
1333 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1334 			MCLAIM(m, so->so_mowner);
1335 			if (inp->inp_options) {
1336 				m->m_len = inp->inp_options->m_len;
1337 				bcopy(mtod(inp->inp_options, caddr_t),
1338 				    mtod(m, caddr_t), (unsigned)m->m_len);
1339 			} else
1340 				m->m_len = 0;
1341 			break;
1342 
1343 		case IP_TOS:
1344 		case IP_TTL:
1345 		case IP_RECVOPTS:
1346 		case IP_RECVRETOPTS:
1347 		case IP_RECVDSTADDR:
1348 		case IP_RECVIF:
1349 		case IP_ERRORMTU:
1350 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1351 			MCLAIM(m, so->so_mowner);
1352 			m->m_len = sizeof(int);
1353 			switch (optname) {
1354 
1355 			case IP_TOS:
1356 				optval = inp->inp_ip.ip_tos;
1357 				break;
1358 
1359 			case IP_TTL:
1360 				optval = inp->inp_ip.ip_ttl;
1361 				break;
1362 
1363 			case IP_ERRORMTU:
1364 				optval = inp->inp_errormtu;
1365 				break;
1366 
1367 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1368 
1369 			case IP_RECVOPTS:
1370 				optval = OPTBIT(INP_RECVOPTS);
1371 				break;
1372 
1373 			case IP_RECVRETOPTS:
1374 				optval = OPTBIT(INP_RECVRETOPTS);
1375 				break;
1376 
1377 			case IP_RECVDSTADDR:
1378 				optval = OPTBIT(INP_RECVDSTADDR);
1379 				break;
1380 
1381 			case IP_RECVIF:
1382 				optval = OPTBIT(INP_RECVIF);
1383 				break;
1384 			}
1385 			*mtod(m, int *) = optval;
1386 			break;
1387 
1388 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
1389 		/* XXX: code broken */
1390 		case IP_IPSEC_POLICY:
1391 		{
1392 			caddr_t req = NULL;
1393 			size_t len = 0;
1394 
1395 			if (m) {
1396 				req = mtod(m, caddr_t);
1397 				len = m->m_len;
1398 			}
1399 			error = ipsec4_get_policy(inp, req, len, mp);
1400 			break;
1401 		}
1402 #endif /*IPSEC*/
1403 
1404 		case IP_MULTICAST_IF:
1405 		case IP_MULTICAST_TTL:
1406 		case IP_MULTICAST_LOOP:
1407 		case IP_ADD_MEMBERSHIP:
1408 		case IP_DROP_MEMBERSHIP:
1409 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
1410 			if (*mp)
1411 				MCLAIM(*mp, so->so_mowner);
1412 			break;
1413 
1414 		case IP_PORTRANGE:
1415 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1416 			MCLAIM(m, so->so_mowner);
1417 			m->m_len = sizeof(int);
1418 
1419 			if (inp->inp_flags & INP_LOWPORT)
1420 				optval = IP_PORTRANGE_LOW;
1421 			else
1422 				optval = IP_PORTRANGE_DEFAULT;
1423 
1424 			*mtod(m, int *) = optval;
1425 			break;
1426 
1427 		default:
1428 			error = ENOPROTOOPT;
1429 			break;
1430 		}
1431 		break;
1432 	}
1433 	return (error);
1434 }
1435 
1436 /*
1437  * Set up IP options in pcb for insertion in output packets.
1438  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1439  * with destination address if source routed.
1440  */
1441 int
1442 #ifdef notyet
1443 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1444 #else
1445 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1446 #endif
1447 {
1448 	int cnt, optlen;
1449 	u_char *cp;
1450 	u_char opt;
1451 
1452 	/* turn off any old options */
1453 	if (*pcbopt)
1454 		(void)m_free(*pcbopt);
1455 	*pcbopt = 0;
1456 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1457 		/*
1458 		 * Only turning off any previous options.
1459 		 */
1460 		if (m)
1461 			(void)m_free(m);
1462 		return (0);
1463 	}
1464 
1465 #ifndef	__vax__
1466 	if (m->m_len % sizeof(int32_t))
1467 		goto bad;
1468 #endif
1469 	/*
1470 	 * IP first-hop destination address will be stored before
1471 	 * actual options; move other options back
1472 	 * and clear it when none present.
1473 	 */
1474 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1475 		goto bad;
1476 	cnt = m->m_len;
1477 	m->m_len += sizeof(struct in_addr);
1478 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1479 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1480 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1481 
1482 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1483 		opt = cp[IPOPT_OPTVAL];
1484 		if (opt == IPOPT_EOL)
1485 			break;
1486 		if (opt == IPOPT_NOP)
1487 			optlen = 1;
1488 		else {
1489 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1490 				goto bad;
1491 			optlen = cp[IPOPT_OLEN];
1492 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1493 				goto bad;
1494 		}
1495 		switch (opt) {
1496 
1497 		default:
1498 			break;
1499 
1500 		case IPOPT_LSRR:
1501 		case IPOPT_SSRR:
1502 			/*
1503 			 * user process specifies route as:
1504 			 *	->A->B->C->D
1505 			 * D must be our final destination (but we can't
1506 			 * check that since we may not have connected yet).
1507 			 * A is first hop destination, which doesn't appear in
1508 			 * actual IP option, but is stored before the options.
1509 			 */
1510 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1511 				goto bad;
1512 			m->m_len -= sizeof(struct in_addr);
1513 			cnt -= sizeof(struct in_addr);
1514 			optlen -= sizeof(struct in_addr);
1515 			cp[IPOPT_OLEN] = optlen;
1516 			/*
1517 			 * Move first hop before start of options.
1518 			 */
1519 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1520 			    sizeof(struct in_addr));
1521 			/*
1522 			 * Then copy rest of options back
1523 			 * to close up the deleted entry.
1524 			 */
1525 			(void)memmove(&cp[IPOPT_OFFSET+1],
1526 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1527 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1528 			break;
1529 		}
1530 	}
1531 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1532 		goto bad;
1533 	*pcbopt = m;
1534 	return (0);
1535 
1536 bad:
1537 	(void)m_free(m);
1538 	return (EINVAL);
1539 }
1540 
1541 /*
1542  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1543  */
1544 static struct ifnet *
1545 ip_multicast_if(struct in_addr *a, int *ifindexp)
1546 {
1547 	int ifindex;
1548 	struct ifnet *ifp = NULL;
1549 	struct in_ifaddr *ia;
1550 
1551 	if (ifindexp)
1552 		*ifindexp = 0;
1553 	if (ntohl(a->s_addr) >> 24 == 0) {
1554 		ifindex = ntohl(a->s_addr) & 0xffffff;
1555 		if (ifindex < 0 || if_indexlim <= ifindex)
1556 			return NULL;
1557 		ifp = ifindex2ifnet[ifindex];
1558 		if (!ifp)
1559 			return NULL;
1560 		if (ifindexp)
1561 			*ifindexp = ifindex;
1562 	} else {
1563 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1564 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1565 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1566 				ifp = ia->ia_ifp;
1567 				break;
1568 			}
1569 		}
1570 	}
1571 	return ifp;
1572 }
1573 
1574 /*
1575  * Set the IP multicast options in response to user setsockopt().
1576  */
1577 int
1578 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1579 {
1580 	int error = 0;
1581 	u_char loop;
1582 	int i;
1583 	struct in_addr addr;
1584 	struct ip_mreq *mreq;
1585 	struct ifnet *ifp;
1586 	struct ip_moptions *imo = *imop;
1587 	struct route ro;
1588 	struct sockaddr_in *dst;
1589 	int ifindex;
1590 
1591 	if (imo == NULL) {
1592 		/*
1593 		 * No multicast option buffer attached to the pcb;
1594 		 * allocate one and initialize to default values.
1595 		 */
1596 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1597 		    M_WAITOK);
1598 
1599 		if (imo == NULL)
1600 			return (ENOBUFS);
1601 		*imop = imo;
1602 		imo->imo_multicast_ifp = NULL;
1603 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1604 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1605 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1606 		imo->imo_num_memberships = 0;
1607 	}
1608 
1609 	switch (optname) {
1610 
1611 	case IP_MULTICAST_IF:
1612 		/*
1613 		 * Select the interface for outgoing multicast packets.
1614 		 */
1615 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1616 			error = EINVAL;
1617 			break;
1618 		}
1619 		addr = *(mtod(m, struct in_addr *));
1620 		/*
1621 		 * INADDR_ANY is used to remove a previous selection.
1622 		 * When no interface is selected, a default one is
1623 		 * chosen every time a multicast packet is sent.
1624 		 */
1625 		if (in_nullhost(addr)) {
1626 			imo->imo_multicast_ifp = NULL;
1627 			break;
1628 		}
1629 		/*
1630 		 * The selected interface is identified by its local
1631 		 * IP address.  Find the interface and confirm that
1632 		 * it supports multicasting.
1633 		 */
1634 		ifp = ip_multicast_if(&addr, &ifindex);
1635 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1636 			error = EADDRNOTAVAIL;
1637 			break;
1638 		}
1639 		imo->imo_multicast_ifp = ifp;
1640 		if (ifindex)
1641 			imo->imo_multicast_addr = addr;
1642 		else
1643 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1644 		break;
1645 
1646 	case IP_MULTICAST_TTL:
1647 		/*
1648 		 * Set the IP time-to-live for outgoing multicast packets.
1649 		 */
1650 		if (m == NULL || m->m_len != 1) {
1651 			error = EINVAL;
1652 			break;
1653 		}
1654 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
1655 		break;
1656 
1657 	case IP_MULTICAST_LOOP:
1658 		/*
1659 		 * Set the loopback flag for outgoing multicast packets.
1660 		 * Must be zero or one.
1661 		 */
1662 		if (m == NULL || m->m_len != 1 ||
1663 		   (loop = *(mtod(m, u_char *))) > 1) {
1664 			error = EINVAL;
1665 			break;
1666 		}
1667 		imo->imo_multicast_loop = loop;
1668 		break;
1669 
1670 	case IP_ADD_MEMBERSHIP:
1671 		/*
1672 		 * Add a multicast group membership.
1673 		 * Group must be a valid IP multicast address.
1674 		 */
1675 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1676 			error = EINVAL;
1677 			break;
1678 		}
1679 		mreq = mtod(m, struct ip_mreq *);
1680 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1681 			error = EINVAL;
1682 			break;
1683 		}
1684 		/*
1685 		 * If no interface address was provided, use the interface of
1686 		 * the route to the given multicast address.
1687 		 */
1688 		if (in_nullhost(mreq->imr_interface)) {
1689 			bzero((caddr_t)&ro, sizeof(ro));
1690 			ro.ro_rt = NULL;
1691 			dst = satosin(&ro.ro_dst);
1692 			dst->sin_len = sizeof(*dst);
1693 			dst->sin_family = AF_INET;
1694 			dst->sin_addr = mreq->imr_multiaddr;
1695 			rtalloc(&ro);
1696 			if (ro.ro_rt == NULL) {
1697 				error = EADDRNOTAVAIL;
1698 				break;
1699 			}
1700 			ifp = ro.ro_rt->rt_ifp;
1701 			rtfree(ro.ro_rt);
1702 		} else {
1703 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1704 		}
1705 		/*
1706 		 * See if we found an interface, and confirm that it
1707 		 * supports multicast.
1708 		 */
1709 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1710 			error = EADDRNOTAVAIL;
1711 			break;
1712 		}
1713 		/*
1714 		 * See if the membership already exists or if all the
1715 		 * membership slots are full.
1716 		 */
1717 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1718 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1719 			    in_hosteq(imo->imo_membership[i]->inm_addr,
1720 				      mreq->imr_multiaddr))
1721 				break;
1722 		}
1723 		if (i < imo->imo_num_memberships) {
1724 			error = EADDRINUSE;
1725 			break;
1726 		}
1727 		if (i == IP_MAX_MEMBERSHIPS) {
1728 			error = ETOOMANYREFS;
1729 			break;
1730 		}
1731 		/*
1732 		 * Everything looks good; add a new record to the multicast
1733 		 * address list for the given interface.
1734 		 */
1735 		if ((imo->imo_membership[i] =
1736 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1737 			error = ENOBUFS;
1738 			break;
1739 		}
1740 		++imo->imo_num_memberships;
1741 		break;
1742 
1743 	case IP_DROP_MEMBERSHIP:
1744 		/*
1745 		 * Drop a multicast group membership.
1746 		 * Group must be a valid IP multicast address.
1747 		 */
1748 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1749 			error = EINVAL;
1750 			break;
1751 		}
1752 		mreq = mtod(m, struct ip_mreq *);
1753 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1754 			error = EINVAL;
1755 			break;
1756 		}
1757 		/*
1758 		 * If an interface address was specified, get a pointer
1759 		 * to its ifnet structure.
1760 		 */
1761 		if (in_nullhost(mreq->imr_interface))
1762 			ifp = NULL;
1763 		else {
1764 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1765 			if (ifp == NULL) {
1766 				error = EADDRNOTAVAIL;
1767 				break;
1768 			}
1769 		}
1770 		/*
1771 		 * Find the membership in the membership array.
1772 		 */
1773 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1774 			if ((ifp == NULL ||
1775 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1776 			     in_hosteq(imo->imo_membership[i]->inm_addr,
1777 				       mreq->imr_multiaddr))
1778 				break;
1779 		}
1780 		if (i == imo->imo_num_memberships) {
1781 			error = EADDRNOTAVAIL;
1782 			break;
1783 		}
1784 		/*
1785 		 * Give up the multicast address record to which the
1786 		 * membership points.
1787 		 */
1788 		in_delmulti(imo->imo_membership[i]);
1789 		/*
1790 		 * Remove the gap in the membership array.
1791 		 */
1792 		for (++i; i < imo->imo_num_memberships; ++i)
1793 			imo->imo_membership[i-1] = imo->imo_membership[i];
1794 		--imo->imo_num_memberships;
1795 		break;
1796 
1797 	default:
1798 		error = EOPNOTSUPP;
1799 		break;
1800 	}
1801 
1802 	/*
1803 	 * If all options have default values, no need to keep the mbuf.
1804 	 */
1805 	if (imo->imo_multicast_ifp == NULL &&
1806 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1807 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1808 	    imo->imo_num_memberships == 0) {
1809 		free(*imop, M_IPMOPTS);
1810 		*imop = NULL;
1811 	}
1812 
1813 	return (error);
1814 }
1815 
1816 /*
1817  * Return the IP multicast options in response to user getsockopt().
1818  */
1819 int
1820 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1821 {
1822 	u_char *ttl;
1823 	u_char *loop;
1824 	struct in_addr *addr;
1825 	struct in_ifaddr *ia;
1826 
1827 	*mp = m_get(M_WAIT, MT_SOOPTS);
1828 
1829 	switch (optname) {
1830 
1831 	case IP_MULTICAST_IF:
1832 		addr = mtod(*mp, struct in_addr *);
1833 		(*mp)->m_len = sizeof(struct in_addr);
1834 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1835 			*addr = zeroin_addr;
1836 		else if (imo->imo_multicast_addr.s_addr) {
1837 			/* return the value user has set */
1838 			*addr = imo->imo_multicast_addr;
1839 		} else {
1840 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1841 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1842 		}
1843 		return (0);
1844 
1845 	case IP_MULTICAST_TTL:
1846 		ttl = mtod(*mp, u_char *);
1847 		(*mp)->m_len = 1;
1848 		*ttl = imo ? imo->imo_multicast_ttl
1849 			   : IP_DEFAULT_MULTICAST_TTL;
1850 		return (0);
1851 
1852 	case IP_MULTICAST_LOOP:
1853 		loop = mtod(*mp, u_char *);
1854 		(*mp)->m_len = 1;
1855 		*loop = imo ? imo->imo_multicast_loop
1856 			    : IP_DEFAULT_MULTICAST_LOOP;
1857 		return (0);
1858 
1859 	default:
1860 		return (EOPNOTSUPP);
1861 	}
1862 }
1863 
1864 /*
1865  * Discard the IP multicast options.
1866  */
1867 void
1868 ip_freemoptions(struct ip_moptions *imo)
1869 {
1870 	int i;
1871 
1872 	if (imo != NULL) {
1873 		for (i = 0; i < imo->imo_num_memberships; ++i)
1874 			in_delmulti(imo->imo_membership[i]);
1875 		free(imo, M_IPMOPTS);
1876 	}
1877 }
1878 
1879 /*
1880  * Routine called from ip_output() to loop back a copy of an IP multicast
1881  * packet to the input queue of a specified interface.  Note that this
1882  * calls the output routine of the loopback "driver", but with an interface
1883  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1884  */
1885 static void
1886 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1887 {
1888 	struct ip *ip;
1889 	struct mbuf *copym;
1890 
1891 	copym = m_copy(m, 0, M_COPYALL);
1892 	if (copym != NULL
1893 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1894 		copym = m_pullup(copym, sizeof(struct ip));
1895 	if (copym != NULL) {
1896 		/*
1897 		 * We don't bother to fragment if the IP length is greater
1898 		 * than the interface's MTU.  Can this possibly matter?
1899 		 */
1900 		ip = mtod(copym, struct ip *);
1901 
1902 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1903 			in_delayed_cksum(copym);
1904 			copym->m_pkthdr.csum_flags &=
1905 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1906 		}
1907 
1908 		ip->ip_sum = 0;
1909 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1910 		(void) looutput(ifp, copym, sintosa(dst), NULL);
1911 	}
1912 }
1913