xref: /netbsd-src/sys/netinet/ip_mroute.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*	$NetBSD: ip_mroute.c,v 1.157 2018/04/11 06:26:00 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Stephen Deering of Stanford University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
35  */
36 
37 /*
38  * Copyright (c) 1989 Stephen Deering
39  *
40  * This code is derived from software contributed to Berkeley by
41  * Stephen Deering of Stanford University.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *      This product includes software developed by the University of
54  *      California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
72  */
73 
74 /*
75  * IP multicast forwarding procedures
76  *
77  * Written by David Waitzman, BBN Labs, August 1988.
78  * Modified by Steve Deering, Stanford, February 1989.
79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
80  * Modified by Van Jacobson, LBL, January 1993
81  * Modified by Ajit Thyagarajan, PARC, August 1993
82  * Modified by Bill Fenner, PARC, April 1994
83  * Modified by Charles M. Hannum, NetBSD, May 1995.
84  * Modified by Ahmed Helmy, SGI, June 1996
85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87  * Modified by Hitoshi Asaeda, WIDE, August 2000
88  * Modified by Pavlin Radoslavov, ICSI, October 2002
89  *
90  * MROUTING Revision: 1.2
91  * and PIM-SMv2 and PIM-DM support, advanced API support,
92  * bandwidth metering and signaling
93  */
94 
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.157 2018/04/11 06:26:00 maxv Exp $");
97 
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_ipsec.h"
101 #include "opt_pim.h"
102 #endif
103 
104 #ifdef PIM
105 #define _PIM_VT 1
106 #endif
107 
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/mbuf.h>
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #include <sys/errno.h>
115 #include <sys/time.h>
116 #include <sys/kernel.h>
117 #include <sys/kmem.h>
118 #include <sys/ioctl.h>
119 #include <sys/syslog.h>
120 
121 #include <net/if.h>
122 #include <net/raw_cb.h>
123 
124 #include <netinet/in.h>
125 #include <netinet/in_var.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/ip_var.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/udp.h>
131 #include <netinet/igmp.h>
132 #include <netinet/igmp_var.h>
133 #include <netinet/ip_mroute.h>
134 #ifdef PIM
135 #include <netinet/pim.h>
136 #include <netinet/pim_var.h>
137 #endif
138 #include <netinet/ip_encap.h>
139 
140 #ifdef IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #endif
144 
145 #define IP_MULTICASTOPTS 0
146 #define	M_PULLUP(m, len)						 \
147 	do {								 \
148 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
149 			(m) = m_pullup((m), (len));			 \
150 	} while (/*CONSTCOND*/ 0)
151 
152 /*
153  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
154  * except for netstat or debugging purposes.
155  */
156 struct socket  *ip_mrouter  = NULL;
157 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
158 
159 #define	MFCHASH(a, g)							\
160 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
161 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
162 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
163 u_long	mfchash;
164 
165 u_char		nexpire[MFCTBLSIZ];
166 struct vif	viftable[MAXVIFS];
167 struct mrtstat	mrtstat;
168 u_int		mrtdebug = 0;	/* debug level */
169 #define		DEBUG_MFC	0x02
170 #define		DEBUG_FORWARD	0x04
171 #define		DEBUG_EXPIRE	0x08
172 #define		DEBUG_XMIT	0x10
173 #define		DEBUG_PIM	0x20
174 
175 #define		VIFI_INVALID	((vifi_t) -1)
176 
177 u_int tbfdebug = 0;	/* tbf debug level */
178 
179 /* vif attachment using sys/netinet/ip_encap.c */
180 static void vif_input(struct mbuf *, int, int, void *);
181 static int vif_encapcheck(struct mbuf *, int, int, void *);
182 
183 static const struct encapsw vif_encapsw = {
184 	.encapsw4 = {
185 		.pr_input	= vif_input,
186 		.pr_ctlinput	= NULL,
187 	}
188 };
189 
190 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
191 #define		UPCALL_EXPIRE	6		/* number of timeouts */
192 
193 /*
194  * Define the token bucket filter structures
195  */
196 
197 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
198 
199 static int get_sg_cnt(struct sioc_sg_req *);
200 static int get_vif_cnt(struct sioc_vif_req *);
201 static int ip_mrouter_init(struct socket *, int);
202 static int set_assert(int);
203 static int add_vif(struct vifctl *);
204 static int del_vif(vifi_t *);
205 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
206 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
207 static void expire_mfc(struct mfc *);
208 static int add_mfc(struct sockopt *);
209 #ifdef UPCALL_TIMING
210 static void collate(struct timeval *);
211 #endif
212 static int del_mfc(struct sockopt *);
213 static int set_api_config(struct sockopt *); /* chose API capabilities */
214 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
215 static void expire_upcalls(void *);
216 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
217 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
218 static void encap_send(struct ip *, struct vif *, struct mbuf *);
219 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
220 static void tbf_queue(struct vif *, struct mbuf *);
221 static void tbf_process_q(struct vif *);
222 static void tbf_reprocess_q(void *);
223 static int tbf_dq_sel(struct vif *, struct ip *);
224 static void tbf_send_packet(struct vif *, struct mbuf *);
225 static void tbf_update_tokens(struct vif *);
226 static int priority(struct vif *, struct ip *);
227 
228 /*
229  * Bandwidth monitoring
230  */
231 static void free_bw_list(struct bw_meter *);
232 static int add_bw_upcall(struct bw_upcall *);
233 static int del_bw_upcall(struct bw_upcall *);
234 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
235 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
236 static void bw_upcalls_send(void);
237 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
238 static void unschedule_bw_meter(struct bw_meter *);
239 static void bw_meter_process(void);
240 static void expire_bw_upcalls_send(void *);
241 static void expire_bw_meter_process(void *);
242 
243 #ifdef PIM
244 static int pim_register_send(struct ip *, struct vif *,
245     struct mbuf *, struct mfc *);
246 static int pim_register_send_rp(struct ip *, struct vif *,
247     struct mbuf *, struct mfc *);
248 static int pim_register_send_upcall(struct ip *, struct vif *,
249     struct mbuf *, struct mfc *);
250 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
251 #endif
252 
253 #define	ENCAP_TTL	64
254 #define	ENCAP_PROTO	IPPROTO_IPIP
255 
256 /* prototype IP hdr for encapsulated packets */
257 static const struct ip multicast_encap_iphdr = {
258 	.ip_hl = sizeof(struct ip) >> 2,
259 	.ip_v = IPVERSION,
260 	.ip_len = sizeof(struct ip),
261 	.ip_ttl = ENCAP_TTL,
262 	.ip_p = ENCAP_PROTO,
263 };
264 
265 /*
266  * Bandwidth meter variables and constants
267  */
268 
269 /*
270  * Pending timeouts are stored in a hash table, the key being the
271  * expiration time. Periodically, the entries are analysed and processed.
272  */
273 #define BW_METER_BUCKETS	1024
274 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
275 struct callout bw_meter_ch;
276 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
277 
278 /*
279  * Pending upcalls are stored in a vector which is flushed when
280  * full, or periodically
281  */
282 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
283 static u_int	bw_upcalls_n; /* # of pending upcalls */
284 struct callout	bw_upcalls_ch;
285 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
286 
287 #ifdef PIM
288 struct pimstat pimstat;
289 
290 /*
291  * Note: the PIM Register encapsulation adds the following in front of a
292  * data packet:
293  *
294  * struct pim_encap_hdr {
295  *     struct ip ip;
296  *     struct pim_encap_pimhdr  pim;
297  * }
298  */
299 
300 struct pim_encap_pimhdr {
301 	struct pim pim;
302 	uint32_t   flags;
303 };
304 
305 static struct ip pim_encap_iphdr = {
306 	.ip_v = IPVERSION,
307 	.ip_hl = sizeof(struct ip) >> 2,
308 	.ip_len = sizeof(struct ip),
309 	.ip_ttl = ENCAP_TTL,
310 	.ip_p = IPPROTO_PIM,
311 };
312 
313 static struct pim_encap_pimhdr pim_encap_pimhdr = {
314     {
315 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
316 	0,			/* reserved */
317 	0,			/* checksum */
318     },
319     0				/* flags */
320 };
321 
322 static struct ifnet multicast_register_if;
323 static vifi_t reg_vif_num = VIFI_INVALID;
324 #endif /* PIM */
325 
326 
327 /*
328  * Private variables.
329  */
330 static vifi_t	   numvifs = 0;
331 
332 static struct callout expire_upcalls_ch;
333 
334 /*
335  * whether or not special PIM assert processing is enabled.
336  */
337 static int pim_assert;
338 /*
339  * Rate limit for assert notification messages, in usec
340  */
341 #define ASSERT_MSG_TIME		3000000
342 
343 /*
344  * Kernel multicast routing API capabilities and setup.
345  * If more API capabilities are added to the kernel, they should be
346  * recorded in `mrt_api_support'.
347  */
348 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
349 					  MRT_MFC_FLAGS_BORDER_VIF |
350 					  MRT_MFC_RP |
351 					  MRT_MFC_BW_UPCALL);
352 static u_int32_t mrt_api_config = 0;
353 
354 /*
355  * Find a route for a given origin IP address and Multicast group address
356  * Type of service parameter to be added in the future!!!
357  * Statistics are updated by the caller if needed
358  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
359  */
360 static struct mfc *
361 mfc_find(struct in_addr *o, struct in_addr *g)
362 {
363 	struct mfc *rt;
364 
365 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
366 		if (in_hosteq(rt->mfc_origin, *o) &&
367 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
368 		    (rt->mfc_stall == NULL))
369 			break;
370 	}
371 
372 	return rt;
373 }
374 
375 /*
376  * Macros to compute elapsed time efficiently
377  * Borrowed from Van Jacobson's scheduling code
378  */
379 #define TV_DELTA(a, b, delta) do {					\
380 	int xxs;							\
381 	delta = (a).tv_usec - (b).tv_usec;				\
382 	xxs = (a).tv_sec - (b).tv_sec;					\
383 	switch (xxs) {							\
384 	case 2:								\
385 		delta += 1000000;					\
386 		/* fall through */					\
387 	case 1:								\
388 		delta += 1000000;					\
389 		/* fall through */					\
390 	case 0:								\
391 		break;							\
392 	default:							\
393 		delta += (1000000 * xxs);				\
394 		break;							\
395 	}								\
396 } while (/*CONSTCOND*/ 0)
397 
398 #ifdef UPCALL_TIMING
399 u_int32_t upcall_data[51];
400 #endif /* UPCALL_TIMING */
401 
402 /*
403  * Handle MRT setsockopt commands to modify the multicast routing tables.
404  */
405 int
406 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
407 {
408 	int error;
409 	int optval;
410 	struct vifctl vifc;
411 	vifi_t vifi;
412 	struct bw_upcall bwuc;
413 
414 	if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
415 		error = ENOPROTOOPT;
416 	else {
417 		switch (sopt->sopt_name) {
418 		case MRT_INIT:
419 			error = sockopt_getint(sopt, &optval);
420 			if (error)
421 				break;
422 
423 			error = ip_mrouter_init(so, optval);
424 			break;
425 		case MRT_DONE:
426 			error = ip_mrouter_done();
427 			break;
428 		case MRT_ADD_VIF:
429 			error = sockopt_get(sopt, &vifc, sizeof(vifc));
430 			if (error)
431 				break;
432 			error = add_vif(&vifc);
433 			break;
434 		case MRT_DEL_VIF:
435 			error = sockopt_get(sopt, &vifi, sizeof(vifi));
436 			if (error)
437 				break;
438 			error = del_vif(&vifi);
439 			break;
440 		case MRT_ADD_MFC:
441 			error = add_mfc(sopt);
442 			break;
443 		case MRT_DEL_MFC:
444 			error = del_mfc(sopt);
445 			break;
446 		case MRT_ASSERT:
447 			error = sockopt_getint(sopt, &optval);
448 			if (error)
449 				break;
450 			error = set_assert(optval);
451 			break;
452 		case MRT_API_CONFIG:
453 			error = set_api_config(sopt);
454 			break;
455 		case MRT_ADD_BW_UPCALL:
456 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
457 			if (error)
458 				break;
459 			error = add_bw_upcall(&bwuc);
460 			break;
461 		case MRT_DEL_BW_UPCALL:
462 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
463 			if (error)
464 				break;
465 			error = del_bw_upcall(&bwuc);
466 			break;
467 		default:
468 			error = ENOPROTOOPT;
469 			break;
470 		}
471 	}
472 	return error;
473 }
474 
475 /*
476  * Handle MRT getsockopt commands
477  */
478 int
479 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
480 {
481 	int error;
482 
483 	if (so != ip_mrouter)
484 		error = ENOPROTOOPT;
485 	else {
486 		switch (sopt->sopt_name) {
487 		case MRT_VERSION:
488 			error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
489 			break;
490 		case MRT_ASSERT:
491 			error = sockopt_setint(sopt, pim_assert);
492 			break;
493 		case MRT_API_SUPPORT:
494 			error = sockopt_set(sopt, &mrt_api_support,
495 			    sizeof(mrt_api_support));
496 			break;
497 		case MRT_API_CONFIG:
498 			error = sockopt_set(sopt, &mrt_api_config,
499 			    sizeof(mrt_api_config));
500 			break;
501 		default:
502 			error = ENOPROTOOPT;
503 			break;
504 		}
505 	}
506 	return error;
507 }
508 
509 /*
510  * Handle ioctl commands to obtain information from the cache
511  */
512 int
513 mrt_ioctl(struct socket *so, u_long cmd, void *data)
514 {
515 	int error;
516 
517 	if (so != ip_mrouter)
518 		error = EINVAL;
519 	else
520 		switch (cmd) {
521 		case SIOCGETVIFCNT:
522 			error = get_vif_cnt((struct sioc_vif_req *)data);
523 			break;
524 		case SIOCGETSGCNT:
525 			error = get_sg_cnt((struct sioc_sg_req *)data);
526 			break;
527 		default:
528 			error = EINVAL;
529 			break;
530 		}
531 
532 	return error;
533 }
534 
535 /*
536  * returns the packet, byte, rpf-failure count for the source group provided
537  */
538 static int
539 get_sg_cnt(struct sioc_sg_req *req)
540 {
541 	int s;
542 	struct mfc *rt;
543 
544 	s = splsoftnet();
545 	rt = mfc_find(&req->src, &req->grp);
546 	if (rt == NULL) {
547 		splx(s);
548 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
549 		return EADDRNOTAVAIL;
550 	}
551 	req->pktcnt = rt->mfc_pkt_cnt;
552 	req->bytecnt = rt->mfc_byte_cnt;
553 	req->wrong_if = rt->mfc_wrong_if;
554 	splx(s);
555 
556 	return 0;
557 }
558 
559 /*
560  * returns the input and output packet and byte counts on the vif provided
561  */
562 static int
563 get_vif_cnt(struct sioc_vif_req *req)
564 {
565 	vifi_t vifi = req->vifi;
566 
567 	if (vifi >= numvifs)
568 		return EINVAL;
569 
570 	req->icount = viftable[vifi].v_pkt_in;
571 	req->ocount = viftable[vifi].v_pkt_out;
572 	req->ibytes = viftable[vifi].v_bytes_in;
573 	req->obytes = viftable[vifi].v_bytes_out;
574 
575 	return 0;
576 }
577 
578 /*
579  * Enable multicast routing
580  */
581 static int
582 ip_mrouter_init(struct socket *so, int v)
583 {
584 	if (mrtdebug)
585 		log(LOG_DEBUG,
586 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
587 		    so->so_type, so->so_proto->pr_protocol);
588 
589 	if (so->so_type != SOCK_RAW ||
590 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
591 		return EOPNOTSUPP;
592 
593 	if (v != 1)
594 		return EINVAL;
595 
596 	if (ip_mrouter != NULL)
597 		return EADDRINUSE;
598 
599 	ip_mrouter = so;
600 
601 	mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
602 	memset((void *)nexpire, 0, sizeof(nexpire));
603 
604 	pim_assert = 0;
605 
606 	callout_init(&expire_upcalls_ch, 0);
607 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
608 		      expire_upcalls, NULL);
609 
610 	callout_init(&bw_upcalls_ch, 0);
611 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
612 		      expire_bw_upcalls_send, NULL);
613 
614 	callout_init(&bw_meter_ch, 0);
615 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
616 		      expire_bw_meter_process, NULL);
617 
618 	if (mrtdebug)
619 		log(LOG_DEBUG, "ip_mrouter_init\n");
620 
621 	return 0;
622 }
623 
624 /*
625  * Disable multicast routing
626  */
627 int
628 ip_mrouter_done(void)
629 {
630 	vifi_t vifi;
631 	struct vif *vifp;
632 	int i;
633 	int s;
634 
635 	s = splsoftnet();
636 
637 	/* Clear out all the vifs currently in use. */
638 	for (vifi = 0; vifi < numvifs; vifi++) {
639 		vifp = &viftable[vifi];
640 		if (!in_nullhost(vifp->v_lcl_addr))
641 			reset_vif(vifp);
642 	}
643 
644 	numvifs = 0;
645 	pim_assert = 0;
646 	mrt_api_config = 0;
647 
648 	callout_stop(&expire_upcalls_ch);
649 	callout_stop(&bw_upcalls_ch);
650 	callout_stop(&bw_meter_ch);
651 
652 	/*
653 	 * Free all multicast forwarding cache entries.
654 	 */
655 	for (i = 0; i < MFCTBLSIZ; i++) {
656 		struct mfc *rt, *nrt;
657 
658 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
659 			nrt = LIST_NEXT(rt, mfc_hash);
660 
661 			expire_mfc(rt);
662 		}
663 	}
664 
665 	memset((void *)nexpire, 0, sizeof(nexpire));
666 	hashdone(mfchashtbl, HASH_LIST, mfchash);
667 	mfchashtbl = NULL;
668 
669 	bw_upcalls_n = 0;
670 	memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
671 
672 	/* Reset de-encapsulation cache. */
673 
674 	ip_mrouter = NULL;
675 
676 	splx(s);
677 
678 	if (mrtdebug)
679 		log(LOG_DEBUG, "ip_mrouter_done\n");
680 
681 	return 0;
682 }
683 
684 void
685 ip_mrouter_detach(struct ifnet *ifp)
686 {
687 	int vifi, i;
688 	struct vif *vifp;
689 	struct mfc *rt;
690 	struct rtdetq *rte;
691 
692 	/* XXX not sure about side effect to userland routing daemon */
693 	for (vifi = 0; vifi < numvifs; vifi++) {
694 		vifp = &viftable[vifi];
695 		if (vifp->v_ifp == ifp)
696 			reset_vif(vifp);
697 	}
698 	for (i = 0; i < MFCTBLSIZ; i++) {
699 		if (nexpire[i] == 0)
700 			continue;
701 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
702 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
703 				if (rte->ifp == ifp)
704 					rte->ifp = NULL;
705 			}
706 		}
707 	}
708 }
709 
710 /*
711  * Set PIM assert processing global
712  */
713 static int
714 set_assert(int i)
715 {
716 	pim_assert = !!i;
717 	return 0;
718 }
719 
720 /*
721  * Configure API capabilities
722  */
723 static int
724 set_api_config(struct sockopt *sopt)
725 {
726 	u_int32_t apival;
727 	int i, error;
728 
729 	/*
730 	 * We can set the API capabilities only if it is the first operation
731 	 * after MRT_INIT. I.e.:
732 	 *  - there are no vifs installed
733 	 *  - pim_assert is not enabled
734 	 *  - the MFC table is empty
735 	 */
736 	error = sockopt_get(sopt, &apival, sizeof(apival));
737 	if (error)
738 		return error;
739 	if (numvifs > 0)
740 		return EPERM;
741 	if (pim_assert)
742 		return EPERM;
743 	for (i = 0; i < MFCTBLSIZ; i++) {
744 		if (LIST_FIRST(&mfchashtbl[i]) != NULL)
745 			return EPERM;
746 	}
747 
748 	mrt_api_config = apival & mrt_api_support;
749 	return 0;
750 }
751 
752 /*
753  * Add a vif to the vif table
754  */
755 static int
756 add_vif(struct vifctl *vifcp)
757 {
758 	struct vif *vifp;
759 	struct ifnet *ifp;
760 	int error, s;
761 	struct sockaddr_in sin;
762 
763 	if (vifcp->vifc_vifi >= MAXVIFS)
764 		return EINVAL;
765 	if (in_nullhost(vifcp->vifc_lcl_addr))
766 		return EADDRNOTAVAIL;
767 
768 	vifp = &viftable[vifcp->vifc_vifi];
769 	if (!in_nullhost(vifp->v_lcl_addr))
770 		return EADDRINUSE;
771 
772 	/* Find the interface with an address in AF_INET family. */
773 #ifdef PIM
774 	if (vifcp->vifc_flags & VIFF_REGISTER) {
775 		/*
776 		 * XXX: Because VIFF_REGISTER does not really need a valid
777 		 * local interface (e.g. it could be 127.0.0.2), we don't
778 		 * check its address.
779 		 */
780 		ifp = NULL;
781 	} else
782 #endif
783 	{
784 		struct ifaddr *ifa;
785 
786 		sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
787 		s = pserialize_read_enter();
788 		ifa = ifa_ifwithaddr(sintosa(&sin));
789 		if (ifa == NULL) {
790 			pserialize_read_exit(s);
791 			return EADDRNOTAVAIL;
792 		}
793 		ifp = ifa->ifa_ifp;
794 		/* FIXME NOMPSAFE */
795 		pserialize_read_exit(s);
796 	}
797 
798 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
799 		if (vifcp->vifc_flags & VIFF_SRCRT) {
800 			log(LOG_ERR, "source routed tunnels not supported\n");
801 			return EOPNOTSUPP;
802 		}
803 
804 		/* attach this vif to decapsulator dispatch table */
805 		/*
806 		 * XXX Use addresses in registration so that matching
807 		 * can be done with radix tree in decapsulator.  But,
808 		 * we need to check inner header for multicast, so
809 		 * this requires both radix tree lookup and then a
810 		 * function to check, and this is not supported yet.
811 		 */
812 		error = encap_lock_enter();
813 		if (error)
814 			return error;
815 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
816 		    vif_encapcheck, &vif_encapsw, vifp);
817 		encap_lock_exit();
818 		if (!vifp->v_encap_cookie)
819 			return EINVAL;
820 
821 		/* Create a fake encapsulation interface. */
822 		ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
823 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
824 			 "mdecap%d", vifcp->vifc_vifi);
825 
826 		/* Prepare cached route entry. */
827 		memset(&vifp->v_route, 0, sizeof(vifp->v_route));
828 #ifdef PIM
829 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
830 		ifp = &multicast_register_if;
831 		if (mrtdebug)
832 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
833 			    (void *)ifp);
834 		if (reg_vif_num == VIFI_INVALID) {
835 			memset(ifp, 0, sizeof(*ifp));
836 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
837 				 "register_vif");
838 			ifp->if_flags = IFF_LOOPBACK;
839 			memset(&vifp->v_route, 0, sizeof(vifp->v_route));
840 			reg_vif_num = vifcp->vifc_vifi;
841 		}
842 #endif
843 	} else {
844 		/* Make sure the interface supports multicast. */
845 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
846 			return EOPNOTSUPP;
847 
848 		/* Enable promiscuous reception of all IP multicasts. */
849 		sockaddr_in_init(&sin, &zeroin_addr, 0);
850 		error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
851 		if (error)
852 			return error;
853 	}
854 
855 	s = splsoftnet();
856 
857 	/* Define parameters for the tbf structure. */
858 	vifp->tbf_q = NULL;
859 	vifp->tbf_t = &vifp->tbf_q;
860 	microtime(&vifp->tbf_last_pkt_t);
861 	vifp->tbf_n_tok = 0;
862 	vifp->tbf_q_len = 0;
863 	vifp->tbf_max_q_len = MAXQSIZE;
864 
865 	vifp->v_flags = vifcp->vifc_flags;
866 	vifp->v_threshold = vifcp->vifc_threshold;
867 	/* scaling up here allows division by 1024 in critical code */
868 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
869 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
870 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
871 	vifp->v_ifp = ifp;
872 	/* Initialize per vif pkt counters. */
873 	vifp->v_pkt_in = 0;
874 	vifp->v_pkt_out = 0;
875 	vifp->v_bytes_in = 0;
876 	vifp->v_bytes_out = 0;
877 
878 	callout_init(&vifp->v_repq_ch, 0);
879 
880 	splx(s);
881 
882 	/* Adjust numvifs up if the vifi is higher than numvifs. */
883 	if (numvifs <= vifcp->vifc_vifi)
884 		numvifs = vifcp->vifc_vifi + 1;
885 
886 	if (mrtdebug)
887 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
888 		    vifcp->vifc_vifi,
889 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
890 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
891 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
892 		    vifcp->vifc_threshold,
893 		    vifcp->vifc_rate_limit);
894 
895 	return 0;
896 }
897 
898 void
899 reset_vif(struct vif *vifp)
900 {
901 	struct mbuf *m, *n;
902 	struct ifnet *ifp;
903 	struct sockaddr_in sin;
904 
905 	callout_stop(&vifp->v_repq_ch);
906 
907 	/* detach this vif from decapsulator dispatch table */
908 	encap_lock_enter();
909 	encap_detach(vifp->v_encap_cookie);
910 	encap_lock_exit();
911 	vifp->v_encap_cookie = NULL;
912 
913 	/*
914 	 * Free packets queued at the interface
915 	 */
916 	for (m = vifp->tbf_q; m != NULL; m = n) {
917 		n = m->m_nextpkt;
918 		m_freem(m);
919 	}
920 
921 	if (vifp->v_flags & VIFF_TUNNEL)
922 		free(vifp->v_ifp, M_MRTABLE);
923 	else if (vifp->v_flags & VIFF_REGISTER) {
924 #ifdef PIM
925 		reg_vif_num = VIFI_INVALID;
926 #endif
927 	} else {
928 		sockaddr_in_init(&sin, &zeroin_addr, 0);
929 		ifp = vifp->v_ifp;
930 		if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
931 	}
932 	memset((void *)vifp, 0, sizeof(*vifp));
933 }
934 
935 /*
936  * Delete a vif from the vif table
937  */
938 static int
939 del_vif(vifi_t *vifip)
940 {
941 	struct vif *vifp;
942 	vifi_t vifi;
943 	int s;
944 
945 	if (*vifip >= numvifs)
946 		return EINVAL;
947 
948 	vifp = &viftable[*vifip];
949 	if (in_nullhost(vifp->v_lcl_addr))
950 		return EADDRNOTAVAIL;
951 
952 	s = splsoftnet();
953 
954 	reset_vif(vifp);
955 
956 	/* Adjust numvifs down */
957 	for (vifi = numvifs; vifi > 0; vifi--)
958 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
959 			break;
960 	numvifs = vifi;
961 
962 	splx(s);
963 
964 	if (mrtdebug)
965 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
966 
967 	return 0;
968 }
969 
970 /*
971  * update an mfc entry without resetting counters and S,G addresses.
972  */
973 static void
974 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
975 {
976 	int i;
977 
978 	rt->mfc_parent = mfccp->mfcc_parent;
979 	for (i = 0; i < numvifs; i++) {
980 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
981 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
982 			MRT_MFC_FLAGS_ALL;
983 	}
984 	/* set the RP address */
985 	if (mrt_api_config & MRT_MFC_RP)
986 		rt->mfc_rp = mfccp->mfcc_rp;
987 	else
988 		rt->mfc_rp = zeroin_addr;
989 }
990 
991 /*
992  * fully initialize an mfc entry from the parameter.
993  */
994 static void
995 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
996 {
997 	rt->mfc_origin     = mfccp->mfcc_origin;
998 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
999 
1000 	update_mfc_params(rt, mfccp);
1001 
1002 	/* initialize pkt counters per src-grp */
1003 	rt->mfc_pkt_cnt    = 0;
1004 	rt->mfc_byte_cnt   = 0;
1005 	rt->mfc_wrong_if   = 0;
1006 	timerclear(&rt->mfc_last_assert);
1007 }
1008 
1009 static void
1010 expire_mfc(struct mfc *rt)
1011 {
1012 	struct rtdetq *rte, *nrte;
1013 
1014 	free_bw_list(rt->mfc_bw_meter);
1015 
1016 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1017 		nrte = rte->next;
1018 		m_freem(rte->m);
1019 		free(rte, M_MRTABLE);
1020 	}
1021 
1022 	LIST_REMOVE(rt, mfc_hash);
1023 	free(rt, M_MRTABLE);
1024 }
1025 
1026 /*
1027  * Add an mfc entry
1028  */
1029 static int
1030 add_mfc(struct sockopt *sopt)
1031 {
1032 	struct mfcctl2 mfcctl2;
1033 	struct mfcctl2 *mfccp;
1034 	struct mfc *rt;
1035 	u_int32_t hash = 0;
1036 	struct rtdetq *rte, *nrte;
1037 	u_short nstl;
1038 	int s;
1039 	int error;
1040 
1041 	/*
1042 	 * select data size depending on API version.
1043 	 */
1044 	mfccp = &mfcctl2;
1045 	memset(&mfcctl2, 0, sizeof(mfcctl2));
1046 
1047 	if (mrt_api_config & MRT_API_FLAGS_ALL)
1048 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1049 	else
1050 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1051 
1052 	if (error)
1053 		return error;
1054 
1055 	s = splsoftnet();
1056 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1057 
1058 	/* If an entry already exists, just update the fields */
1059 	if (rt) {
1060 		if (mrtdebug & DEBUG_MFC)
1061 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1062 			    ntohl(mfccp->mfcc_origin.s_addr),
1063 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1064 			    mfccp->mfcc_parent);
1065 
1066 		update_mfc_params(rt, mfccp);
1067 
1068 		splx(s);
1069 		return 0;
1070 	}
1071 
1072 	/*
1073 	 * Find the entry for which the upcall was made and update
1074 	 */
1075 	nstl = 0;
1076 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1077 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1078 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1079 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1080 		    rt->mfc_stall != NULL) {
1081 			if (nstl++)
1082 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1083 				    "multiple kernel entries",
1084 				    ntohl(mfccp->mfcc_origin.s_addr),
1085 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1086 				    mfccp->mfcc_parent, rt->mfc_stall);
1087 
1088 			if (mrtdebug & DEBUG_MFC)
1089 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1090 				    ntohl(mfccp->mfcc_origin.s_addr),
1091 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1092 				    mfccp->mfcc_parent, rt->mfc_stall);
1093 
1094 			rte = rt->mfc_stall;
1095 			init_mfc_params(rt, mfccp);
1096 			rt->mfc_stall = NULL;
1097 
1098 			rt->mfc_expire = 0; /* Don't clean this guy up */
1099 			nexpire[hash]--;
1100 
1101 			/* free packets Qed at the end of this entry */
1102 			for (; rte != NULL; rte = nrte) {
1103 				nrte = rte->next;
1104 				if (rte->ifp) {
1105 					ip_mdq(rte->m, rte->ifp, rt);
1106 				}
1107 				m_freem(rte->m);
1108 #ifdef UPCALL_TIMING
1109 				collate(&rte->t);
1110 #endif /* UPCALL_TIMING */
1111 				free(rte, M_MRTABLE);
1112 			}
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * It is possible that an entry is being inserted without an upcall
1118 	 */
1119 	if (nstl == 0) {
1120 		/*
1121 		 * No mfc; make a new one
1122 		 */
1123 		if (mrtdebug & DEBUG_MFC)
1124 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1125 			    ntohl(mfccp->mfcc_origin.s_addr),
1126 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1127 			    mfccp->mfcc_parent);
1128 
1129 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1130 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1131 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1132 				init_mfc_params(rt, mfccp);
1133 				if (rt->mfc_expire)
1134 					nexpire[hash]--;
1135 				rt->mfc_expire = 0;
1136 				break; /* XXX */
1137 			}
1138 		}
1139 		if (rt == NULL) {	/* no upcall, so make a new entry */
1140 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1141 			if (rt == NULL) {
1142 				splx(s);
1143 				return ENOBUFS;
1144 			}
1145 
1146 			init_mfc_params(rt, mfccp);
1147 			rt->mfc_expire	= 0;
1148 			rt->mfc_stall	= NULL;
1149 			rt->mfc_bw_meter = NULL;
1150 
1151 			/* insert new entry at head of hash chain */
1152 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1153 		}
1154 	}
1155 
1156 	splx(s);
1157 	return 0;
1158 }
1159 
1160 #ifdef UPCALL_TIMING
1161 /*
1162  * collect delay statistics on the upcalls
1163  */
1164 static void
1165 collate(struct timeval *t)
1166 {
1167 	u_int32_t d;
1168 	struct timeval tp;
1169 	u_int32_t delta;
1170 
1171 	microtime(&tp);
1172 
1173 	if (timercmp(t, &tp, <)) {
1174 		TV_DELTA(tp, *t, delta);
1175 
1176 		d = delta >> 10;
1177 		if (d > 50)
1178 			d = 50;
1179 
1180 		++upcall_data[d];
1181 	}
1182 }
1183 #endif /* UPCALL_TIMING */
1184 
1185 /*
1186  * Delete an mfc entry
1187  */
1188 static int
1189 del_mfc(struct sockopt *sopt)
1190 {
1191 	struct mfcctl2 mfcctl2;
1192 	struct mfcctl2 *mfccp;
1193 	struct mfc *rt;
1194 	int s;
1195 	int error;
1196 
1197 	/*
1198 	 * XXX: for deleting MFC entries the information in entries
1199 	 * of size "struct mfcctl" is sufficient.
1200 	 */
1201 
1202 	mfccp = &mfcctl2;
1203 	memset(&mfcctl2, 0, sizeof(mfcctl2));
1204 
1205 	error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1206 	if (error) {
1207 		/* Try with the size of mfcctl2. */
1208 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1209 		if (error)
1210 			return error;
1211 	}
1212 
1213 	if (mrtdebug & DEBUG_MFC)
1214 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1215 		    ntohl(mfccp->mfcc_origin.s_addr),
1216 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
1217 
1218 	s = splsoftnet();
1219 
1220 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1221 	if (rt == NULL) {
1222 		splx(s);
1223 		return EADDRNOTAVAIL;
1224 	}
1225 
1226 	/*
1227 	 * free the bw_meter entries
1228 	 */
1229 	free_bw_list(rt->mfc_bw_meter);
1230 	rt->mfc_bw_meter = NULL;
1231 
1232 	LIST_REMOVE(rt, mfc_hash);
1233 	free(rt, M_MRTABLE);
1234 
1235 	splx(s);
1236 	return 0;
1237 }
1238 
1239 static int
1240 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1241 {
1242 	if (s) {
1243 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
1244 			sorwakeup(s);
1245 			return 0;
1246 		}
1247 		soroverflow(s);
1248 	}
1249 	m_freem(mm);
1250 	return -1;
1251 }
1252 
1253 /*
1254  * IP multicast forwarding function. This function assumes that the packet
1255  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1256  * pointed to by "ifp", and the packet is to be relayed to other networks
1257  * that have members of the packet's destination IP multicast group.
1258  *
1259  * The packet is returned unscathed to the caller, unless it is
1260  * erroneous, in which case a non-zero return value tells the caller to
1261  * discard it.
1262  */
1263 
1264 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1265 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1266 
1267 int
1268 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1269 {
1270 	struct ip *ip = mtod(m, struct ip *);
1271 	struct mfc *rt;
1272 	static int srctun = 0;
1273 	struct mbuf *mm;
1274 	struct sockaddr_in sin;
1275 	int s;
1276 	vifi_t vifi;
1277 
1278 	if (mrtdebug & DEBUG_FORWARD)
1279 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1280 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1281 
1282 	/*
1283 	 * XXX XXX: Why do we check [1] against IPOPT_LSRR? Because we
1284 	 * expect [0] to be IPOPT_NOP, maybe? In all cases that doesn't
1285 	 * make a lot of sense, a forged packet can just put two IPOPT_NOPs
1286 	 * followed by one IPOPT_LSRR, and bypass the check.
1287 	 */
1288 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1289 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1290 		/*
1291 		 * Packet arrived via a physical interface or
1292 		 * an encapsulated tunnel or a register_vif.
1293 		 */
1294 	} else {
1295 		/*
1296 		 * Packet arrived through a source-route tunnel.
1297 		 * Source-route tunnels are no longer supported.
1298 		 */
1299 		if ((srctun++ % 1000) == 0)
1300 			log(LOG_ERR,
1301 			    "ip_mforward: received source-routed packet from %x\n",
1302 			    ntohl(ip->ip_src.s_addr));
1303 		return EOPNOTSUPP;
1304 	}
1305 
1306 	/*
1307 	 * Clear any in-bound checksum flags for this packet.
1308 	 */
1309 	m->m_pkthdr.csum_flags = 0;
1310 
1311 	/*
1312 	 * Don't forward a packet with time-to-live of zero or one,
1313 	 * or a packet destined to a local-only group.
1314 	 */
1315 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1316 		return 0;
1317 
1318 	/*
1319 	 * Determine forwarding vifs from the forwarding cache table
1320 	 */
1321 	s = splsoftnet();
1322 	++mrtstat.mrts_mfc_lookups;
1323 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1324 
1325 	/* Entry exists, so forward if necessary */
1326 	if (rt != NULL) {
1327 		splx(s);
1328 		return ip_mdq(m, ifp, rt);
1329 	} else {
1330 		/*
1331 		 * If we don't have a route for packet's origin, make a copy
1332 		 * of the packet and send message to routing daemon.
1333 		 */
1334 
1335 		struct mbuf *mb0;
1336 		struct rtdetq *rte;
1337 		u_int32_t hash;
1338 		const int hlen = ip->ip_hl << 2;
1339 #ifdef UPCALL_TIMING
1340 		struct timeval tp;
1341 		microtime(&tp);
1342 #endif
1343 
1344 		++mrtstat.mrts_mfc_misses;
1345 
1346 		mrtstat.mrts_no_route++;
1347 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1348 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1349 			    ntohl(ip->ip_src.s_addr),
1350 			    ntohl(ip->ip_dst.s_addr));
1351 
1352 		/*
1353 		 * Allocate mbufs early so that we don't do extra work if we are
1354 		 * just going to fail anyway.  Make sure to pullup the header so
1355 		 * that other people can't step on it.
1356 		 */
1357 		rte = malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1358 		if (rte == NULL) {
1359 			splx(s);
1360 			return ENOBUFS;
1361 		}
1362 		mb0 = m_copypacket(m, M_DONTWAIT);
1363 		M_PULLUP(mb0, hlen);
1364 		if (mb0 == NULL) {
1365 			free(rte, M_MRTABLE);
1366 			splx(s);
1367 			return ENOBUFS;
1368 		}
1369 
1370 		/* is there an upcall waiting for this flow? */
1371 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
1372 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1373 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1374 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1375 			    rt->mfc_stall != NULL)
1376 				break;
1377 		}
1378 
1379 		if (rt == NULL) {
1380 			int i;
1381 			struct igmpmsg *im;
1382 
1383 			/*
1384 			 * Locate the vifi for the incoming interface for
1385 			 * this packet.
1386 			 * If none found, drop packet.
1387 			 */
1388 			for (vifi = 0; vifi < numvifs &&
1389 				 viftable[vifi].v_ifp != ifp; vifi++)
1390 				;
1391 			if (vifi >= numvifs) /* vif not found, drop packet */
1392 				goto non_fatal;
1393 
1394 			/* no upcall, so make a new entry */
1395 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1396 			if (rt == NULL)
1397 				goto fail;
1398 
1399 			/*
1400 			 * Make a copy of the header to send to the user level
1401 			 * process
1402 			 */
1403 			mm = m_copym(m, 0, hlen, M_DONTWAIT);
1404 			M_PULLUP(mm, hlen);
1405 			if (mm == NULL)
1406 				goto fail1;
1407 
1408 			/*
1409 			 * Send message to routing daemon to install
1410 			 * a route into the kernel table
1411 			 */
1412 
1413 			im = mtod(mm, struct igmpmsg *);
1414 			im->im_msgtype = IGMPMSG_NOCACHE;
1415 			im->im_mbz = 0;
1416 			im->im_vif = vifi;
1417 
1418 			mrtstat.mrts_upcalls++;
1419 
1420 			sockaddr_in_init(&sin, &ip->ip_src, 0);
1421 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
1422 				log(LOG_WARNING,
1423 				    "ip_mforward: ip_mrouter socket queue full\n");
1424 				++mrtstat.mrts_upq_sockfull;
1425 			fail1:
1426 				free(rt, M_MRTABLE);
1427 			fail:
1428 				free(rte, M_MRTABLE);
1429 				m_freem(mb0);
1430 				splx(s);
1431 				return ENOBUFS;
1432 			}
1433 
1434 			/* insert new entry at head of hash chain */
1435 			rt->mfc_origin = ip->ip_src;
1436 			rt->mfc_mcastgrp = ip->ip_dst;
1437 			rt->mfc_pkt_cnt = 0;
1438 			rt->mfc_byte_cnt = 0;
1439 			rt->mfc_wrong_if = 0;
1440 			rt->mfc_expire = UPCALL_EXPIRE;
1441 			nexpire[hash]++;
1442 			for (i = 0; i < numvifs; i++) {
1443 				rt->mfc_ttls[i] = 0;
1444 				rt->mfc_flags[i] = 0;
1445 			}
1446 			rt->mfc_parent = -1;
1447 
1448 			/* clear the RP address */
1449 			rt->mfc_rp = zeroin_addr;
1450 
1451 			rt->mfc_bw_meter = NULL;
1452 
1453 			/* link into table */
1454 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1455 			/* Add this entry to the end of the queue */
1456 			rt->mfc_stall = rte;
1457 		} else {
1458 			/* determine if q has overflowed */
1459 			struct rtdetq **p;
1460 			int npkts = 0;
1461 
1462 			/*
1463 			 * XXX ouch! we need to append to the list, but we
1464 			 * only have a pointer to the front, so we have to
1465 			 * scan the entire list every time.
1466 			 */
1467 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1468 				if (++npkts > MAX_UPQ) {
1469 					mrtstat.mrts_upq_ovflw++;
1470 				non_fatal:
1471 					free(rte, M_MRTABLE);
1472 					m_freem(mb0);
1473 					splx(s);
1474 					return 0;
1475 				}
1476 
1477 			/* Add this entry to the end of the queue */
1478 			*p = rte;
1479 		}
1480 
1481 		rte->next = NULL;
1482 		rte->m = mb0;
1483 		rte->ifp = ifp;
1484 #ifdef UPCALL_TIMING
1485 		rte->t = tp;
1486 #endif
1487 
1488 		splx(s);
1489 
1490 		return 0;
1491 	}
1492 }
1493 
1494 /*ARGSUSED*/
1495 static void
1496 expire_upcalls(void *v)
1497 {
1498 	int i;
1499 
1500 	/* XXX NOMPSAFE still need softnet_lock */
1501 	mutex_enter(softnet_lock);
1502 	KERNEL_LOCK(1, NULL);
1503 
1504 	for (i = 0; i < MFCTBLSIZ; i++) {
1505 		struct mfc *rt, *nrt;
1506 
1507 		if (nexpire[i] == 0)
1508 			continue;
1509 
1510 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1511 			nrt = LIST_NEXT(rt, mfc_hash);
1512 
1513 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1514 				continue;
1515 			nexpire[i]--;
1516 
1517 			/*
1518 			 * free the bw_meter entries
1519 			 */
1520 			while (rt->mfc_bw_meter != NULL) {
1521 				struct bw_meter *x = rt->mfc_bw_meter;
1522 
1523 				rt->mfc_bw_meter = x->bm_mfc_next;
1524 				kmem_intr_free(x, sizeof(*x));
1525 			}
1526 
1527 			++mrtstat.mrts_cache_cleanups;
1528 			if (mrtdebug & DEBUG_EXPIRE)
1529 				log(LOG_DEBUG,
1530 				    "expire_upcalls: expiring (%x %x)\n",
1531 				    ntohl(rt->mfc_origin.s_addr),
1532 				    ntohl(rt->mfc_mcastgrp.s_addr));
1533 
1534 			expire_mfc(rt);
1535 		}
1536 	}
1537 
1538 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1539 	    expire_upcalls, NULL);
1540 
1541 	KERNEL_UNLOCK_ONE(NULL);
1542 	mutex_exit(softnet_lock);
1543 }
1544 
1545 /*
1546  * Macro to send packet on vif.
1547  */
1548 #define MC_SEND(ip, vifp, m) do {					\
1549 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
1550 		encap_send((ip), (vifp), (m));				\
1551 	else								\
1552 		phyint_send((ip), (vifp), (m));				\
1553 } while (/*CONSTCOND*/ 0)
1554 
1555 /*
1556  * Packet forwarding routine once entry in the cache is made
1557  */
1558 static int
1559 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1560 {
1561 	struct ip *ip = mtod(m, struct ip *);
1562 	vifi_t vifi;
1563 	struct vif *vifp;
1564 	struct sockaddr_in sin;
1565 	const int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1566 
1567 	/*
1568 	 * Don't forward if it didn't arrive from the parent vif for its origin.
1569 	 */
1570 	vifi = rt->mfc_parent;
1571 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1572 		/* came in the wrong interface */
1573 		if (mrtdebug & DEBUG_FORWARD)
1574 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1575 			    ifp, vifi,
1576 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1577 		++mrtstat.mrts_wrong_if;
1578 		++rt->mfc_wrong_if;
1579 
1580 		/*
1581 		 * If we are doing PIM assert processing, send a message
1582 		 * to the routing daemon.
1583 		 *
1584 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1585 		 * can complete the SPT switch, regardless of the type
1586 		 * of the iif (broadcast media, GRE tunnel, etc).
1587 		 */
1588 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1589 			struct timeval now;
1590 			u_int32_t delta;
1591 
1592 #ifdef PIM
1593 			if (ifp == &multicast_register_if)
1594 				pimstat.pims_rcv_registers_wrongiif++;
1595 #endif
1596 
1597 			/* Get vifi for the incoming packet */
1598 			for (vifi = 0;
1599 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
1600 			     vifi++)
1601 			    ;
1602 			if (vifi >= numvifs) {
1603 				/* The iif is not found: ignore the packet. */
1604 				return 0;
1605 			}
1606 
1607 			if (rt->mfc_flags[vifi] &
1608 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1609 				/* WRONGVIF disabled: ignore the packet */
1610 				return 0;
1611 			}
1612 
1613 			microtime(&now);
1614 
1615 			TV_DELTA(rt->mfc_last_assert, now, delta);
1616 
1617 			if (delta > ASSERT_MSG_TIME) {
1618 				struct igmpmsg *im;
1619 				const int hlen = ip->ip_hl << 2;
1620 				struct mbuf *mm =
1621 				    m_copym(m, 0, hlen, M_DONTWAIT);
1622 
1623 				M_PULLUP(mm, hlen);
1624 				if (mm == NULL)
1625 					return ENOBUFS;
1626 
1627 				rt->mfc_last_assert = now;
1628 
1629 				im = mtod(mm, struct igmpmsg *);
1630 				im->im_msgtype	= IGMPMSG_WRONGVIF;
1631 				im->im_mbz	= 0;
1632 				im->im_vif	= vifi;
1633 
1634 				mrtstat.mrts_upcalls++;
1635 
1636 				sockaddr_in_init(&sin, &im->im_src, 0);
1637 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
1638 					log(LOG_WARNING,
1639 					    "ip_mforward: ip_mrouter socket queue full\n");
1640 					++mrtstat.mrts_upq_sockfull;
1641 					return ENOBUFS;
1642 				}
1643 			}
1644 		}
1645 		return 0;
1646 	}
1647 
1648 	/* If I sourced this packet, it counts as output, else it was input. */
1649 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1650 		viftable[vifi].v_pkt_out++;
1651 		viftable[vifi].v_bytes_out += plen;
1652 	} else {
1653 		viftable[vifi].v_pkt_in++;
1654 		viftable[vifi].v_bytes_in += plen;
1655 	}
1656 	rt->mfc_pkt_cnt++;
1657 	rt->mfc_byte_cnt += plen;
1658 
1659 	/*
1660 	 * For each vif, decide if a copy of the packet should be forwarded.
1661 	 * Forward if:
1662 	 *  - the ttl exceeds the vif's threshold
1663 	 *  - there are group members downstream on interface
1664 	 */
1665 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) {
1666 		if ((rt->mfc_ttls[vifi] > 0) &&
1667 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
1668 			vifp->v_pkt_out++;
1669 			vifp->v_bytes_out += plen;
1670 #ifdef PIM
1671 			if (vifp->v_flags & VIFF_REGISTER)
1672 				pim_register_send(ip, vifp, m, rt);
1673 			else
1674 #endif
1675 			MC_SEND(ip, vifp, m);
1676 		}
1677 	}
1678 
1679 	/*
1680 	 * Perform upcall-related bw measuring.
1681 	 */
1682 	if (rt->mfc_bw_meter != NULL) {
1683 		struct bw_meter *x;
1684 		struct timeval now;
1685 
1686 		microtime(&now);
1687 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1688 			bw_meter_receive_packet(x, plen, &now);
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 static void
1695 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1696 {
1697 	struct mbuf *mb_copy;
1698 	const int hlen = ip->ip_hl << 2;
1699 
1700 	/*
1701 	 * Make a new reference to the packet; make sure that
1702 	 * the IP header is actually copied, not just referenced,
1703 	 * so that ip_output() only scribbles on the copy.
1704 	 */
1705 	mb_copy = m_copypacket(m, M_DONTWAIT);
1706 	M_PULLUP(mb_copy, hlen);
1707 	if (mb_copy == NULL)
1708 		return;
1709 
1710 	if (vifp->v_rate_limit <= 0)
1711 		tbf_send_packet(vifp, mb_copy);
1712 	else
1713 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1714 		    ntohs(ip->ip_len));
1715 }
1716 
1717 static void
1718 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1719 {
1720 	struct mbuf *mb_copy;
1721 	struct ip *ip_copy;
1722 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1723 
1724 	/* Take care of delayed checksums */
1725 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1726 		in_delayed_cksum(m);
1727 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1728 	}
1729 
1730 	/*
1731 	 * copy the old packet & pullup its IP header into the
1732 	 * new mbuf so we can modify it.  Try to fill the new
1733 	 * mbuf since if we don't the ethernet driver will.
1734 	 */
1735 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1736 	if (mb_copy == NULL)
1737 		return;
1738 	mb_copy->m_data += max_linkhdr;
1739 	mb_copy->m_pkthdr.len = len;
1740 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
1741 
1742 	if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1743 		m_freem(mb_copy);
1744 		return;
1745 	}
1746 	i = MHLEN - max_linkhdr;
1747 	if (i > len)
1748 		i = len;
1749 	mb_copy = m_pullup(mb_copy, i);
1750 	if (mb_copy == NULL)
1751 		return;
1752 
1753 	/*
1754 	 * fill in the encapsulating IP header.
1755 	 */
1756 	ip_copy = mtod(mb_copy, struct ip *);
1757 	*ip_copy = multicast_encap_iphdr;
1758 	if (len < IP_MINFRAGSIZE)
1759 		ip_copy->ip_id = 0;
1760 	else
1761 		ip_copy->ip_id = ip_newid(NULL);
1762 	ip_copy->ip_len = htons(len);
1763 	ip_copy->ip_src = vifp->v_lcl_addr;
1764 	ip_copy->ip_dst = vifp->v_rmt_addr;
1765 
1766 	/*
1767 	 * turn the encapsulated IP header back into a valid one.
1768 	 */
1769 	ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
1770 	--ip->ip_ttl;
1771 	ip->ip_sum = 0;
1772 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
1773 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1774 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1775 
1776 	if (vifp->v_rate_limit <= 0)
1777 		tbf_send_packet(vifp, mb_copy);
1778 	else
1779 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1780 }
1781 
1782 /*
1783  * De-encapsulate a packet and feed it back through ip input.
1784  */
1785 static void
1786 vif_input(struct mbuf *m, int off, int proto, void *eparg)
1787 {
1788 	struct vif *vifp = eparg;
1789 
1790 	KASSERT(vifp != NULL);
1791 
1792 	if (proto != ENCAP_PROTO) {
1793 		m_freem(m);
1794 		mrtstat.mrts_bad_tunnel++;
1795 		return;
1796 	}
1797 
1798 	m_adj(m, off);
1799 	m_set_rcvif(m, vifp->v_ifp);
1800 
1801 	if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
1802 		m_freem(m);
1803 	}
1804 }
1805 
1806 /*
1807  * Check if the packet should be received on the vif denoted by arg.
1808  * (The encap selection code will call this once per vif since each is
1809  * registered separately.)
1810  */
1811 static int
1812 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
1813 {
1814 	struct vif *vifp;
1815 	struct ip ip;
1816 
1817 #ifdef DIAGNOSTIC
1818 	if (!arg || proto != IPPROTO_IPV4)
1819 		panic("unexpected arg in vif_encapcheck");
1820 #endif
1821 
1822 	/*
1823 	 * Accept the packet only if the inner heaader is multicast
1824 	 * and the outer header matches a tunnel-mode vif.  Order
1825 	 * checks in the hope that common non-matching packets will be
1826 	 * rejected quickly.  Assume that unicast IPv4 traffic in a
1827 	 * parallel tunnel (e.g. gif(4)) is unlikely.
1828 	 */
1829 
1830 	/* Obtain the outer IP header and the vif pointer. */
1831 	m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
1832 	vifp = (struct vif *)arg;
1833 
1834 	/*
1835 	 * The outer source must match the vif's remote peer address.
1836 	 * For a multicast router with several tunnels, this is the
1837 	 * only check that will fail on packets in other tunnels,
1838 	 * assuming the local address is the same.
1839 	 */
1840 	if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
1841 		return 0;
1842 
1843 	/* The outer destination must match the vif's local address. */
1844 	if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
1845 		return 0;
1846 
1847 	/* The vif must be of tunnel type. */
1848 	if ((vifp->v_flags & VIFF_TUNNEL) == 0)
1849 		return 0;
1850 
1851 	/* Check that the inner destination is multicast. */
1852 	m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
1853 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
1854 		return 0;
1855 
1856 	/*
1857 	 * We have checked that both the outer src and dst addresses
1858 	 * match the vif, and that the inner destination is multicast
1859 	 * (224/5).  By claiming more than 64, we intend to
1860 	 * preferentially take packets that also match a parallel
1861 	 * gif(4).
1862 	 */
1863 	return 32 + 32 + 5;
1864 }
1865 
1866 /*
1867  * Token bucket filter module
1868  */
1869 static void
1870 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
1871 {
1872 
1873 	if (len > MAX_BKT_SIZE) {
1874 		/* drop if packet is too large */
1875 		mrtstat.mrts_pkt2large++;
1876 		m_freem(m);
1877 		return;
1878 	}
1879 
1880 	tbf_update_tokens(vifp);
1881 
1882 	/*
1883 	 * If there are enough tokens, and the queue is empty, send this packet
1884 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
1885 	 */
1886 	if (vifp->tbf_q_len == 0) {
1887 		if (len <= vifp->tbf_n_tok) {
1888 			vifp->tbf_n_tok -= len;
1889 			tbf_send_packet(vifp, m);
1890 		} else {
1891 			/* queue packet and timeout till later */
1892 			tbf_queue(vifp, m);
1893 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1894 			    tbf_reprocess_q, vifp);
1895 		}
1896 	} else {
1897 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
1898 		    !tbf_dq_sel(vifp, ip)) {
1899 			/* queue full, and couldn't make room */
1900 			mrtstat.mrts_q_overflow++;
1901 			m_freem(m);
1902 		} else {
1903 			/* queue length low enough, or made room */
1904 			tbf_queue(vifp, m);
1905 			tbf_process_q(vifp);
1906 		}
1907 	}
1908 }
1909 
1910 /*
1911  * adds a packet to the queue at the interface
1912  */
1913 static void
1914 tbf_queue(struct vif *vifp, struct mbuf *m)
1915 {
1916 	int s = splsoftnet();
1917 
1918 	/* insert at tail */
1919 	*vifp->tbf_t = m;
1920 	vifp->tbf_t = &m->m_nextpkt;
1921 	vifp->tbf_q_len++;
1922 
1923 	splx(s);
1924 }
1925 
1926 /*
1927  * processes the queue at the interface
1928  */
1929 static void
1930 tbf_process_q(struct vif *vifp)
1931 {
1932 	struct mbuf *m;
1933 	int len;
1934 	int s = splsoftnet();
1935 
1936 	/*
1937 	 * Loop through the queue at the interface and send as many packets
1938 	 * as possible.
1939 	 */
1940 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
1941 		len = ntohs(mtod(m, struct ip *)->ip_len);
1942 
1943 		/* determine if the packet can be sent */
1944 		if (len <= vifp->tbf_n_tok) {
1945 			/* if so,
1946 			 * reduce no of tokens, dequeue the packet,
1947 			 * send the packet.
1948 			 */
1949 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
1950 				vifp->tbf_t = &vifp->tbf_q;
1951 			--vifp->tbf_q_len;
1952 
1953 			m->m_nextpkt = NULL;
1954 			vifp->tbf_n_tok -= len;
1955 			tbf_send_packet(vifp, m);
1956 		} else
1957 			break;
1958 	}
1959 	splx(s);
1960 }
1961 
1962 static void
1963 tbf_reprocess_q(void *arg)
1964 {
1965 	struct vif *vifp = arg;
1966 
1967 	if (ip_mrouter == NULL)
1968 		return;
1969 
1970 	tbf_update_tokens(vifp);
1971 	tbf_process_q(vifp);
1972 
1973 	if (vifp->tbf_q_len != 0)
1974 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1975 		    tbf_reprocess_q, vifp);
1976 }
1977 
1978 /* function that will selectively discard a member of the queue
1979  * based on the precedence value and the priority
1980  */
1981 static int
1982 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1983 {
1984 	u_int p;
1985 	struct mbuf **mp, *m;
1986 	int s = splsoftnet();
1987 
1988 	p = priority(vifp, ip);
1989 
1990 	for (mp = &vifp->tbf_q, m = *mp;
1991 	    m != NULL;
1992 	    mp = &m->m_nextpkt, m = *mp) {
1993 		if (p > priority(vifp, mtod(m, struct ip *))) {
1994 			if ((*mp = m->m_nextpkt) == NULL)
1995 				vifp->tbf_t = mp;
1996 			--vifp->tbf_q_len;
1997 
1998 			m_freem(m);
1999 			mrtstat.mrts_drop_sel++;
2000 			splx(s);
2001 			return 1;
2002 		}
2003 	}
2004 	splx(s);
2005 	return 0;
2006 }
2007 
2008 static void
2009 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2010 {
2011 	int error;
2012 	int s = splsoftnet();
2013 
2014 	if (vifp->v_flags & VIFF_TUNNEL) {
2015 		/* If tunnel options */
2016 		ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2017 	} else {
2018 		/* if physical interface option, extract the options and then send */
2019 		struct ip_moptions imo;
2020 
2021 		imo.imo_multicast_if_index = if_get_index(vifp->v_ifp);
2022 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2023 		imo.imo_multicast_loop = 1;
2024 
2025 		error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
2026 		    &imo, NULL);
2027 
2028 		if (mrtdebug & DEBUG_XMIT)
2029 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2030 			    (long)(vifp - viftable), error);
2031 	}
2032 	splx(s);
2033 }
2034 
2035 /* determine the current time and then
2036  * the elapsed time (between the last time and time now)
2037  * in milliseconds & update the no. of tokens in the bucket
2038  */
2039 static void
2040 tbf_update_tokens(struct vif *vifp)
2041 {
2042 	struct timeval tp;
2043 	u_int32_t tm;
2044 	int s = splsoftnet();
2045 
2046 	microtime(&tp);
2047 
2048 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2049 
2050 	/*
2051 	 * This formula is actually
2052 	 * "time in seconds" * "bytes/second".
2053 	 *
2054 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2055 	 *
2056 	 * The (1000/1024) was introduced in add_vif to optimize
2057 	 * this divide into a shift.
2058 	 */
2059 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2060 	vifp->tbf_last_pkt_t = tp;
2061 
2062 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2063 		vifp->tbf_n_tok = MAX_BKT_SIZE;
2064 
2065 	splx(s);
2066 }
2067 
2068 static int
2069 priority(struct vif *vifp, struct ip *ip)
2070 {
2071 	int prio = 50;	/* the lowest priority -- default case */
2072 
2073 	/* temporary hack; may add general packet classifier some day */
2074 
2075 	/*
2076 	 * XXX XXX: We're reading the UDP header, but we didn't ensure
2077 	 * it was present in the packet.
2078 	 */
2079 
2080 	/*
2081 	 * The UDP port space is divided up into four priority ranges:
2082 	 * [0, 16384)     : unclassified - lowest priority
2083 	 * [16384, 32768) : audio - highest priority
2084 	 * [32768, 49152) : whiteboard - medium priority
2085 	 * [49152, 65536) : video - low priority
2086 	 */
2087 	if (ip->ip_p == IPPROTO_UDP) {
2088 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2089 
2090 		switch (ntohs(udp->uh_dport) & 0xc000) {
2091 		case 0x4000:
2092 			prio = 70;
2093 			break;
2094 		case 0x8000:
2095 			prio = 60;
2096 			break;
2097 		case 0xc000:
2098 			prio = 55;
2099 			break;
2100 		}
2101 
2102 		if (tbfdebug > 1)
2103 			log(LOG_DEBUG, "port %x prio %d\n",
2104 			    ntohs(udp->uh_dport), prio);
2105 	}
2106 
2107 	return prio;
2108 }
2109 
2110 /*
2111  * Code for bandwidth monitors
2112  */
2113 
2114 /*
2115  * Define common interface for timeval-related methods
2116  */
2117 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2118 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2119 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2120 
2121 static uint32_t
2122 compute_bw_meter_flags(struct bw_upcall *req)
2123 {
2124 	uint32_t flags = 0;
2125 
2126 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2127 		flags |= BW_METER_UNIT_PACKETS;
2128 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2129 		flags |= BW_METER_UNIT_BYTES;
2130 	if (req->bu_flags & BW_UPCALL_GEQ)
2131 		flags |= BW_METER_GEQ;
2132 	if (req->bu_flags & BW_UPCALL_LEQ)
2133 		flags |= BW_METER_LEQ;
2134 
2135 	return flags;
2136 }
2137 
2138 /*
2139  * Add a bw_meter entry
2140  */
2141 static int
2142 add_bw_upcall(struct bw_upcall *req)
2143 {
2144 	int s;
2145 	struct mfc *mfc;
2146 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2147 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2148 	struct timeval now;
2149 	struct bw_meter *x;
2150 	uint32_t flags;
2151 
2152 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2153 		return EOPNOTSUPP;
2154 
2155 	/* Test if the flags are valid */
2156 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2157 		return EINVAL;
2158 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2159 		return EINVAL;
2160 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2161 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2162 		return EINVAL;
2163 
2164 	/* Test if the threshold time interval is valid */
2165 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2166 		return EINVAL;
2167 
2168 	flags = compute_bw_meter_flags(req);
2169 
2170 	/*
2171 	 * Find if we have already same bw_meter entry
2172 	 */
2173 	s = splsoftnet();
2174 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2175 	if (mfc == NULL) {
2176 		splx(s);
2177 		return EADDRNOTAVAIL;
2178 	}
2179 	for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2180 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2181 		    &req->bu_threshold.b_time, ==)) &&
2182 		    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2183 		    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2184 		    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2185 			splx(s);
2186 			return 0;		/* XXX Already installed */
2187 		}
2188 	}
2189 
2190 	/* Allocate the new bw_meter entry */
2191 	x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
2192 	if (x == NULL) {
2193 		splx(s);
2194 		return ENOBUFS;
2195 	}
2196 
2197 	/* Set the new bw_meter entry */
2198 	x->bm_threshold.b_time = req->bu_threshold.b_time;
2199 	microtime(&now);
2200 	x->bm_start_time = now;
2201 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2202 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2203 	x->bm_measured.b_packets = 0;
2204 	x->bm_measured.b_bytes = 0;
2205 	x->bm_flags = flags;
2206 	x->bm_time_next = NULL;
2207 	x->bm_time_hash = BW_METER_BUCKETS;
2208 
2209 	/* Add the new bw_meter entry to the front of entries for this MFC */
2210 	x->bm_mfc = mfc;
2211 	x->bm_mfc_next = mfc->mfc_bw_meter;
2212 	mfc->mfc_bw_meter = x;
2213 	schedule_bw_meter(x, &now);
2214 	splx(s);
2215 
2216 	return 0;
2217 }
2218 
2219 static void
2220 free_bw_list(struct bw_meter *list)
2221 {
2222 	while (list != NULL) {
2223 		struct bw_meter *x = list;
2224 
2225 		list = list->bm_mfc_next;
2226 		unschedule_bw_meter(x);
2227 		kmem_intr_free(x, sizeof(*x));
2228 	}
2229 }
2230 
2231 /*
2232  * Delete one or multiple bw_meter entries
2233  */
2234 static int
2235 del_bw_upcall(struct bw_upcall *req)
2236 {
2237 	int s;
2238 	struct mfc *mfc;
2239 	struct bw_meter *x;
2240 
2241 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2242 		return EOPNOTSUPP;
2243 
2244 	s = splsoftnet();
2245 	/* Find the corresponding MFC entry */
2246 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2247 	if (mfc == NULL) {
2248 		splx(s);
2249 		return EADDRNOTAVAIL;
2250 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2251 		/*
2252 		 * Delete all bw_meter entries for this mfc
2253 		 */
2254 		struct bw_meter *list;
2255 
2256 		list = mfc->mfc_bw_meter;
2257 		mfc->mfc_bw_meter = NULL;
2258 		free_bw_list(list);
2259 		splx(s);
2260 		return 0;
2261 	} else {			/* Delete a single bw_meter entry */
2262 		struct bw_meter *prev;
2263 		uint32_t flags = 0;
2264 
2265 		flags = compute_bw_meter_flags(req);
2266 
2267 		/* Find the bw_meter entry to delete */
2268 		for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2269 		     prev = x, x = x->bm_mfc_next) {
2270 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2271 			    &req->bu_threshold.b_time, ==)) &&
2272 			    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2273 			    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2274 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2275 				break;
2276 		}
2277 		if (x != NULL) { /* Delete entry from the list for this MFC */
2278 			if (prev != NULL)
2279 				prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
2280 			else
2281 				x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2282 
2283 			unschedule_bw_meter(x);
2284 			splx(s);
2285 			/* Free the bw_meter entry */
2286 			kmem_intr_free(x, sizeof(*x));
2287 			return 0;
2288 		} else {
2289 			splx(s);
2290 			return EINVAL;
2291 		}
2292 	}
2293 	/* NOTREACHED */
2294 }
2295 
2296 /*
2297  * Perform bandwidth measurement processing that may result in an upcall
2298  */
2299 static void
2300 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2301 {
2302 	struct timeval delta;
2303 
2304 	delta = *nowp;
2305 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2306 
2307 	if (x->bm_flags & BW_METER_GEQ) {
2308 		/*
2309 		 * Processing for ">=" type of bw_meter entry
2310 		 */
2311 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2312 			/* Reset the bw_meter entry */
2313 			x->bm_start_time = *nowp;
2314 			x->bm_measured.b_packets = 0;
2315 			x->bm_measured.b_bytes = 0;
2316 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2317 		}
2318 
2319 		/* Record that a packet is received */
2320 		x->bm_measured.b_packets++;
2321 		x->bm_measured.b_bytes += plen;
2322 
2323 		/*
2324 		 * Test if we should deliver an upcall
2325 		 */
2326 		if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2327 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2328 				 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2329 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
2330 				 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2331 				/* Prepare an upcall for delivery */
2332 				bw_meter_prepare_upcall(x, nowp);
2333 				x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2334 			}
2335 		}
2336 	} else if (x->bm_flags & BW_METER_LEQ) {
2337 		/*
2338 		 * Processing for "<=" type of bw_meter entry
2339 		 */
2340 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2341 			/*
2342 			 * We are behind time with the multicast forwarding table
2343 			 * scanning for "<=" type of bw_meter entries, so test now
2344 			 * if we should deliver an upcall.
2345 			 */
2346 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2347 				 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2348 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
2349 				 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2350 				/* Prepare an upcall for delivery */
2351 				bw_meter_prepare_upcall(x, nowp);
2352 			}
2353 			/* Reschedule the bw_meter entry */
2354 			unschedule_bw_meter(x);
2355 			schedule_bw_meter(x, nowp);
2356 		}
2357 
2358 		/* Record that a packet is received */
2359 		x->bm_measured.b_packets++;
2360 		x->bm_measured.b_bytes += plen;
2361 
2362 		/*
2363 		 * Test if we should restart the measuring interval
2364 		 */
2365 		if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2366 		     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2367 		    (x->bm_flags & BW_METER_UNIT_BYTES &&
2368 		     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2369 			/* Don't restart the measuring interval */
2370 		} else {
2371 			/* Do restart the measuring interval */
2372 			/*
2373 			 * XXX: note that we don't unschedule and schedule, because this
2374 			 * might be too much overhead per packet. Instead, when we process
2375 			 * all entries for a given timer hash bin, we check whether it is
2376 			 * really a timeout. If not, we reschedule at that time.
2377 			 */
2378 			x->bm_start_time = *nowp;
2379 			x->bm_measured.b_packets = 0;
2380 			x->bm_measured.b_bytes = 0;
2381 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2382 		}
2383 	}
2384 }
2385 
2386 /*
2387  * Prepare a bandwidth-related upcall
2388  */
2389 static void
2390 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2391 {
2392 	struct timeval delta;
2393 	struct bw_upcall *u;
2394 
2395 	/*
2396 	 * Compute the measured time interval
2397 	 */
2398 	delta = *nowp;
2399 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2400 
2401 	/*
2402 	 * If there are too many pending upcalls, deliver them now
2403 	 */
2404 	if (bw_upcalls_n >= BW_UPCALLS_MAX)
2405 		bw_upcalls_send();
2406 
2407 	/*
2408 	 * Set the bw_upcall entry
2409 	 */
2410 	u = &bw_upcalls[bw_upcalls_n++];
2411 	u->bu_src = x->bm_mfc->mfc_origin;
2412 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2413 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2414 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2415 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2416 	u->bu_measured.b_time = delta;
2417 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2418 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2419 	u->bu_flags = 0;
2420 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2421 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2422 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2423 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2424 	if (x->bm_flags & BW_METER_GEQ)
2425 		u->bu_flags |= BW_UPCALL_GEQ;
2426 	if (x->bm_flags & BW_METER_LEQ)
2427 		u->bu_flags |= BW_UPCALL_LEQ;
2428 }
2429 
2430 /*
2431  * Send the pending bandwidth-related upcalls
2432  */
2433 static void
2434 bw_upcalls_send(void)
2435 {
2436 	struct mbuf *m;
2437 	int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2438 	struct sockaddr_in k_igmpsrc = {
2439 		.sin_len = sizeof(k_igmpsrc),
2440 		.sin_family = AF_INET,
2441 	};
2442 	static struct igmpmsg igmpmsg = {
2443 		0,		/* unused1 */
2444 		0,		/* unused2 */
2445 		IGMPMSG_BW_UPCALL,/* im_msgtype */
2446 		0,		/* im_mbz */
2447 		0,		/* im_vif */
2448 		0,		/* unused3 */
2449 		{ 0 },		/* im_src */
2450 		{ 0 }		/* im_dst */
2451 	};
2452 
2453 	if (bw_upcalls_n == 0)
2454 		return;			/* No pending upcalls */
2455 
2456 	bw_upcalls_n = 0;
2457 
2458 	/*
2459 	 * Allocate a new mbuf, initialize it with the header and
2460 	 * the payload for the pending calls.
2461 	 */
2462 	MGETHDR(m, M_DONTWAIT, MT_HEADER);
2463 	if (m == NULL) {
2464 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2465 		return;
2466 	}
2467 
2468 	m->m_len = m->m_pkthdr.len = 0;
2469 	m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
2470 	m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
2471 
2472 	/*
2473 	 * Send the upcalls
2474 	 * XXX do we need to set the address in k_igmpsrc ?
2475 	 */
2476 	mrtstat.mrts_upcalls++;
2477 	if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2478 		log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2479 		++mrtstat.mrts_upq_sockfull;
2480 	}
2481 }
2482 
2483 /*
2484  * Compute the timeout hash value for the bw_meter entries
2485  */
2486 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
2487     do {								\
2488 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2489 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time);	\
2490 	(hash) = next_timeval.tv_sec;					\
2491 	if (next_timeval.tv_usec)					\
2492 		(hash)++; /* XXX: make sure we don't timeout early */	\
2493 	(hash) %= BW_METER_BUCKETS;					\
2494     } while (/*CONSTCOND*/ 0)
2495 
2496 /*
2497  * Schedule a timer to process periodically bw_meter entry of type "<="
2498  * by linking the entry in the proper hash bucket.
2499  */
2500 static void
2501 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2502 {
2503 	int time_hash;
2504 
2505 	if (!(x->bm_flags & BW_METER_LEQ))
2506 		return;		/* XXX: we schedule timers only for "<=" entries */
2507 
2508 	/*
2509 	 * Reset the bw_meter entry
2510 	 */
2511 	x->bm_start_time = *nowp;
2512 	x->bm_measured.b_packets = 0;
2513 	x->bm_measured.b_bytes = 0;
2514 	x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2515 
2516 	/*
2517 	 * Compute the timeout hash value and insert the entry
2518 	 */
2519 	BW_METER_TIMEHASH(x, time_hash);
2520 	x->bm_time_next = bw_meter_timers[time_hash];
2521 	bw_meter_timers[time_hash] = x;
2522 	x->bm_time_hash = time_hash;
2523 }
2524 
2525 /*
2526  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2527  * by removing the entry from the proper hash bucket.
2528  */
2529 static void
2530 unschedule_bw_meter(struct bw_meter *x)
2531 {
2532 	int time_hash;
2533 	struct bw_meter *prev, *tmp;
2534 
2535 	if (!(x->bm_flags & BW_METER_LEQ))
2536 		return;		/* XXX: we schedule timers only for "<=" entries */
2537 
2538 	/*
2539 	 * Compute the timeout hash value and delete the entry
2540 	 */
2541 	time_hash = x->bm_time_hash;
2542 	if (time_hash >= BW_METER_BUCKETS)
2543 		return;		/* Entry was not scheduled */
2544 
2545 	for (prev = NULL, tmp = bw_meter_timers[time_hash];
2546 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2547 		if (tmp == x)
2548 			break;
2549 
2550 	if (tmp == NULL)
2551 		panic("unschedule_bw_meter: bw_meter entry not found");
2552 
2553 	if (prev != NULL)
2554 		prev->bm_time_next = x->bm_time_next;
2555 	else
2556 		bw_meter_timers[time_hash] = x->bm_time_next;
2557 
2558 	x->bm_time_next = NULL;
2559 	x->bm_time_hash = BW_METER_BUCKETS;
2560 }
2561 
2562 /*
2563  * Process all "<=" type of bw_meter that should be processed now,
2564  * and for each entry prepare an upcall if necessary. Each processed
2565  * entry is rescheduled again for the (periodic) processing.
2566  *
2567  * This is run periodically (once per second normally). On each round,
2568  * all the potentially matching entries are in the hash slot that we are
2569  * looking at.
2570  */
2571 static void
2572 bw_meter_process(void)
2573 {
2574 	int s;
2575 	static uint32_t last_tv_sec;	/* last time we processed this */
2576 
2577 	uint32_t loops;
2578 	int i;
2579 	struct timeval now, process_endtime;
2580 
2581 	microtime(&now);
2582 	if (last_tv_sec == now.tv_sec)
2583 		return;		/* nothing to do */
2584 
2585 	loops = now.tv_sec - last_tv_sec;
2586 	last_tv_sec = now.tv_sec;
2587 	if (loops > BW_METER_BUCKETS)
2588 		loops = BW_METER_BUCKETS;
2589 
2590 	s = splsoftnet();
2591 	/*
2592 	 * Process all bins of bw_meter entries from the one after the last
2593 	 * processed to the current one. On entry, i points to the last bucket
2594 	 * visited, so we need to increment i at the beginning of the loop.
2595 	 */
2596 	for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2597 		struct bw_meter *x, *tmp_list;
2598 
2599 		if (++i >= BW_METER_BUCKETS)
2600 			i = 0;
2601 
2602 		/* Disconnect the list of bw_meter entries from the bin */
2603 		tmp_list = bw_meter_timers[i];
2604 		bw_meter_timers[i] = NULL;
2605 
2606 		/* Process the list of bw_meter entries */
2607 		while (tmp_list != NULL) {
2608 			x = tmp_list;
2609 			tmp_list = tmp_list->bm_time_next;
2610 
2611 			/* Test if the time interval is over */
2612 			process_endtime = x->bm_start_time;
2613 			BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2614 			if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2615 				/* Not yet: reschedule, but don't reset */
2616 				int time_hash;
2617 
2618 				BW_METER_TIMEHASH(x, time_hash);
2619 				if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2620 					/*
2621 					 * XXX: somehow the bin processing is a bit ahead of time.
2622 					 * Put the entry in the next bin.
2623 					 */
2624 					if (++time_hash >= BW_METER_BUCKETS)
2625 						time_hash = 0;
2626 				}
2627 				x->bm_time_next = bw_meter_timers[time_hash];
2628 				bw_meter_timers[time_hash] = x;
2629 				x->bm_time_hash = time_hash;
2630 
2631 				continue;
2632 			}
2633 
2634 			/*
2635 			 * Test if we should deliver an upcall
2636 			 */
2637 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2638 			    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2639 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2640 			    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2641 				/* Prepare an upcall for delivery */
2642 				bw_meter_prepare_upcall(x, &now);
2643 			}
2644 
2645 			/*
2646 			  * Reschedule for next processing
2647 			 */
2648 			schedule_bw_meter(x, &now);
2649 		}
2650 	}
2651 
2652 	/* Send all upcalls that are pending delivery */
2653 	bw_upcalls_send();
2654 
2655 	splx(s);
2656 }
2657 
2658 /*
2659  * A periodic function for sending all upcalls that are pending delivery
2660  */
2661 static void
2662 expire_bw_upcalls_send(void *unused)
2663 {
2664 	int s;
2665 
2666 	s = splsoftnet();
2667 	bw_upcalls_send();
2668 	splx(s);
2669 
2670 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2671 	    expire_bw_upcalls_send, NULL);
2672 }
2673 
2674 /*
2675  * A periodic function for periodic scanning of the multicast forwarding
2676  * table for processing all "<=" bw_meter entries.
2677  */
2678 static void
2679 expire_bw_meter_process(void *unused)
2680 {
2681 	if (mrt_api_config & MRT_MFC_BW_UPCALL)
2682 		bw_meter_process();
2683 
2684 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
2685 	    expire_bw_meter_process, NULL);
2686 }
2687 
2688 /*
2689  * End of bandwidth monitoring code
2690  */
2691 
2692 #ifdef PIM
2693 /*
2694  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2695  */
2696 static int
2697 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2698     struct mfc *rt)
2699 {
2700 	struct mbuf *mb_copy, *mm;
2701 
2702 	if (mrtdebug & DEBUG_PIM)
2703 		log(LOG_DEBUG, "pim_register_send: \n");
2704 
2705 	mb_copy = pim_register_prepare(ip, m);
2706 	if (mb_copy == NULL)
2707 		return ENOBUFS;
2708 
2709 	/*
2710 	 * Send all the fragments. Note that the mbuf for each fragment
2711 	 * is freed by the sending machinery.
2712 	 */
2713 	for (mm = mb_copy; mm; mm = mb_copy) {
2714 		mb_copy = mm->m_nextpkt;
2715 		mm->m_nextpkt = NULL;
2716 		mm = m_pullup(mm, sizeof(struct ip));
2717 		if (mm != NULL) {
2718 			ip = mtod(mm, struct ip *);
2719 			if ((mrt_api_config & MRT_MFC_RP) &&
2720 			    !in_nullhost(rt->mfc_rp)) {
2721 				pim_register_send_rp(ip, vifp, mm, rt);
2722 			} else {
2723 				pim_register_send_upcall(ip, vifp, mm, rt);
2724 			}
2725 		}
2726 	}
2727 
2728 	return 0;
2729 }
2730 
2731 /*
2732  * Return a copy of the data packet that is ready for PIM Register
2733  * encapsulation.
2734  * XXX: Note that in the returned copy the IP header is a valid one.
2735  */
2736 static struct mbuf *
2737 pim_register_prepare(struct ip *ip, struct mbuf *m)
2738 {
2739 	struct mbuf *mb_copy = NULL;
2740 	int mtu;
2741 
2742 	/* Take care of delayed checksums */
2743 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2744 		in_delayed_cksum(m);
2745 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2746 	}
2747 
2748 	/*
2749 	 * Copy the old packet & pullup its IP header into the
2750 	 * new mbuf so we can modify it.
2751 	 */
2752 	mb_copy = m_copypacket(m, M_DONTWAIT);
2753 	if (mb_copy == NULL)
2754 		return NULL;
2755 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2756 	if (mb_copy == NULL)
2757 		return NULL;
2758 
2759 	/* take care of the TTL */
2760 	ip = mtod(mb_copy, struct ip *);
2761 	--ip->ip_ttl;
2762 
2763 	/* Compute the MTU after the PIM Register encapsulation */
2764 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2765 
2766 	if (ntohs(ip->ip_len) <= mtu) {
2767 		/* Turn the IP header into a valid one */
2768 		ip->ip_sum = 0;
2769 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2770 	} else {
2771 		/* Fragment the packet */
2772 		if (ip_fragment(mb_copy, NULL, mtu) != 0) {
2773 			/* XXX: mb_copy was freed by ip_fragment() */
2774 			return NULL;
2775 		}
2776 	}
2777 	return mb_copy;
2778 }
2779 
2780 /*
2781  * Send an upcall with the data packet to the user-level process.
2782  */
2783 static int
2784 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2785     struct mbuf *mb_copy, struct mfc *rt)
2786 {
2787 	struct mbuf *mb_first;
2788 	int len = ntohs(ip->ip_len);
2789 	struct igmpmsg *im;
2790 	struct sockaddr_in k_igmpsrc = {
2791 		.sin_len = sizeof(k_igmpsrc),
2792 		.sin_family = AF_INET,
2793 	};
2794 
2795 	/*
2796 	 * Add a new mbuf with an upcall header
2797 	 */
2798 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2799 	if (mb_first == NULL) {
2800 		m_freem(mb_copy);
2801 		return ENOBUFS;
2802 	}
2803 	mb_first->m_data += max_linkhdr;
2804 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2805 	mb_first->m_len = sizeof(struct igmpmsg);
2806 	mb_first->m_next = mb_copy;
2807 
2808 	/* Send message to routing daemon */
2809 	im = mtod(mb_first, struct igmpmsg *);
2810 	im->im_msgtype	= IGMPMSG_WHOLEPKT;
2811 	im->im_mbz	= 0;
2812 	im->im_vif	= vifp - viftable;
2813 	im->im_src	= ip->ip_src;
2814 	im->im_dst	= ip->ip_dst;
2815 
2816 	k_igmpsrc.sin_addr	= ip->ip_src;
2817 
2818 	mrtstat.mrts_upcalls++;
2819 
2820 	if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2821 		if (mrtdebug & DEBUG_PIM)
2822 			log(LOG_WARNING,
2823 			    "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
2824 		++mrtstat.mrts_upq_sockfull;
2825 		return ENOBUFS;
2826 	}
2827 
2828 	/* Keep statistics */
2829 	pimstat.pims_snd_registers_msgs++;
2830 	pimstat.pims_snd_registers_bytes += len;
2831 
2832 	return 0;
2833 }
2834 
2835 /*
2836  * Encapsulate the data packet in PIM Register message and send it to the RP.
2837  */
2838 static int
2839 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2840     struct mbuf *mb_copy, struct mfc *rt)
2841 {
2842 	struct mbuf *mb_first;
2843 	struct ip *ip_outer;
2844 	struct pim_encap_pimhdr *pimhdr;
2845 	int len = ntohs(ip->ip_len);
2846 	vifi_t vifi = rt->mfc_parent;
2847 
2848 	if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2849 		m_freem(mb_copy);
2850 		return EADDRNOTAVAIL;		/* The iif vif is invalid */
2851 	}
2852 
2853 	/*
2854 	 * Add a new mbuf with the encapsulating header
2855 	 */
2856 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2857 	if (mb_first == NULL) {
2858 		m_freem(mb_copy);
2859 		return ENOBUFS;
2860 	}
2861 	mb_first->m_data += max_linkhdr;
2862 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2863 	mb_first->m_next = mb_copy;
2864 
2865 	mb_first->m_pkthdr.len = len + mb_first->m_len;
2866 
2867 	/*
2868 	 * Fill in the encapsulating IP and PIM header
2869 	 */
2870 	ip_outer = mtod(mb_first, struct ip *);
2871 	*ip_outer = pim_encap_iphdr;
2872 	if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
2873 		ip_outer->ip_id = 0;
2874 	else
2875 		ip_outer->ip_id = ip_newid(NULL);
2876 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2877 	    sizeof(pim_encap_pimhdr));
2878 	ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2879 	ip_outer->ip_dst = rt->mfc_rp;
2880 	/*
2881 	 * Copy the inner header TOS to the outer header, and take care of the
2882 	 * IP_DF bit.
2883 	 */
2884 	ip_outer->ip_tos = ip->ip_tos;
2885 	if (ntohs(ip->ip_off) & IP_DF)
2886 		ip_outer->ip_off |= htons(IP_DF);
2887 	pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
2888 	    + sizeof(pim_encap_iphdr));
2889 	*pimhdr = pim_encap_pimhdr;
2890 	/* If the iif crosses a border, set the Border-bit */
2891 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2892 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2893 
2894 	mb_first->m_data += sizeof(pim_encap_iphdr);
2895 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2896 	mb_first->m_data -= sizeof(pim_encap_iphdr);
2897 
2898 	if (vifp->v_rate_limit == 0)
2899 		tbf_send_packet(vifp, mb_first);
2900 	else
2901 		tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
2902 
2903 	/* Keep statistics */
2904 	pimstat.pims_snd_registers_msgs++;
2905 	pimstat.pims_snd_registers_bytes += len;
2906 
2907 	return 0;
2908 }
2909 
2910 /*
2911  * PIM-SMv2 and PIM-DM messages processing.
2912  * Receives and verifies the PIM control messages, and passes them
2913  * up to the listening socket, using rip_input().
2914  * The only message with special processing is the PIM_REGISTER message
2915  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2916  * is passed to if_simloop().
2917  */
2918 void
2919 pim_input(struct mbuf *m, ...)
2920 {
2921 	struct ip *ip = mtod(m, struct ip *);
2922 	struct pim *pim;
2923 	int minlen;
2924 	int datalen;
2925 	int ip_tos;
2926 	int proto;
2927 	int iphlen;
2928 	va_list ap;
2929 
2930 	va_start(ap, m);
2931 	iphlen = va_arg(ap, int);
2932 	proto = va_arg(ap, int);
2933 	va_end(ap);
2934 
2935 	datalen = ntohs(ip->ip_len) - iphlen;
2936 
2937 	/* Keep statistics */
2938 	pimstat.pims_rcv_total_msgs++;
2939 	pimstat.pims_rcv_total_bytes += datalen;
2940 
2941 	/*
2942 	 * Validate lengths
2943 	 */
2944 	if (datalen < PIM_MINLEN) {
2945 		pimstat.pims_rcv_tooshort++;
2946 		log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2947 		    datalen, (u_long)ip->ip_src.s_addr);
2948 		m_freem(m);
2949 		return;
2950 	}
2951 
2952 	/*
2953 	 * If the packet is at least as big as a REGISTER, go ahead
2954 	 * and grab the PIM REGISTER header size, to avoid another
2955 	 * possible m_pullup() later.
2956 	 *
2957 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2958 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2959 	 */
2960 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2961 
2962 	/*
2963 	 * Get the IP and PIM headers in contiguous memory, and
2964 	 * possibly the PIM REGISTER header.
2965 	 */
2966 	if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2967 	    (m = m_pullup(m, minlen)) == NULL) {
2968 		log(LOG_ERR, "pim_input: m_pullup failure\n");
2969 		return;
2970 	}
2971 	ip = mtod(m, struct ip *);
2972 	ip_tos = ip->ip_tos;
2973 
2974 	/* adjust mbuf to point to the PIM header */
2975 	m->m_data += iphlen;
2976 	m->m_len  -= iphlen;
2977 	pim = mtod(m, struct pim *);
2978 
2979 	/*
2980 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
2981 	 *
2982 	 * XXX: some older PIMv2 implementations don't make this distinction,
2983 	 * so for compatibility reason perform the checksum over part of the
2984 	 * message, and if error, then over the whole message.
2985 	 */
2986 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2987 		/* do nothing, checksum okay */
2988 	} else if (in_cksum(m, datalen)) {
2989 		pimstat.pims_rcv_badsum++;
2990 		if (mrtdebug & DEBUG_PIM)
2991 			log(LOG_DEBUG, "pim_input: invalid checksum\n");
2992 		m_freem(m);
2993 		return;
2994 	}
2995 
2996 	/* PIM version check */
2997 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2998 		pimstat.pims_rcv_badversion++;
2999 		log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3000 		    PIM_VT_V(pim->pim_vt), PIM_VERSION);
3001 		m_freem(m);
3002 		return;
3003 	}
3004 
3005 	/* restore mbuf back to the outer IP */
3006 	m->m_data -= iphlen;
3007 	m->m_len  += iphlen;
3008 
3009 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3010 		/*
3011 		 * Since this is a REGISTER, we'll make a copy of the register
3012 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3013 		 * routing daemon.
3014 		 */
3015 		int s;
3016 		struct sockaddr_in dst = {
3017 			.sin_len = sizeof(dst),
3018 			.sin_family = AF_INET,
3019 		};
3020 		struct mbuf *mcp;
3021 		struct ip *encap_ip;
3022 		u_int32_t *reghdr;
3023 		struct ifnet *vifp;
3024 
3025 		s = splsoftnet();
3026 		if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3027 			splx(s);
3028 			if (mrtdebug & DEBUG_PIM)
3029 				log(LOG_DEBUG,
3030 				    "pim_input: register vif not set: %d\n", reg_vif_num);
3031 			m_freem(m);
3032 			return;
3033 		}
3034 		/* XXX need refcnt? */
3035 		vifp = viftable[reg_vif_num].v_ifp;
3036 		splx(s);
3037 
3038 		/*
3039 		 * Validate length
3040 		 */
3041 		if (datalen < PIM_REG_MINLEN) {
3042 			pimstat.pims_rcv_tooshort++;
3043 			pimstat.pims_rcv_badregisters++;
3044 			log(LOG_ERR,
3045 			    "pim_input: register packet size too small %d from %lx\n",
3046 			    datalen, (u_long)ip->ip_src.s_addr);
3047 			m_freem(m);
3048 			return;
3049 		}
3050 
3051 		reghdr = (u_int32_t *)(pim + 1);
3052 		encap_ip = (struct ip *)(reghdr + 1);
3053 
3054 		if (mrtdebug & DEBUG_PIM) {
3055 			log(LOG_DEBUG,
3056 			    "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3057 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
3058 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
3059 			    ntohs(encap_ip->ip_len));
3060 		}
3061 
3062 		/* verify the version number of the inner packet */
3063 		if (encap_ip->ip_v != IPVERSION) {
3064 			pimstat.pims_rcv_badregisters++;
3065 			if (mrtdebug & DEBUG_PIM) {
3066 				log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3067 				    "of the inner packet\n", encap_ip->ip_v);
3068 			}
3069 			m_freem(m);
3070 			return;
3071 		}
3072 
3073 		/* verify the inner packet is destined to a mcast group */
3074 		if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3075 			pimstat.pims_rcv_badregisters++;
3076 			 if (mrtdebug & DEBUG_PIM)
3077 				log(LOG_DEBUG,
3078 				    "pim_input: inner packet of register is not "
3079 				    "multicast %lx\n",
3080 				    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3081 			m_freem(m);
3082 			return;
3083 		}
3084 
3085 		/* If a NULL_REGISTER, pass it to the daemon */
3086 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3087 			goto pim_input_to_daemon;
3088 
3089 		/*
3090 		 * Copy the TOS from the outer IP header to the inner IP header.
3091 		 */
3092 		if (encap_ip->ip_tos != ip_tos) {
3093 			/* Outer TOS -> inner TOS */
3094 			encap_ip->ip_tos = ip_tos;
3095 			/* Recompute the inner header checksum. Sigh... */
3096 
3097 			/* adjust mbuf to point to the inner IP header */
3098 			m->m_data += (iphlen + PIM_MINLEN);
3099 			m->m_len  -= (iphlen + PIM_MINLEN);
3100 
3101 			encap_ip->ip_sum = 0;
3102 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3103 
3104 			/* restore mbuf to point back to the outer IP header */
3105 			m->m_data -= (iphlen + PIM_MINLEN);
3106 			m->m_len  += (iphlen + PIM_MINLEN);
3107 		}
3108 
3109 		/*
3110 		 * Decapsulate the inner IP packet and loopback to forward it
3111 		 * as a normal multicast packet. Also, make a copy of the
3112 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3113 		 * to pass to the daemon later, so it can take the appropriate
3114 		 * actions (e.g., send back PIM_REGISTER_STOP).
3115 		 * XXX: here m->m_data points to the outer IP header.
3116 		 */
3117 		mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
3118 		if (mcp == NULL) {
3119 			log(LOG_ERR,
3120 			    "pim_input: pim register: could not copy register head\n");
3121 			m_freem(m);
3122 			return;
3123 		}
3124 
3125 		/* Keep statistics */
3126 		/* XXX: registers_bytes include only the encap. mcast pkt */
3127 		pimstat.pims_rcv_registers_msgs++;
3128 		pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3129 
3130 		/*
3131 		 * forward the inner ip packet; point m_data at the inner ip.
3132 		 */
3133 		m_adj(m, iphlen + PIM_MINLEN);
3134 
3135 		if (mrtdebug & DEBUG_PIM) {
3136 			log(LOG_DEBUG,
3137 			    "pim_input: forwarding decapsulated register: "
3138 			    "src %lx, dst %lx, vif %d\n",
3139 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
3140 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
3141 			    reg_vif_num);
3142 		}
3143 		/* NB: vifp was collected above; can it change on us? */
3144 		looutput(vifp, m, (struct sockaddr *)&dst, NULL);
3145 
3146 		/* prepare the register head to send to the mrouting daemon */
3147 		m = mcp;
3148 	}
3149 
3150 pim_input_to_daemon:
3151 	/*
3152 	 * Pass the PIM message up to the daemon; if it is a Register message,
3153 	 * pass the 'head' only up to the daemon. This includes the
3154 	 * outer IP header, PIM header, PIM-Register header and the
3155 	 * inner IP header.
3156 	 * XXX: the outer IP header pkt size of a Register is not adjust to
3157 	 * reflect the fact that the inner multicast data is truncated.
3158 	 */
3159 	rip_input(m, iphlen, proto);
3160 
3161 	return;
3162 }
3163 #endif /* PIM */
3164