1 /* $NetBSD: ip_mroute.c,v 1.143 2016/07/04 04:35:09 knakahara Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.143 2016/07/04 04:35:09 knakahara Exp $"); 97 98 #ifdef _KERNEL_OPT 99 #include "opt_inet.h" 100 #include "opt_ipsec.h" 101 #include "opt_pim.h" 102 #endif 103 104 #ifdef PIM 105 #define _PIM_VT 1 106 #endif 107 108 #include <sys/param.h> 109 #include <sys/systm.h> 110 #include <sys/callout.h> 111 #include <sys/mbuf.h> 112 #include <sys/socket.h> 113 #include <sys/socketvar.h> 114 #include <sys/protosw.h> 115 #include <sys/errno.h> 116 #include <sys/time.h> 117 #include <sys/kernel.h> 118 #include <sys/kmem.h> 119 #include <sys/ioctl.h> 120 #include <sys/syslog.h> 121 122 #include <net/if.h> 123 #include <net/raw_cb.h> 124 125 #include <netinet/in.h> 126 #include <netinet/in_var.h> 127 #include <netinet/in_systm.h> 128 #include <netinet/ip.h> 129 #include <netinet/ip_var.h> 130 #include <netinet/in_pcb.h> 131 #include <netinet/udp.h> 132 #include <netinet/igmp.h> 133 #include <netinet/igmp_var.h> 134 #include <netinet/ip_mroute.h> 135 #ifdef PIM 136 #include <netinet/pim.h> 137 #include <netinet/pim_var.h> 138 #endif 139 #include <netinet/ip_encap.h> 140 141 #ifdef IPSEC 142 #include <netipsec/ipsec.h> 143 #include <netipsec/key.h> 144 #endif 145 146 #define IP_MULTICASTOPTS 0 147 #define M_PULLUP(m, len) \ 148 do { \ 149 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 150 (m) = m_pullup((m), (len)); \ 151 } while (/*CONSTCOND*/ 0) 152 153 /* 154 * Globals. All but ip_mrouter and ip_mrtproto could be static, 155 * except for netstat or debugging purposes. 156 */ 157 struct socket *ip_mrouter = NULL; 158 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 159 160 #define NO_RTE_FOUND 0x1 161 #define RTE_FOUND 0x2 162 163 #define MFCHASH(a, g) \ 164 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 165 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 166 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 167 u_long mfchash; 168 169 u_char nexpire[MFCTBLSIZ]; 170 struct vif viftable[MAXVIFS]; 171 struct mrtstat mrtstat; 172 u_int mrtdebug = 0; /* debug level */ 173 #define DEBUG_MFC 0x02 174 #define DEBUG_FORWARD 0x04 175 #define DEBUG_EXPIRE 0x08 176 #define DEBUG_XMIT 0x10 177 #define DEBUG_PIM 0x20 178 179 #define VIFI_INVALID ((vifi_t) -1) 180 181 u_int tbfdebug = 0; /* tbf debug level */ 182 #ifdef RSVP_ISI 183 u_int rsvpdebug = 0; /* rsvp debug level */ 184 #define RSVP_DPRINTF(a) do if (rsvpdebug) printf a; while (/*CONSTCOND*/0) 185 extern struct socket *ip_rsvpd; 186 extern int rsvp_on; 187 #else 188 #define RSVP_DPRINTF(a) do {} while (/*CONSTCOND*/0) 189 #endif /* RSVP_ISI */ 190 191 /* vif attachment using sys/netinet/ip_encap.c */ 192 static void vif_input(struct mbuf *, int, int); 193 static int vif_encapcheck(struct mbuf *, int, int, void *); 194 195 static const struct encapsw vif_encapsw = { 196 .encapsw4 = { 197 .pr_input = vif_input, 198 .pr_ctlinput = NULL, 199 } 200 }; 201 202 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 203 #define UPCALL_EXPIRE 6 /* number of timeouts */ 204 205 /* 206 * Define the token bucket filter structures 207 */ 208 209 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 210 211 static int get_sg_cnt(struct sioc_sg_req *); 212 static int get_vif_cnt(struct sioc_vif_req *); 213 static int ip_mrouter_init(struct socket *, int); 214 static int set_assert(int); 215 static int add_vif(struct vifctl *); 216 static int del_vif(vifi_t *); 217 static void update_mfc_params(struct mfc *, struct mfcctl2 *); 218 static void init_mfc_params(struct mfc *, struct mfcctl2 *); 219 static void expire_mfc(struct mfc *); 220 static int add_mfc(struct sockopt *); 221 #ifdef UPCALL_TIMING 222 static void collate(struct timeval *); 223 #endif 224 static int del_mfc(struct sockopt *); 225 static int set_api_config(struct sockopt *); /* chose API capabilities */ 226 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 227 static void expire_upcalls(void *); 228 #ifdef RSVP_ISI 229 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 230 #else 231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); 232 #endif 233 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 234 static void encap_send(struct ip *, struct vif *, struct mbuf *); 235 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); 236 static void tbf_queue(struct vif *, struct mbuf *); 237 static void tbf_process_q(struct vif *); 238 static void tbf_reprocess_q(void *); 239 static int tbf_dq_sel(struct vif *, struct ip *); 240 static void tbf_send_packet(struct vif *, struct mbuf *); 241 static void tbf_update_tokens(struct vif *); 242 static int priority(struct vif *, struct ip *); 243 244 /* 245 * Bandwidth monitoring 246 */ 247 static void free_bw_list(struct bw_meter *); 248 static int add_bw_upcall(struct bw_upcall *); 249 static int del_bw_upcall(struct bw_upcall *); 250 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); 251 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 252 static void bw_upcalls_send(void); 253 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 254 static void unschedule_bw_meter(struct bw_meter *); 255 static void bw_meter_process(void); 256 static void expire_bw_upcalls_send(void *); 257 static void expire_bw_meter_process(void *); 258 259 #ifdef PIM 260 static int pim_register_send(struct ip *, struct vif *, 261 struct mbuf *, struct mfc *); 262 static int pim_register_send_rp(struct ip *, struct vif *, 263 struct mbuf *, struct mfc *); 264 static int pim_register_send_upcall(struct ip *, struct vif *, 265 struct mbuf *, struct mfc *); 266 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 267 #endif 268 269 /* 270 * 'Interfaces' associated with decapsulator (so we can tell 271 * packets that went through it from ones that get reflected 272 * by a broken gateway). These interfaces are never linked into 273 * the system ifnet list & no routes point to them. I.e., packets 274 * can't be sent this way. They only exist as a placeholder for 275 * multicast source verification. 276 */ 277 #if 0 278 struct ifnet multicast_decap_if[MAXVIFS]; 279 #endif 280 281 #define ENCAP_TTL 64 282 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 283 284 /* prototype IP hdr for encapsulated packets */ 285 struct ip multicast_encap_iphdr = { 286 .ip_hl = sizeof(struct ip) >> 2, 287 .ip_v = IPVERSION, 288 .ip_len = sizeof(struct ip), 289 .ip_ttl = ENCAP_TTL, 290 .ip_p = ENCAP_PROTO, 291 }; 292 293 /* 294 * Bandwidth meter variables and constants 295 */ 296 297 /* 298 * Pending timeouts are stored in a hash table, the key being the 299 * expiration time. Periodically, the entries are analysed and processed. 300 */ 301 #define BW_METER_BUCKETS 1024 302 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 303 struct callout bw_meter_ch; 304 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 305 306 /* 307 * Pending upcalls are stored in a vector which is flushed when 308 * full, or periodically 309 */ 310 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 311 static u_int bw_upcalls_n; /* # of pending upcalls */ 312 struct callout bw_upcalls_ch; 313 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 314 315 #ifdef PIM 316 struct pimstat pimstat; 317 318 /* 319 * Note: the PIM Register encapsulation adds the following in front of a 320 * data packet: 321 * 322 * struct pim_encap_hdr { 323 * struct ip ip; 324 * struct pim_encap_pimhdr pim; 325 * } 326 * 327 */ 328 329 struct pim_encap_pimhdr { 330 struct pim pim; 331 uint32_t flags; 332 }; 333 334 static struct ip pim_encap_iphdr = { 335 .ip_v = IPVERSION, 336 .ip_hl = sizeof(struct ip) >> 2, 337 .ip_len = sizeof(struct ip), 338 .ip_ttl = ENCAP_TTL, 339 .ip_p = IPPROTO_PIM, 340 }; 341 342 static struct pim_encap_pimhdr pim_encap_pimhdr = { 343 { 344 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 345 0, /* reserved */ 346 0, /* checksum */ 347 }, 348 0 /* flags */ 349 }; 350 351 static struct ifnet multicast_register_if; 352 static vifi_t reg_vif_num = VIFI_INVALID; 353 #endif /* PIM */ 354 355 356 /* 357 * Private variables. 358 */ 359 static vifi_t numvifs = 0; 360 361 static struct callout expire_upcalls_ch; 362 363 /* 364 * whether or not special PIM assert processing is enabled. 365 */ 366 static int pim_assert; 367 /* 368 * Rate limit for assert notification messages, in usec 369 */ 370 #define ASSERT_MSG_TIME 3000000 371 372 /* 373 * Kernel multicast routing API capabilities and setup. 374 * If more API capabilities are added to the kernel, they should be 375 * recorded in `mrt_api_support'. 376 */ 377 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 378 MRT_MFC_FLAGS_BORDER_VIF | 379 MRT_MFC_RP | 380 MRT_MFC_BW_UPCALL); 381 static u_int32_t mrt_api_config = 0; 382 383 /* 384 * Find a route for a given origin IP address and Multicast group address 385 * Type of service parameter to be added in the future!!! 386 * Statistics are updated by the caller if needed 387 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 388 */ 389 static struct mfc * 390 mfc_find(struct in_addr *o, struct in_addr *g) 391 { 392 struct mfc *rt; 393 394 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 395 if (in_hosteq(rt->mfc_origin, *o) && 396 in_hosteq(rt->mfc_mcastgrp, *g) && 397 (rt->mfc_stall == NULL)) 398 break; 399 } 400 401 return (rt); 402 } 403 404 /* 405 * Macros to compute elapsed time efficiently 406 * Borrowed from Van Jacobson's scheduling code 407 */ 408 #define TV_DELTA(a, b, delta) do { \ 409 int xxs; \ 410 delta = (a).tv_usec - (b).tv_usec; \ 411 xxs = (a).tv_sec - (b).tv_sec; \ 412 switch (xxs) { \ 413 case 2: \ 414 delta += 1000000; \ 415 /* fall through */ \ 416 case 1: \ 417 delta += 1000000; \ 418 /* fall through */ \ 419 case 0: \ 420 break; \ 421 default: \ 422 delta += (1000000 * xxs); \ 423 break; \ 424 } \ 425 } while (/*CONSTCOND*/ 0) 426 427 #ifdef UPCALL_TIMING 428 u_int32_t upcall_data[51]; 429 #endif /* UPCALL_TIMING */ 430 431 /* 432 * Handle MRT setsockopt commands to modify the multicast routing tables. 433 */ 434 int 435 ip_mrouter_set(struct socket *so, struct sockopt *sopt) 436 { 437 int error; 438 int optval; 439 struct vifctl vifc; 440 vifi_t vifi; 441 struct bw_upcall bwuc; 442 443 if (sopt->sopt_name != MRT_INIT && so != ip_mrouter) 444 error = ENOPROTOOPT; 445 else { 446 switch (sopt->sopt_name) { 447 case MRT_INIT: 448 error = sockopt_getint(sopt, &optval); 449 if (error) 450 break; 451 452 error = ip_mrouter_init(so, optval); 453 break; 454 case MRT_DONE: 455 error = ip_mrouter_done(); 456 break; 457 case MRT_ADD_VIF: 458 error = sockopt_get(sopt, &vifc, sizeof(vifc)); 459 if (error) 460 break; 461 error = add_vif(&vifc); 462 break; 463 case MRT_DEL_VIF: 464 error = sockopt_get(sopt, &vifi, sizeof(vifi)); 465 if (error) 466 break; 467 error = del_vif(&vifi); 468 break; 469 case MRT_ADD_MFC: 470 error = add_mfc(sopt); 471 break; 472 case MRT_DEL_MFC: 473 error = del_mfc(sopt); 474 break; 475 case MRT_ASSERT: 476 error = sockopt_getint(sopt, &optval); 477 if (error) 478 break; 479 error = set_assert(optval); 480 break; 481 case MRT_API_CONFIG: 482 error = set_api_config(sopt); 483 break; 484 case MRT_ADD_BW_UPCALL: 485 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 486 if (error) 487 break; 488 error = add_bw_upcall(&bwuc); 489 break; 490 case MRT_DEL_BW_UPCALL: 491 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 492 if (error) 493 break; 494 error = del_bw_upcall(&bwuc); 495 break; 496 default: 497 error = ENOPROTOOPT; 498 break; 499 } 500 } 501 return (error); 502 } 503 504 /* 505 * Handle MRT getsockopt commands 506 */ 507 int 508 ip_mrouter_get(struct socket *so, struct sockopt *sopt) 509 { 510 int error; 511 512 if (so != ip_mrouter) 513 error = ENOPROTOOPT; 514 else { 515 switch (sopt->sopt_name) { 516 case MRT_VERSION: 517 error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */ 518 break; 519 case MRT_ASSERT: 520 error = sockopt_setint(sopt, pim_assert); 521 break; 522 case MRT_API_SUPPORT: 523 error = sockopt_set(sopt, &mrt_api_support, 524 sizeof(mrt_api_support)); 525 break; 526 case MRT_API_CONFIG: 527 error = sockopt_set(sopt, &mrt_api_config, 528 sizeof(mrt_api_config)); 529 break; 530 default: 531 error = ENOPROTOOPT; 532 break; 533 } 534 } 535 return (error); 536 } 537 538 /* 539 * Handle ioctl commands to obtain information from the cache 540 */ 541 int 542 mrt_ioctl(struct socket *so, u_long cmd, void *data) 543 { 544 int error; 545 546 if (so != ip_mrouter) 547 error = EINVAL; 548 else 549 switch (cmd) { 550 case SIOCGETVIFCNT: 551 error = get_vif_cnt((struct sioc_vif_req *)data); 552 break; 553 case SIOCGETSGCNT: 554 error = get_sg_cnt((struct sioc_sg_req *)data); 555 break; 556 default: 557 error = EINVAL; 558 break; 559 } 560 561 return (error); 562 } 563 564 /* 565 * returns the packet, byte, rpf-failure count for the source group provided 566 */ 567 static int 568 get_sg_cnt(struct sioc_sg_req *req) 569 { 570 int s; 571 struct mfc *rt; 572 573 s = splsoftnet(); 574 rt = mfc_find(&req->src, &req->grp); 575 if (rt == NULL) { 576 splx(s); 577 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 578 return (EADDRNOTAVAIL); 579 } 580 req->pktcnt = rt->mfc_pkt_cnt; 581 req->bytecnt = rt->mfc_byte_cnt; 582 req->wrong_if = rt->mfc_wrong_if; 583 splx(s); 584 585 return (0); 586 } 587 588 /* 589 * returns the input and output packet and byte counts on the vif provided 590 */ 591 static int 592 get_vif_cnt(struct sioc_vif_req *req) 593 { 594 vifi_t vifi = req->vifi; 595 596 if (vifi >= numvifs) 597 return (EINVAL); 598 599 req->icount = viftable[vifi].v_pkt_in; 600 req->ocount = viftable[vifi].v_pkt_out; 601 req->ibytes = viftable[vifi].v_bytes_in; 602 req->obytes = viftable[vifi].v_bytes_out; 603 604 return (0); 605 } 606 607 /* 608 * Enable multicast routing 609 */ 610 static int 611 ip_mrouter_init(struct socket *so, int v) 612 { 613 if (mrtdebug) 614 log(LOG_DEBUG, 615 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 616 so->so_type, so->so_proto->pr_protocol); 617 618 if (so->so_type != SOCK_RAW || 619 so->so_proto->pr_protocol != IPPROTO_IGMP) 620 return (EOPNOTSUPP); 621 622 if (v != 1) 623 return (EINVAL); 624 625 if (ip_mrouter != NULL) 626 return (EADDRINUSE); 627 628 ip_mrouter = so; 629 630 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash); 631 memset((void *)nexpire, 0, sizeof(nexpire)); 632 633 pim_assert = 0; 634 635 callout_init(&expire_upcalls_ch, 0); 636 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 637 expire_upcalls, NULL); 638 639 callout_init(&bw_upcalls_ch, 0); 640 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 641 expire_bw_upcalls_send, NULL); 642 643 callout_init(&bw_meter_ch, 0); 644 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 645 expire_bw_meter_process, NULL); 646 647 if (mrtdebug) 648 log(LOG_DEBUG, "ip_mrouter_init\n"); 649 650 return (0); 651 } 652 653 /* 654 * Disable multicast routing 655 */ 656 int 657 ip_mrouter_done(void) 658 { 659 vifi_t vifi; 660 struct vif *vifp; 661 int i; 662 int s; 663 664 s = splsoftnet(); 665 666 /* Clear out all the vifs currently in use. */ 667 for (vifi = 0; vifi < numvifs; vifi++) { 668 vifp = &viftable[vifi]; 669 if (!in_nullhost(vifp->v_lcl_addr)) 670 reset_vif(vifp); 671 } 672 673 numvifs = 0; 674 pim_assert = 0; 675 mrt_api_config = 0; 676 677 callout_stop(&expire_upcalls_ch); 678 callout_stop(&bw_upcalls_ch); 679 callout_stop(&bw_meter_ch); 680 681 /* 682 * Free all multicast forwarding cache entries. 683 */ 684 for (i = 0; i < MFCTBLSIZ; i++) { 685 struct mfc *rt, *nrt; 686 687 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 688 nrt = LIST_NEXT(rt, mfc_hash); 689 690 expire_mfc(rt); 691 } 692 } 693 694 memset((void *)nexpire, 0, sizeof(nexpire)); 695 hashdone(mfchashtbl, HASH_LIST, mfchash); 696 mfchashtbl = NULL; 697 698 bw_upcalls_n = 0; 699 memset(bw_meter_timers, 0, sizeof(bw_meter_timers)); 700 701 /* Reset de-encapsulation cache. */ 702 703 ip_mrouter = NULL; 704 705 splx(s); 706 707 if (mrtdebug) 708 log(LOG_DEBUG, "ip_mrouter_done\n"); 709 710 return (0); 711 } 712 713 void 714 ip_mrouter_detach(struct ifnet *ifp) 715 { 716 int vifi, i; 717 struct vif *vifp; 718 struct mfc *rt; 719 struct rtdetq *rte; 720 721 /* XXX not sure about side effect to userland routing daemon */ 722 for (vifi = 0; vifi < numvifs; vifi++) { 723 vifp = &viftable[vifi]; 724 if (vifp->v_ifp == ifp) 725 reset_vif(vifp); 726 } 727 for (i = 0; i < MFCTBLSIZ; i++) { 728 if (nexpire[i] == 0) 729 continue; 730 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 731 for (rte = rt->mfc_stall; rte; rte = rte->next) { 732 if (rte->ifp == ifp) 733 rte->ifp = NULL; 734 } 735 } 736 } 737 } 738 739 /* 740 * Set PIM assert processing global 741 */ 742 static int 743 set_assert(int i) 744 { 745 pim_assert = !!i; 746 return (0); 747 } 748 749 /* 750 * Configure API capabilities 751 */ 752 static int 753 set_api_config(struct sockopt *sopt) 754 { 755 u_int32_t apival; 756 int i, error; 757 758 /* 759 * We can set the API capabilities only if it is the first operation 760 * after MRT_INIT. I.e.: 761 * - there are no vifs installed 762 * - pim_assert is not enabled 763 * - the MFC table is empty 764 */ 765 error = sockopt_get(sopt, &apival, sizeof(apival)); 766 if (error) 767 return (error); 768 if (numvifs > 0) 769 return (EPERM); 770 if (pim_assert) 771 return (EPERM); 772 for (i = 0; i < MFCTBLSIZ; i++) { 773 if (LIST_FIRST(&mfchashtbl[i]) != NULL) 774 return (EPERM); 775 } 776 777 mrt_api_config = apival & mrt_api_support; 778 return (0); 779 } 780 781 /* 782 * Add a vif to the vif table 783 */ 784 static int 785 add_vif(struct vifctl *vifcp) 786 { 787 struct vif *vifp; 788 struct ifaddr *ifa; 789 struct ifnet *ifp; 790 int error, s; 791 struct sockaddr_in sin; 792 793 if (vifcp->vifc_vifi >= MAXVIFS) 794 return (EINVAL); 795 if (in_nullhost(vifcp->vifc_lcl_addr)) 796 return (EADDRNOTAVAIL); 797 798 vifp = &viftable[vifcp->vifc_vifi]; 799 if (!in_nullhost(vifp->v_lcl_addr)) 800 return (EADDRINUSE); 801 802 /* Find the interface with an address in AF_INET family. */ 803 #ifdef PIM 804 if (vifcp->vifc_flags & VIFF_REGISTER) { 805 /* 806 * XXX: Because VIFF_REGISTER does not really need a valid 807 * local interface (e.g. it could be 127.0.0.2), we don't 808 * check its address. 809 */ 810 ifp = NULL; 811 } else 812 #endif 813 { 814 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0); 815 ifa = ifa_ifwithaddr(sintosa(&sin)); 816 if (ifa == NULL) 817 return (EADDRNOTAVAIL); 818 ifp = ifa->ifa_ifp; 819 } 820 821 if (vifcp->vifc_flags & VIFF_TUNNEL) { 822 if (vifcp->vifc_flags & VIFF_SRCRT) { 823 log(LOG_ERR, "source routed tunnels not supported\n"); 824 return (EOPNOTSUPP); 825 } 826 827 /* attach this vif to decapsulator dispatch table */ 828 /* 829 * XXX Use addresses in registration so that matching 830 * can be done with radix tree in decapsulator. But, 831 * we need to check inner header for multicast, so 832 * this requires both radix tree lookup and then a 833 * function to check, and this is not supported yet. 834 */ 835 error = encap_lock_enter(); 836 if (error) 837 return error; 838 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 839 vif_encapcheck, &vif_encapsw, vifp); 840 encap_lock_exit(); 841 if (!vifp->v_encap_cookie) 842 return (EINVAL); 843 844 /* Create a fake encapsulation interface. */ 845 ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO); 846 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 847 "mdecap%d", vifcp->vifc_vifi); 848 849 /* Prepare cached route entry. */ 850 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 851 #ifdef PIM 852 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 853 ifp = &multicast_register_if; 854 if (mrtdebug) 855 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 856 (void *)ifp); 857 if (reg_vif_num == VIFI_INVALID) { 858 memset(ifp, 0, sizeof(*ifp)); 859 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 860 "register_vif"); 861 ifp->if_flags = IFF_LOOPBACK; 862 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 863 reg_vif_num = vifcp->vifc_vifi; 864 } 865 #endif 866 } else { 867 /* Make sure the interface supports multicast. */ 868 if ((ifp->if_flags & IFF_MULTICAST) == 0) 869 return (EOPNOTSUPP); 870 871 /* Enable promiscuous reception of all IP multicasts. */ 872 sockaddr_in_init(&sin, &zeroin_addr, 0); 873 error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)); 874 if (error) 875 return (error); 876 } 877 878 s = splsoftnet(); 879 880 /* Define parameters for the tbf structure. */ 881 vifp->tbf_q = NULL; 882 vifp->tbf_t = &vifp->tbf_q; 883 microtime(&vifp->tbf_last_pkt_t); 884 vifp->tbf_n_tok = 0; 885 vifp->tbf_q_len = 0; 886 vifp->tbf_max_q_len = MAXQSIZE; 887 888 vifp->v_flags = vifcp->vifc_flags; 889 vifp->v_threshold = vifcp->vifc_threshold; 890 /* scaling up here allows division by 1024 in critical code */ 891 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 892 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 893 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 894 vifp->v_ifp = ifp; 895 /* Initialize per vif pkt counters. */ 896 vifp->v_pkt_in = 0; 897 vifp->v_pkt_out = 0; 898 vifp->v_bytes_in = 0; 899 vifp->v_bytes_out = 0; 900 901 callout_init(&vifp->v_repq_ch, 0); 902 903 #ifdef RSVP_ISI 904 vifp->v_rsvp_on = 0; 905 vifp->v_rsvpd = NULL; 906 #endif /* RSVP_ISI */ 907 908 splx(s); 909 910 /* Adjust numvifs up if the vifi is higher than numvifs. */ 911 if (numvifs <= vifcp->vifc_vifi) 912 numvifs = vifcp->vifc_vifi + 1; 913 914 if (mrtdebug) 915 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 916 vifcp->vifc_vifi, 917 ntohl(vifcp->vifc_lcl_addr.s_addr), 918 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 919 ntohl(vifcp->vifc_rmt_addr.s_addr), 920 vifcp->vifc_threshold, 921 vifcp->vifc_rate_limit); 922 923 return (0); 924 } 925 926 void 927 reset_vif(struct vif *vifp) 928 { 929 struct mbuf *m, *n; 930 struct ifnet *ifp; 931 struct sockaddr_in sin; 932 933 callout_stop(&vifp->v_repq_ch); 934 935 /* detach this vif from decapsulator dispatch table */ 936 encap_lock_enter(); 937 encap_detach(vifp->v_encap_cookie); 938 encap_lock_exit(); 939 vifp->v_encap_cookie = NULL; 940 941 /* 942 * Free packets queued at the interface 943 */ 944 for (m = vifp->tbf_q; m != NULL; m = n) { 945 n = m->m_nextpkt; 946 m_freem(m); 947 } 948 949 if (vifp->v_flags & VIFF_TUNNEL) 950 free(vifp->v_ifp, M_MRTABLE); 951 else if (vifp->v_flags & VIFF_REGISTER) { 952 #ifdef PIM 953 reg_vif_num = VIFI_INVALID; 954 #endif 955 } else { 956 sockaddr_in_init(&sin, &zeroin_addr, 0); 957 ifp = vifp->v_ifp; 958 if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin)); 959 } 960 memset((void *)vifp, 0, sizeof(*vifp)); 961 } 962 963 /* 964 * Delete a vif from the vif table 965 */ 966 static int 967 del_vif(vifi_t *vifip) 968 { 969 struct vif *vifp; 970 vifi_t vifi; 971 int s; 972 973 if (*vifip >= numvifs) 974 return (EINVAL); 975 976 vifp = &viftable[*vifip]; 977 if (in_nullhost(vifp->v_lcl_addr)) 978 return (EADDRNOTAVAIL); 979 980 s = splsoftnet(); 981 982 reset_vif(vifp); 983 984 /* Adjust numvifs down */ 985 for (vifi = numvifs; vifi > 0; vifi--) 986 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 987 break; 988 numvifs = vifi; 989 990 splx(s); 991 992 if (mrtdebug) 993 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 994 995 return (0); 996 } 997 998 /* 999 * update an mfc entry without resetting counters and S,G addresses. 1000 */ 1001 static void 1002 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1003 { 1004 int i; 1005 1006 rt->mfc_parent = mfccp->mfcc_parent; 1007 for (i = 0; i < numvifs; i++) { 1008 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1009 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1010 MRT_MFC_FLAGS_ALL; 1011 } 1012 /* set the RP address */ 1013 if (mrt_api_config & MRT_MFC_RP) 1014 rt->mfc_rp = mfccp->mfcc_rp; 1015 else 1016 rt->mfc_rp = zeroin_addr; 1017 } 1018 1019 /* 1020 * fully initialize an mfc entry from the parameter. 1021 */ 1022 static void 1023 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1024 { 1025 rt->mfc_origin = mfccp->mfcc_origin; 1026 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1027 1028 update_mfc_params(rt, mfccp); 1029 1030 /* initialize pkt counters per src-grp */ 1031 rt->mfc_pkt_cnt = 0; 1032 rt->mfc_byte_cnt = 0; 1033 rt->mfc_wrong_if = 0; 1034 timerclear(&rt->mfc_last_assert); 1035 } 1036 1037 static void 1038 expire_mfc(struct mfc *rt) 1039 { 1040 struct rtdetq *rte, *nrte; 1041 1042 free_bw_list(rt->mfc_bw_meter); 1043 1044 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1045 nrte = rte->next; 1046 m_freem(rte->m); 1047 free(rte, M_MRTABLE); 1048 } 1049 1050 LIST_REMOVE(rt, mfc_hash); 1051 free(rt, M_MRTABLE); 1052 } 1053 1054 /* 1055 * Add an mfc entry 1056 */ 1057 static int 1058 add_mfc(struct sockopt *sopt) 1059 { 1060 struct mfcctl2 mfcctl2; 1061 struct mfcctl2 *mfccp; 1062 struct mfc *rt; 1063 u_int32_t hash = 0; 1064 struct rtdetq *rte, *nrte; 1065 u_short nstl; 1066 int s; 1067 int error; 1068 1069 /* 1070 * select data size depending on API version. 1071 */ 1072 mfccp = &mfcctl2; 1073 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1074 1075 if (mrt_api_config & MRT_API_FLAGS_ALL) 1076 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1077 else 1078 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1079 1080 if (error) 1081 return (error); 1082 1083 s = splsoftnet(); 1084 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1085 1086 /* If an entry already exists, just update the fields */ 1087 if (rt) { 1088 if (mrtdebug & DEBUG_MFC) 1089 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1090 ntohl(mfccp->mfcc_origin.s_addr), 1091 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1092 mfccp->mfcc_parent); 1093 1094 update_mfc_params(rt, mfccp); 1095 1096 splx(s); 1097 return (0); 1098 } 1099 1100 /* 1101 * Find the entry for which the upcall was made and update 1102 */ 1103 nstl = 0; 1104 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1105 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1106 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1107 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1108 rt->mfc_stall != NULL) { 1109 if (nstl++) 1110 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1111 "multiple kernel entries", 1112 ntohl(mfccp->mfcc_origin.s_addr), 1113 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1114 mfccp->mfcc_parent, rt->mfc_stall); 1115 1116 if (mrtdebug & DEBUG_MFC) 1117 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1118 ntohl(mfccp->mfcc_origin.s_addr), 1119 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1120 mfccp->mfcc_parent, rt->mfc_stall); 1121 1122 rte = rt->mfc_stall; 1123 init_mfc_params(rt, mfccp); 1124 rt->mfc_stall = NULL; 1125 1126 rt->mfc_expire = 0; /* Don't clean this guy up */ 1127 nexpire[hash]--; 1128 1129 /* free packets Qed at the end of this entry */ 1130 for (; rte != NULL; rte = nrte) { 1131 nrte = rte->next; 1132 if (rte->ifp) { 1133 #ifdef RSVP_ISI 1134 ip_mdq(rte->m, rte->ifp, rt, -1); 1135 #else 1136 ip_mdq(rte->m, rte->ifp, rt); 1137 #endif /* RSVP_ISI */ 1138 } 1139 m_freem(rte->m); 1140 #ifdef UPCALL_TIMING 1141 collate(&rte->t); 1142 #endif /* UPCALL_TIMING */ 1143 free(rte, M_MRTABLE); 1144 } 1145 } 1146 } 1147 1148 /* 1149 * It is possible that an entry is being inserted without an upcall 1150 */ 1151 if (nstl == 0) { 1152 /* 1153 * No mfc; make a new one 1154 */ 1155 if (mrtdebug & DEBUG_MFC) 1156 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1157 ntohl(mfccp->mfcc_origin.s_addr), 1158 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1159 mfccp->mfcc_parent); 1160 1161 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1162 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1163 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1164 init_mfc_params(rt, mfccp); 1165 if (rt->mfc_expire) 1166 nexpire[hash]--; 1167 rt->mfc_expire = 0; 1168 break; /* XXX */ 1169 } 1170 } 1171 if (rt == NULL) { /* no upcall, so make a new entry */ 1172 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1173 M_NOWAIT); 1174 if (rt == NULL) { 1175 splx(s); 1176 return (ENOBUFS); 1177 } 1178 1179 init_mfc_params(rt, mfccp); 1180 rt->mfc_expire = 0; 1181 rt->mfc_stall = NULL; 1182 rt->mfc_bw_meter = NULL; 1183 1184 /* insert new entry at head of hash chain */ 1185 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1186 } 1187 } 1188 1189 splx(s); 1190 return (0); 1191 } 1192 1193 #ifdef UPCALL_TIMING 1194 /* 1195 * collect delay statistics on the upcalls 1196 */ 1197 static void 1198 collate(struct timeval *t) 1199 { 1200 u_int32_t d; 1201 struct timeval tp; 1202 u_int32_t delta; 1203 1204 microtime(&tp); 1205 1206 if (timercmp(t, &tp, <)) { 1207 TV_DELTA(tp, *t, delta); 1208 1209 d = delta >> 10; 1210 if (d > 50) 1211 d = 50; 1212 1213 ++upcall_data[d]; 1214 } 1215 } 1216 #endif /* UPCALL_TIMING */ 1217 1218 /* 1219 * Delete an mfc entry 1220 */ 1221 static int 1222 del_mfc(struct sockopt *sopt) 1223 { 1224 struct mfcctl2 mfcctl2; 1225 struct mfcctl2 *mfccp; 1226 struct mfc *rt; 1227 int s; 1228 int error; 1229 1230 /* 1231 * XXX: for deleting MFC entries the information in entries 1232 * of size "struct mfcctl" is sufficient. 1233 */ 1234 1235 mfccp = &mfcctl2; 1236 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1237 1238 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1239 if (error) { 1240 /* Try with the size of mfcctl2. */ 1241 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1242 if (error) 1243 return (error); 1244 } 1245 1246 if (mrtdebug & DEBUG_MFC) 1247 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1248 ntohl(mfccp->mfcc_origin.s_addr), 1249 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1250 1251 s = splsoftnet(); 1252 1253 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1254 if (rt == NULL) { 1255 splx(s); 1256 return (EADDRNOTAVAIL); 1257 } 1258 1259 /* 1260 * free the bw_meter entries 1261 */ 1262 free_bw_list(rt->mfc_bw_meter); 1263 rt->mfc_bw_meter = NULL; 1264 1265 LIST_REMOVE(rt, mfc_hash); 1266 free(rt, M_MRTABLE); 1267 1268 splx(s); 1269 return (0); 1270 } 1271 1272 static int 1273 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1274 { 1275 if (s) { 1276 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) { 1277 sorwakeup(s); 1278 return (0); 1279 } 1280 } 1281 m_freem(mm); 1282 return (-1); 1283 } 1284 1285 /* 1286 * IP multicast forwarding function. This function assumes that the packet 1287 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1288 * pointed to by "ifp", and the packet is to be relayed to other networks 1289 * that have members of the packet's destination IP multicast group. 1290 * 1291 * The packet is returned unscathed to the caller, unless it is 1292 * erroneous, in which case a non-zero return value tells the caller to 1293 * discard it. 1294 */ 1295 1296 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1297 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1298 1299 int 1300 #ifdef RSVP_ISI 1301 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) 1302 #else 1303 ip_mforward(struct mbuf *m, struct ifnet *ifp) 1304 #endif /* RSVP_ISI */ 1305 { 1306 struct ip *ip = mtod(m, struct ip *); 1307 struct mfc *rt; 1308 static int srctun = 0; 1309 struct mbuf *mm; 1310 struct sockaddr_in sin; 1311 int s; 1312 vifi_t vifi; 1313 1314 if (mrtdebug & DEBUG_FORWARD) 1315 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1316 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1317 1318 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1319 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1320 /* 1321 * Packet arrived via a physical interface or 1322 * an encapsulated tunnel or a register_vif. 1323 */ 1324 } else { 1325 /* 1326 * Packet arrived through a source-route tunnel. 1327 * Source-route tunnels are no longer supported. 1328 */ 1329 if ((srctun++ % 1000) == 0) 1330 log(LOG_ERR, 1331 "ip_mforward: received source-routed packet from %x\n", 1332 ntohl(ip->ip_src.s_addr)); 1333 1334 return (1); 1335 } 1336 1337 /* 1338 * Clear any in-bound checksum flags for this packet. 1339 */ 1340 m->m_pkthdr.csum_flags = 0; 1341 1342 #ifdef RSVP_ISI 1343 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1344 if (ip->ip_ttl < MAXTTL) 1345 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1346 if (ip->ip_p == IPPROTO_RSVP) { 1347 struct vif *vifp = viftable + vifi; 1348 RSVP_DPRINTF(("%s: Sending IPPROTO_RSVP from %x to %x" 1349 " on vif %d (%s%s)\n", __func__, 1350 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1351 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1352 vifp->v_ifp->if_xname)); 1353 } 1354 return (ip_mdq(m, ifp, NULL, vifi)); 1355 } 1356 if (ip->ip_p == IPPROTO_RSVP) { 1357 RSVP_DPRINTF(("%s: Warning: IPPROTO_RSVP from %x to %x" 1358 " without vif option\n", __func__, 1359 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1360 } 1361 #endif /* RSVP_ISI */ 1362 1363 /* 1364 * Don't forward a packet with time-to-live of zero or one, 1365 * or a packet destined to a local-only group. 1366 */ 1367 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1368 return (0); 1369 1370 /* 1371 * Determine forwarding vifs from the forwarding cache table 1372 */ 1373 s = splsoftnet(); 1374 ++mrtstat.mrts_mfc_lookups; 1375 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1376 1377 /* Entry exists, so forward if necessary */ 1378 if (rt != NULL) { 1379 splx(s); 1380 #ifdef RSVP_ISI 1381 return (ip_mdq(m, ifp, rt, -1)); 1382 #else 1383 return (ip_mdq(m, ifp, rt)); 1384 #endif /* RSVP_ISI */ 1385 } else { 1386 /* 1387 * If we don't have a route for packet's origin, 1388 * Make a copy of the packet & send message to routing daemon 1389 */ 1390 1391 struct mbuf *mb0; 1392 struct rtdetq *rte; 1393 u_int32_t hash; 1394 int hlen = ip->ip_hl << 2; 1395 #ifdef UPCALL_TIMING 1396 struct timeval tp; 1397 1398 microtime(&tp); 1399 #endif /* UPCALL_TIMING */ 1400 1401 ++mrtstat.mrts_mfc_misses; 1402 1403 mrtstat.mrts_no_route++; 1404 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1405 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1406 ntohl(ip->ip_src.s_addr), 1407 ntohl(ip->ip_dst.s_addr)); 1408 1409 /* 1410 * Allocate mbufs early so that we don't do extra work if we are 1411 * just going to fail anyway. Make sure to pullup the header so 1412 * that other people can't step on it. 1413 */ 1414 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1415 M_NOWAIT); 1416 if (rte == NULL) { 1417 splx(s); 1418 return (ENOBUFS); 1419 } 1420 mb0 = m_copypacket(m, M_DONTWAIT); 1421 M_PULLUP(mb0, hlen); 1422 if (mb0 == NULL) { 1423 free(rte, M_MRTABLE); 1424 splx(s); 1425 return (ENOBUFS); 1426 } 1427 1428 /* is there an upcall waiting for this flow? */ 1429 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1430 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1431 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1432 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1433 rt->mfc_stall != NULL) 1434 break; 1435 } 1436 1437 if (rt == NULL) { 1438 int i; 1439 struct igmpmsg *im; 1440 1441 /* 1442 * Locate the vifi for the incoming interface for 1443 * this packet. 1444 * If none found, drop packet. 1445 */ 1446 for (vifi = 0; vifi < numvifs && 1447 viftable[vifi].v_ifp != ifp; vifi++) 1448 ; 1449 if (vifi >= numvifs) /* vif not found, drop packet */ 1450 goto non_fatal; 1451 1452 /* no upcall, so make a new entry */ 1453 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1454 M_NOWAIT); 1455 if (rt == NULL) 1456 goto fail; 1457 1458 /* 1459 * Make a copy of the header to send to the user level 1460 * process 1461 */ 1462 mm = m_copym(m, 0, hlen, M_DONTWAIT); 1463 M_PULLUP(mm, hlen); 1464 if (mm == NULL) 1465 goto fail1; 1466 1467 /* 1468 * Send message to routing daemon to install 1469 * a route into the kernel table 1470 */ 1471 1472 im = mtod(mm, struct igmpmsg *); 1473 im->im_msgtype = IGMPMSG_NOCACHE; 1474 im->im_mbz = 0; 1475 im->im_vif = vifi; 1476 1477 mrtstat.mrts_upcalls++; 1478 1479 sockaddr_in_init(&sin, &ip->ip_src, 0); 1480 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1481 log(LOG_WARNING, 1482 "ip_mforward: ip_mrouter socket queue full\n"); 1483 ++mrtstat.mrts_upq_sockfull; 1484 fail1: 1485 free(rt, M_MRTABLE); 1486 fail: 1487 free(rte, M_MRTABLE); 1488 m_freem(mb0); 1489 splx(s); 1490 return (ENOBUFS); 1491 } 1492 1493 /* insert new entry at head of hash chain */ 1494 rt->mfc_origin = ip->ip_src; 1495 rt->mfc_mcastgrp = ip->ip_dst; 1496 rt->mfc_pkt_cnt = 0; 1497 rt->mfc_byte_cnt = 0; 1498 rt->mfc_wrong_if = 0; 1499 rt->mfc_expire = UPCALL_EXPIRE; 1500 nexpire[hash]++; 1501 for (i = 0; i < numvifs; i++) { 1502 rt->mfc_ttls[i] = 0; 1503 rt->mfc_flags[i] = 0; 1504 } 1505 rt->mfc_parent = -1; 1506 1507 /* clear the RP address */ 1508 rt->mfc_rp = zeroin_addr; 1509 1510 rt->mfc_bw_meter = NULL; 1511 1512 /* link into table */ 1513 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1514 /* Add this entry to the end of the queue */ 1515 rt->mfc_stall = rte; 1516 } else { 1517 /* determine if q has overflowed */ 1518 struct rtdetq **p; 1519 int npkts = 0; 1520 1521 /* 1522 * XXX ouch! we need to append to the list, but we 1523 * only have a pointer to the front, so we have to 1524 * scan the entire list every time. 1525 */ 1526 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1527 if (++npkts > MAX_UPQ) { 1528 mrtstat.mrts_upq_ovflw++; 1529 non_fatal: 1530 free(rte, M_MRTABLE); 1531 m_freem(mb0); 1532 splx(s); 1533 return (0); 1534 } 1535 1536 /* Add this entry to the end of the queue */ 1537 *p = rte; 1538 } 1539 1540 rte->next = NULL; 1541 rte->m = mb0; 1542 rte->ifp = ifp; 1543 #ifdef UPCALL_TIMING 1544 rte->t = tp; 1545 #endif /* UPCALL_TIMING */ 1546 1547 splx(s); 1548 1549 return (0); 1550 } 1551 } 1552 1553 1554 /*ARGSUSED*/ 1555 static void 1556 expire_upcalls(void *v) 1557 { 1558 int i; 1559 int s; 1560 1561 s = splsoftnet(); 1562 1563 for (i = 0; i < MFCTBLSIZ; i++) { 1564 struct mfc *rt, *nrt; 1565 1566 if (nexpire[i] == 0) 1567 continue; 1568 1569 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1570 nrt = LIST_NEXT(rt, mfc_hash); 1571 1572 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1573 continue; 1574 nexpire[i]--; 1575 1576 /* 1577 * free the bw_meter entries 1578 */ 1579 while (rt->mfc_bw_meter != NULL) { 1580 struct bw_meter *x = rt->mfc_bw_meter; 1581 1582 rt->mfc_bw_meter = x->bm_mfc_next; 1583 kmem_free(x, sizeof(*x)); 1584 } 1585 1586 ++mrtstat.mrts_cache_cleanups; 1587 if (mrtdebug & DEBUG_EXPIRE) 1588 log(LOG_DEBUG, 1589 "expire_upcalls: expiring (%x %x)\n", 1590 ntohl(rt->mfc_origin.s_addr), 1591 ntohl(rt->mfc_mcastgrp.s_addr)); 1592 1593 expire_mfc(rt); 1594 } 1595 } 1596 1597 splx(s); 1598 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1599 expire_upcalls, NULL); 1600 } 1601 1602 /* 1603 * Packet forwarding routine once entry in the cache is made 1604 */ 1605 static int 1606 #ifdef RSVP_ISI 1607 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1608 #else 1609 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) 1610 #endif /* RSVP_ISI */ 1611 { 1612 struct ip *ip = mtod(m, struct ip *); 1613 vifi_t vifi; 1614 struct vif *vifp; 1615 struct sockaddr_in sin; 1616 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1617 1618 /* 1619 * Macro to send packet on vif. Since RSVP packets don't get counted on 1620 * input, they shouldn't get counted on output, so statistics keeping is 1621 * separate. 1622 */ 1623 #define MC_SEND(ip, vifp, m) do { \ 1624 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1625 encap_send((ip), (vifp), (m)); \ 1626 else \ 1627 phyint_send((ip), (vifp), (m)); \ 1628 } while (/*CONSTCOND*/ 0) 1629 1630 #ifdef RSVP_ISI 1631 /* 1632 * If xmt_vif is not -1, send on only the requested vif. 1633 * 1634 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1635 */ 1636 if (xmt_vif < numvifs) { 1637 #ifdef PIM 1638 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1639 pim_register_send(ip, viftable + xmt_vif, m, rt); 1640 else 1641 #endif 1642 MC_SEND(ip, viftable + xmt_vif, m); 1643 return (1); 1644 } 1645 #endif /* RSVP_ISI */ 1646 1647 /* 1648 * Don't forward if it didn't arrive from the parent vif for its origin. 1649 */ 1650 vifi = rt->mfc_parent; 1651 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1652 /* came in the wrong interface */ 1653 if (mrtdebug & DEBUG_FORWARD) 1654 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1655 ifp, vifi, 1656 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1657 ++mrtstat.mrts_wrong_if; 1658 ++rt->mfc_wrong_if; 1659 /* 1660 * If we are doing PIM assert processing, send a message 1661 * to the routing daemon. 1662 * 1663 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1664 * can complete the SPT switch, regardless of the type 1665 * of the iif (broadcast media, GRE tunnel, etc). 1666 */ 1667 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1668 struct timeval now; 1669 u_int32_t delta; 1670 1671 #ifdef PIM 1672 if (ifp == &multicast_register_if) 1673 pimstat.pims_rcv_registers_wrongiif++; 1674 #endif 1675 1676 /* Get vifi for the incoming packet */ 1677 for (vifi = 0; 1678 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1679 vifi++) 1680 ; 1681 if (vifi >= numvifs) { 1682 /* The iif is not found: ignore the packet. */ 1683 return (0); 1684 } 1685 1686 if (rt->mfc_flags[vifi] & 1687 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1688 /* WRONGVIF disabled: ignore the packet */ 1689 return (0); 1690 } 1691 1692 microtime(&now); 1693 1694 TV_DELTA(rt->mfc_last_assert, now, delta); 1695 1696 if (delta > ASSERT_MSG_TIME) { 1697 struct igmpmsg *im; 1698 int hlen = ip->ip_hl << 2; 1699 struct mbuf *mm = 1700 m_copym(m, 0, hlen, M_DONTWAIT); 1701 1702 M_PULLUP(mm, hlen); 1703 if (mm == NULL) 1704 return (ENOBUFS); 1705 1706 rt->mfc_last_assert = now; 1707 1708 im = mtod(mm, struct igmpmsg *); 1709 im->im_msgtype = IGMPMSG_WRONGVIF; 1710 im->im_mbz = 0; 1711 im->im_vif = vifi; 1712 1713 mrtstat.mrts_upcalls++; 1714 1715 sockaddr_in_init(&sin, &im->im_src, 0); 1716 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1717 log(LOG_WARNING, 1718 "ip_mforward: ip_mrouter socket queue full\n"); 1719 ++mrtstat.mrts_upq_sockfull; 1720 return (ENOBUFS); 1721 } 1722 } 1723 } 1724 return (0); 1725 } 1726 1727 /* If I sourced this packet, it counts as output, else it was input. */ 1728 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1729 viftable[vifi].v_pkt_out++; 1730 viftable[vifi].v_bytes_out += plen; 1731 } else { 1732 viftable[vifi].v_pkt_in++; 1733 viftable[vifi].v_bytes_in += plen; 1734 } 1735 rt->mfc_pkt_cnt++; 1736 rt->mfc_byte_cnt += plen; 1737 1738 /* 1739 * For each vif, decide if a copy of the packet should be forwarded. 1740 * Forward if: 1741 * - the ttl exceeds the vif's threshold 1742 * - there are group members downstream on interface 1743 */ 1744 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1745 if ((rt->mfc_ttls[vifi] > 0) && 1746 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1747 vifp->v_pkt_out++; 1748 vifp->v_bytes_out += plen; 1749 #ifdef PIM 1750 if (vifp->v_flags & VIFF_REGISTER) 1751 pim_register_send(ip, vifp, m, rt); 1752 else 1753 #endif 1754 MC_SEND(ip, vifp, m); 1755 } 1756 1757 /* 1758 * Perform upcall-related bw measuring. 1759 */ 1760 if (rt->mfc_bw_meter != NULL) { 1761 struct bw_meter *x; 1762 struct timeval now; 1763 1764 microtime(&now); 1765 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1766 bw_meter_receive_packet(x, plen, &now); 1767 } 1768 1769 return (0); 1770 } 1771 1772 #ifdef RSVP_ISI 1773 /* 1774 * check if a vif number is legal/ok. This is used by ip_output. 1775 */ 1776 int 1777 legal_vif_num(int vif) 1778 { 1779 if (vif >= 0 && vif < numvifs) 1780 return (1); 1781 else 1782 return (0); 1783 } 1784 #endif /* RSVP_ISI */ 1785 1786 static void 1787 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1788 { 1789 struct mbuf *mb_copy; 1790 int hlen = ip->ip_hl << 2; 1791 1792 /* 1793 * Make a new reference to the packet; make sure that 1794 * the IP header is actually copied, not just referenced, 1795 * so that ip_output() only scribbles on the copy. 1796 */ 1797 mb_copy = m_copypacket(m, M_DONTWAIT); 1798 M_PULLUP(mb_copy, hlen); 1799 if (mb_copy == NULL) 1800 return; 1801 1802 if (vifp->v_rate_limit <= 0) 1803 tbf_send_packet(vifp, mb_copy); 1804 else 1805 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1806 ntohs(ip->ip_len)); 1807 } 1808 1809 static void 1810 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1811 { 1812 struct mbuf *mb_copy; 1813 struct ip *ip_copy; 1814 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1815 1816 /* Take care of delayed checksums */ 1817 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1818 in_delayed_cksum(m); 1819 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1820 } 1821 1822 /* 1823 * copy the old packet & pullup its IP header into the 1824 * new mbuf so we can modify it. Try to fill the new 1825 * mbuf since if we don't the ethernet driver will. 1826 */ 1827 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1828 if (mb_copy == NULL) 1829 return; 1830 mb_copy->m_data += max_linkhdr; 1831 mb_copy->m_pkthdr.len = len; 1832 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1833 1834 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 1835 m_freem(mb_copy); 1836 return; 1837 } 1838 i = MHLEN - max_linkhdr; 1839 if (i > len) 1840 i = len; 1841 mb_copy = m_pullup(mb_copy, i); 1842 if (mb_copy == NULL) 1843 return; 1844 1845 /* 1846 * fill in the encapsulating IP header. 1847 */ 1848 ip_copy = mtod(mb_copy, struct ip *); 1849 *ip_copy = multicast_encap_iphdr; 1850 if (len < IP_MINFRAGSIZE) 1851 ip_copy->ip_id = 0; 1852 else 1853 ip_copy->ip_id = ip_newid(NULL); 1854 ip_copy->ip_len = htons(len); 1855 ip_copy->ip_src = vifp->v_lcl_addr; 1856 ip_copy->ip_dst = vifp->v_rmt_addr; 1857 1858 /* 1859 * turn the encapsulated IP header back into a valid one. 1860 */ 1861 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr)); 1862 --ip->ip_ttl; 1863 ip->ip_sum = 0; 1864 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1865 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1866 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1867 1868 if (vifp->v_rate_limit <= 0) 1869 tbf_send_packet(vifp, mb_copy); 1870 else 1871 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 1872 } 1873 1874 /* 1875 * De-encapsulate a packet and feed it back through ip input. 1876 */ 1877 static void 1878 vif_input(struct mbuf *m, int off, int proto) 1879 { 1880 struct vif *vifp; 1881 1882 vifp = (struct vif *)encap_getarg(m); 1883 if (!vifp || proto != ENCAP_PROTO) { 1884 m_freem(m); 1885 mrtstat.mrts_bad_tunnel++; 1886 return; 1887 } 1888 1889 m_adj(m, off); 1890 m_set_rcvif(m, vifp->v_ifp); 1891 1892 if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) { 1893 m_freem(m); 1894 } 1895 } 1896 1897 /* 1898 * Check if the packet should be received on the vif denoted by arg. 1899 * (The encap selection code will call this once per vif since each is 1900 * registered separately.) 1901 */ 1902 static int 1903 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg) 1904 { 1905 struct vif *vifp; 1906 struct ip ip; 1907 1908 #ifdef DIAGNOSTIC 1909 if (!arg || proto != IPPROTO_IPV4) 1910 panic("unexpected arg in vif_encapcheck"); 1911 #endif 1912 1913 /* 1914 * Accept the packet only if the inner heaader is multicast 1915 * and the outer header matches a tunnel-mode vif. Order 1916 * checks in the hope that common non-matching packets will be 1917 * rejected quickly. Assume that unicast IPv4 traffic in a 1918 * parallel tunnel (e.g. gif(4)) is unlikely. 1919 */ 1920 1921 /* Obtain the outer IP header and the vif pointer. */ 1922 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip); 1923 vifp = (struct vif *)arg; 1924 1925 /* 1926 * The outer source must match the vif's remote peer address. 1927 * For a multicast router with several tunnels, this is the 1928 * only check that will fail on packets in other tunnels, 1929 * assuming the local address is the same. 1930 */ 1931 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 1932 return 0; 1933 1934 /* The outer destination must match the vif's local address. */ 1935 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst)) 1936 return 0; 1937 1938 /* The vif must be of tunnel type. */ 1939 if ((vifp->v_flags & VIFF_TUNNEL) == 0) 1940 return 0; 1941 1942 /* Check that the inner destination is multicast. */ 1943 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip); 1944 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 1945 return 0; 1946 1947 /* 1948 * We have checked that both the outer src and dst addresses 1949 * match the vif, and that the inner destination is multicast 1950 * (224/5). By claiming more than 64, we intend to 1951 * preferentially take packets that also match a parallel 1952 * gif(4). 1953 */ 1954 return 32 + 32 + 5; 1955 } 1956 1957 /* 1958 * Token bucket filter module 1959 */ 1960 static void 1961 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) 1962 { 1963 1964 if (len > MAX_BKT_SIZE) { 1965 /* drop if packet is too large */ 1966 mrtstat.mrts_pkt2large++; 1967 m_freem(m); 1968 return; 1969 } 1970 1971 tbf_update_tokens(vifp); 1972 1973 /* 1974 * If there are enough tokens, and the queue is empty, send this packet 1975 * out immediately. Otherwise, try to insert it on this vif's queue. 1976 */ 1977 if (vifp->tbf_q_len == 0) { 1978 if (len <= vifp->tbf_n_tok) { 1979 vifp->tbf_n_tok -= len; 1980 tbf_send_packet(vifp, m); 1981 } else { 1982 /* queue packet and timeout till later */ 1983 tbf_queue(vifp, m); 1984 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 1985 tbf_reprocess_q, vifp); 1986 } 1987 } else { 1988 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 1989 !tbf_dq_sel(vifp, ip)) { 1990 /* queue full, and couldn't make room */ 1991 mrtstat.mrts_q_overflow++; 1992 m_freem(m); 1993 } else { 1994 /* queue length low enough, or made room */ 1995 tbf_queue(vifp, m); 1996 tbf_process_q(vifp); 1997 } 1998 } 1999 } 2000 2001 /* 2002 * adds a packet to the queue at the interface 2003 */ 2004 static void 2005 tbf_queue(struct vif *vifp, struct mbuf *m) 2006 { 2007 int s = splsoftnet(); 2008 2009 /* insert at tail */ 2010 *vifp->tbf_t = m; 2011 vifp->tbf_t = &m->m_nextpkt; 2012 vifp->tbf_q_len++; 2013 2014 splx(s); 2015 } 2016 2017 2018 /* 2019 * processes the queue at the interface 2020 */ 2021 static void 2022 tbf_process_q(struct vif *vifp) 2023 { 2024 struct mbuf *m; 2025 int len; 2026 int s = splsoftnet(); 2027 2028 /* 2029 * Loop through the queue at the interface and send as many packets 2030 * as possible. 2031 */ 2032 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2033 len = ntohs(mtod(m, struct ip *)->ip_len); 2034 2035 /* determine if the packet can be sent */ 2036 if (len <= vifp->tbf_n_tok) { 2037 /* if so, 2038 * reduce no of tokens, dequeue the packet, 2039 * send the packet. 2040 */ 2041 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2042 vifp->tbf_t = &vifp->tbf_q; 2043 --vifp->tbf_q_len; 2044 2045 m->m_nextpkt = NULL; 2046 vifp->tbf_n_tok -= len; 2047 tbf_send_packet(vifp, m); 2048 } else 2049 break; 2050 } 2051 splx(s); 2052 } 2053 2054 static void 2055 tbf_reprocess_q(void *arg) 2056 { 2057 struct vif *vifp = arg; 2058 2059 if (ip_mrouter == NULL) 2060 return; 2061 2062 tbf_update_tokens(vifp); 2063 tbf_process_q(vifp); 2064 2065 if (vifp->tbf_q_len != 0) 2066 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2067 tbf_reprocess_q, vifp); 2068 } 2069 2070 /* function that will selectively discard a member of the queue 2071 * based on the precedence value and the priority 2072 */ 2073 static int 2074 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2075 { 2076 u_int p; 2077 struct mbuf **mp, *m; 2078 int s = splsoftnet(); 2079 2080 p = priority(vifp, ip); 2081 2082 for (mp = &vifp->tbf_q, m = *mp; 2083 m != NULL; 2084 mp = &m->m_nextpkt, m = *mp) { 2085 if (p > priority(vifp, mtod(m, struct ip *))) { 2086 if ((*mp = m->m_nextpkt) == NULL) 2087 vifp->tbf_t = mp; 2088 --vifp->tbf_q_len; 2089 2090 m_freem(m); 2091 mrtstat.mrts_drop_sel++; 2092 splx(s); 2093 return (1); 2094 } 2095 } 2096 splx(s); 2097 return (0); 2098 } 2099 2100 static void 2101 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2102 { 2103 int error; 2104 int s = splsoftnet(); 2105 2106 if (vifp->v_flags & VIFF_TUNNEL) { 2107 /* If tunnel options */ 2108 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL); 2109 } else { 2110 /* if physical interface option, extract the options and then send */ 2111 struct ip_moptions imo; 2112 2113 imo.imo_multicast_if_index = if_get_index(vifp->v_ifp); 2114 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2115 imo.imo_multicast_loop = 1; 2116 #ifdef RSVP_ISI 2117 imo.imo_multicast_vif = -1; 2118 #endif 2119 2120 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS, 2121 &imo, NULL); 2122 2123 if (mrtdebug & DEBUG_XMIT) 2124 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2125 (long)(vifp - viftable), error); 2126 } 2127 splx(s); 2128 } 2129 2130 /* determine the current time and then 2131 * the elapsed time (between the last time and time now) 2132 * in milliseconds & update the no. of tokens in the bucket 2133 */ 2134 static void 2135 tbf_update_tokens(struct vif *vifp) 2136 { 2137 struct timeval tp; 2138 u_int32_t tm; 2139 int s = splsoftnet(); 2140 2141 microtime(&tp); 2142 2143 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2144 2145 /* 2146 * This formula is actually 2147 * "time in seconds" * "bytes/second". 2148 * 2149 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2150 * 2151 * The (1000/1024) was introduced in add_vif to optimize 2152 * this divide into a shift. 2153 */ 2154 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2155 vifp->tbf_last_pkt_t = tp; 2156 2157 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2158 vifp->tbf_n_tok = MAX_BKT_SIZE; 2159 2160 splx(s); 2161 } 2162 2163 static int 2164 priority(struct vif *vifp, struct ip *ip) 2165 { 2166 int prio = 50; /* the lowest priority -- default case */ 2167 2168 /* temporary hack; may add general packet classifier some day */ 2169 2170 /* 2171 * The UDP port space is divided up into four priority ranges: 2172 * [0, 16384) : unclassified - lowest priority 2173 * [16384, 32768) : audio - highest priority 2174 * [32768, 49152) : whiteboard - medium priority 2175 * [49152, 65536) : video - low priority 2176 */ 2177 if (ip->ip_p == IPPROTO_UDP) { 2178 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2179 2180 switch (ntohs(udp->uh_dport) & 0xc000) { 2181 case 0x4000: 2182 prio = 70; 2183 break; 2184 case 0x8000: 2185 prio = 60; 2186 break; 2187 case 0xc000: 2188 prio = 55; 2189 break; 2190 } 2191 2192 if (tbfdebug > 1) 2193 log(LOG_DEBUG, "port %x prio %d\n", 2194 ntohs(udp->uh_dport), prio); 2195 } 2196 2197 return (prio); 2198 } 2199 2200 /* 2201 * End of token bucket filter modifications 2202 */ 2203 #ifdef RSVP_ISI 2204 int 2205 ip_rsvp_vif_init(struct socket *so, struct mbuf *m) 2206 { 2207 int vifi, s; 2208 2209 RSVP_DPRINTF(("%s: so_type = %d, pr_protocol = %d\n", __func__ 2210 so->so_type, so->so_proto->pr_protocol)); 2211 2212 if (so->so_type != SOCK_RAW || 2213 so->so_proto->pr_protocol != IPPROTO_RSVP) 2214 return (EOPNOTSUPP); 2215 2216 /* Check mbuf. */ 2217 if (m == NULL || m->m_len != sizeof(int)) { 2218 return (EINVAL); 2219 } 2220 vifi = *(mtod(m, int *)); 2221 2222 RSVP_DPRINTF(("%s: vif = %d rsvp_on = %d\n", __func__, vifi, rsvp_on)); 2223 2224 s = splsoftnet(); 2225 2226 /* Check vif. */ 2227 if (!legal_vif_num(vifi)) { 2228 splx(s); 2229 return (EADDRNOTAVAIL); 2230 } 2231 2232 /* Check if socket is available. */ 2233 if (viftable[vifi].v_rsvpd != NULL) { 2234 splx(s); 2235 return (EADDRINUSE); 2236 } 2237 2238 viftable[vifi].v_rsvpd = so; 2239 /* 2240 * This may seem silly, but we need to be sure we don't over-increment 2241 * the RSVP counter, in case something slips up. 2242 */ 2243 if (!viftable[vifi].v_rsvp_on) { 2244 viftable[vifi].v_rsvp_on = 1; 2245 rsvp_on++; 2246 } 2247 2248 splx(s); 2249 return (0); 2250 } 2251 2252 int 2253 ip_rsvp_vif_done(struct socket *so, struct mbuf *m) 2254 { 2255 int vifi, s; 2256 2257 RSVP_DPRINTF(("%s: so_type = %d, pr_protocol = %d\n", __func__, 2258 so->so_type, so->so_proto->pr_protocol)); 2259 2260 if (so->so_type != SOCK_RAW || 2261 so->so_proto->pr_protocol != IPPROTO_RSVP) 2262 return (EOPNOTSUPP); 2263 2264 /* Check mbuf. */ 2265 if (m == NULL || m->m_len != sizeof(int)) { 2266 return (EINVAL); 2267 } 2268 vifi = *(mtod(m, int *)); 2269 2270 s = splsoftnet(); 2271 2272 /* Check vif. */ 2273 if (!legal_vif_num(vifi)) { 2274 splx(s); 2275 return (EADDRNOTAVAIL); 2276 } 2277 2278 RSVP_DPRINTF(("%s: v_rsvpd = %x so = %x\n", __func__, 2279 viftable[vifi].v_rsvpd, so)); 2280 2281 viftable[vifi].v_rsvpd = NULL; 2282 /* 2283 * This may seem silly, but we need to be sure we don't over-decrement 2284 * the RSVP counter, in case something slips up. 2285 */ 2286 if (viftable[vifi].v_rsvp_on) { 2287 viftable[vifi].v_rsvp_on = 0; 2288 rsvp_on--; 2289 } 2290 2291 splx(s); 2292 return (0); 2293 } 2294 2295 void 2296 ip_rsvp_force_done(struct socket *so) 2297 { 2298 int vifi, s; 2299 2300 /* Don't bother if it is not the right type of socket. */ 2301 if (so->so_type != SOCK_RAW || 2302 so->so_proto->pr_protocol != IPPROTO_RSVP) 2303 return; 2304 2305 s = splsoftnet(); 2306 2307 /* 2308 * The socket may be attached to more than one vif...this 2309 * is perfectly legal. 2310 */ 2311 for (vifi = 0; vifi < numvifs; vifi++) { 2312 if (viftable[vifi].v_rsvpd == so) { 2313 viftable[vifi].v_rsvpd = NULL; 2314 /* 2315 * This may seem silly, but we need to be sure we don't 2316 * over-decrement the RSVP counter, in case something 2317 * slips up. 2318 */ 2319 if (viftable[vifi].v_rsvp_on) { 2320 viftable[vifi].v_rsvp_on = 0; 2321 rsvp_on--; 2322 } 2323 } 2324 } 2325 2326 splx(s); 2327 return; 2328 } 2329 2330 void 2331 rsvp_input(struct mbuf *m, struct ifnet *ifp) 2332 { 2333 int vifi, s; 2334 struct ip *ip = mtod(m, struct ip *); 2335 struct sockaddr_in rsvp_src; 2336 2337 RSVP_DPRINTF(("%s: rsvp_on %d\n", __func__, rsvp_on)); 2338 2339 /* 2340 * Can still get packets with rsvp_on = 0 if there is a local member 2341 * of the group to which the RSVP packet is addressed. But in this 2342 * case we want to throw the packet away. 2343 */ 2344 if (!rsvp_on) { 2345 m_freem(m); 2346 return; 2347 } 2348 2349 /* 2350 * If the old-style non-vif-associated socket is set, then use 2351 * it and ignore the new ones. 2352 */ 2353 if (ip_rsvpd != NULL) { 2354 RSVP_DPRINTF(("%s: Sending packet up old-style socket\n", 2355 __func__)); 2356 rip_input(m); /*XXX*/ 2357 return; 2358 } 2359 2360 s = splsoftnet(); 2361 2362 RSVP_DPRINTF(("%s: check vifs\n", __func__)); 2363 2364 /* Find which vif the packet arrived on. */ 2365 for (vifi = 0; vifi < numvifs; vifi++) { 2366 if (viftable[vifi].v_ifp == ifp) 2367 break; 2368 } 2369 2370 if (vifi == numvifs) { 2371 /* Can't find vif packet arrived on. Drop packet. */ 2372 RSVP_DPRINTF("%s: Can't find vif for packet...dropping it.\n", 2373 __func__)); 2374 m_freem(m); 2375 splx(s); 2376 return; 2377 } 2378 2379 RSVP_DPRINTF(("%s: check socket\n", __func__)); 2380 2381 if (viftable[vifi].v_rsvpd == NULL) { 2382 /* 2383 * drop packet, since there is no specific socket for this 2384 * interface 2385 */ 2386 RSVP_DPRINTF(("%s: No socket defined for vif %d\n", __func__, 2387 vifi)); 2388 m_freem(m); 2389 splx(s); 2390 return; 2391 } 2392 2393 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0); 2394 2395 if (m) 2396 RSVP_DPRINTF(("%s: m->m_len = %d, sbspace() = %d\n", __func__, 2397 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv))); 2398 2399 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2400 RSVP_DPRINTF(("%s: Failed to append to socket\n", __func__)); 2401 else 2402 RSVP_DPRINTF(("%s: send packet up\n", __func__)); 2403 2404 splx(s); 2405 } 2406 #endif /* RSVP_ISI */ 2407 2408 /* 2409 * Code for bandwidth monitors 2410 */ 2411 2412 /* 2413 * Define common interface for timeval-related methods 2414 */ 2415 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2416 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2417 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2418 2419 static uint32_t 2420 compute_bw_meter_flags(struct bw_upcall *req) 2421 { 2422 uint32_t flags = 0; 2423 2424 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2425 flags |= BW_METER_UNIT_PACKETS; 2426 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2427 flags |= BW_METER_UNIT_BYTES; 2428 if (req->bu_flags & BW_UPCALL_GEQ) 2429 flags |= BW_METER_GEQ; 2430 if (req->bu_flags & BW_UPCALL_LEQ) 2431 flags |= BW_METER_LEQ; 2432 2433 return flags; 2434 } 2435 2436 /* 2437 * Add a bw_meter entry 2438 */ 2439 static int 2440 add_bw_upcall(struct bw_upcall *req) 2441 { 2442 int s; 2443 struct mfc *mfc; 2444 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2445 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2446 struct timeval now; 2447 struct bw_meter *x; 2448 uint32_t flags; 2449 2450 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2451 return EOPNOTSUPP; 2452 2453 /* Test if the flags are valid */ 2454 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2455 return EINVAL; 2456 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2457 return EINVAL; 2458 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2459 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2460 return EINVAL; 2461 2462 /* Test if the threshold time interval is valid */ 2463 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2464 return EINVAL; 2465 2466 flags = compute_bw_meter_flags(req); 2467 2468 /* 2469 * Find if we have already same bw_meter entry 2470 */ 2471 s = splsoftnet(); 2472 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2473 if (mfc == NULL) { 2474 splx(s); 2475 return EADDRNOTAVAIL; 2476 } 2477 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2478 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2479 &req->bu_threshold.b_time, ==)) && 2480 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2481 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2482 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2483 splx(s); 2484 return 0; /* XXX Already installed */ 2485 } 2486 } 2487 2488 /* Allocate the new bw_meter entry */ 2489 x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP); 2490 if (x == NULL) { 2491 splx(s); 2492 return ENOBUFS; 2493 } 2494 2495 /* Set the new bw_meter entry */ 2496 x->bm_threshold.b_time = req->bu_threshold.b_time; 2497 microtime(&now); 2498 x->bm_start_time = now; 2499 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2500 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2501 x->bm_measured.b_packets = 0; 2502 x->bm_measured.b_bytes = 0; 2503 x->bm_flags = flags; 2504 x->bm_time_next = NULL; 2505 x->bm_time_hash = BW_METER_BUCKETS; 2506 2507 /* Add the new bw_meter entry to the front of entries for this MFC */ 2508 x->bm_mfc = mfc; 2509 x->bm_mfc_next = mfc->mfc_bw_meter; 2510 mfc->mfc_bw_meter = x; 2511 schedule_bw_meter(x, &now); 2512 splx(s); 2513 2514 return 0; 2515 } 2516 2517 static void 2518 free_bw_list(struct bw_meter *list) 2519 { 2520 while (list != NULL) { 2521 struct bw_meter *x = list; 2522 2523 list = list->bm_mfc_next; 2524 unschedule_bw_meter(x); 2525 kmem_free(x, sizeof(*x)); 2526 } 2527 } 2528 2529 /* 2530 * Delete one or multiple bw_meter entries 2531 */ 2532 static int 2533 del_bw_upcall(struct bw_upcall *req) 2534 { 2535 int s; 2536 struct mfc *mfc; 2537 struct bw_meter *x; 2538 2539 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2540 return EOPNOTSUPP; 2541 2542 s = splsoftnet(); 2543 /* Find the corresponding MFC entry */ 2544 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2545 if (mfc == NULL) { 2546 splx(s); 2547 return EADDRNOTAVAIL; 2548 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2549 /* 2550 * Delete all bw_meter entries for this mfc 2551 */ 2552 struct bw_meter *list; 2553 2554 list = mfc->mfc_bw_meter; 2555 mfc->mfc_bw_meter = NULL; 2556 free_bw_list(list); 2557 splx(s); 2558 return 0; 2559 } else { /* Delete a single bw_meter entry */ 2560 struct bw_meter *prev; 2561 uint32_t flags = 0; 2562 2563 flags = compute_bw_meter_flags(req); 2564 2565 /* Find the bw_meter entry to delete */ 2566 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2567 prev = x, x = x->bm_mfc_next) { 2568 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2569 &req->bu_threshold.b_time, ==)) && 2570 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2571 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2572 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2573 break; 2574 } 2575 if (x != NULL) { /* Delete entry from the list for this MFC */ 2576 if (prev != NULL) 2577 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2578 else 2579 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2580 2581 unschedule_bw_meter(x); 2582 splx(s); 2583 /* Free the bw_meter entry */ 2584 kmem_free(x, sizeof(*x)); 2585 return 0; 2586 } else { 2587 splx(s); 2588 return EINVAL; 2589 } 2590 } 2591 /* NOTREACHED */ 2592 } 2593 2594 /* 2595 * Perform bandwidth measurement processing that may result in an upcall 2596 */ 2597 static void 2598 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2599 { 2600 struct timeval delta; 2601 2602 delta = *nowp; 2603 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2604 2605 if (x->bm_flags & BW_METER_GEQ) { 2606 /* 2607 * Processing for ">=" type of bw_meter entry 2608 */ 2609 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2610 /* Reset the bw_meter entry */ 2611 x->bm_start_time = *nowp; 2612 x->bm_measured.b_packets = 0; 2613 x->bm_measured.b_bytes = 0; 2614 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2615 } 2616 2617 /* Record that a packet is received */ 2618 x->bm_measured.b_packets++; 2619 x->bm_measured.b_bytes += plen; 2620 2621 /* 2622 * Test if we should deliver an upcall 2623 */ 2624 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2625 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2626 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2627 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2628 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2629 /* Prepare an upcall for delivery */ 2630 bw_meter_prepare_upcall(x, nowp); 2631 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2632 } 2633 } 2634 } else if (x->bm_flags & BW_METER_LEQ) { 2635 /* 2636 * Processing for "<=" type of bw_meter entry 2637 */ 2638 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2639 /* 2640 * We are behind time with the multicast forwarding table 2641 * scanning for "<=" type of bw_meter entries, so test now 2642 * if we should deliver an upcall. 2643 */ 2644 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2645 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2646 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2647 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2648 /* Prepare an upcall for delivery */ 2649 bw_meter_prepare_upcall(x, nowp); 2650 } 2651 /* Reschedule the bw_meter entry */ 2652 unschedule_bw_meter(x); 2653 schedule_bw_meter(x, nowp); 2654 } 2655 2656 /* Record that a packet is received */ 2657 x->bm_measured.b_packets++; 2658 x->bm_measured.b_bytes += plen; 2659 2660 /* 2661 * Test if we should restart the measuring interval 2662 */ 2663 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2664 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2665 (x->bm_flags & BW_METER_UNIT_BYTES && 2666 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2667 /* Don't restart the measuring interval */ 2668 } else { 2669 /* Do restart the measuring interval */ 2670 /* 2671 * XXX: note that we don't unschedule and schedule, because this 2672 * might be too much overhead per packet. Instead, when we process 2673 * all entries for a given timer hash bin, we check whether it is 2674 * really a timeout. If not, we reschedule at that time. 2675 */ 2676 x->bm_start_time = *nowp; 2677 x->bm_measured.b_packets = 0; 2678 x->bm_measured.b_bytes = 0; 2679 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2680 } 2681 } 2682 } 2683 2684 /* 2685 * Prepare a bandwidth-related upcall 2686 */ 2687 static void 2688 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2689 { 2690 struct timeval delta; 2691 struct bw_upcall *u; 2692 2693 /* 2694 * Compute the measured time interval 2695 */ 2696 delta = *nowp; 2697 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2698 2699 /* 2700 * If there are too many pending upcalls, deliver them now 2701 */ 2702 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2703 bw_upcalls_send(); 2704 2705 /* 2706 * Set the bw_upcall entry 2707 */ 2708 u = &bw_upcalls[bw_upcalls_n++]; 2709 u->bu_src = x->bm_mfc->mfc_origin; 2710 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2711 u->bu_threshold.b_time = x->bm_threshold.b_time; 2712 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2713 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2714 u->bu_measured.b_time = delta; 2715 u->bu_measured.b_packets = x->bm_measured.b_packets; 2716 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2717 u->bu_flags = 0; 2718 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2719 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2720 if (x->bm_flags & BW_METER_UNIT_BYTES) 2721 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2722 if (x->bm_flags & BW_METER_GEQ) 2723 u->bu_flags |= BW_UPCALL_GEQ; 2724 if (x->bm_flags & BW_METER_LEQ) 2725 u->bu_flags |= BW_UPCALL_LEQ; 2726 } 2727 2728 /* 2729 * Send the pending bandwidth-related upcalls 2730 */ 2731 static void 2732 bw_upcalls_send(void) 2733 { 2734 struct mbuf *m; 2735 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2736 struct sockaddr_in k_igmpsrc = { 2737 .sin_len = sizeof(k_igmpsrc), 2738 .sin_family = AF_INET, 2739 }; 2740 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2741 0, /* unused2 */ 2742 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2743 0, /* im_mbz */ 2744 0, /* im_vif */ 2745 0, /* unused3 */ 2746 { 0 }, /* im_src */ 2747 { 0 } }; /* im_dst */ 2748 2749 if (bw_upcalls_n == 0) 2750 return; /* No pending upcalls */ 2751 2752 bw_upcalls_n = 0; 2753 2754 /* 2755 * Allocate a new mbuf, initialize it with the header and 2756 * the payload for the pending calls. 2757 */ 2758 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2759 if (m == NULL) { 2760 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2761 return; 2762 } 2763 2764 m->m_len = m->m_pkthdr.len = 0; 2765 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg); 2766 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]); 2767 2768 /* 2769 * Send the upcalls 2770 * XXX do we need to set the address in k_igmpsrc ? 2771 */ 2772 mrtstat.mrts_upcalls++; 2773 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2774 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2775 ++mrtstat.mrts_upq_sockfull; 2776 } 2777 } 2778 2779 /* 2780 * Compute the timeout hash value for the bw_meter entries 2781 */ 2782 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2783 do { \ 2784 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2785 \ 2786 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2787 (hash) = next_timeval.tv_sec; \ 2788 if (next_timeval.tv_usec) \ 2789 (hash)++; /* XXX: make sure we don't timeout early */ \ 2790 (hash) %= BW_METER_BUCKETS; \ 2791 } while (/*CONSTCOND*/ 0) 2792 2793 /* 2794 * Schedule a timer to process periodically bw_meter entry of type "<=" 2795 * by linking the entry in the proper hash bucket. 2796 */ 2797 static void 2798 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2799 { 2800 int time_hash; 2801 2802 if (!(x->bm_flags & BW_METER_LEQ)) 2803 return; /* XXX: we schedule timers only for "<=" entries */ 2804 2805 /* 2806 * Reset the bw_meter entry 2807 */ 2808 x->bm_start_time = *nowp; 2809 x->bm_measured.b_packets = 0; 2810 x->bm_measured.b_bytes = 0; 2811 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2812 2813 /* 2814 * Compute the timeout hash value and insert the entry 2815 */ 2816 BW_METER_TIMEHASH(x, time_hash); 2817 x->bm_time_next = bw_meter_timers[time_hash]; 2818 bw_meter_timers[time_hash] = x; 2819 x->bm_time_hash = time_hash; 2820 } 2821 2822 /* 2823 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2824 * by removing the entry from the proper hash bucket. 2825 */ 2826 static void 2827 unschedule_bw_meter(struct bw_meter *x) 2828 { 2829 int time_hash; 2830 struct bw_meter *prev, *tmp; 2831 2832 if (!(x->bm_flags & BW_METER_LEQ)) 2833 return; /* XXX: we schedule timers only for "<=" entries */ 2834 2835 /* 2836 * Compute the timeout hash value and delete the entry 2837 */ 2838 time_hash = x->bm_time_hash; 2839 if (time_hash >= BW_METER_BUCKETS) 2840 return; /* Entry was not scheduled */ 2841 2842 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2843 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2844 if (tmp == x) 2845 break; 2846 2847 if (tmp == NULL) 2848 panic("unschedule_bw_meter: bw_meter entry not found"); 2849 2850 if (prev != NULL) 2851 prev->bm_time_next = x->bm_time_next; 2852 else 2853 bw_meter_timers[time_hash] = x->bm_time_next; 2854 2855 x->bm_time_next = NULL; 2856 x->bm_time_hash = BW_METER_BUCKETS; 2857 } 2858 2859 /* 2860 * Process all "<=" type of bw_meter that should be processed now, 2861 * and for each entry prepare an upcall if necessary. Each processed 2862 * entry is rescheduled again for the (periodic) processing. 2863 * 2864 * This is run periodically (once per second normally). On each round, 2865 * all the potentially matching entries are in the hash slot that we are 2866 * looking at. 2867 */ 2868 static void 2869 bw_meter_process(void) 2870 { 2871 int s; 2872 static uint32_t last_tv_sec; /* last time we processed this */ 2873 2874 uint32_t loops; 2875 int i; 2876 struct timeval now, process_endtime; 2877 2878 microtime(&now); 2879 if (last_tv_sec == now.tv_sec) 2880 return; /* nothing to do */ 2881 2882 loops = now.tv_sec - last_tv_sec; 2883 last_tv_sec = now.tv_sec; 2884 if (loops > BW_METER_BUCKETS) 2885 loops = BW_METER_BUCKETS; 2886 2887 s = splsoftnet(); 2888 /* 2889 * Process all bins of bw_meter entries from the one after the last 2890 * processed to the current one. On entry, i points to the last bucket 2891 * visited, so we need to increment i at the beginning of the loop. 2892 */ 2893 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2894 struct bw_meter *x, *tmp_list; 2895 2896 if (++i >= BW_METER_BUCKETS) 2897 i = 0; 2898 2899 /* Disconnect the list of bw_meter entries from the bin */ 2900 tmp_list = bw_meter_timers[i]; 2901 bw_meter_timers[i] = NULL; 2902 2903 /* Process the list of bw_meter entries */ 2904 while (tmp_list != NULL) { 2905 x = tmp_list; 2906 tmp_list = tmp_list->bm_time_next; 2907 2908 /* Test if the time interval is over */ 2909 process_endtime = x->bm_start_time; 2910 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2911 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2912 /* Not yet: reschedule, but don't reset */ 2913 int time_hash; 2914 2915 BW_METER_TIMEHASH(x, time_hash); 2916 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2917 /* 2918 * XXX: somehow the bin processing is a bit ahead of time. 2919 * Put the entry in the next bin. 2920 */ 2921 if (++time_hash >= BW_METER_BUCKETS) 2922 time_hash = 0; 2923 } 2924 x->bm_time_next = bw_meter_timers[time_hash]; 2925 bw_meter_timers[time_hash] = x; 2926 x->bm_time_hash = time_hash; 2927 2928 continue; 2929 } 2930 2931 /* 2932 * Test if we should deliver an upcall 2933 */ 2934 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2935 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2936 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2937 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2938 /* Prepare an upcall for delivery */ 2939 bw_meter_prepare_upcall(x, &now); 2940 } 2941 2942 /* 2943 * Reschedule for next processing 2944 */ 2945 schedule_bw_meter(x, &now); 2946 } 2947 } 2948 2949 /* Send all upcalls that are pending delivery */ 2950 bw_upcalls_send(); 2951 2952 splx(s); 2953 } 2954 2955 /* 2956 * A periodic function for sending all upcalls that are pending delivery 2957 */ 2958 static void 2959 expire_bw_upcalls_send(void *unused) 2960 { 2961 int s; 2962 2963 s = splsoftnet(); 2964 bw_upcalls_send(); 2965 splx(s); 2966 2967 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2968 expire_bw_upcalls_send, NULL); 2969 } 2970 2971 /* 2972 * A periodic function for periodic scanning of the multicast forwarding 2973 * table for processing all "<=" bw_meter entries. 2974 */ 2975 static void 2976 expire_bw_meter_process(void *unused) 2977 { 2978 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2979 bw_meter_process(); 2980 2981 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 2982 expire_bw_meter_process, NULL); 2983 } 2984 2985 /* 2986 * End of bandwidth monitoring code 2987 */ 2988 2989 #ifdef PIM 2990 /* 2991 * Send the packet up to the user daemon, or eventually do kernel encapsulation 2992 */ 2993 static int 2994 pim_register_send(struct ip *ip, struct vif *vifp, 2995 struct mbuf *m, struct mfc *rt) 2996 { 2997 struct mbuf *mb_copy, *mm; 2998 2999 if (mrtdebug & DEBUG_PIM) 3000 log(LOG_DEBUG, "pim_register_send: \n"); 3001 3002 mb_copy = pim_register_prepare(ip, m); 3003 if (mb_copy == NULL) 3004 return ENOBUFS; 3005 3006 /* 3007 * Send all the fragments. Note that the mbuf for each fragment 3008 * is freed by the sending machinery. 3009 */ 3010 for (mm = mb_copy; mm; mm = mb_copy) { 3011 mb_copy = mm->m_nextpkt; 3012 mm->m_nextpkt = NULL; 3013 mm = m_pullup(mm, sizeof(struct ip)); 3014 if (mm != NULL) { 3015 ip = mtod(mm, struct ip *); 3016 if ((mrt_api_config & MRT_MFC_RP) && 3017 !in_nullhost(rt->mfc_rp)) { 3018 pim_register_send_rp(ip, vifp, mm, rt); 3019 } else { 3020 pim_register_send_upcall(ip, vifp, mm, rt); 3021 } 3022 } 3023 } 3024 3025 return 0; 3026 } 3027 3028 /* 3029 * Return a copy of the data packet that is ready for PIM Register 3030 * encapsulation. 3031 * XXX: Note that in the returned copy the IP header is a valid one. 3032 */ 3033 static struct mbuf * 3034 pim_register_prepare(struct ip *ip, struct mbuf *m) 3035 { 3036 struct mbuf *mb_copy = NULL; 3037 int mtu; 3038 3039 /* Take care of delayed checksums */ 3040 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3041 in_delayed_cksum(m); 3042 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3043 } 3044 3045 /* 3046 * Copy the old packet & pullup its IP header into the 3047 * new mbuf so we can modify it. 3048 */ 3049 mb_copy = m_copypacket(m, M_DONTWAIT); 3050 if (mb_copy == NULL) 3051 return NULL; 3052 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3053 if (mb_copy == NULL) 3054 return NULL; 3055 3056 /* take care of the TTL */ 3057 ip = mtod(mb_copy, struct ip *); 3058 --ip->ip_ttl; 3059 3060 /* Compute the MTU after the PIM Register encapsulation */ 3061 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3062 3063 if (ntohs(ip->ip_len) <= mtu) { 3064 /* Turn the IP header into a valid one */ 3065 ip->ip_sum = 0; 3066 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3067 } else { 3068 /* Fragment the packet */ 3069 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3070 /* XXX: mb_copy was freed by ip_fragment() */ 3071 return NULL; 3072 } 3073 } 3074 return mb_copy; 3075 } 3076 3077 /* 3078 * Send an upcall with the data packet to the user-level process. 3079 */ 3080 static int 3081 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3082 struct mbuf *mb_copy, struct mfc *rt) 3083 { 3084 struct mbuf *mb_first; 3085 int len = ntohs(ip->ip_len); 3086 struct igmpmsg *im; 3087 struct sockaddr_in k_igmpsrc = { 3088 .sin_len = sizeof(k_igmpsrc), 3089 .sin_family = AF_INET, 3090 }; 3091 3092 /* 3093 * Add a new mbuf with an upcall header 3094 */ 3095 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3096 if (mb_first == NULL) { 3097 m_freem(mb_copy); 3098 return ENOBUFS; 3099 } 3100 mb_first->m_data += max_linkhdr; 3101 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3102 mb_first->m_len = sizeof(struct igmpmsg); 3103 mb_first->m_next = mb_copy; 3104 3105 /* Send message to routing daemon */ 3106 im = mtod(mb_first, struct igmpmsg *); 3107 im->im_msgtype = IGMPMSG_WHOLEPKT; 3108 im->im_mbz = 0; 3109 im->im_vif = vifp - viftable; 3110 im->im_src = ip->ip_src; 3111 im->im_dst = ip->ip_dst; 3112 3113 k_igmpsrc.sin_addr = ip->ip_src; 3114 3115 mrtstat.mrts_upcalls++; 3116 3117 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3118 if (mrtdebug & DEBUG_PIM) 3119 log(LOG_WARNING, 3120 "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n"); 3121 ++mrtstat.mrts_upq_sockfull; 3122 return ENOBUFS; 3123 } 3124 3125 /* Keep statistics */ 3126 pimstat.pims_snd_registers_msgs++; 3127 pimstat.pims_snd_registers_bytes += len; 3128 3129 return 0; 3130 } 3131 3132 /* 3133 * Encapsulate the data packet in PIM Register message and send it to the RP. 3134 */ 3135 static int 3136 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3137 struct mbuf *mb_copy, struct mfc *rt) 3138 { 3139 struct mbuf *mb_first; 3140 struct ip *ip_outer; 3141 struct pim_encap_pimhdr *pimhdr; 3142 int len = ntohs(ip->ip_len); 3143 vifi_t vifi = rt->mfc_parent; 3144 3145 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3146 m_freem(mb_copy); 3147 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3148 } 3149 3150 /* 3151 * Add a new mbuf with the encapsulating header 3152 */ 3153 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3154 if (mb_first == NULL) { 3155 m_freem(mb_copy); 3156 return ENOBUFS; 3157 } 3158 mb_first->m_data += max_linkhdr; 3159 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3160 mb_first->m_next = mb_copy; 3161 3162 mb_first->m_pkthdr.len = len + mb_first->m_len; 3163 3164 /* 3165 * Fill in the encapsulating IP and PIM header 3166 */ 3167 ip_outer = mtod(mb_first, struct ip *); 3168 *ip_outer = pim_encap_iphdr; 3169 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE) 3170 ip_outer->ip_id = 0; 3171 else 3172 ip_outer->ip_id = ip_newid(NULL); 3173 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3174 sizeof(pim_encap_pimhdr)); 3175 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3176 ip_outer->ip_dst = rt->mfc_rp; 3177 /* 3178 * Copy the inner header TOS to the outer header, and take care of the 3179 * IP_DF bit. 3180 */ 3181 ip_outer->ip_tos = ip->ip_tos; 3182 if (ntohs(ip->ip_off) & IP_DF) 3183 ip_outer->ip_off |= htons(IP_DF); 3184 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer 3185 + sizeof(pim_encap_iphdr)); 3186 *pimhdr = pim_encap_pimhdr; 3187 /* If the iif crosses a border, set the Border-bit */ 3188 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3189 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3190 3191 mb_first->m_data += sizeof(pim_encap_iphdr); 3192 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3193 mb_first->m_data -= sizeof(pim_encap_iphdr); 3194 3195 if (vifp->v_rate_limit == 0) 3196 tbf_send_packet(vifp, mb_first); 3197 else 3198 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3199 3200 /* Keep statistics */ 3201 pimstat.pims_snd_registers_msgs++; 3202 pimstat.pims_snd_registers_bytes += len; 3203 3204 return 0; 3205 } 3206 3207 /* 3208 * PIM-SMv2 and PIM-DM messages processing. 3209 * Receives and verifies the PIM control messages, and passes them 3210 * up to the listening socket, using rip_input(). 3211 * The only message with special processing is the PIM_REGISTER message 3212 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3213 * is passed to if_simloop(). 3214 */ 3215 void 3216 pim_input(struct mbuf *m, ...) 3217 { 3218 struct ip *ip = mtod(m, struct ip *); 3219 struct pim *pim; 3220 int minlen; 3221 int datalen; 3222 int ip_tos; 3223 int proto; 3224 int iphlen; 3225 va_list ap; 3226 3227 va_start(ap, m); 3228 iphlen = va_arg(ap, int); 3229 proto = va_arg(ap, int); 3230 va_end(ap); 3231 3232 datalen = ntohs(ip->ip_len) - iphlen; 3233 3234 /* Keep statistics */ 3235 pimstat.pims_rcv_total_msgs++; 3236 pimstat.pims_rcv_total_bytes += datalen; 3237 3238 /* 3239 * Validate lengths 3240 */ 3241 if (datalen < PIM_MINLEN) { 3242 pimstat.pims_rcv_tooshort++; 3243 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3244 datalen, (u_long)ip->ip_src.s_addr); 3245 m_freem(m); 3246 return; 3247 } 3248 3249 /* 3250 * If the packet is at least as big as a REGISTER, go agead 3251 * and grab the PIM REGISTER header size, to avoid another 3252 * possible m_pullup() later. 3253 * 3254 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3255 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3256 */ 3257 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3258 /* 3259 * Get the IP and PIM headers in contiguous memory, and 3260 * possibly the PIM REGISTER header. 3261 */ 3262 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3263 (m = m_pullup(m, minlen)) == NULL) { 3264 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3265 return; 3266 } 3267 /* m_pullup() may have given us a new mbuf so reset ip. */ 3268 ip = mtod(m, struct ip *); 3269 ip_tos = ip->ip_tos; 3270 3271 /* adjust mbuf to point to the PIM header */ 3272 m->m_data += iphlen; 3273 m->m_len -= iphlen; 3274 pim = mtod(m, struct pim *); 3275 3276 /* 3277 * Validate checksum. If PIM REGISTER, exclude the data packet. 3278 * 3279 * XXX: some older PIMv2 implementations don't make this distinction, 3280 * so for compatibility reason perform the checksum over part of the 3281 * message, and if error, then over the whole message. 3282 */ 3283 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3284 /* do nothing, checksum okay */ 3285 } else if (in_cksum(m, datalen)) { 3286 pimstat.pims_rcv_badsum++; 3287 if (mrtdebug & DEBUG_PIM) 3288 log(LOG_DEBUG, "pim_input: invalid checksum\n"); 3289 m_freem(m); 3290 return; 3291 } 3292 3293 /* PIM version check */ 3294 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3295 pimstat.pims_rcv_badversion++; 3296 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3297 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3298 m_freem(m); 3299 return; 3300 } 3301 3302 /* restore mbuf back to the outer IP */ 3303 m->m_data -= iphlen; 3304 m->m_len += iphlen; 3305 3306 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3307 /* 3308 * Since this is a REGISTER, we'll make a copy of the register 3309 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3310 * routing daemon. 3311 */ 3312 int s; 3313 struct sockaddr_in dst = { 3314 .sin_len = sizeof(dst), 3315 .sin_family = AF_INET, 3316 }; 3317 struct mbuf *mcp; 3318 struct ip *encap_ip; 3319 u_int32_t *reghdr; 3320 struct ifnet *vifp; 3321 3322 s = splsoftnet(); 3323 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3324 splx(s); 3325 if (mrtdebug & DEBUG_PIM) 3326 log(LOG_DEBUG, 3327 "pim_input: register vif not set: %d\n", reg_vif_num); 3328 m_freem(m); 3329 return; 3330 } 3331 /* XXX need refcnt? */ 3332 vifp = viftable[reg_vif_num].v_ifp; 3333 splx(s); 3334 3335 /* 3336 * Validate length 3337 */ 3338 if (datalen < PIM_REG_MINLEN) { 3339 pimstat.pims_rcv_tooshort++; 3340 pimstat.pims_rcv_badregisters++; 3341 log(LOG_ERR, 3342 "pim_input: register packet size too small %d from %lx\n", 3343 datalen, (u_long)ip->ip_src.s_addr); 3344 m_freem(m); 3345 return; 3346 } 3347 3348 reghdr = (u_int32_t *)(pim + 1); 3349 encap_ip = (struct ip *)(reghdr + 1); 3350 3351 if (mrtdebug & DEBUG_PIM) { 3352 log(LOG_DEBUG, 3353 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3354 (u_long)ntohl(encap_ip->ip_src.s_addr), 3355 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3356 ntohs(encap_ip->ip_len)); 3357 } 3358 3359 /* verify the version number of the inner packet */ 3360 if (encap_ip->ip_v != IPVERSION) { 3361 pimstat.pims_rcv_badregisters++; 3362 if (mrtdebug & DEBUG_PIM) { 3363 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3364 "of the inner packet\n", encap_ip->ip_v); 3365 } 3366 m_freem(m); 3367 return; 3368 } 3369 3370 /* verify the inner packet is destined to a mcast group */ 3371 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3372 pimstat.pims_rcv_badregisters++; 3373 if (mrtdebug & DEBUG_PIM) 3374 log(LOG_DEBUG, 3375 "pim_input: inner packet of register is not " 3376 "multicast %lx\n", 3377 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3378 m_freem(m); 3379 return; 3380 } 3381 3382 /* If a NULL_REGISTER, pass it to the daemon */ 3383 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3384 goto pim_input_to_daemon; 3385 3386 /* 3387 * Copy the TOS from the outer IP header to the inner IP header. 3388 */ 3389 if (encap_ip->ip_tos != ip_tos) { 3390 /* Outer TOS -> inner TOS */ 3391 encap_ip->ip_tos = ip_tos; 3392 /* Recompute the inner header checksum. Sigh... */ 3393 3394 /* adjust mbuf to point to the inner IP header */ 3395 m->m_data += (iphlen + PIM_MINLEN); 3396 m->m_len -= (iphlen + PIM_MINLEN); 3397 3398 encap_ip->ip_sum = 0; 3399 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3400 3401 /* restore mbuf to point back to the outer IP header */ 3402 m->m_data -= (iphlen + PIM_MINLEN); 3403 m->m_len += (iphlen + PIM_MINLEN); 3404 } 3405 3406 /* 3407 * Decapsulate the inner IP packet and loopback to forward it 3408 * as a normal multicast packet. Also, make a copy of the 3409 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3410 * to pass to the daemon later, so it can take the appropriate 3411 * actions (e.g., send back PIM_REGISTER_STOP). 3412 * XXX: here m->m_data points to the outer IP header. 3413 */ 3414 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT); 3415 if (mcp == NULL) { 3416 log(LOG_ERR, 3417 "pim_input: pim register: could not copy register head\n"); 3418 m_freem(m); 3419 return; 3420 } 3421 3422 /* Keep statistics */ 3423 /* XXX: registers_bytes include only the encap. mcast pkt */ 3424 pimstat.pims_rcv_registers_msgs++; 3425 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3426 3427 /* 3428 * forward the inner ip packet; point m_data at the inner ip. 3429 */ 3430 m_adj(m, iphlen + PIM_MINLEN); 3431 3432 if (mrtdebug & DEBUG_PIM) { 3433 log(LOG_DEBUG, 3434 "pim_input: forwarding decapsulated register: " 3435 "src %lx, dst %lx, vif %d\n", 3436 (u_long)ntohl(encap_ip->ip_src.s_addr), 3437 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3438 reg_vif_num); 3439 } 3440 /* NB: vifp was collected above; can it change on us? */ 3441 looutput(vifp, m, (struct sockaddr *)&dst, NULL); 3442 3443 /* prepare the register head to send to the mrouting daemon */ 3444 m = mcp; 3445 } 3446 3447 pim_input_to_daemon: 3448 /* 3449 * Pass the PIM message up to the daemon; if it is a Register message, 3450 * pass the 'head' only up to the daemon. This includes the 3451 * outer IP header, PIM header, PIM-Register header and the 3452 * inner IP header. 3453 * XXX: the outer IP header pkt size of a Register is not adjust to 3454 * reflect the fact that the inner multicast data is truncated. 3455 */ 3456 rip_input(m, iphlen, proto); 3457 3458 return; 3459 } 3460 #endif /* PIM */ 3461