xref: /netbsd-src/sys/netinet/ip_output.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: ip_output.c,v 1.208 2011/04/14 15:53:36 yamt Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.208 2011/04/14 15:53:36 yamt Exp $");
95 
96 #include "opt_pfil_hooks.h"
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_mrouting.h"
100 
101 #include <sys/param.h>
102 #include <sys/malloc.h>
103 #include <sys/mbuf.h>
104 #include <sys/errno.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/kauth.h>
109 #ifdef FAST_IPSEC
110 #include <sys/domain.h>
111 #endif
112 #include <sys/systm.h>
113 #include <sys/proc.h>
114 
115 #include <net/if.h>
116 #include <net/route.h>
117 #include <net/pfil.h>
118 
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/in_var.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_private.h>
126 #include <netinet/in_offload.h>
127 
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131 
132 #include <machine/stdarg.h>
133 
134 #ifdef IPSEC
135 #include <netinet6/ipsec.h>
136 #include <netinet6/ipsec_private.h>
137 #include <netkey/key.h>
138 #include <netkey/key_debug.h>
139 #endif /*IPSEC*/
140 
141 #ifdef FAST_IPSEC
142 #include <netipsec/ipsec.h>
143 #include <netipsec/key.h>
144 #include <netipsec/xform.h>
145 #endif	/* FAST_IPSEC*/
146 
147 #ifdef IPSEC_NAT_T
148 #include <netinet/udp.h>
149 #endif
150 
151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 static void ip_mloopback(struct ifnet *, struct mbuf *,
154     const struct sockaddr_in *);
155 
156 #ifdef PFIL_HOOKS
157 extern struct pfil_head inet_pfil_hook;			/* XXX */
158 #endif
159 
160 int	ip_do_loopback_cksum = 0;
161 
162 /*
163  * IP output.  The packet in mbuf chain m contains a skeletal IP
164  * header (with len, off, ttl, proto, tos, src, dst).
165  * The mbuf chain containing the packet will be freed.
166  * The mbuf opt, if present, will not be freed.
167  */
168 int
169 ip_output(struct mbuf *m0, ...)
170 {
171 	struct rtentry *rt;
172 	struct ip *ip;
173 	struct ifnet *ifp;
174 	struct mbuf *m = m0;
175 	int hlen = sizeof (struct ip);
176 	int len, error = 0;
177 	struct route iproute;
178 	const struct sockaddr_in *dst;
179 	struct in_ifaddr *ia;
180 	struct ifaddr *xifa;
181 	struct mbuf *opt;
182 	struct route *ro;
183 	int flags, sw_csum;
184 	int *mtu_p;
185 	u_long mtu;
186 	struct ip_moptions *imo;
187 	struct socket *so;
188 	va_list ap;
189 #ifdef IPSEC_NAT_T
190 	int natt_frag = 0;
191 #endif
192 #ifdef IPSEC
193 	struct secpolicy *sp = NULL;
194 #endif /*IPSEC*/
195 #ifdef FAST_IPSEC
196 	struct inpcb *inp;
197 	struct secpolicy *sp = NULL;
198 	int s;
199 #endif
200 	u_int16_t ip_len;
201 	union {
202 		struct sockaddr		dst;
203 		struct sockaddr_in	dst4;
204 	} u;
205 	struct sockaddr *rdst = &u.dst;	/* real IP destination, as opposed
206 					 * to the nexthop
207 					 */
208 
209 	len = 0;
210 	va_start(ap, m0);
211 	opt = va_arg(ap, struct mbuf *);
212 	ro = va_arg(ap, struct route *);
213 	flags = va_arg(ap, int);
214 	imo = va_arg(ap, struct ip_moptions *);
215 	so = va_arg(ap, struct socket *);
216 	if (flags & IP_RETURNMTU)
217 		mtu_p = va_arg(ap, int *);
218 	else
219 		mtu_p = NULL;
220 	va_end(ap);
221 
222 	MCLAIM(m, &ip_tx_mowner);
223 #ifdef FAST_IPSEC
224 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
225 		inp = (struct inpcb *)so->so_pcb;
226 	else
227 		inp = NULL;
228 #endif /* FAST_IPSEC */
229 
230 #ifdef	DIAGNOSTIC
231 	if ((m->m_flags & M_PKTHDR) == 0)
232 		panic("ip_output: no HDR");
233 
234 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
235 		panic("ip_output: IPv6 checksum offload flags: %d",
236 		    m->m_pkthdr.csum_flags);
237 	}
238 
239 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
240 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
241 		panic("ip_output: conflicting checksum offload flags: %d",
242 		    m->m_pkthdr.csum_flags);
243 	}
244 #endif
245 	if (opt) {
246 		m = ip_insertoptions(m, opt, &len);
247 		if (len >= sizeof(struct ip))
248 			hlen = len;
249 	}
250 	ip = mtod(m, struct ip *);
251 	/*
252 	 * Fill in IP header.
253 	 */
254 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
255 		ip->ip_v = IPVERSION;
256 		ip->ip_off = htons(0);
257 		/* ip->ip_id filled in after we find out source ia */
258 		ip->ip_hl = hlen >> 2;
259 		IP_STATINC(IP_STAT_LOCALOUT);
260 	} else {
261 		hlen = ip->ip_hl << 2;
262 	}
263 	/*
264 	 * Route packet.
265 	 */
266 	memset(&iproute, 0, sizeof(iproute));
267 	if (ro == NULL)
268 		ro = &iproute;
269 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
270 	dst = satocsin(rtcache_getdst(ro));
271 	/*
272 	 * If there is a cached route,
273 	 * check that it is to the same destination
274 	 * and is still up.  If not, free it and try again.
275 	 * The address family should also be checked in case of sharing the
276 	 * cache with IPv6.
277 	 */
278 	if (dst == NULL)
279 		;
280 	else if (dst->sin_family != AF_INET ||
281 		 !in_hosteq(dst->sin_addr, ip->ip_dst))
282 		rtcache_free(ro);
283 
284 	if ((rt = rtcache_validate(ro)) == NULL &&
285 	    (rt = rtcache_update(ro, 1)) == NULL) {
286 		dst = &u.dst4;
287 		rtcache_setdst(ro, &u.dst);
288 	}
289 	/*
290 	 * If routing to interface only,
291 	 * short circuit routing lookup.
292 	 */
293 	if (flags & IP_ROUTETOIF) {
294 		if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
295 			IP_STATINC(IP_STAT_NOROUTE);
296 			error = ENETUNREACH;
297 			goto bad;
298 		}
299 		ifp = ia->ia_ifp;
300 		mtu = ifp->if_mtu;
301 		ip->ip_ttl = 1;
302 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
303 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
304 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
305 		ifp = imo->imo_multicast_ifp;
306 		mtu = ifp->if_mtu;
307 		IFP_TO_IA(ifp, ia);
308 	} else {
309 		if (rt == NULL)
310 			rt = rtcache_init(ro);
311 		if (rt == NULL) {
312 			IP_STATINC(IP_STAT_NOROUTE);
313 			error = EHOSTUNREACH;
314 			goto bad;
315 		}
316 		ia = ifatoia(rt->rt_ifa);
317 		ifp = rt->rt_ifp;
318 		if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
319 			mtu = ifp->if_mtu;
320 		rt->rt_use++;
321 		if (rt->rt_flags & RTF_GATEWAY)
322 			dst = satosin(rt->rt_gateway);
323 	}
324 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
325 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
326 		struct in_multi *inm;
327 
328 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
329 			M_BCAST : M_MCAST;
330 		/*
331 		 * See if the caller provided any multicast options
332 		 */
333 		if (imo != NULL)
334 			ip->ip_ttl = imo->imo_multicast_ttl;
335 		else
336 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
337 
338 		/*
339 		 * if we don't know the outgoing ifp yet, we can't generate
340 		 * output
341 		 */
342 		if (!ifp) {
343 			IP_STATINC(IP_STAT_NOROUTE);
344 			error = ENETUNREACH;
345 			goto bad;
346 		}
347 
348 		/*
349 		 * If the packet is multicast or broadcast, confirm that
350 		 * the outgoing interface can transmit it.
351 		 */
352 		if (((m->m_flags & M_MCAST) &&
353 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
354 		    ((m->m_flags & M_BCAST) &&
355 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
356 			IP_STATINC(IP_STAT_NOROUTE);
357 			error = ENETUNREACH;
358 			goto bad;
359 		}
360 		/*
361 		 * If source address not specified yet, use an address
362 		 * of outgoing interface.
363 		 */
364 		if (in_nullhost(ip->ip_src)) {
365 			struct in_ifaddr *xia;
366 
367 			IFP_TO_IA(ifp, xia);
368 			if (!xia) {
369 				error = EADDRNOTAVAIL;
370 				goto bad;
371 			}
372 			xifa = &xia->ia_ifa;
373 			if (xifa->ifa_getifa != NULL) {
374 				xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
375 			}
376 			ip->ip_src = xia->ia_addr.sin_addr;
377 		}
378 
379 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
380 		if (inm != NULL &&
381 		   (imo == NULL || imo->imo_multicast_loop)) {
382 			/*
383 			 * If we belong to the destination multicast group
384 			 * on the outgoing interface, and the caller did not
385 			 * forbid loopback, loop back a copy.
386 			 */
387 			ip_mloopback(ifp, m, &u.dst4);
388 		}
389 #ifdef MROUTING
390 		else {
391 			/*
392 			 * If we are acting as a multicast router, perform
393 			 * multicast forwarding as if the packet had just
394 			 * arrived on the interface to which we are about
395 			 * to send.  The multicast forwarding function
396 			 * recursively calls this function, using the
397 			 * IP_FORWARDING flag to prevent infinite recursion.
398 			 *
399 			 * Multicasts that are looped back by ip_mloopback(),
400 			 * above, will be forwarded by the ip_input() routine,
401 			 * if necessary.
402 			 */
403 			extern struct socket *ip_mrouter;
404 
405 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
406 				if (ip_mforward(m, ifp) != 0) {
407 					m_freem(m);
408 					goto done;
409 				}
410 			}
411 		}
412 #endif
413 		/*
414 		 * Multicasts with a time-to-live of zero may be looped-
415 		 * back, above, but must not be transmitted on a network.
416 		 * Also, multicasts addressed to the loopback interface
417 		 * are not sent -- the above call to ip_mloopback() will
418 		 * loop back a copy if this host actually belongs to the
419 		 * destination group on the loopback interface.
420 		 */
421 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
422 			m_freem(m);
423 			goto done;
424 		}
425 
426 		goto sendit;
427 	}
428 	/*
429 	 * If source address not specified yet, use address
430 	 * of outgoing interface.
431 	 */
432 	if (in_nullhost(ip->ip_src)) {
433 		xifa = &ia->ia_ifa;
434 		if (xifa->ifa_getifa != NULL)
435 			ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
436 		ip->ip_src = ia->ia_addr.sin_addr;
437 	}
438 
439 	/*
440 	 * packets with Class-D address as source are not valid per
441 	 * RFC 1112
442 	 */
443 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
444 		IP_STATINC(IP_STAT_ODROPPED);
445 		error = EADDRNOTAVAIL;
446 		goto bad;
447 	}
448 
449 	/*
450 	 * Look for broadcast address and
451 	 * and verify user is allowed to send
452 	 * such a packet.
453 	 */
454 	if (in_broadcast(dst->sin_addr, ifp)) {
455 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
456 			error = EADDRNOTAVAIL;
457 			goto bad;
458 		}
459 		if ((flags & IP_ALLOWBROADCAST) == 0) {
460 			error = EACCES;
461 			goto bad;
462 		}
463 		/* don't allow broadcast messages to be fragmented */
464 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
465 			error = EMSGSIZE;
466 			goto bad;
467 		}
468 		m->m_flags |= M_BCAST;
469 	} else
470 		m->m_flags &= ~M_BCAST;
471 
472 sendit:
473 	if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
474 		if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
475 			ip->ip_id = 0;
476 		} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
477 			ip->ip_id = ip_newid(ia);
478 		} else {
479 
480 			/*
481 			 * TSO capable interfaces (typically?) increment
482 			 * ip_id for each segment.
483 			 * "allocate" enough ids here to increase the chance
484 			 * for them to be unique.
485 			 *
486 			 * note that the following calculation is not
487 			 * needed to be precise.  wasting some ip_id is fine.
488 			 */
489 
490 			unsigned int segsz = m->m_pkthdr.segsz;
491 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
492 			unsigned int num = howmany(datasz, segsz);
493 
494 			ip->ip_id = ip_newid_range(ia, num);
495 		}
496 	}
497 	/*
498 	 * If we're doing Path MTU Discovery, we need to set DF unless
499 	 * the route's MTU is locked.
500 	 */
501 	if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
502 	    (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
503 		ip->ip_off |= htons(IP_DF);
504 
505 	/* Remember the current ip_len */
506 	ip_len = ntohs(ip->ip_len);
507 
508 #ifdef IPSEC
509 	/* get SP for this packet */
510 	if (so == NULL)
511 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
512 		    flags, &error);
513 	else {
514 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
515 					 IPSEC_DIR_OUTBOUND))
516 			goto skip_ipsec;
517 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
518 	}
519 
520 	if (sp == NULL) {
521 		IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
522 		goto bad;
523 	}
524 
525 	error = 0;
526 
527 	/* check policy */
528 	switch (sp->policy) {
529 	case IPSEC_POLICY_DISCARD:
530 		/*
531 		 * This packet is just discarded.
532 		 */
533 		IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
534 		goto bad;
535 
536 	case IPSEC_POLICY_BYPASS:
537 	case IPSEC_POLICY_NONE:
538 		/* no need to do IPsec. */
539 		goto skip_ipsec;
540 
541 	case IPSEC_POLICY_IPSEC:
542 		if (sp->req == NULL) {
543 			/* XXX should be panic ? */
544 			printf("ip_output: No IPsec request specified.\n");
545 			error = EINVAL;
546 			goto bad;
547 		}
548 		break;
549 
550 	case IPSEC_POLICY_ENTRUST:
551 	default:
552 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
553 	}
554 
555 #ifdef IPSEC_NAT_T
556 	/*
557 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
558 	 * we'll do it on each fragmented packet.
559 	 */
560 	if (sp->req->sav &&
561 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
562 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
563 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
564 			natt_frag = 1;
565 			mtu = sp->req->sav->esp_frag;
566 			goto skip_ipsec;
567 		}
568 	}
569 #endif /* IPSEC_NAT_T */
570 
571 	/*
572 	 * ipsec4_output() expects ip_len and ip_off in network
573 	 * order.  They have been set to network order above.
574 	 */
575 
576     {
577 	struct ipsec_output_state state;
578 	memset(&state, 0, sizeof(state));
579 	state.m = m;
580 	if (flags & IP_ROUTETOIF) {
581 		state.ro = &iproute;
582 		memset(&iproute, 0, sizeof(iproute));
583 	} else
584 		state.ro = ro;
585 	state.dst = sintocsa(dst);
586 
587 	/*
588 	 * We can't defer the checksum of payload data if
589 	 * we're about to encrypt/authenticate it.
590 	 *
591 	 * XXX When we support crypto offloading functions of
592 	 * XXX network interfaces, we need to reconsider this,
593 	 * XXX since it's likely that they'll support checksumming,
594 	 * XXX as well.
595 	 */
596 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
597 		in_delayed_cksum(m);
598 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
599 	}
600 
601 	error = ipsec4_output(&state, sp, flags);
602 
603 	m = state.m;
604 	if (flags & IP_ROUTETOIF) {
605 		/*
606 		 * if we have tunnel mode SA, we may need to ignore
607 		 * IP_ROUTETOIF.
608 		 */
609 		if (state.ro != &iproute ||
610 		    rtcache_validate(state.ro) != NULL) {
611 			flags &= ~IP_ROUTETOIF;
612 			ro = state.ro;
613 		}
614 	} else
615 		ro = state.ro;
616 	dst = satocsin(state.dst);
617 	if (error) {
618 		/* mbuf is already reclaimed in ipsec4_output. */
619 		m0 = NULL;
620 		switch (error) {
621 		case EHOSTUNREACH:
622 		case ENETUNREACH:
623 		case EMSGSIZE:
624 		case ENOBUFS:
625 		case ENOMEM:
626 			break;
627 		default:
628 			printf("ip4_output (ipsec): error code %d\n", error);
629 			/*fall through*/
630 		case ENOENT:
631 			/* don't show these error codes to the user */
632 			error = 0;
633 			break;
634 		}
635 		goto bad;
636 	}
637 
638 	/* be sure to update variables that are affected by ipsec4_output() */
639 	ip = mtod(m, struct ip *);
640 	hlen = ip->ip_hl << 2;
641 	ip_len = ntohs(ip->ip_len);
642 
643 	if ((rt = rtcache_validate(ro)) == NULL) {
644 		if ((flags & IP_ROUTETOIF) == 0) {
645 			printf("ip_output: "
646 				"can't update route after IPsec processing\n");
647 			error = EHOSTUNREACH;	/*XXX*/
648 			goto bad;
649 		}
650 	} else {
651 		/* nobody uses ia beyond here */
652 		if (state.encap) {
653 			ifp = rt->rt_ifp;
654 			if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
655 				mtu = ifp->if_mtu;
656 		}
657 	}
658     }
659 skip_ipsec:
660 #endif /*IPSEC*/
661 #ifdef FAST_IPSEC
662 	/*
663 	 * Check the security policy (SP) for the packet and, if
664 	 * required, do IPsec-related processing.  There are two
665 	 * cases here; the first time a packet is sent through
666 	 * it will be untagged and handled by ipsec4_checkpolicy.
667 	 * If the packet is resubmitted to ip_output (e.g. after
668 	 * AH, ESP, etc. processing), there will be a tag to bypass
669 	 * the lookup and related policy checking.
670 	 */
671 	if (!ipsec_outdone(m)) {
672 		s = splsoftnet();
673 		if (inp != NULL &&
674 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
675 			splx(s);
676 			goto spd_done;
677 		}
678 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
679 				&error, inp);
680 		/*
681 		 * There are four return cases:
682 		 *    sp != NULL	 	    apply IPsec policy
683 		 *    sp == NULL, error == 0	    no IPsec handling needed
684 		 *    sp == NULL, error == -EINVAL  discard packet w/o error
685 		 *    sp == NULL, error != 0	    discard packet, report error
686 		 */
687 		if (sp != NULL) {
688 #ifdef IPSEC_NAT_T
689 			/*
690 			 * NAT-T ESP fragmentation: don't do IPSec processing now,
691 			 * we'll do it on each fragmented packet.
692 			 */
693 			if (sp->req->sav &&
694 					((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
695 					 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
696 				if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
697 					natt_frag = 1;
698 					mtu = sp->req->sav->esp_frag;
699 					splx(s);
700 					goto spd_done;
701 				}
702 			}
703 #endif /* IPSEC_NAT_T */
704 
705 			/*
706 			 * Do delayed checksums now because we send before
707 			 * this is done in the normal processing path.
708 			 */
709 			if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
710 				in_delayed_cksum(m);
711 				m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
712 			}
713 
714 #ifdef __FreeBSD__
715 			ip->ip_len = htons(ip->ip_len);
716 			ip->ip_off = htons(ip->ip_off);
717 #endif
718 
719 			/* NB: callee frees mbuf */
720 			error = ipsec4_process_packet(m, sp->req, flags, 0);
721 			/*
722 			 * Preserve KAME behaviour: ENOENT can be returned
723 			 * when an SA acquire is in progress.  Don't propagate
724 			 * this to user-level; it confuses applications.
725 			 *
726 			 * XXX this will go away when the SADB is redone.
727 			 */
728 			if (error == ENOENT)
729 				error = 0;
730 			splx(s);
731 			goto done;
732 		} else {
733 			splx(s);
734 
735 			if (error != 0) {
736 				/*
737 				 * Hack: -EINVAL is used to signal that a packet
738 				 * should be silently discarded.  This is typically
739 				 * because we asked key management for an SA and
740 				 * it was delayed (e.g. kicked up to IKE).
741 				 */
742 				if (error == -EINVAL)
743 					error = 0;
744 				goto bad;
745 			} else {
746 				/* No IPsec processing for this packet. */
747 			}
748 		}
749 	}
750 spd_done:
751 #endif /* FAST_IPSEC */
752 
753 #ifdef PFIL_HOOKS
754 	/*
755 	 * Run through list of hooks for output packets.
756 	 */
757 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
758 		goto done;
759 	if (m == NULL)
760 		goto done;
761 
762 	ip = mtod(m, struct ip *);
763 	hlen = ip->ip_hl << 2;
764 	ip_len = ntohs(ip->ip_len);
765 #endif /* PFIL_HOOKS */
766 
767 	m->m_pkthdr.csum_data |= hlen << 16;
768 
769 #if IFA_STATS
770 	/*
771 	 * search for the source address structure to
772 	 * maintain output statistics.
773 	 */
774 	INADDR_TO_IA(ip->ip_src, ia);
775 #endif
776 
777 	/* Maybe skip checksums on loopback interfaces. */
778 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
779 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
780 	}
781 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
782 	/*
783 	 * If small enough for mtu of path, or if using TCP segmentation
784 	 * offload, can just send directly.
785 	 */
786 	if (ip_len <= mtu ||
787 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
788 #if IFA_STATS
789 		if (ia)
790 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
791 #endif
792 		/*
793 		 * Always initialize the sum to 0!  Some HW assisted
794 		 * checksumming requires this.
795 		 */
796 		ip->ip_sum = 0;
797 
798 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
799 			/*
800 			 * Perform any checksums that the hardware can't do
801 			 * for us.
802 			 *
803 			 * XXX Does any hardware require the {th,uh}_sum
804 			 * XXX fields to be 0?
805 			 */
806 			if (sw_csum & M_CSUM_IPv4) {
807 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
808 				ip->ip_sum = in_cksum(m, hlen);
809 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
810 			}
811 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
812 				if (IN_NEED_CHECKSUM(ifp,
813 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
814 					in_delayed_cksum(m);
815 				}
816 				m->m_pkthdr.csum_flags &=
817 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
818 			}
819 		}
820 
821 #ifdef IPSEC
822 		/* clean ipsec history once it goes out of the node */
823 		ipsec_delaux(m);
824 #endif
825 
826 		if (__predict_true(
827 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
828 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
829 			KERNEL_LOCK(1, NULL);
830 			error =
831 			    (*ifp->if_output)(ifp, m,
832 				(m->m_flags & M_MCAST) ?
833 				    sintocsa(rdst) : sintocsa(dst),
834 				rt);
835 			KERNEL_UNLOCK_ONE(NULL);
836 		} else {
837 			error =
838 			    ip_tso_output(ifp, m,
839 				(m->m_flags & M_MCAST) ?
840 				    sintocsa(rdst) : sintocsa(dst),
841 				rt);
842 		}
843 		goto done;
844 	}
845 
846 	/*
847 	 * We can't use HW checksumming if we're about to
848 	 * to fragment the packet.
849 	 *
850 	 * XXX Some hardware can do this.
851 	 */
852 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
853 		if (IN_NEED_CHECKSUM(ifp,
854 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
855 			in_delayed_cksum(m);
856 		}
857 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
858 	}
859 
860 	/*
861 	 * Too large for interface; fragment if possible.
862 	 * Must be able to put at least 8 bytes per fragment.
863 	 */
864 	if (ntohs(ip->ip_off) & IP_DF) {
865 		if (flags & IP_RETURNMTU)
866 			*mtu_p = mtu;
867 		error = EMSGSIZE;
868 		IP_STATINC(IP_STAT_CANTFRAG);
869 		goto bad;
870 	}
871 
872 	error = ip_fragment(m, ifp, mtu);
873 	if (error) {
874 		m = NULL;
875 		goto bad;
876 	}
877 
878 	for (; m; m = m0) {
879 		m0 = m->m_nextpkt;
880 		m->m_nextpkt = 0;
881 		if (error == 0) {
882 #if IFA_STATS
883 			if (ia)
884 				ia->ia_ifa.ifa_data.ifad_outbytes +=
885 				    ntohs(ip->ip_len);
886 #endif
887 #ifdef IPSEC
888 			/* clean ipsec history once it goes out of the node */
889 			ipsec_delaux(m);
890 #endif /* IPSEC */
891 
892 #ifdef IPSEC_NAT_T
893 			/*
894 			 * If we get there, the packet has not been handeld by
895 			 * IPSec whereas it should have. Now that it has been
896 			 * fragmented, re-inject it in ip_output so that IPsec
897 			 * processing can occur.
898 			 */
899 			if (natt_frag) {
900 				error = ip_output(m, opt,
901 				    ro, flags, imo, so, mtu_p);
902 			} else
903 #endif /* IPSEC_NAT_T */
904 			{
905 				KASSERT((m->m_pkthdr.csum_flags &
906 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
907 				KERNEL_LOCK(1, NULL);
908 				error = (*ifp->if_output)(ifp, m,
909 				    (m->m_flags & M_MCAST) ?
910 					sintocsa(rdst) : sintocsa(dst),
911 				    rt);
912 				KERNEL_UNLOCK_ONE(NULL);
913 			}
914 		} else
915 			m_freem(m);
916 	}
917 
918 	if (error == 0)
919 		IP_STATINC(IP_STAT_FRAGMENTED);
920 done:
921 	rtcache_free(&iproute);
922 
923 #ifdef IPSEC
924 	if (sp != NULL) {
925 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
926 			printf("DP ip_output call free SP:%p\n", sp));
927 		key_freesp(sp);
928 	}
929 #endif /* IPSEC */
930 #ifdef FAST_IPSEC
931 	if (sp != NULL)
932 		KEY_FREESP(&sp);
933 #endif /* FAST_IPSEC */
934 
935 	return (error);
936 bad:
937 	m_freem(m);
938 	goto done;
939 }
940 
941 int
942 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
943 {
944 	struct ip *ip, *mhip;
945 	struct mbuf *m0;
946 	int len, hlen, off;
947 	int mhlen, firstlen;
948 	struct mbuf **mnext;
949 	int sw_csum = m->m_pkthdr.csum_flags;
950 	int fragments = 0;
951 	int s;
952 	int error = 0;
953 
954 	ip = mtod(m, struct ip *);
955 	hlen = ip->ip_hl << 2;
956 	if (ifp != NULL)
957 		sw_csum &= ~ifp->if_csum_flags_tx;
958 
959 	len = (mtu - hlen) &~ 7;
960 	if (len < 8) {
961 		m_freem(m);
962 		return (EMSGSIZE);
963 	}
964 
965 	firstlen = len;
966 	mnext = &m->m_nextpkt;
967 
968 	/*
969 	 * Loop through length of segment after first fragment,
970 	 * make new header and copy data of each part and link onto chain.
971 	 */
972 	m0 = m;
973 	mhlen = sizeof (struct ip);
974 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
975 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
976 		if (m == 0) {
977 			error = ENOBUFS;
978 			IP_STATINC(IP_STAT_ODROPPED);
979 			goto sendorfree;
980 		}
981 		MCLAIM(m, m0->m_owner);
982 		*mnext = m;
983 		mnext = &m->m_nextpkt;
984 		m->m_data += max_linkhdr;
985 		mhip = mtod(m, struct ip *);
986 		*mhip = *ip;
987 		/* we must inherit MCAST and BCAST flags */
988 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
989 		if (hlen > sizeof (struct ip)) {
990 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
991 			mhip->ip_hl = mhlen >> 2;
992 		}
993 		m->m_len = mhlen;
994 		mhip->ip_off = ((off - hlen) >> 3) +
995 		    (ntohs(ip->ip_off) & ~IP_MF);
996 		if (ip->ip_off & htons(IP_MF))
997 			mhip->ip_off |= IP_MF;
998 		if (off + len >= ntohs(ip->ip_len))
999 			len = ntohs(ip->ip_len) - off;
1000 		else
1001 			mhip->ip_off |= IP_MF;
1002 		HTONS(mhip->ip_off);
1003 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
1004 		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
1005 		if (m->m_next == 0) {
1006 			error = ENOBUFS;	/* ??? */
1007 			IP_STATINC(IP_STAT_ODROPPED);
1008 			goto sendorfree;
1009 		}
1010 		m->m_pkthdr.len = mhlen + len;
1011 		m->m_pkthdr.rcvif = (struct ifnet *)0;
1012 		mhip->ip_sum = 0;
1013 		if (sw_csum & M_CSUM_IPv4) {
1014 			mhip->ip_sum = in_cksum(m, mhlen);
1015 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1016 		} else {
1017 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1018 			m->m_pkthdr.csum_data |= mhlen << 16;
1019 		}
1020 		IP_STATINC(IP_STAT_OFRAGMENTS);
1021 		fragments++;
1022 	}
1023 	/*
1024 	 * Update first fragment by trimming what's been copied out
1025 	 * and updating header, then send each fragment (in order).
1026 	 */
1027 	m = m0;
1028 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1029 	m->m_pkthdr.len = hlen + firstlen;
1030 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1031 	ip->ip_off |= htons(IP_MF);
1032 	ip->ip_sum = 0;
1033 	/*
1034 	 * We may not use checksums on loopback interfaces
1035 	 */
1036 	if (__predict_false(ifp == NULL) ||
1037 	    IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
1038 		if (sw_csum & M_CSUM_IPv4) {
1039 			ip->ip_sum = in_cksum(m, hlen);
1040 			m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1041 		} else {
1042 			KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1043 			KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1044 				sizeof(struct ip));
1045 		}
1046 	}
1047 sendorfree:
1048 	/*
1049 	 * If there is no room for all the fragments, don't queue
1050 	 * any of them.
1051 	 */
1052 	if (ifp != NULL) {
1053 		s = splnet();
1054 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1055 		    error == 0) {
1056 			error = ENOBUFS;
1057 			IP_STATINC(IP_STAT_ODROPPED);
1058 			IFQ_INC_DROPS(&ifp->if_snd);
1059 		}
1060 		splx(s);
1061 	}
1062 	if (error) {
1063 		for (m = m0; m; m = m0) {
1064 			m0 = m->m_nextpkt;
1065 			m->m_nextpkt = NULL;
1066 			m_freem(m);
1067 		}
1068 	}
1069 	return (error);
1070 }
1071 
1072 /*
1073  * Process a delayed payload checksum calculation.
1074  */
1075 void
1076 in_delayed_cksum(struct mbuf *m)
1077 {
1078 	struct ip *ip;
1079 	u_int16_t csum, offset;
1080 
1081 	ip = mtod(m, struct ip *);
1082 	offset = ip->ip_hl << 2;
1083 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1084 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1085 		csum = 0xffff;
1086 
1087 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1088 
1089 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
1090 		/* This happen when ip options were inserted
1091 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1092 		    m->m_len, offset, ip->ip_p);
1093 		 */
1094 		m_copyback(m, offset, sizeof(csum), (void *) &csum);
1095 	} else
1096 		*(u_int16_t *)(mtod(m, char *) + offset) = csum;
1097 }
1098 
1099 /*
1100  * Determine the maximum length of the options to be inserted;
1101  * we would far rather allocate too much space rather than too little.
1102  */
1103 
1104 u_int
1105 ip_optlen(struct inpcb *inp)
1106 {
1107 	struct mbuf *m = inp->inp_options;
1108 
1109 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1110 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1111 	else
1112 		return 0;
1113 }
1114 
1115 
1116 /*
1117  * Insert IP options into preformed packet.
1118  * Adjust IP destination as required for IP source routing,
1119  * as indicated by a non-zero in_addr at the start of the options.
1120  */
1121 static struct mbuf *
1122 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1123 {
1124 	struct ipoption *p = mtod(opt, struct ipoption *);
1125 	struct mbuf *n;
1126 	struct ip *ip = mtod(m, struct ip *);
1127 	unsigned optlen;
1128 
1129 	optlen = opt->m_len - sizeof(p->ipopt_dst);
1130 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1131 		return (m);		/* XXX should fail */
1132 	if (!in_nullhost(p->ipopt_dst))
1133 		ip->ip_dst = p->ipopt_dst;
1134 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1135 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1136 		if (n == 0)
1137 			return (m);
1138 		MCLAIM(n, m->m_owner);
1139 		M_MOVE_PKTHDR(n, m);
1140 		m->m_len -= sizeof(struct ip);
1141 		m->m_data += sizeof(struct ip);
1142 		n->m_next = m;
1143 		m = n;
1144 		m->m_len = optlen + sizeof(struct ip);
1145 		m->m_data += max_linkhdr;
1146 		bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1147 	} else {
1148 		m->m_data -= optlen;
1149 		m->m_len += optlen;
1150 		memmove(mtod(m, void *), ip, sizeof(struct ip));
1151 	}
1152 	m->m_pkthdr.len += optlen;
1153 	ip = mtod(m, struct ip *);
1154 	bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1155 	*phlen = sizeof(struct ip) + optlen;
1156 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1157 	return (m);
1158 }
1159 
1160 /*
1161  * Copy options from ip to jp,
1162  * omitting those not copied during fragmentation.
1163  */
1164 int
1165 ip_optcopy(struct ip *ip, struct ip *jp)
1166 {
1167 	u_char *cp, *dp;
1168 	int opt, optlen, cnt;
1169 
1170 	cp = (u_char *)(ip + 1);
1171 	dp = (u_char *)(jp + 1);
1172 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1173 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1174 		opt = cp[0];
1175 		if (opt == IPOPT_EOL)
1176 			break;
1177 		if (opt == IPOPT_NOP) {
1178 			/* Preserve for IP mcast tunnel's LSRR alignment. */
1179 			*dp++ = IPOPT_NOP;
1180 			optlen = 1;
1181 			continue;
1182 		}
1183 #ifdef DIAGNOSTIC
1184 		if (cnt < IPOPT_OLEN + sizeof(*cp))
1185 			panic("malformed IPv4 option passed to ip_optcopy");
1186 #endif
1187 		optlen = cp[IPOPT_OLEN];
1188 #ifdef DIAGNOSTIC
1189 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1190 			panic("malformed IPv4 option passed to ip_optcopy");
1191 #endif
1192 		/* bogus lengths should have been caught by ip_dooptions */
1193 		if (optlen > cnt)
1194 			optlen = cnt;
1195 		if (IPOPT_COPIED(opt)) {
1196 			bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1197 			dp += optlen;
1198 		}
1199 	}
1200 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1201 		*dp++ = IPOPT_EOL;
1202 	return (optlen);
1203 }
1204 
1205 /*
1206  * IP socket option processing.
1207  */
1208 int
1209 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1210 {
1211 	struct inpcb *inp = sotoinpcb(so);
1212 	int optval = 0;
1213 	int error = 0;
1214 #if defined(IPSEC) || defined(FAST_IPSEC)
1215 	struct lwp *l = curlwp;	/*XXX*/
1216 #endif
1217 
1218 	if (sopt->sopt_level != IPPROTO_IP) {
1219 		if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1220 			return 0;
1221 		return ENOPROTOOPT;
1222 	}
1223 
1224 	switch (op) {
1225 	case PRCO_SETOPT:
1226 		switch (sopt->sopt_name) {
1227 		case IP_OPTIONS:
1228 #ifdef notyet
1229 		case IP_RETOPTS:
1230 #endif
1231 			error = ip_pcbopts(&inp->inp_options, sopt);
1232 			break;
1233 
1234 		case IP_TOS:
1235 		case IP_TTL:
1236 		case IP_MINTTL:
1237 		case IP_RECVOPTS:
1238 		case IP_RECVRETOPTS:
1239 		case IP_RECVDSTADDR:
1240 		case IP_RECVIF:
1241 		case IP_RECVTTL:
1242 			error = sockopt_getint(sopt, &optval);
1243 			if (error)
1244 				break;
1245 
1246 			switch (sopt->sopt_name) {
1247 			case IP_TOS:
1248 				inp->inp_ip.ip_tos = optval;
1249 				break;
1250 
1251 			case IP_TTL:
1252 				inp->inp_ip.ip_ttl = optval;
1253 				break;
1254 
1255 			case IP_MINTTL:
1256 				if (optval > 0 && optval <= MAXTTL)
1257 					inp->inp_ip_minttl = optval;
1258 				else
1259 					error = EINVAL;
1260 				break;
1261 #define	OPTSET(bit) \
1262 	if (optval) \
1263 		inp->inp_flags |= bit; \
1264 	else \
1265 		inp->inp_flags &= ~bit;
1266 
1267 			case IP_RECVOPTS:
1268 				OPTSET(INP_RECVOPTS);
1269 				break;
1270 
1271 			case IP_RECVRETOPTS:
1272 				OPTSET(INP_RECVRETOPTS);
1273 				break;
1274 
1275 			case IP_RECVDSTADDR:
1276 				OPTSET(INP_RECVDSTADDR);
1277 				break;
1278 
1279 			case IP_RECVIF:
1280 				OPTSET(INP_RECVIF);
1281 				break;
1282 
1283 			case IP_RECVTTL:
1284 				OPTSET(INP_RECVTTL);
1285 				break;
1286 			}
1287 		break;
1288 #undef OPTSET
1289 
1290 		case IP_MULTICAST_IF:
1291 		case IP_MULTICAST_TTL:
1292 		case IP_MULTICAST_LOOP:
1293 		case IP_ADD_MEMBERSHIP:
1294 		case IP_DROP_MEMBERSHIP:
1295 			error = ip_setmoptions(&inp->inp_moptions, sopt);
1296 			break;
1297 
1298 		case IP_PORTRANGE:
1299 			error = sockopt_getint(sopt, &optval);
1300 			if (error)
1301 				break;
1302 
1303 			/* INP_LOCK(inp); */
1304 			switch (optval) {
1305 			case IP_PORTRANGE_DEFAULT:
1306 			case IP_PORTRANGE_HIGH:
1307 				inp->inp_flags &= ~(INP_LOWPORT);
1308 				break;
1309 
1310 			case IP_PORTRANGE_LOW:
1311 				inp->inp_flags |= INP_LOWPORT;
1312 				break;
1313 
1314 			default:
1315 				error = EINVAL;
1316 				break;
1317 			}
1318 			/* INP_UNLOCK(inp); */
1319 			break;
1320 
1321 #if defined(IPSEC) || defined(FAST_IPSEC)
1322 		case IP_IPSEC_POLICY:
1323 		    {
1324 			error = ipsec4_set_policy(inp, sopt->sopt_name,
1325 			    sopt->sopt_data, sopt->sopt_size, l->l_cred);
1326 			break;
1327 		    }
1328 #endif /*IPSEC*/
1329 
1330 		default:
1331 			error = ENOPROTOOPT;
1332 			break;
1333 		}
1334 		break;
1335 
1336 	case PRCO_GETOPT:
1337 		switch (sopt->sopt_name) {
1338 		case IP_OPTIONS:
1339 		case IP_RETOPTS:
1340 			if (inp->inp_options) {
1341 				struct mbuf *m;
1342 
1343 				m = m_copym(inp->inp_options, 0, M_COPYALL,
1344 				    M_DONTWAIT);
1345 				if (m == NULL) {
1346 					error = ENOBUFS;
1347 					break;
1348 				}
1349 
1350 				error = sockopt_setmbuf(sopt, m);
1351 			}
1352 			break;
1353 
1354 		case IP_TOS:
1355 		case IP_TTL:
1356 		case IP_MINTTL:
1357 		case IP_RECVOPTS:
1358 		case IP_RECVRETOPTS:
1359 		case IP_RECVDSTADDR:
1360 		case IP_RECVIF:
1361 		case IP_RECVTTL:
1362 		case IP_ERRORMTU:
1363 			switch (sopt->sopt_name) {
1364 			case IP_TOS:
1365 				optval = inp->inp_ip.ip_tos;
1366 				break;
1367 
1368 			case IP_TTL:
1369 				optval = inp->inp_ip.ip_ttl;
1370 				break;
1371 
1372 			case IP_MINTTL:
1373 				optval = inp->inp_ip_minttl;
1374 				break;
1375 
1376 			case IP_ERRORMTU:
1377 				optval = inp->inp_errormtu;
1378 				break;
1379 
1380 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1381 
1382 			case IP_RECVOPTS:
1383 				optval = OPTBIT(INP_RECVOPTS);
1384 				break;
1385 
1386 			case IP_RECVRETOPTS:
1387 				optval = OPTBIT(INP_RECVRETOPTS);
1388 				break;
1389 
1390 			case IP_RECVDSTADDR:
1391 				optval = OPTBIT(INP_RECVDSTADDR);
1392 				break;
1393 
1394 			case IP_RECVIF:
1395 				optval = OPTBIT(INP_RECVIF);
1396 				break;
1397 
1398 			case IP_RECVTTL:
1399 				optval = OPTBIT(INP_RECVTTL);
1400 				break;
1401 			}
1402 			error = sockopt_setint(sopt, optval);
1403 			break;
1404 
1405 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
1406 		case IP_IPSEC_POLICY:
1407 		{
1408 			struct mbuf *m = NULL;
1409 
1410 			/* XXX this will return EINVAL as sopt is empty */
1411 			error = ipsec4_get_policy(inp, sopt->sopt_data,
1412 			    sopt->sopt_size, &m);
1413 			if (error == 0)
1414 				error = sockopt_setmbuf(sopt, m);
1415 			break;
1416 		}
1417 #endif /*IPSEC*/
1418 
1419 		case IP_MULTICAST_IF:
1420 		case IP_MULTICAST_TTL:
1421 		case IP_MULTICAST_LOOP:
1422 		case IP_ADD_MEMBERSHIP:
1423 		case IP_DROP_MEMBERSHIP:
1424 			error = ip_getmoptions(inp->inp_moptions, sopt);
1425 			break;
1426 
1427 		case IP_PORTRANGE:
1428 			if (inp->inp_flags & INP_LOWPORT)
1429 				optval = IP_PORTRANGE_LOW;
1430 			else
1431 				optval = IP_PORTRANGE_DEFAULT;
1432 
1433 			error = sockopt_setint(sopt, optval);
1434 
1435 			break;
1436 
1437 		default:
1438 			error = ENOPROTOOPT;
1439 			break;
1440 		}
1441 		break;
1442 	}
1443 	return (error);
1444 }
1445 
1446 /*
1447  * Set up IP options in pcb for insertion in output packets.
1448  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1449  * with destination address if source routed.
1450  */
1451 int
1452 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
1453 {
1454 	struct mbuf *m;
1455 	const u_char *cp;
1456 	u_char *dp;
1457 	int cnt;
1458 	uint8_t optval, olen, offset;
1459 
1460 	/* turn off any old options */
1461 	if (*pcbopt)
1462 		(void)m_free(*pcbopt);
1463 	*pcbopt = NULL;
1464 
1465 	cp = sopt->sopt_data;
1466 	cnt = sopt->sopt_size;
1467 
1468 	if (cnt == 0)
1469 		return (0);	/* Only turning off any previous options */
1470 
1471 #ifndef	__vax__
1472 	if (cnt % sizeof(int32_t))
1473 		return (EINVAL);
1474 #endif
1475 
1476 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1477 	if (m == NULL)
1478 		return (ENOBUFS);
1479 
1480 	dp = mtod(m, u_char *);
1481 	memset(dp, 0, sizeof(struct in_addr));
1482 	dp += sizeof(struct in_addr);
1483 	m->m_len = sizeof(struct in_addr);
1484 
1485 	/*
1486 	 * IP option list according to RFC791. Each option is of the form
1487 	 *
1488 	 *	[optval] [olen] [(olen - 2) data bytes]
1489 	 *
1490 	 * we validate the list and copy options to an mbuf for prepending
1491 	 * to data packets. The IP first-hop destination address will be
1492 	 * stored before actual options and is zero if unset.
1493 	 */
1494 	while (cnt > 0) {
1495 		optval = cp[IPOPT_OPTVAL];
1496 
1497 		if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1498 			olen = 1;
1499 		} else {
1500 			if (cnt < IPOPT_OLEN + 1)
1501 				goto bad;
1502 
1503 			olen = cp[IPOPT_OLEN];
1504 			if (olen < IPOPT_OLEN + 1 || olen > cnt)
1505 				goto bad;
1506 		}
1507 
1508 		if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1509 			/*
1510 			 * user process specifies route as:
1511 			 *	->A->B->C->D
1512 			 * D must be our final destination (but we can't
1513 			 * check that since we may not have connected yet).
1514 			 * A is first hop destination, which doesn't appear in
1515 			 * actual IP option, but is stored before the options.
1516 			 */
1517 			if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1518 				goto bad;
1519 
1520 			offset = cp[IPOPT_OFFSET];
1521 			memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1522 			    sizeof(struct in_addr));
1523 
1524 			cp += sizeof(struct in_addr);
1525 			cnt -= sizeof(struct in_addr);
1526 			olen -= sizeof(struct in_addr);
1527 
1528 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1529 				goto bad;
1530 
1531 			memcpy(dp, cp, olen);
1532 			dp[IPOPT_OPTVAL] = optval;
1533 			dp[IPOPT_OLEN] = olen;
1534 			dp[IPOPT_OFFSET] = offset;
1535 			break;
1536 		} else {
1537 			if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1538 				goto bad;
1539 
1540 			memcpy(dp, cp, olen);
1541 			break;
1542 		}
1543 
1544 		dp += olen;
1545 		m->m_len += olen;
1546 
1547 		if (optval == IPOPT_EOL)
1548 			break;
1549 
1550 		cp += olen;
1551 		cnt -= olen;
1552 	}
1553 
1554 	*pcbopt = m;
1555 	return (0);
1556 
1557 bad:
1558 	(void)m_free(m);
1559 	return (EINVAL);
1560 }
1561 
1562 /*
1563  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1564  */
1565 static struct ifnet *
1566 ip_multicast_if(struct in_addr *a, int *ifindexp)
1567 {
1568 	int ifindex;
1569 	struct ifnet *ifp = NULL;
1570 	struct in_ifaddr *ia;
1571 
1572 	if (ifindexp)
1573 		*ifindexp = 0;
1574 	if (ntohl(a->s_addr) >> 24 == 0) {
1575 		ifindex = ntohl(a->s_addr) & 0xffffff;
1576 		if (ifindex < 0 || if_indexlim <= ifindex)
1577 			return NULL;
1578 		ifp = ifindex2ifnet[ifindex];
1579 		if (!ifp)
1580 			return NULL;
1581 		if (ifindexp)
1582 			*ifindexp = ifindex;
1583 	} else {
1584 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1585 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1586 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1587 				ifp = ia->ia_ifp;
1588 				break;
1589 			}
1590 		}
1591 	}
1592 	return ifp;
1593 }
1594 
1595 static int
1596 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1597 {
1598 	u_int tval;
1599 	u_char cval;
1600 	int error;
1601 
1602 	if (sopt == NULL)
1603 		return EINVAL;
1604 
1605 	switch (sopt->sopt_size) {
1606 	case sizeof(u_char):
1607 		error = sockopt_get(sopt, &cval, sizeof(u_char));
1608 		tval = cval;
1609 		break;
1610 
1611 	case sizeof(u_int):
1612 		error = sockopt_get(sopt, &tval, sizeof(u_int));
1613 		break;
1614 
1615 	default:
1616 		error = EINVAL;
1617 	}
1618 
1619 	if (error)
1620 		return error;
1621 
1622 	if (tval > maxval)
1623 		return EINVAL;
1624 
1625 	*val = tval;
1626 	return 0;
1627 }
1628 
1629 /*
1630  * Set the IP multicast options in response to user setsockopt().
1631  */
1632 int
1633 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
1634 {
1635 	int error = 0;
1636 	int i;
1637 	struct in_addr addr;
1638 	struct ip_mreq lmreq, *mreq;
1639 	struct ifnet *ifp;
1640 	struct ip_moptions *imo = *imop;
1641 	int ifindex;
1642 
1643 	if (imo == NULL) {
1644 		/*
1645 		 * No multicast option buffer attached to the pcb;
1646 		 * allocate one and initialize to default values.
1647 		 */
1648 		imo = malloc(sizeof(*imo), M_IPMOPTS, M_NOWAIT);
1649 		if (imo == NULL)
1650 			return (ENOBUFS);
1651 
1652 		*imop = imo;
1653 		imo->imo_multicast_ifp = NULL;
1654 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1655 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1656 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1657 		imo->imo_num_memberships = 0;
1658 	}
1659 
1660 	switch (sopt->sopt_name) {
1661 	case IP_MULTICAST_IF:
1662 		/*
1663 		 * Select the interface for outgoing multicast packets.
1664 		 */
1665 		error = sockopt_get(sopt, &addr, sizeof(addr));
1666 		if (error)
1667 			break;
1668 
1669 		/*
1670 		 * INADDR_ANY is used to remove a previous selection.
1671 		 * When no interface is selected, a default one is
1672 		 * chosen every time a multicast packet is sent.
1673 		 */
1674 		if (in_nullhost(addr)) {
1675 			imo->imo_multicast_ifp = NULL;
1676 			break;
1677 		}
1678 		/*
1679 		 * The selected interface is identified by its local
1680 		 * IP address.  Find the interface and confirm that
1681 		 * it supports multicasting.
1682 		 */
1683 		ifp = ip_multicast_if(&addr, &ifindex);
1684 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1685 			error = EADDRNOTAVAIL;
1686 			break;
1687 		}
1688 		imo->imo_multicast_ifp = ifp;
1689 		if (ifindex)
1690 			imo->imo_multicast_addr = addr;
1691 		else
1692 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1693 		break;
1694 
1695 	case IP_MULTICAST_TTL:
1696 		/*
1697 		 * Set the IP time-to-live for outgoing multicast packets.
1698 		 */
1699 		error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1700 		break;
1701 
1702 	case IP_MULTICAST_LOOP:
1703 		/*
1704 		 * Set the loopback flag for outgoing multicast packets.
1705 		 * Must be zero or one.
1706 		 */
1707 		error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1708 		break;
1709 
1710 	case IP_ADD_MEMBERSHIP:
1711 		/*
1712 		 * Add a multicast group membership.
1713 		 * Group must be a valid IP multicast address.
1714 		 */
1715 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1716 		if (error)
1717 			break;
1718 
1719 		mreq = &lmreq;
1720 
1721 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1722 			error = EINVAL;
1723 			break;
1724 		}
1725 		/*
1726 		 * If no interface address was provided, use the interface of
1727 		 * the route to the given multicast address.
1728 		 */
1729 		if (in_nullhost(mreq->imr_interface)) {
1730 			struct rtentry *rt;
1731 			union {
1732 				struct sockaddr		dst;
1733 				struct sockaddr_in	dst4;
1734 			} u;
1735 			struct route ro;
1736 
1737 			memset(&ro, 0, sizeof(ro));
1738 
1739 			sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1740 			rtcache_setdst(&ro, &u.dst);
1741 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1742 			                                        : NULL;
1743 			rtcache_free(&ro);
1744 		} else {
1745 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1746 		}
1747 		/*
1748 		 * See if we found an interface, and confirm that it
1749 		 * supports multicast.
1750 		 */
1751 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1752 			error = EADDRNOTAVAIL;
1753 			break;
1754 		}
1755 		/*
1756 		 * See if the membership already exists or if all the
1757 		 * membership slots are full.
1758 		 */
1759 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1760 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1761 			    in_hosteq(imo->imo_membership[i]->inm_addr,
1762 				      mreq->imr_multiaddr))
1763 				break;
1764 		}
1765 		if (i < imo->imo_num_memberships) {
1766 			error = EADDRINUSE;
1767 			break;
1768 		}
1769 		if (i == IP_MAX_MEMBERSHIPS) {
1770 			error = ETOOMANYREFS;
1771 			break;
1772 		}
1773 		/*
1774 		 * Everything looks good; add a new record to the multicast
1775 		 * address list for the given interface.
1776 		 */
1777 		if ((imo->imo_membership[i] =
1778 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1779 			error = ENOBUFS;
1780 			break;
1781 		}
1782 		++imo->imo_num_memberships;
1783 		break;
1784 
1785 	case IP_DROP_MEMBERSHIP:
1786 		/*
1787 		 * Drop a multicast group membership.
1788 		 * Group must be a valid IP multicast address.
1789 		 */
1790 		error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1791 		if (error)
1792 			break;
1793 
1794 		mreq = &lmreq;
1795 
1796 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1797 			error = EINVAL;
1798 			break;
1799 		}
1800 		/*
1801 		 * If an interface address was specified, get a pointer
1802 		 * to its ifnet structure.
1803 		 */
1804 		if (in_nullhost(mreq->imr_interface))
1805 			ifp = NULL;
1806 		else {
1807 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1808 			if (ifp == NULL) {
1809 				error = EADDRNOTAVAIL;
1810 				break;
1811 			}
1812 		}
1813 		/*
1814 		 * Find the membership in the membership array.
1815 		 */
1816 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1817 			if ((ifp == NULL ||
1818 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1819 			     in_hosteq(imo->imo_membership[i]->inm_addr,
1820 				       mreq->imr_multiaddr))
1821 				break;
1822 		}
1823 		if (i == imo->imo_num_memberships) {
1824 			error = EADDRNOTAVAIL;
1825 			break;
1826 		}
1827 		/*
1828 		 * Give up the multicast address record to which the
1829 		 * membership points.
1830 		 */
1831 		in_delmulti(imo->imo_membership[i]);
1832 		/*
1833 		 * Remove the gap in the membership array.
1834 		 */
1835 		for (++i; i < imo->imo_num_memberships; ++i)
1836 			imo->imo_membership[i-1] = imo->imo_membership[i];
1837 		--imo->imo_num_memberships;
1838 		break;
1839 
1840 	default:
1841 		error = EOPNOTSUPP;
1842 		break;
1843 	}
1844 
1845 	/*
1846 	 * If all options have default values, no need to keep the mbuf.
1847 	 */
1848 	if (imo->imo_multicast_ifp == NULL &&
1849 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1850 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1851 	    imo->imo_num_memberships == 0) {
1852 		free(*imop, M_IPMOPTS);
1853 		*imop = NULL;
1854 	}
1855 
1856 	return (error);
1857 }
1858 
1859 /*
1860  * Return the IP multicast options in response to user getsockopt().
1861  */
1862 int
1863 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1864 {
1865 	struct in_addr addr;
1866 	struct in_ifaddr *ia;
1867 	int error;
1868 	uint8_t optval;
1869 
1870 	error = 0;
1871 
1872 	switch (sopt->sopt_name) {
1873 	case IP_MULTICAST_IF:
1874 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1875 			addr = zeroin_addr;
1876 		else if (imo->imo_multicast_addr.s_addr) {
1877 			/* return the value user has set */
1878 			addr = imo->imo_multicast_addr;
1879 		} else {
1880 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1881 			addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1882 		}
1883 		error = sockopt_set(sopt, &addr, sizeof(addr));
1884 		break;
1885 
1886 	case IP_MULTICAST_TTL:
1887 		optval = imo ? imo->imo_multicast_ttl
1888 			     : IP_DEFAULT_MULTICAST_TTL;
1889 
1890 		error = sockopt_set(sopt, &optval, sizeof(optval));
1891 		break;
1892 
1893 	case IP_MULTICAST_LOOP:
1894 		optval = imo ? imo->imo_multicast_loop
1895 			     : IP_DEFAULT_MULTICAST_LOOP;
1896 
1897 		error = sockopt_set(sopt, &optval, sizeof(optval));
1898 		break;
1899 
1900 	default:
1901 		error = EOPNOTSUPP;
1902 	}
1903 
1904 	return (error);
1905 }
1906 
1907 /*
1908  * Discard the IP multicast options.
1909  */
1910 void
1911 ip_freemoptions(struct ip_moptions *imo)
1912 {
1913 	int i;
1914 
1915 	if (imo != NULL) {
1916 		for (i = 0; i < imo->imo_num_memberships; ++i)
1917 			in_delmulti(imo->imo_membership[i]);
1918 		free(imo, M_IPMOPTS);
1919 	}
1920 }
1921 
1922 /*
1923  * Routine called from ip_output() to loop back a copy of an IP multicast
1924  * packet to the input queue of a specified interface.  Note that this
1925  * calls the output routine of the loopback "driver", but with an interface
1926  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1927  */
1928 static void
1929 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1930 {
1931 	struct ip *ip;
1932 	struct mbuf *copym;
1933 
1934 	copym = m_copypacket(m, M_DONTWAIT);
1935 	if (copym != NULL
1936 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1937 		copym = m_pullup(copym, sizeof(struct ip));
1938 	if (copym == NULL)
1939 		return;
1940 	/*
1941 	 * We don't bother to fragment if the IP length is greater
1942 	 * than the interface's MTU.  Can this possibly matter?
1943 	 */
1944 	ip = mtod(copym, struct ip *);
1945 
1946 	if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1947 		in_delayed_cksum(copym);
1948 		copym->m_pkthdr.csum_flags &=
1949 		    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1950 	}
1951 
1952 	ip->ip_sum = 0;
1953 	ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1954 	(void)looutput(ifp, copym, sintocsa(dst), NULL);
1955 }
1956