1 /* $NetBSD: ip_mroute.c,v 1.94 2005/06/06 06:06:50 martin Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.94 2005/06/06 06:06:50 martin Exp $"); 97 98 #include "opt_inet.h" 99 #include "opt_ipsec.h" 100 #include "opt_pim.h" 101 102 #ifdef PIM 103 #define _PIM_VT 1 104 #endif 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/mbuf.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/protosw.h> 113 #include <sys/errno.h> 114 #include <sys/time.h> 115 #include <sys/kernel.h> 116 #include <sys/ioctl.h> 117 #include <sys/syslog.h> 118 119 #include <net/if.h> 120 #include <net/route.h> 121 #include <net/raw_cb.h> 122 123 #include <netinet/in.h> 124 #include <netinet/in_var.h> 125 #include <netinet/in_systm.h> 126 #include <netinet/ip.h> 127 #include <netinet/ip_var.h> 128 #include <netinet/in_pcb.h> 129 #include <netinet/udp.h> 130 #include <netinet/igmp.h> 131 #include <netinet/igmp_var.h> 132 #include <netinet/ip_mroute.h> 133 #ifdef PIM 134 #include <netinet/pim.h> 135 #include <netinet/pim_var.h> 136 #endif 137 #include <netinet/ip_encap.h> 138 139 #ifdef IPSEC 140 #include <netinet6/ipsec.h> 141 #include <netkey/key.h> 142 #endif 143 144 #ifdef FAST_IPSEC 145 #include <netipsec/ipsec.h> 146 #include <netipsec/key.h> 147 #endif 148 149 #include <machine/stdarg.h> 150 151 #define IP_MULTICASTOPTS 0 152 #define M_PULLUP(m, len) \ 153 do { \ 154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 155 (m) = m_pullup((m), (len)); \ 156 } while (/*CONSTCOND*/ 0) 157 158 /* 159 * Globals. All but ip_mrouter and ip_mrtproto could be static, 160 * except for netstat or debugging purposes. 161 */ 162 struct socket *ip_mrouter = NULL; 163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 164 165 #define NO_RTE_FOUND 0x1 166 #define RTE_FOUND 0x2 167 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 172 u_long mfchash; 173 174 u_char nexpire[MFCTBLSIZ]; 175 struct vif viftable[MAXVIFS]; 176 struct mrtstat mrtstat; 177 u_int mrtdebug = 0; /* debug level */ 178 #define DEBUG_MFC 0x02 179 #define DEBUG_FORWARD 0x04 180 #define DEBUG_EXPIRE 0x08 181 #define DEBUG_XMIT 0x10 182 #define DEBUG_PIM 0x20 183 184 #define VIFI_INVALID ((vifi_t) -1) 185 186 u_int tbfdebug = 0; /* tbf debug level */ 187 #ifdef RSVP_ISI 188 u_int rsvpdebug = 0; /* rsvp debug level */ 189 extern struct socket *ip_rsvpd; 190 extern int rsvp_on; 191 #endif /* RSVP_ISI */ 192 193 /* vif attachment using sys/netinet/ip_encap.c */ 194 static void vif_input(struct mbuf *, ...); 195 static int vif_encapcheck(struct mbuf *, int, int, void *); 196 197 static const struct protosw vif_protosw = 198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, 199 vif_input, rip_output, 0, rip_ctloutput, 200 rip_usrreq, 201 0, 0, 0, 0, 202 }; 203 204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 205 #define UPCALL_EXPIRE 6 /* number of timeouts */ 206 207 /* 208 * Define the token bucket filter structures 209 */ 210 211 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 212 213 static int get_sg_cnt(struct sioc_sg_req *); 214 static int get_vif_cnt(struct sioc_vif_req *); 215 static int ip_mrouter_init(struct socket *, struct mbuf *); 216 static int get_version(struct mbuf *); 217 static int set_assert(struct mbuf *); 218 static int get_assert(struct mbuf *); 219 static int add_vif(struct mbuf *); 220 static int del_vif(struct mbuf *); 221 static void update_mfc_params(struct mfc *, struct mfcctl2 *); 222 static void init_mfc_params(struct mfc *, struct mfcctl2 *); 223 static void expire_mfc(struct mfc *); 224 static int add_mfc(struct mbuf *); 225 #ifdef UPCALL_TIMING 226 static void collate(struct timeval *); 227 #endif 228 static int del_mfc(struct mbuf *); 229 static int set_api_config(struct mbuf *); /* chose API capabilities */ 230 static int get_api_support(struct mbuf *); 231 static int get_api_config(struct mbuf *); 232 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 233 static void expire_upcalls(void *); 234 #ifdef RSVP_ISI 235 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 236 #else 237 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); 238 #endif 239 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 240 static void encap_send(struct ip *, struct vif *, struct mbuf *); 241 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); 242 static void tbf_queue(struct vif *, struct mbuf *); 243 static void tbf_process_q(struct vif *); 244 static void tbf_reprocess_q(void *); 245 static int tbf_dq_sel(struct vif *, struct ip *); 246 static void tbf_send_packet(struct vif *, struct mbuf *); 247 static void tbf_update_tokens(struct vif *); 248 static int priority(struct vif *, struct ip *); 249 250 /* 251 * Bandwidth monitoring 252 */ 253 static void free_bw_list(struct bw_meter *); 254 static int add_bw_upcall(struct mbuf *); 255 static int del_bw_upcall(struct mbuf *); 256 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); 257 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 258 static void bw_upcalls_send(void); 259 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 260 static void unschedule_bw_meter(struct bw_meter *); 261 static void bw_meter_process(void); 262 static void expire_bw_upcalls_send(void *); 263 static void expire_bw_meter_process(void *); 264 265 #ifdef PIM 266 static int pim_register_send(struct ip *, struct vif *, 267 struct mbuf *, struct mfc *); 268 static int pim_register_send_rp(struct ip *, struct vif *, 269 struct mbuf *, struct mfc *); 270 static int pim_register_send_upcall(struct ip *, struct vif *, 271 struct mbuf *, struct mfc *); 272 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 273 #endif 274 275 /* 276 * 'Interfaces' associated with decapsulator (so we can tell 277 * packets that went through it from ones that get reflected 278 * by a broken gateway). These interfaces are never linked into 279 * the system ifnet list & no routes point to them. I.e., packets 280 * can't be sent this way. They only exist as a placeholder for 281 * multicast source verification. 282 */ 283 #if 0 284 struct ifnet multicast_decap_if[MAXVIFS]; 285 #endif 286 287 #define ENCAP_TTL 64 288 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 289 290 /* prototype IP hdr for encapsulated packets */ 291 struct ip multicast_encap_iphdr = { 292 #if BYTE_ORDER == LITTLE_ENDIAN 293 sizeof(struct ip) >> 2, IPVERSION, 294 #else 295 IPVERSION, sizeof(struct ip) >> 2, 296 #endif 297 0, /* tos */ 298 sizeof(struct ip), /* total length */ 299 0, /* id */ 300 0, /* frag offset */ 301 ENCAP_TTL, ENCAP_PROTO, 302 0, /* checksum */ 303 }; 304 305 /* 306 * Bandwidth meter variables and constants 307 */ 308 309 /* 310 * Pending timeouts are stored in a hash table, the key being the 311 * expiration time. Periodically, the entries are analysed and processed. 312 */ 313 #define BW_METER_BUCKETS 1024 314 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 315 struct callout bw_meter_ch; 316 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 317 318 /* 319 * Pending upcalls are stored in a vector which is flushed when 320 * full, or periodically 321 */ 322 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 323 static u_int bw_upcalls_n; /* # of pending upcalls */ 324 struct callout bw_upcalls_ch; 325 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 326 327 #ifdef PIM 328 struct pimstat pimstat; 329 330 /* 331 * Note: the PIM Register encapsulation adds the following in front of a 332 * data packet: 333 * 334 * struct pim_encap_hdr { 335 * struct ip ip; 336 * struct pim_encap_pimhdr pim; 337 * } 338 * 339 */ 340 341 struct pim_encap_pimhdr { 342 struct pim pim; 343 uint32_t flags; 344 }; 345 346 static struct ip pim_encap_iphdr = { 347 #if BYTE_ORDER == LITTLE_ENDIAN 348 sizeof(struct ip) >> 2, 349 IPVERSION, 350 #else 351 IPVERSION, 352 sizeof(struct ip) >> 2, 353 #endif 354 0, /* tos */ 355 sizeof(struct ip), /* total length */ 356 0, /* id */ 357 0, /* frag offset */ 358 ENCAP_TTL, 359 IPPROTO_PIM, 360 0, /* checksum */ 361 }; 362 363 static struct pim_encap_pimhdr pim_encap_pimhdr = { 364 { 365 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 366 0, /* reserved */ 367 0, /* checksum */ 368 }, 369 0 /* flags */ 370 }; 371 372 static struct ifnet multicast_register_if; 373 static vifi_t reg_vif_num = VIFI_INVALID; 374 #endif /* PIM */ 375 376 377 /* 378 * Private variables. 379 */ 380 static vifi_t numvifs = 0; 381 382 static struct callout expire_upcalls_ch; 383 384 /* 385 * one-back cache used by vif_encapcheck to locate a tunnel's vif 386 * given a datagram's src ip address. 387 */ 388 static struct in_addr last_encap_src; 389 static struct vif *last_encap_vif; 390 391 /* 392 * whether or not special PIM assert processing is enabled. 393 */ 394 static int pim_assert; 395 /* 396 * Rate limit for assert notification messages, in usec 397 */ 398 #define ASSERT_MSG_TIME 3000000 399 400 /* 401 * Kernel multicast routing API capabilities and setup. 402 * If more API capabilities are added to the kernel, they should be 403 * recorded in `mrt_api_support'. 404 */ 405 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 406 MRT_MFC_FLAGS_BORDER_VIF | 407 MRT_MFC_RP | 408 MRT_MFC_BW_UPCALL); 409 static u_int32_t mrt_api_config = 0; 410 411 /* 412 * Find a route for a given origin IP address and Multicast group address 413 * Type of service parameter to be added in the future!!! 414 * Statistics are updated by the caller if needed 415 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 416 */ 417 static struct mfc * 418 mfc_find(struct in_addr *o, struct in_addr *g) 419 { 420 struct mfc *rt; 421 422 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 423 if (in_hosteq(rt->mfc_origin, *o) && 424 in_hosteq(rt->mfc_mcastgrp, *g) && 425 (rt->mfc_stall == NULL)) 426 break; 427 } 428 429 return (rt); 430 } 431 432 /* 433 * Macros to compute elapsed time efficiently 434 * Borrowed from Van Jacobson's scheduling code 435 */ 436 #define TV_DELTA(a, b, delta) do { \ 437 int xxs; \ 438 delta = (a).tv_usec - (b).tv_usec; \ 439 xxs = (a).tv_sec - (b).tv_sec; \ 440 switch (xxs) { \ 441 case 2: \ 442 delta += 1000000; \ 443 /* fall through */ \ 444 case 1: \ 445 delta += 1000000; \ 446 /* fall through */ \ 447 case 0: \ 448 break; \ 449 default: \ 450 delta += (1000000 * xxs); \ 451 break; \ 452 } \ 453 } while (/*CONSTCOND*/ 0) 454 455 #ifdef UPCALL_TIMING 456 u_int32_t upcall_data[51]; 457 #endif /* UPCALL_TIMING */ 458 459 /* 460 * Handle MRT setsockopt commands to modify the multicast routing tables. 461 */ 462 int 463 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m) 464 { 465 int error; 466 467 if (optname != MRT_INIT && so != ip_mrouter) 468 error = ENOPROTOOPT; 469 else 470 switch (optname) { 471 case MRT_INIT: 472 error = ip_mrouter_init(so, *m); 473 break; 474 case MRT_DONE: 475 error = ip_mrouter_done(); 476 break; 477 case MRT_ADD_VIF: 478 error = add_vif(*m); 479 break; 480 case MRT_DEL_VIF: 481 error = del_vif(*m); 482 break; 483 case MRT_ADD_MFC: 484 error = add_mfc(*m); 485 break; 486 case MRT_DEL_MFC: 487 error = del_mfc(*m); 488 break; 489 case MRT_ASSERT: 490 error = set_assert(*m); 491 break; 492 case MRT_API_CONFIG: 493 error = set_api_config(*m); 494 break; 495 case MRT_ADD_BW_UPCALL: 496 error = add_bw_upcall(*m); 497 break; 498 case MRT_DEL_BW_UPCALL: 499 error = del_bw_upcall(*m); 500 break; 501 default: 502 error = ENOPROTOOPT; 503 break; 504 } 505 506 if (*m) 507 m_free(*m); 508 return (error); 509 } 510 511 /* 512 * Handle MRT getsockopt commands 513 */ 514 int 515 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m) 516 { 517 int error; 518 519 if (so != ip_mrouter) 520 error = ENOPROTOOPT; 521 else { 522 *m = m_get(M_WAIT, MT_SOOPTS); 523 MCLAIM(*m, so->so_mowner); 524 525 switch (optname) { 526 case MRT_VERSION: 527 error = get_version(*m); 528 break; 529 case MRT_ASSERT: 530 error = get_assert(*m); 531 break; 532 case MRT_API_SUPPORT: 533 error = get_api_support(*m); 534 break; 535 case MRT_API_CONFIG: 536 error = get_api_config(*m); 537 break; 538 default: 539 error = ENOPROTOOPT; 540 break; 541 } 542 543 if (error) 544 m_free(*m); 545 } 546 547 return (error); 548 } 549 550 /* 551 * Handle ioctl commands to obtain information from the cache 552 */ 553 int 554 mrt_ioctl(struct socket *so, u_long cmd, caddr_t data) 555 { 556 int error; 557 558 if (so != ip_mrouter) 559 error = EINVAL; 560 else 561 switch (cmd) { 562 case SIOCGETVIFCNT: 563 error = get_vif_cnt((struct sioc_vif_req *)data); 564 break; 565 case SIOCGETSGCNT: 566 error = get_sg_cnt((struct sioc_sg_req *)data); 567 break; 568 default: 569 error = EINVAL; 570 break; 571 } 572 573 return (error); 574 } 575 576 /* 577 * returns the packet, byte, rpf-failure count for the source group provided 578 */ 579 static int 580 get_sg_cnt(struct sioc_sg_req *req) 581 { 582 int s; 583 struct mfc *rt; 584 585 s = splsoftnet(); 586 rt = mfc_find(&req->src, &req->grp); 587 if (rt == NULL) { 588 splx(s); 589 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 590 return (EADDRNOTAVAIL); 591 } 592 req->pktcnt = rt->mfc_pkt_cnt; 593 req->bytecnt = rt->mfc_byte_cnt; 594 req->wrong_if = rt->mfc_wrong_if; 595 splx(s); 596 597 return (0); 598 } 599 600 /* 601 * returns the input and output packet and byte counts on the vif provided 602 */ 603 static int 604 get_vif_cnt(struct sioc_vif_req *req) 605 { 606 vifi_t vifi = req->vifi; 607 608 if (vifi >= numvifs) 609 return (EINVAL); 610 611 req->icount = viftable[vifi].v_pkt_in; 612 req->ocount = viftable[vifi].v_pkt_out; 613 req->ibytes = viftable[vifi].v_bytes_in; 614 req->obytes = viftable[vifi].v_bytes_out; 615 616 return (0); 617 } 618 619 /* 620 * Enable multicast routing 621 */ 622 static int 623 ip_mrouter_init(struct socket *so, struct mbuf *m) 624 { 625 int *v; 626 627 if (mrtdebug) 628 log(LOG_DEBUG, 629 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 630 so->so_type, so->so_proto->pr_protocol); 631 632 if (so->so_type != SOCK_RAW || 633 so->so_proto->pr_protocol != IPPROTO_IGMP) 634 return (EOPNOTSUPP); 635 636 if (m == NULL || m->m_len < sizeof(int)) 637 return (EINVAL); 638 639 v = mtod(m, int *); 640 if (*v != 1) 641 return (EINVAL); 642 643 if (ip_mrouter != NULL) 644 return (EADDRINUSE); 645 646 ip_mrouter = so; 647 648 mfchashtbl = 649 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash); 650 bzero((caddr_t)nexpire, sizeof(nexpire)); 651 652 pim_assert = 0; 653 654 callout_init(&expire_upcalls_ch); 655 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 656 expire_upcalls, NULL); 657 658 callout_init(&bw_upcalls_ch); 659 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 660 expire_bw_upcalls_send, NULL); 661 662 callout_init(&bw_meter_ch); 663 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 664 expire_bw_meter_process, NULL); 665 666 if (mrtdebug) 667 log(LOG_DEBUG, "ip_mrouter_init\n"); 668 669 return (0); 670 } 671 672 /* 673 * Disable multicast routing 674 */ 675 int 676 ip_mrouter_done(void) 677 { 678 vifi_t vifi; 679 struct vif *vifp; 680 int i; 681 int s; 682 683 s = splsoftnet(); 684 685 /* Clear out all the vifs currently in use. */ 686 for (vifi = 0; vifi < numvifs; vifi++) { 687 vifp = &viftable[vifi]; 688 if (!in_nullhost(vifp->v_lcl_addr)) 689 reset_vif(vifp); 690 } 691 692 numvifs = 0; 693 pim_assert = 0; 694 mrt_api_config = 0; 695 696 callout_stop(&expire_upcalls_ch); 697 callout_stop(&bw_upcalls_ch); 698 callout_stop(&bw_meter_ch); 699 700 /* 701 * Free all multicast forwarding cache entries. 702 */ 703 for (i = 0; i < MFCTBLSIZ; i++) { 704 struct mfc *rt, *nrt; 705 706 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 707 nrt = LIST_NEXT(rt, mfc_hash); 708 709 expire_mfc(rt); 710 } 711 } 712 713 bzero((caddr_t)nexpire, sizeof(nexpire)); 714 free(mfchashtbl, M_MRTABLE); 715 mfchashtbl = NULL; 716 717 bw_upcalls_n = 0; 718 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 719 720 /* Reset de-encapsulation cache. */ 721 722 ip_mrouter = NULL; 723 724 splx(s); 725 726 if (mrtdebug) 727 log(LOG_DEBUG, "ip_mrouter_done\n"); 728 729 return (0); 730 } 731 732 void 733 ip_mrouter_detach(struct ifnet *ifp) 734 { 735 int vifi, i; 736 struct vif *vifp; 737 struct mfc *rt; 738 struct rtdetq *rte; 739 740 /* XXX not sure about side effect to userland routing daemon */ 741 for (vifi = 0; vifi < numvifs; vifi++) { 742 vifp = &viftable[vifi]; 743 if (vifp->v_ifp == ifp) 744 reset_vif(vifp); 745 } 746 for (i = 0; i < MFCTBLSIZ; i++) { 747 if (nexpire[i] == 0) 748 continue; 749 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 750 for (rte = rt->mfc_stall; rte; rte = rte->next) { 751 if (rte->ifp == ifp) 752 rte->ifp = NULL; 753 } 754 } 755 } 756 } 757 758 static int 759 get_version(struct mbuf *m) 760 { 761 int *v = mtod(m, int *); 762 763 *v = 0x0305; /* XXX !!!! */ 764 m->m_len = sizeof(int); 765 return (0); 766 } 767 768 /* 769 * Set PIM assert processing global 770 */ 771 static int 772 set_assert(struct mbuf *m) 773 { 774 int *i; 775 776 if (m == NULL || m->m_len < sizeof(int)) 777 return (EINVAL); 778 779 i = mtod(m, int *); 780 pim_assert = !!*i; 781 return (0); 782 } 783 784 /* 785 * Get PIM assert processing global 786 */ 787 static int 788 get_assert(struct mbuf *m) 789 { 790 int *i = mtod(m, int *); 791 792 *i = pim_assert; 793 m->m_len = sizeof(int); 794 return (0); 795 } 796 797 /* 798 * Configure API capabilities 799 */ 800 static int 801 set_api_config(struct mbuf *m) 802 { 803 int i; 804 u_int32_t *apival; 805 806 if (m == NULL || m->m_len < sizeof(u_int32_t)) 807 return (EINVAL); 808 809 apival = mtod(m, u_int32_t *); 810 811 /* 812 * We can set the API capabilities only if it is the first operation 813 * after MRT_INIT. I.e.: 814 * - there are no vifs installed 815 * - pim_assert is not enabled 816 * - the MFC table is empty 817 */ 818 if (numvifs > 0) { 819 *apival = 0; 820 return (EPERM); 821 } 822 if (pim_assert) { 823 *apival = 0; 824 return (EPERM); 825 } 826 for (i = 0; i < MFCTBLSIZ; i++) { 827 if (LIST_FIRST(&mfchashtbl[i]) != NULL) { 828 *apival = 0; 829 return (EPERM); 830 } 831 } 832 833 mrt_api_config = *apival & mrt_api_support; 834 *apival = mrt_api_config; 835 836 return (0); 837 } 838 839 /* 840 * Get API capabilities 841 */ 842 static int 843 get_api_support(struct mbuf *m) 844 { 845 u_int32_t *apival; 846 847 if (m == NULL || m->m_len < sizeof(u_int32_t)) 848 return (EINVAL); 849 850 apival = mtod(m, u_int32_t *); 851 852 *apival = mrt_api_support; 853 854 return (0); 855 } 856 857 /* 858 * Get API configured capabilities 859 */ 860 static int 861 get_api_config(struct mbuf *m) 862 { 863 u_int32_t *apival; 864 865 if (m == NULL || m->m_len < sizeof(u_int32_t)) 866 return (EINVAL); 867 868 apival = mtod(m, u_int32_t *); 869 870 *apival = mrt_api_config; 871 872 return (0); 873 } 874 875 static struct sockaddr_in sin = { sizeof(sin), AF_INET }; 876 877 /* 878 * Add a vif to the vif table 879 */ 880 static int 881 add_vif(struct mbuf *m) 882 { 883 struct vifctl *vifcp; 884 struct vif *vifp; 885 struct ifaddr *ifa; 886 struct ifnet *ifp; 887 struct ifreq ifr; 888 int error, s; 889 890 if (m == NULL || m->m_len < sizeof(struct vifctl)) 891 return (EINVAL); 892 893 vifcp = mtod(m, struct vifctl *); 894 if (vifcp->vifc_vifi >= MAXVIFS) 895 return (EINVAL); 896 if (in_nullhost(vifcp->vifc_lcl_addr)) 897 return (EADDRNOTAVAIL); 898 899 vifp = &viftable[vifcp->vifc_vifi]; 900 if (!in_nullhost(vifp->v_lcl_addr)) 901 return (EADDRINUSE); 902 903 /* Find the interface with an address in AF_INET family. */ 904 #ifdef PIM 905 if (vifcp->vifc_flags & VIFF_REGISTER) { 906 /* 907 * XXX: Because VIFF_REGISTER does not really need a valid 908 * local interface (e.g. it could be 127.0.0.2), we don't 909 * check its address. 910 */ 911 ifp = NULL; 912 } else 913 #endif 914 { 915 sin.sin_addr = vifcp->vifc_lcl_addr; 916 ifa = ifa_ifwithaddr(sintosa(&sin)); 917 if (ifa == NULL) 918 return (EADDRNOTAVAIL); 919 ifp = ifa->ifa_ifp; 920 } 921 922 if (vifcp->vifc_flags & VIFF_TUNNEL) { 923 if (vifcp->vifc_flags & VIFF_SRCRT) { 924 log(LOG_ERR, "source routed tunnels not supported\n"); 925 return (EOPNOTSUPP); 926 } 927 928 /* attach this vif to decapsulator dispatch table */ 929 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 930 vif_encapcheck, &vif_protosw, vifp); 931 if (!vifp->v_encap_cookie) 932 return (EINVAL); 933 934 /* Create a fake encapsulation interface. */ 935 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK); 936 bzero(ifp, sizeof(*ifp)); 937 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 938 "mdecap%d", vifcp->vifc_vifi); 939 940 /* Prepare cached route entry. */ 941 bzero(&vifp->v_route, sizeof(vifp->v_route)); 942 #ifdef PIM 943 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 944 ifp = &multicast_register_if; 945 if (mrtdebug) 946 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 947 (void *)ifp); 948 if (reg_vif_num == VIFI_INVALID) { 949 bzero(ifp, sizeof(*ifp)); 950 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 951 "register_vif"); 952 ifp->if_flags = IFF_LOOPBACK; 953 bzero(&vifp->v_route, sizeof(vifp->v_route)); 954 reg_vif_num = vifcp->vifc_vifi; 955 } 956 #endif 957 } else { 958 /* Make sure the interface supports multicast. */ 959 if ((ifp->if_flags & IFF_MULTICAST) == 0) 960 return (EOPNOTSUPP); 961 962 /* Enable promiscuous reception of all IP multicasts. */ 963 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); 964 satosin(&ifr.ifr_addr)->sin_family = AF_INET; 965 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; 966 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr); 967 if (error) 968 return (error); 969 } 970 971 s = splsoftnet(); 972 973 /* Define parameters for the tbf structure. */ 974 vifp->tbf_q = NULL; 975 vifp->tbf_t = &vifp->tbf_q; 976 microtime(&vifp->tbf_last_pkt_t); 977 vifp->tbf_n_tok = 0; 978 vifp->tbf_q_len = 0; 979 vifp->tbf_max_q_len = MAXQSIZE; 980 981 vifp->v_flags = vifcp->vifc_flags; 982 vifp->v_threshold = vifcp->vifc_threshold; 983 /* scaling up here allows division by 1024 in critical code */ 984 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 985 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 986 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 987 vifp->v_ifp = ifp; 988 /* Initialize per vif pkt counters. */ 989 vifp->v_pkt_in = 0; 990 vifp->v_pkt_out = 0; 991 vifp->v_bytes_in = 0; 992 vifp->v_bytes_out = 0; 993 994 callout_init(&vifp->v_repq_ch); 995 996 #ifdef RSVP_ISI 997 vifp->v_rsvp_on = 0; 998 vifp->v_rsvpd = NULL; 999 #endif /* RSVP_ISI */ 1000 1001 splx(s); 1002 1003 /* Adjust numvifs up if the vifi is higher than numvifs. */ 1004 if (numvifs <= vifcp->vifc_vifi) 1005 numvifs = vifcp->vifc_vifi + 1; 1006 1007 if (mrtdebug) 1008 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 1009 vifcp->vifc_vifi, 1010 ntohl(vifcp->vifc_lcl_addr.s_addr), 1011 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 1012 ntohl(vifcp->vifc_rmt_addr.s_addr), 1013 vifcp->vifc_threshold, 1014 vifcp->vifc_rate_limit); 1015 1016 return (0); 1017 } 1018 1019 void 1020 reset_vif(struct vif *vifp) 1021 { 1022 struct mbuf *m, *n; 1023 struct ifnet *ifp; 1024 struct ifreq ifr; 1025 1026 callout_stop(&vifp->v_repq_ch); 1027 1028 /* detach this vif from decapsulator dispatch table */ 1029 encap_detach(vifp->v_encap_cookie); 1030 vifp->v_encap_cookie = NULL; 1031 1032 /* 1033 * Free packets queued at the interface 1034 */ 1035 for (m = vifp->tbf_q; m != NULL; m = n) { 1036 n = m->m_nextpkt; 1037 m_freem(m); 1038 } 1039 1040 if (vifp->v_flags & VIFF_TUNNEL) { 1041 free(vifp->v_ifp, M_MRTABLE); 1042 if (vifp == last_encap_vif) { 1043 last_encap_vif = NULL; 1044 last_encap_src = zeroin_addr; 1045 } 1046 } else if (vifp->v_flags & VIFF_REGISTER) { 1047 #ifdef PIM 1048 reg_vif_num = VIFI_INVALID; 1049 #endif 1050 } else { 1051 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); 1052 satosin(&ifr.ifr_addr)->sin_family = AF_INET; 1053 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; 1054 ifp = vifp->v_ifp; 1055 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr); 1056 } 1057 bzero((caddr_t)vifp, sizeof(*vifp)); 1058 } 1059 1060 /* 1061 * Delete a vif from the vif table 1062 */ 1063 static int 1064 del_vif(struct mbuf *m) 1065 { 1066 vifi_t *vifip; 1067 struct vif *vifp; 1068 vifi_t vifi; 1069 int s; 1070 1071 if (m == NULL || m->m_len < sizeof(vifi_t)) 1072 return (EINVAL); 1073 1074 vifip = mtod(m, vifi_t *); 1075 if (*vifip >= numvifs) 1076 return (EINVAL); 1077 1078 vifp = &viftable[*vifip]; 1079 if (in_nullhost(vifp->v_lcl_addr)) 1080 return (EADDRNOTAVAIL); 1081 1082 s = splsoftnet(); 1083 1084 reset_vif(vifp); 1085 1086 /* Adjust numvifs down */ 1087 for (vifi = numvifs; vifi > 0; vifi--) 1088 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 1089 break; 1090 numvifs = vifi; 1091 1092 splx(s); 1093 1094 if (mrtdebug) 1095 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 1096 1097 return (0); 1098 } 1099 1100 /* 1101 * update an mfc entry without resetting counters and S,G addresses. 1102 */ 1103 static void 1104 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1105 { 1106 int i; 1107 1108 rt->mfc_parent = mfccp->mfcc_parent; 1109 for (i = 0; i < numvifs; i++) { 1110 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1111 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1112 MRT_MFC_FLAGS_ALL; 1113 } 1114 /* set the RP address */ 1115 if (mrt_api_config & MRT_MFC_RP) 1116 rt->mfc_rp = mfccp->mfcc_rp; 1117 else 1118 rt->mfc_rp = zeroin_addr; 1119 } 1120 1121 /* 1122 * fully initialize an mfc entry from the parameter. 1123 */ 1124 static void 1125 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1126 { 1127 rt->mfc_origin = mfccp->mfcc_origin; 1128 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1129 1130 update_mfc_params(rt, mfccp); 1131 1132 /* initialize pkt counters per src-grp */ 1133 rt->mfc_pkt_cnt = 0; 1134 rt->mfc_byte_cnt = 0; 1135 rt->mfc_wrong_if = 0; 1136 timerclear(&rt->mfc_last_assert); 1137 } 1138 1139 static void 1140 expire_mfc(struct mfc *rt) 1141 { 1142 struct rtdetq *rte, *nrte; 1143 1144 free_bw_list(rt->mfc_bw_meter); 1145 1146 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1147 nrte = rte->next; 1148 m_freem(rte->m); 1149 free(rte, M_MRTABLE); 1150 } 1151 1152 LIST_REMOVE(rt, mfc_hash); 1153 free(rt, M_MRTABLE); 1154 } 1155 1156 /* 1157 * Add an mfc entry 1158 */ 1159 static int 1160 add_mfc(struct mbuf *m) 1161 { 1162 struct mfcctl2 mfcctl2; 1163 struct mfcctl2 *mfccp; 1164 struct mfc *rt; 1165 u_int32_t hash = 0; 1166 struct rtdetq *rte, *nrte; 1167 u_short nstl; 1168 int s; 1169 int mfcctl_size = sizeof(struct mfcctl); 1170 1171 if (mrt_api_config & MRT_API_FLAGS_ALL) 1172 mfcctl_size = sizeof(struct mfcctl2); 1173 1174 if (m == NULL || m->m_len < mfcctl_size) 1175 return (EINVAL); 1176 1177 /* 1178 * select data size depending on API version. 1179 */ 1180 if (mrt_api_config & MRT_API_FLAGS_ALL) { 1181 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *); 1182 bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2)); 1183 } else { 1184 struct mfcctl *mp = mtod(m, struct mfcctl *); 1185 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp)); 1186 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl), 1187 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1188 } 1189 mfccp = &mfcctl2; 1190 1191 s = splsoftnet(); 1192 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1193 1194 /* If an entry already exists, just update the fields */ 1195 if (rt) { 1196 if (mrtdebug & DEBUG_MFC) 1197 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1198 ntohl(mfccp->mfcc_origin.s_addr), 1199 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1200 mfccp->mfcc_parent); 1201 1202 update_mfc_params(rt, mfccp); 1203 1204 splx(s); 1205 return (0); 1206 } 1207 1208 /* 1209 * Find the entry for which the upcall was made and update 1210 */ 1211 nstl = 0; 1212 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1213 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1214 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1215 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1216 rt->mfc_stall != NULL) { 1217 if (nstl++) 1218 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1219 "multiple kernel entries", 1220 ntohl(mfccp->mfcc_origin.s_addr), 1221 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1222 mfccp->mfcc_parent, rt->mfc_stall); 1223 1224 if (mrtdebug & DEBUG_MFC) 1225 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1226 ntohl(mfccp->mfcc_origin.s_addr), 1227 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1228 mfccp->mfcc_parent, rt->mfc_stall); 1229 1230 rte = rt->mfc_stall; 1231 init_mfc_params(rt, mfccp); 1232 rt->mfc_stall = NULL; 1233 1234 rt->mfc_expire = 0; /* Don't clean this guy up */ 1235 nexpire[hash]--; 1236 1237 /* free packets Qed at the end of this entry */ 1238 for (; rte != NULL; rte = nrte) { 1239 nrte = rte->next; 1240 if (rte->ifp) { 1241 #ifdef RSVP_ISI 1242 ip_mdq(rte->m, rte->ifp, rt, -1); 1243 #else 1244 ip_mdq(rte->m, rte->ifp, rt); 1245 #endif /* RSVP_ISI */ 1246 } 1247 m_freem(rte->m); 1248 #ifdef UPCALL_TIMING 1249 collate(&rte->t); 1250 #endif /* UPCALL_TIMING */ 1251 free(rte, M_MRTABLE); 1252 } 1253 } 1254 } 1255 1256 /* 1257 * It is possible that an entry is being inserted without an upcall 1258 */ 1259 if (nstl == 0) { 1260 /* 1261 * No mfc; make a new one 1262 */ 1263 if (mrtdebug & DEBUG_MFC) 1264 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1265 ntohl(mfccp->mfcc_origin.s_addr), 1266 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1267 mfccp->mfcc_parent); 1268 1269 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1270 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1271 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1272 init_mfc_params(rt, mfccp); 1273 if (rt->mfc_expire) 1274 nexpire[hash]--; 1275 rt->mfc_expire = 0; 1276 break; /* XXX */ 1277 } 1278 } 1279 if (rt == NULL) { /* no upcall, so make a new entry */ 1280 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1281 M_NOWAIT); 1282 if (rt == NULL) { 1283 splx(s); 1284 return (ENOBUFS); 1285 } 1286 1287 init_mfc_params(rt, mfccp); 1288 rt->mfc_expire = 0; 1289 rt->mfc_stall = NULL; 1290 rt->mfc_bw_meter = NULL; 1291 1292 /* insert new entry at head of hash chain */ 1293 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1294 } 1295 } 1296 1297 splx(s); 1298 return (0); 1299 } 1300 1301 #ifdef UPCALL_TIMING 1302 /* 1303 * collect delay statistics on the upcalls 1304 */ 1305 static void 1306 collate(struct timeval *t) 1307 { 1308 u_int32_t d; 1309 struct timeval tp; 1310 u_int32_t delta; 1311 1312 microtime(&tp); 1313 1314 if (timercmp(t, &tp, <)) { 1315 TV_DELTA(tp, *t, delta); 1316 1317 d = delta >> 10; 1318 if (d > 50) 1319 d = 50; 1320 1321 ++upcall_data[d]; 1322 } 1323 } 1324 #endif /* UPCALL_TIMING */ 1325 1326 /* 1327 * Delete an mfc entry 1328 */ 1329 static int 1330 del_mfc(struct mbuf *m) 1331 { 1332 struct mfcctl2 mfcctl2; 1333 struct mfcctl2 *mfccp; 1334 struct mfc *rt; 1335 int s; 1336 int mfcctl_size = sizeof(struct mfcctl); 1337 struct mfcctl *mp = mtod(m, struct mfcctl *); 1338 1339 /* 1340 * XXX: for deleting MFC entries the information in entries 1341 * of size "struct mfcctl" is sufficient. 1342 */ 1343 1344 if (m == NULL || m->m_len < mfcctl_size) 1345 return (EINVAL); 1346 1347 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp)); 1348 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl), 1349 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1350 1351 mfccp = &mfcctl2; 1352 1353 if (mrtdebug & DEBUG_MFC) 1354 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1355 ntohl(mfccp->mfcc_origin.s_addr), 1356 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1357 1358 s = splsoftnet(); 1359 1360 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1361 if (rt == NULL) { 1362 splx(s); 1363 return (EADDRNOTAVAIL); 1364 } 1365 1366 /* 1367 * free the bw_meter entries 1368 */ 1369 free_bw_list(rt->mfc_bw_meter); 1370 rt->mfc_bw_meter = NULL; 1371 1372 LIST_REMOVE(rt, mfc_hash); 1373 free(rt, M_MRTABLE); 1374 1375 splx(s); 1376 return (0); 1377 } 1378 1379 static int 1380 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1381 { 1382 if (s) { 1383 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, 1384 (struct mbuf *)NULL) != 0) { 1385 sorwakeup(s); 1386 return (0); 1387 } 1388 } 1389 m_freem(mm); 1390 return (-1); 1391 } 1392 1393 /* 1394 * IP multicast forwarding function. This function assumes that the packet 1395 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1396 * pointed to by "ifp", and the packet is to be relayed to other networks 1397 * that have members of the packet's destination IP multicast group. 1398 * 1399 * The packet is returned unscathed to the caller, unless it is 1400 * erroneous, in which case a non-zero return value tells the caller to 1401 * discard it. 1402 */ 1403 1404 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1405 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1406 1407 int 1408 #ifdef RSVP_ISI 1409 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) 1410 #else 1411 ip_mforward(struct mbuf *m, struct ifnet *ifp) 1412 #endif /* RSVP_ISI */ 1413 { 1414 struct ip *ip = mtod(m, struct ip *); 1415 struct mfc *rt; 1416 static int srctun = 0; 1417 struct mbuf *mm; 1418 int s; 1419 vifi_t vifi; 1420 1421 if (mrtdebug & DEBUG_FORWARD) 1422 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1423 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1424 1425 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1426 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1427 /* 1428 * Packet arrived via a physical interface or 1429 * an encapsulated tunnel or a register_vif. 1430 */ 1431 } else { 1432 /* 1433 * Packet arrived through a source-route tunnel. 1434 * Source-route tunnels are no longer supported. 1435 */ 1436 if ((srctun++ % 1000) == 0) 1437 log(LOG_ERR, 1438 "ip_mforward: received source-routed packet from %x\n", 1439 ntohl(ip->ip_src.s_addr)); 1440 1441 return (1); 1442 } 1443 1444 #ifdef RSVP_ISI 1445 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1446 if (ip->ip_ttl < 255) 1447 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1448 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1449 struct vif *vifp = viftable + vifi; 1450 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", 1451 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1452 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1453 vifp->v_ifp->if_xname); 1454 } 1455 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi)); 1456 } 1457 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1458 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", 1459 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1460 } 1461 #endif /* RSVP_ISI */ 1462 1463 /* 1464 * Don't forward a packet with time-to-live of zero or one, 1465 * or a packet destined to a local-only group. 1466 */ 1467 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1468 return (0); 1469 1470 /* 1471 * Determine forwarding vifs from the forwarding cache table 1472 */ 1473 s = splsoftnet(); 1474 ++mrtstat.mrts_mfc_lookups; 1475 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1476 1477 /* Entry exists, so forward if necessary */ 1478 if (rt != NULL) { 1479 splx(s); 1480 #ifdef RSVP_ISI 1481 return (ip_mdq(m, ifp, rt, -1)); 1482 #else 1483 return (ip_mdq(m, ifp, rt)); 1484 #endif /* RSVP_ISI */ 1485 } else { 1486 /* 1487 * If we don't have a route for packet's origin, 1488 * Make a copy of the packet & send message to routing daemon 1489 */ 1490 1491 struct mbuf *mb0; 1492 struct rtdetq *rte; 1493 u_int32_t hash; 1494 int hlen = ip->ip_hl << 2; 1495 #ifdef UPCALL_TIMING 1496 struct timeval tp; 1497 1498 microtime(&tp); 1499 #endif /* UPCALL_TIMING */ 1500 1501 ++mrtstat.mrts_mfc_misses; 1502 1503 mrtstat.mrts_no_route++; 1504 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1505 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1506 ntohl(ip->ip_src.s_addr), 1507 ntohl(ip->ip_dst.s_addr)); 1508 1509 /* 1510 * Allocate mbufs early so that we don't do extra work if we are 1511 * just going to fail anyway. Make sure to pullup the header so 1512 * that other people can't step on it. 1513 */ 1514 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1515 M_NOWAIT); 1516 if (rte == NULL) { 1517 splx(s); 1518 return (ENOBUFS); 1519 } 1520 mb0 = m_copy(m, 0, M_COPYALL); 1521 M_PULLUP(mb0, hlen); 1522 if (mb0 == NULL) { 1523 free(rte, M_MRTABLE); 1524 splx(s); 1525 return (ENOBUFS); 1526 } 1527 1528 /* is there an upcall waiting for this flow? */ 1529 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1530 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1531 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1532 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1533 rt->mfc_stall != NULL) 1534 break; 1535 } 1536 1537 if (rt == NULL) { 1538 int i; 1539 struct igmpmsg *im; 1540 1541 /* 1542 * Locate the vifi for the incoming interface for 1543 * this packet. 1544 * If none found, drop packet. 1545 */ 1546 for (vifi = 0; vifi < numvifs && 1547 viftable[vifi].v_ifp != ifp; vifi++) 1548 ; 1549 if (vifi >= numvifs) /* vif not found, drop packet */ 1550 goto non_fatal; 1551 1552 /* no upcall, so make a new entry */ 1553 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1554 M_NOWAIT); 1555 if (rt == NULL) 1556 goto fail; 1557 1558 /* 1559 * Make a copy of the header to send to the user level 1560 * process 1561 */ 1562 mm = m_copy(m, 0, hlen); 1563 M_PULLUP(mm, hlen); 1564 if (mm == NULL) 1565 goto fail1; 1566 1567 /* 1568 * Send message to routing daemon to install 1569 * a route into the kernel table 1570 */ 1571 1572 im = mtod(mm, struct igmpmsg *); 1573 im->im_msgtype = IGMPMSG_NOCACHE; 1574 im->im_mbz = 0; 1575 im->im_vif = vifi; 1576 1577 mrtstat.mrts_upcalls++; 1578 1579 sin.sin_addr = ip->ip_src; 1580 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1581 log(LOG_WARNING, 1582 "ip_mforward: ip_mrouter socket queue full\n"); 1583 ++mrtstat.mrts_upq_sockfull; 1584 fail1: 1585 free(rt, M_MRTABLE); 1586 fail: 1587 free(rte, M_MRTABLE); 1588 m_freem(mb0); 1589 splx(s); 1590 return (ENOBUFS); 1591 } 1592 1593 /* insert new entry at head of hash chain */ 1594 rt->mfc_origin = ip->ip_src; 1595 rt->mfc_mcastgrp = ip->ip_dst; 1596 rt->mfc_pkt_cnt = 0; 1597 rt->mfc_byte_cnt = 0; 1598 rt->mfc_wrong_if = 0; 1599 rt->mfc_expire = UPCALL_EXPIRE; 1600 nexpire[hash]++; 1601 for (i = 0; i < numvifs; i++) { 1602 rt->mfc_ttls[i] = 0; 1603 rt->mfc_flags[i] = 0; 1604 } 1605 rt->mfc_parent = -1; 1606 1607 /* clear the RP address */ 1608 rt->mfc_rp = zeroin_addr; 1609 1610 rt->mfc_bw_meter = NULL; 1611 1612 /* link into table */ 1613 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1614 /* Add this entry to the end of the queue */ 1615 rt->mfc_stall = rte; 1616 } else { 1617 /* determine if q has overflowed */ 1618 struct rtdetq **p; 1619 int npkts = 0; 1620 1621 /* 1622 * XXX ouch! we need to append to the list, but we 1623 * only have a pointer to the front, so we have to 1624 * scan the entire list every time. 1625 */ 1626 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1627 if (++npkts > MAX_UPQ) { 1628 mrtstat.mrts_upq_ovflw++; 1629 non_fatal: 1630 free(rte, M_MRTABLE); 1631 m_freem(mb0); 1632 splx(s); 1633 return (0); 1634 } 1635 1636 /* Add this entry to the end of the queue */ 1637 *p = rte; 1638 } 1639 1640 rte->next = NULL; 1641 rte->m = mb0; 1642 rte->ifp = ifp; 1643 #ifdef UPCALL_TIMING 1644 rte->t = tp; 1645 #endif /* UPCALL_TIMING */ 1646 1647 splx(s); 1648 1649 return (0); 1650 } 1651 } 1652 1653 1654 /*ARGSUSED*/ 1655 static void 1656 expire_upcalls(void *v) 1657 { 1658 int i; 1659 int s; 1660 1661 s = splsoftnet(); 1662 1663 for (i = 0; i < MFCTBLSIZ; i++) { 1664 struct mfc *rt, *nrt; 1665 1666 if (nexpire[i] == 0) 1667 continue; 1668 1669 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1670 nrt = LIST_NEXT(rt, mfc_hash); 1671 1672 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1673 continue; 1674 nexpire[i]--; 1675 1676 /* 1677 * free the bw_meter entries 1678 */ 1679 while (rt->mfc_bw_meter != NULL) { 1680 struct bw_meter *x = rt->mfc_bw_meter; 1681 1682 rt->mfc_bw_meter = x->bm_mfc_next; 1683 free(x, M_BWMETER); 1684 } 1685 1686 ++mrtstat.mrts_cache_cleanups; 1687 if (mrtdebug & DEBUG_EXPIRE) 1688 log(LOG_DEBUG, 1689 "expire_upcalls: expiring (%x %x)\n", 1690 ntohl(rt->mfc_origin.s_addr), 1691 ntohl(rt->mfc_mcastgrp.s_addr)); 1692 1693 expire_mfc(rt); 1694 } 1695 } 1696 1697 splx(s); 1698 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1699 expire_upcalls, NULL); 1700 } 1701 1702 /* 1703 * Packet forwarding routine once entry in the cache is made 1704 */ 1705 static int 1706 #ifdef RSVP_ISI 1707 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1708 #else 1709 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) 1710 #endif /* RSVP_ISI */ 1711 { 1712 struct ip *ip = mtod(m, struct ip *); 1713 vifi_t vifi; 1714 struct vif *vifp; 1715 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1716 1717 /* 1718 * Macro to send packet on vif. Since RSVP packets don't get counted on 1719 * input, they shouldn't get counted on output, so statistics keeping is 1720 * separate. 1721 */ 1722 #define MC_SEND(ip, vifp, m) do { \ 1723 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1724 encap_send((ip), (vifp), (m)); \ 1725 else \ 1726 phyint_send((ip), (vifp), (m)); \ 1727 } while (/*CONSTCOND*/ 0) 1728 1729 #ifdef RSVP_ISI 1730 /* 1731 * If xmt_vif is not -1, send on only the requested vif. 1732 * 1733 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1734 */ 1735 if (xmt_vif < numvifs) { 1736 #ifdef PIM 1737 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1738 pim_register_send(ip, viftable + xmt_vif, m, rt); 1739 else 1740 #endif 1741 MC_SEND(ip, viftable + xmt_vif, m); 1742 return (1); 1743 } 1744 #endif /* RSVP_ISI */ 1745 1746 /* 1747 * Don't forward if it didn't arrive from the parent vif for its origin. 1748 */ 1749 vifi = rt->mfc_parent; 1750 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1751 /* came in the wrong interface */ 1752 if (mrtdebug & DEBUG_FORWARD) 1753 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1754 ifp, vifi, 1755 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1756 ++mrtstat.mrts_wrong_if; 1757 ++rt->mfc_wrong_if; 1758 /* 1759 * If we are doing PIM assert processing, send a message 1760 * to the routing daemon. 1761 * 1762 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1763 * can complete the SPT switch, regardless of the type 1764 * of the iif (broadcast media, GRE tunnel, etc). 1765 */ 1766 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1767 struct timeval now; 1768 u_int32_t delta; 1769 1770 #ifdef PIM 1771 if (ifp == &multicast_register_if) 1772 pimstat.pims_rcv_registers_wrongiif++; 1773 #endif 1774 1775 /* Get vifi for the incoming packet */ 1776 for (vifi = 0; 1777 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1778 vifi++) 1779 ; 1780 if (vifi >= numvifs) { 1781 /* The iif is not found: ignore the packet. */ 1782 return (0); 1783 } 1784 1785 if (rt->mfc_flags[vifi] & 1786 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1787 /* WRONGVIF disabled: ignore the packet */ 1788 return (0); 1789 } 1790 1791 microtime(&now); 1792 1793 TV_DELTA(rt->mfc_last_assert, now, delta); 1794 1795 if (delta > ASSERT_MSG_TIME) { 1796 struct igmpmsg *im; 1797 int hlen = ip->ip_hl << 2; 1798 struct mbuf *mm = m_copy(m, 0, hlen); 1799 1800 M_PULLUP(mm, hlen); 1801 if (mm == NULL) 1802 return (ENOBUFS); 1803 1804 rt->mfc_last_assert = now; 1805 1806 im = mtod(mm, struct igmpmsg *); 1807 im->im_msgtype = IGMPMSG_WRONGVIF; 1808 im->im_mbz = 0; 1809 im->im_vif = vifi; 1810 1811 mrtstat.mrts_upcalls++; 1812 1813 sin.sin_addr = im->im_src; 1814 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1815 log(LOG_WARNING, 1816 "ip_mforward: ip_mrouter socket queue full\n"); 1817 ++mrtstat.mrts_upq_sockfull; 1818 return (ENOBUFS); 1819 } 1820 } 1821 } 1822 return (0); 1823 } 1824 1825 /* If I sourced this packet, it counts as output, else it was input. */ 1826 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1827 viftable[vifi].v_pkt_out++; 1828 viftable[vifi].v_bytes_out += plen; 1829 } else { 1830 viftable[vifi].v_pkt_in++; 1831 viftable[vifi].v_bytes_in += plen; 1832 } 1833 rt->mfc_pkt_cnt++; 1834 rt->mfc_byte_cnt += plen; 1835 1836 /* 1837 * For each vif, decide if a copy of the packet should be forwarded. 1838 * Forward if: 1839 * - the ttl exceeds the vif's threshold 1840 * - there are group members downstream on interface 1841 */ 1842 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1843 if ((rt->mfc_ttls[vifi] > 0) && 1844 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1845 vifp->v_pkt_out++; 1846 vifp->v_bytes_out += plen; 1847 #ifdef PIM 1848 if (vifp->v_flags & VIFF_REGISTER) 1849 pim_register_send(ip, vifp, m, rt); 1850 else 1851 #endif 1852 MC_SEND(ip, vifp, m); 1853 } 1854 1855 /* 1856 * Perform upcall-related bw measuring. 1857 */ 1858 if (rt->mfc_bw_meter != NULL) { 1859 struct bw_meter *x; 1860 struct timeval now; 1861 1862 microtime(&now); 1863 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1864 bw_meter_receive_packet(x, plen, &now); 1865 } 1866 1867 return (0); 1868 } 1869 1870 #ifdef RSVP_ISI 1871 /* 1872 * check if a vif number is legal/ok. This is used by ip_output. 1873 */ 1874 int 1875 legal_vif_num(int vif) 1876 { 1877 if (vif >= 0 && vif < numvifs) 1878 return (1); 1879 else 1880 return (0); 1881 } 1882 #endif /* RSVP_ISI */ 1883 1884 static void 1885 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1886 { 1887 struct mbuf *mb_copy; 1888 int hlen = ip->ip_hl << 2; 1889 1890 /* 1891 * Make a new reference to the packet; make sure that 1892 * the IP header is actually copied, not just referenced, 1893 * so that ip_output() only scribbles on the copy. 1894 */ 1895 mb_copy = m_copy(m, 0, M_COPYALL); 1896 M_PULLUP(mb_copy, hlen); 1897 if (mb_copy == NULL) 1898 return; 1899 1900 if (vifp->v_rate_limit <= 0) 1901 tbf_send_packet(vifp, mb_copy); 1902 else 1903 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1904 ntohs(ip->ip_len)); 1905 } 1906 1907 static void 1908 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1909 { 1910 struct mbuf *mb_copy; 1911 struct ip *ip_copy; 1912 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1913 1914 /* Take care of delayed checksums */ 1915 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1916 in_delayed_cksum(m); 1917 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1918 } 1919 1920 /* 1921 * copy the old packet & pullup it's IP header into the 1922 * new mbuf so we can modify it. Try to fill the new 1923 * mbuf since if we don't the ethernet driver will. 1924 */ 1925 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1926 if (mb_copy == NULL) 1927 return; 1928 mb_copy->m_data += max_linkhdr; 1929 mb_copy->m_pkthdr.len = len; 1930 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1931 1932 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) { 1933 m_freem(mb_copy); 1934 return; 1935 } 1936 i = MHLEN - max_linkhdr; 1937 if (i > len) 1938 i = len; 1939 mb_copy = m_pullup(mb_copy, i); 1940 if (mb_copy == NULL) 1941 return; 1942 1943 /* 1944 * fill in the encapsulating IP header. 1945 */ 1946 ip_copy = mtod(mb_copy, struct ip *); 1947 *ip_copy = multicast_encap_iphdr; 1948 ip_copy->ip_id = ip_newid(); 1949 ip_copy->ip_len = htons(len); 1950 ip_copy->ip_src = vifp->v_lcl_addr; 1951 ip_copy->ip_dst = vifp->v_rmt_addr; 1952 1953 /* 1954 * turn the encapsulated IP header back into a valid one. 1955 */ 1956 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); 1957 --ip->ip_ttl; 1958 ip->ip_sum = 0; 1959 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1960 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1961 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1962 1963 if (vifp->v_rate_limit <= 0) 1964 tbf_send_packet(vifp, mb_copy); 1965 else 1966 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 1967 } 1968 1969 /* 1970 * De-encapsulate a packet and feed it back through ip input. 1971 */ 1972 static void 1973 vif_input(struct mbuf *m, ...) 1974 { 1975 int off, proto; 1976 va_list ap; 1977 struct vif *vifp; 1978 int s; 1979 struct ifqueue *ifq; 1980 1981 va_start(ap, m); 1982 off = va_arg(ap, int); 1983 proto = va_arg(ap, int); 1984 va_end(ap); 1985 1986 vifp = (struct vif *)encap_getarg(m); 1987 if (!vifp || proto != AF_INET) { 1988 m_freem(m); 1989 mrtstat.mrts_bad_tunnel++; 1990 return; 1991 } 1992 1993 m_adj(m, off); 1994 m->m_pkthdr.rcvif = vifp->v_ifp; 1995 ifq = &ipintrq; 1996 s = splnet(); 1997 if (IF_QFULL(ifq)) { 1998 IF_DROP(ifq); 1999 m_freem(m); 2000 } else { 2001 IF_ENQUEUE(ifq, m); 2002 /* 2003 * normally we would need a "schednetisr(NETISR_IP)" 2004 * here but we were called by ip_input and it is going 2005 * to loop back & try to dequeue the packet we just 2006 * queued as soon as we return so we avoid the 2007 * unnecessary software interrrupt. 2008 */ 2009 } 2010 splx(s); 2011 } 2012 2013 /* 2014 * Check if the packet should be grabbed by us. 2015 */ 2016 static int 2017 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg) 2018 { 2019 struct vif *vifp; 2020 struct ip ip; 2021 2022 #ifdef DIAGNOSTIC 2023 if (!arg || proto != IPPROTO_IPV4) 2024 panic("unexpected arg in vif_encapcheck"); 2025 #endif 2026 2027 /* 2028 * do not grab the packet if it's not to a multicast destination or if 2029 * we don't have an encapsulating tunnel with the source. 2030 * Note: This code assumes that the remote site IP address 2031 * uniquely identifies the tunnel (i.e., that this site has 2032 * at most one tunnel with the remote site). 2033 */ 2034 2035 m_copydata(m, off, sizeof(ip), (caddr_t)&ip); 2036 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 2037 return 0; 2038 2039 m_copydata(m, 0, sizeof(ip), (caddr_t)&ip); 2040 if (!in_hosteq(ip.ip_src, last_encap_src)) { 2041 vifp = (struct vif *)arg; 2042 if (vifp->v_flags & VIFF_TUNNEL && 2043 in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 2044 ; 2045 else 2046 return 0; 2047 last_encap_vif = vifp; 2048 last_encap_src = ip.ip_src; 2049 } else 2050 vifp = last_encap_vif; 2051 2052 /* 32bit match, since we have checked ip_src only */ 2053 return 32; 2054 } 2055 2056 /* 2057 * Token bucket filter module 2058 */ 2059 static void 2060 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) 2061 { 2062 2063 if (len > MAX_BKT_SIZE) { 2064 /* drop if packet is too large */ 2065 mrtstat.mrts_pkt2large++; 2066 m_freem(m); 2067 return; 2068 } 2069 2070 tbf_update_tokens(vifp); 2071 2072 /* 2073 * If there are enough tokens, and the queue is empty, send this packet 2074 * out immediately. Otherwise, try to insert it on this vif's queue. 2075 */ 2076 if (vifp->tbf_q_len == 0) { 2077 if (len <= vifp->tbf_n_tok) { 2078 vifp->tbf_n_tok -= len; 2079 tbf_send_packet(vifp, m); 2080 } else { 2081 /* queue packet and timeout till later */ 2082 tbf_queue(vifp, m); 2083 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2084 tbf_reprocess_q, vifp); 2085 } 2086 } else { 2087 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 2088 !tbf_dq_sel(vifp, ip)) { 2089 /* queue full, and couldn't make room */ 2090 mrtstat.mrts_q_overflow++; 2091 m_freem(m); 2092 } else { 2093 /* queue length low enough, or made room */ 2094 tbf_queue(vifp, m); 2095 tbf_process_q(vifp); 2096 } 2097 } 2098 } 2099 2100 /* 2101 * adds a packet to the queue at the interface 2102 */ 2103 static void 2104 tbf_queue(struct vif *vifp, struct mbuf *m) 2105 { 2106 int s = splsoftnet(); 2107 2108 /* insert at tail */ 2109 *vifp->tbf_t = m; 2110 vifp->tbf_t = &m->m_nextpkt; 2111 vifp->tbf_q_len++; 2112 2113 splx(s); 2114 } 2115 2116 2117 /* 2118 * processes the queue at the interface 2119 */ 2120 static void 2121 tbf_process_q(struct vif *vifp) 2122 { 2123 struct mbuf *m; 2124 int len; 2125 int s = splsoftnet(); 2126 2127 /* 2128 * Loop through the queue at the interface and send as many packets 2129 * as possible. 2130 */ 2131 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2132 len = ntohs(mtod(m, struct ip *)->ip_len); 2133 2134 /* determine if the packet can be sent */ 2135 if (len <= vifp->tbf_n_tok) { 2136 /* if so, 2137 * reduce no of tokens, dequeue the packet, 2138 * send the packet. 2139 */ 2140 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2141 vifp->tbf_t = &vifp->tbf_q; 2142 --vifp->tbf_q_len; 2143 2144 m->m_nextpkt = NULL; 2145 vifp->tbf_n_tok -= len; 2146 tbf_send_packet(vifp, m); 2147 } else 2148 break; 2149 } 2150 splx(s); 2151 } 2152 2153 static void 2154 tbf_reprocess_q(void *arg) 2155 { 2156 struct vif *vifp = arg; 2157 2158 if (ip_mrouter == NULL) 2159 return; 2160 2161 tbf_update_tokens(vifp); 2162 tbf_process_q(vifp); 2163 2164 if (vifp->tbf_q_len != 0) 2165 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2166 tbf_reprocess_q, vifp); 2167 } 2168 2169 /* function that will selectively discard a member of the queue 2170 * based on the precedence value and the priority 2171 */ 2172 static int 2173 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2174 { 2175 u_int p; 2176 struct mbuf **mp, *m; 2177 int s = splsoftnet(); 2178 2179 p = priority(vifp, ip); 2180 2181 for (mp = &vifp->tbf_q, m = *mp; 2182 m != NULL; 2183 mp = &m->m_nextpkt, m = *mp) { 2184 if (p > priority(vifp, mtod(m, struct ip *))) { 2185 if ((*mp = m->m_nextpkt) == NULL) 2186 vifp->tbf_t = mp; 2187 --vifp->tbf_q_len; 2188 2189 m_freem(m); 2190 mrtstat.mrts_drop_sel++; 2191 splx(s); 2192 return (1); 2193 } 2194 } 2195 splx(s); 2196 return (0); 2197 } 2198 2199 static void 2200 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2201 { 2202 int error; 2203 int s = splsoftnet(); 2204 2205 if (vifp->v_flags & VIFF_TUNNEL) { 2206 /* If tunnel options */ 2207 ip_output(m, (struct mbuf *)NULL, &vifp->v_route, 2208 IP_FORWARDING, (struct ip_moptions *)NULL, 2209 (struct socket *)NULL); 2210 } else { 2211 /* if physical interface option, extract the options and then send */ 2212 struct ip_moptions imo; 2213 2214 imo.imo_multicast_ifp = vifp->v_ifp; 2215 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2216 imo.imo_multicast_loop = 1; 2217 #ifdef RSVP_ISI 2218 imo.imo_multicast_vif = -1; 2219 #endif 2220 2221 error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL, 2222 IP_FORWARDING|IP_MULTICASTOPTS, &imo, 2223 (struct socket *)NULL); 2224 2225 if (mrtdebug & DEBUG_XMIT) 2226 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2227 (long)(vifp - viftable), error); 2228 } 2229 splx(s); 2230 } 2231 2232 /* determine the current time and then 2233 * the elapsed time (between the last time and time now) 2234 * in milliseconds & update the no. of tokens in the bucket 2235 */ 2236 static void 2237 tbf_update_tokens(struct vif *vifp) 2238 { 2239 struct timeval tp; 2240 u_int32_t tm; 2241 int s = splsoftnet(); 2242 2243 microtime(&tp); 2244 2245 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2246 2247 /* 2248 * This formula is actually 2249 * "time in seconds" * "bytes/second". 2250 * 2251 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2252 * 2253 * The (1000/1024) was introduced in add_vif to optimize 2254 * this divide into a shift. 2255 */ 2256 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2257 vifp->tbf_last_pkt_t = tp; 2258 2259 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2260 vifp->tbf_n_tok = MAX_BKT_SIZE; 2261 2262 splx(s); 2263 } 2264 2265 static int 2266 priority(struct vif *vifp, struct ip *ip) 2267 { 2268 int prio = 50; /* the lowest priority -- default case */ 2269 2270 /* temporary hack; may add general packet classifier some day */ 2271 2272 /* 2273 * The UDP port space is divided up into four priority ranges: 2274 * [0, 16384) : unclassified - lowest priority 2275 * [16384, 32768) : audio - highest priority 2276 * [32768, 49152) : whiteboard - medium priority 2277 * [49152, 65536) : video - low priority 2278 */ 2279 if (ip->ip_p == IPPROTO_UDP) { 2280 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2281 2282 switch (ntohs(udp->uh_dport) & 0xc000) { 2283 case 0x4000: 2284 prio = 70; 2285 break; 2286 case 0x8000: 2287 prio = 60; 2288 break; 2289 case 0xc000: 2290 prio = 55; 2291 break; 2292 } 2293 2294 if (tbfdebug > 1) 2295 log(LOG_DEBUG, "port %x prio %d\n", 2296 ntohs(udp->uh_dport), prio); 2297 } 2298 2299 return (prio); 2300 } 2301 2302 /* 2303 * End of token bucket filter modifications 2304 */ 2305 #ifdef RSVP_ISI 2306 int 2307 ip_rsvp_vif_init(struct socket *so, struct mbuf *m) 2308 { 2309 int vifi, s; 2310 2311 if (rsvpdebug) 2312 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", 2313 so->so_type, so->so_proto->pr_protocol); 2314 2315 if (so->so_type != SOCK_RAW || 2316 so->so_proto->pr_protocol != IPPROTO_RSVP) 2317 return (EOPNOTSUPP); 2318 2319 /* Check mbuf. */ 2320 if (m == NULL || m->m_len != sizeof(int)) { 2321 return (EINVAL); 2322 } 2323 vifi = *(mtod(m, int *)); 2324 2325 if (rsvpdebug) 2326 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", 2327 vifi, rsvp_on); 2328 2329 s = splsoftnet(); 2330 2331 /* Check vif. */ 2332 if (!legal_vif_num(vifi)) { 2333 splx(s); 2334 return (EADDRNOTAVAIL); 2335 } 2336 2337 /* Check if socket is available. */ 2338 if (viftable[vifi].v_rsvpd != NULL) { 2339 splx(s); 2340 return (EADDRINUSE); 2341 } 2342 2343 viftable[vifi].v_rsvpd = so; 2344 /* 2345 * This may seem silly, but we need to be sure we don't over-increment 2346 * the RSVP counter, in case something slips up. 2347 */ 2348 if (!viftable[vifi].v_rsvp_on) { 2349 viftable[vifi].v_rsvp_on = 1; 2350 rsvp_on++; 2351 } 2352 2353 splx(s); 2354 return (0); 2355 } 2356 2357 int 2358 ip_rsvp_vif_done(struct socket *so, struct mbuf *m) 2359 { 2360 int vifi, s; 2361 2362 if (rsvpdebug) 2363 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", 2364 so->so_type, so->so_proto->pr_protocol); 2365 2366 if (so->so_type != SOCK_RAW || 2367 so->so_proto->pr_protocol != IPPROTO_RSVP) 2368 return (EOPNOTSUPP); 2369 2370 /* Check mbuf. */ 2371 if (m == NULL || m->m_len != sizeof(int)) { 2372 return (EINVAL); 2373 } 2374 vifi = *(mtod(m, int *)); 2375 2376 s = splsoftnet(); 2377 2378 /* Check vif. */ 2379 if (!legal_vif_num(vifi)) { 2380 splx(s); 2381 return (EADDRNOTAVAIL); 2382 } 2383 2384 if (rsvpdebug) 2385 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", 2386 viftable[vifi].v_rsvpd, so); 2387 2388 viftable[vifi].v_rsvpd = NULL; 2389 /* 2390 * This may seem silly, but we need to be sure we don't over-decrement 2391 * the RSVP counter, in case something slips up. 2392 */ 2393 if (viftable[vifi].v_rsvp_on) { 2394 viftable[vifi].v_rsvp_on = 0; 2395 rsvp_on--; 2396 } 2397 2398 splx(s); 2399 return (0); 2400 } 2401 2402 void 2403 ip_rsvp_force_done(struct socket *so) 2404 { 2405 int vifi, s; 2406 2407 /* Don't bother if it is not the right type of socket. */ 2408 if (so->so_type != SOCK_RAW || 2409 so->so_proto->pr_protocol != IPPROTO_RSVP) 2410 return; 2411 2412 s = splsoftnet(); 2413 2414 /* 2415 * The socket may be attached to more than one vif...this 2416 * is perfectly legal. 2417 */ 2418 for (vifi = 0; vifi < numvifs; vifi++) { 2419 if (viftable[vifi].v_rsvpd == so) { 2420 viftable[vifi].v_rsvpd = NULL; 2421 /* 2422 * This may seem silly, but we need to be sure we don't 2423 * over-decrement the RSVP counter, in case something 2424 * slips up. 2425 */ 2426 if (viftable[vifi].v_rsvp_on) { 2427 viftable[vifi].v_rsvp_on = 0; 2428 rsvp_on--; 2429 } 2430 } 2431 } 2432 2433 splx(s); 2434 return; 2435 } 2436 2437 void 2438 rsvp_input(struct mbuf *m, struct ifnet *ifp) 2439 { 2440 int vifi, s; 2441 struct ip *ip = mtod(m, struct ip *); 2442 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET }; 2443 2444 if (rsvpdebug) 2445 printf("rsvp_input: rsvp_on %d\n", rsvp_on); 2446 2447 /* 2448 * Can still get packets with rsvp_on = 0 if there is a local member 2449 * of the group to which the RSVP packet is addressed. But in this 2450 * case we want to throw the packet away. 2451 */ 2452 if (!rsvp_on) { 2453 m_freem(m); 2454 return; 2455 } 2456 2457 /* 2458 * If the old-style non-vif-associated socket is set, then use 2459 * it and ignore the new ones. 2460 */ 2461 if (ip_rsvpd != NULL) { 2462 if (rsvpdebug) 2463 printf("rsvp_input: " 2464 "Sending packet up old-style socket\n"); 2465 rip_input(m); /*XXX*/ 2466 return; 2467 } 2468 2469 s = splsoftnet(); 2470 2471 if (rsvpdebug) 2472 printf("rsvp_input: check vifs\n"); 2473 2474 /* Find which vif the packet arrived on. */ 2475 for (vifi = 0; vifi < numvifs; vifi++) { 2476 if (viftable[vifi].v_ifp == ifp) 2477 break; 2478 } 2479 2480 if (vifi == numvifs) { 2481 /* Can't find vif packet arrived on. Drop packet. */ 2482 if (rsvpdebug) 2483 printf("rsvp_input: " 2484 "Can't find vif for packet...dropping it.\n"); 2485 m_freem(m); 2486 splx(s); 2487 return; 2488 } 2489 2490 if (rsvpdebug) 2491 printf("rsvp_input: check socket\n"); 2492 2493 if (viftable[vifi].v_rsvpd == NULL) { 2494 /* 2495 * drop packet, since there is no specific socket for this 2496 * interface 2497 */ 2498 if (rsvpdebug) 2499 printf("rsvp_input: No socket defined for vif %d\n", 2500 vifi); 2501 m_freem(m); 2502 splx(s); 2503 return; 2504 } 2505 2506 rsvp_src.sin_addr = ip->ip_src; 2507 2508 if (rsvpdebug && m) 2509 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", 2510 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); 2511 2512 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2513 if (rsvpdebug) 2514 printf("rsvp_input: Failed to append to socket\n"); 2515 else 2516 if (rsvpdebug) 2517 printf("rsvp_input: send packet up\n"); 2518 2519 splx(s); 2520 } 2521 #endif /* RSVP_ISI */ 2522 2523 /* 2524 * Code for bandwidth monitors 2525 */ 2526 2527 /* 2528 * Define common interface for timeval-related methods 2529 */ 2530 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2531 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2532 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2533 2534 static uint32_t 2535 compute_bw_meter_flags(struct bw_upcall *req) 2536 { 2537 uint32_t flags = 0; 2538 2539 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2540 flags |= BW_METER_UNIT_PACKETS; 2541 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2542 flags |= BW_METER_UNIT_BYTES; 2543 if (req->bu_flags & BW_UPCALL_GEQ) 2544 flags |= BW_METER_GEQ; 2545 if (req->bu_flags & BW_UPCALL_LEQ) 2546 flags |= BW_METER_LEQ; 2547 2548 return flags; 2549 } 2550 2551 /* 2552 * Add a bw_meter entry 2553 */ 2554 static int 2555 add_bw_upcall(struct mbuf *m) 2556 { 2557 int s; 2558 struct mfc *mfc; 2559 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2560 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2561 struct timeval now; 2562 struct bw_meter *x; 2563 uint32_t flags; 2564 struct bw_upcall *req; 2565 2566 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2567 return EINVAL; 2568 2569 req = mtod(m, struct bw_upcall *); 2570 2571 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2572 return EOPNOTSUPP; 2573 2574 /* Test if the flags are valid */ 2575 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2576 return EINVAL; 2577 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2578 return EINVAL; 2579 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2580 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2581 return EINVAL; 2582 2583 /* Test if the threshold time interval is valid */ 2584 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2585 return EINVAL; 2586 2587 flags = compute_bw_meter_flags(req); 2588 2589 /* 2590 * Find if we have already same bw_meter entry 2591 */ 2592 s = splsoftnet(); 2593 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2594 if (mfc == NULL) { 2595 splx(s); 2596 return EADDRNOTAVAIL; 2597 } 2598 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2599 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2600 &req->bu_threshold.b_time, ==)) && 2601 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2602 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2603 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2604 splx(s); 2605 return 0; /* XXX Already installed */ 2606 } 2607 } 2608 2609 /* Allocate the new bw_meter entry */ 2610 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2611 if (x == NULL) { 2612 splx(s); 2613 return ENOBUFS; 2614 } 2615 2616 /* Set the new bw_meter entry */ 2617 x->bm_threshold.b_time = req->bu_threshold.b_time; 2618 microtime(&now); 2619 x->bm_start_time = now; 2620 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2621 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2622 x->bm_measured.b_packets = 0; 2623 x->bm_measured.b_bytes = 0; 2624 x->bm_flags = flags; 2625 x->bm_time_next = NULL; 2626 x->bm_time_hash = BW_METER_BUCKETS; 2627 2628 /* Add the new bw_meter entry to the front of entries for this MFC */ 2629 x->bm_mfc = mfc; 2630 x->bm_mfc_next = mfc->mfc_bw_meter; 2631 mfc->mfc_bw_meter = x; 2632 schedule_bw_meter(x, &now); 2633 splx(s); 2634 2635 return 0; 2636 } 2637 2638 static void 2639 free_bw_list(struct bw_meter *list) 2640 { 2641 while (list != NULL) { 2642 struct bw_meter *x = list; 2643 2644 list = list->bm_mfc_next; 2645 unschedule_bw_meter(x); 2646 free(x, M_BWMETER); 2647 } 2648 } 2649 2650 /* 2651 * Delete one or multiple bw_meter entries 2652 */ 2653 static int 2654 del_bw_upcall(struct mbuf *m) 2655 { 2656 int s; 2657 struct mfc *mfc; 2658 struct bw_meter *x; 2659 struct bw_upcall *req; 2660 2661 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2662 return EINVAL; 2663 2664 req = mtod(m, struct bw_upcall *); 2665 2666 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2667 return EOPNOTSUPP; 2668 2669 s = splsoftnet(); 2670 /* Find the corresponding MFC entry */ 2671 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2672 if (mfc == NULL) { 2673 splx(s); 2674 return EADDRNOTAVAIL; 2675 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2676 /* 2677 * Delete all bw_meter entries for this mfc 2678 */ 2679 struct bw_meter *list; 2680 2681 list = mfc->mfc_bw_meter; 2682 mfc->mfc_bw_meter = NULL; 2683 free_bw_list(list); 2684 splx(s); 2685 return 0; 2686 } else { /* Delete a single bw_meter entry */ 2687 struct bw_meter *prev; 2688 uint32_t flags = 0; 2689 2690 flags = compute_bw_meter_flags(req); 2691 2692 /* Find the bw_meter entry to delete */ 2693 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2694 prev = x, x = x->bm_mfc_next) { 2695 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2696 &req->bu_threshold.b_time, ==)) && 2697 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2698 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2699 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2700 break; 2701 } 2702 if (x != NULL) { /* Delete entry from the list for this MFC */ 2703 if (prev != NULL) 2704 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2705 else 2706 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2707 2708 unschedule_bw_meter(x); 2709 splx(s); 2710 /* Free the bw_meter entry */ 2711 free(x, M_BWMETER); 2712 return 0; 2713 } else { 2714 splx(s); 2715 return EINVAL; 2716 } 2717 } 2718 /* NOTREACHED */ 2719 } 2720 2721 /* 2722 * Perform bandwidth measurement processing that may result in an upcall 2723 */ 2724 static void 2725 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2726 { 2727 struct timeval delta; 2728 2729 delta = *nowp; 2730 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2731 2732 if (x->bm_flags & BW_METER_GEQ) { 2733 /* 2734 * Processing for ">=" type of bw_meter entry 2735 */ 2736 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2737 /* Reset the bw_meter entry */ 2738 x->bm_start_time = *nowp; 2739 x->bm_measured.b_packets = 0; 2740 x->bm_measured.b_bytes = 0; 2741 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2742 } 2743 2744 /* Record that a packet is received */ 2745 x->bm_measured.b_packets++; 2746 x->bm_measured.b_bytes += plen; 2747 2748 /* 2749 * Test if we should deliver an upcall 2750 */ 2751 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2752 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2753 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2754 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2755 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2756 /* Prepare an upcall for delivery */ 2757 bw_meter_prepare_upcall(x, nowp); 2758 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2759 } 2760 } 2761 } else if (x->bm_flags & BW_METER_LEQ) { 2762 /* 2763 * Processing for "<=" type of bw_meter entry 2764 */ 2765 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2766 /* 2767 * We are behind time with the multicast forwarding table 2768 * scanning for "<=" type of bw_meter entries, so test now 2769 * if we should deliver an upcall. 2770 */ 2771 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2772 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2773 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2774 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2775 /* Prepare an upcall for delivery */ 2776 bw_meter_prepare_upcall(x, nowp); 2777 } 2778 /* Reschedule the bw_meter entry */ 2779 unschedule_bw_meter(x); 2780 schedule_bw_meter(x, nowp); 2781 } 2782 2783 /* Record that a packet is received */ 2784 x->bm_measured.b_packets++; 2785 x->bm_measured.b_bytes += plen; 2786 2787 /* 2788 * Test if we should restart the measuring interval 2789 */ 2790 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2791 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2792 (x->bm_flags & BW_METER_UNIT_BYTES && 2793 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2794 /* Don't restart the measuring interval */ 2795 } else { 2796 /* Do restart the measuring interval */ 2797 /* 2798 * XXX: note that we don't unschedule and schedule, because this 2799 * might be too much overhead per packet. Instead, when we process 2800 * all entries for a given timer hash bin, we check whether it is 2801 * really a timeout. If not, we reschedule at that time. 2802 */ 2803 x->bm_start_time = *nowp; 2804 x->bm_measured.b_packets = 0; 2805 x->bm_measured.b_bytes = 0; 2806 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2807 } 2808 } 2809 } 2810 2811 /* 2812 * Prepare a bandwidth-related upcall 2813 */ 2814 static void 2815 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2816 { 2817 struct timeval delta; 2818 struct bw_upcall *u; 2819 2820 /* 2821 * Compute the measured time interval 2822 */ 2823 delta = *nowp; 2824 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2825 2826 /* 2827 * If there are too many pending upcalls, deliver them now 2828 */ 2829 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2830 bw_upcalls_send(); 2831 2832 /* 2833 * Set the bw_upcall entry 2834 */ 2835 u = &bw_upcalls[bw_upcalls_n++]; 2836 u->bu_src = x->bm_mfc->mfc_origin; 2837 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2838 u->bu_threshold.b_time = x->bm_threshold.b_time; 2839 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2840 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2841 u->bu_measured.b_time = delta; 2842 u->bu_measured.b_packets = x->bm_measured.b_packets; 2843 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2844 u->bu_flags = 0; 2845 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2846 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2847 if (x->bm_flags & BW_METER_UNIT_BYTES) 2848 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2849 if (x->bm_flags & BW_METER_GEQ) 2850 u->bu_flags |= BW_UPCALL_GEQ; 2851 if (x->bm_flags & BW_METER_LEQ) 2852 u->bu_flags |= BW_UPCALL_LEQ; 2853 } 2854 2855 /* 2856 * Send the pending bandwidth-related upcalls 2857 */ 2858 static void 2859 bw_upcalls_send(void) 2860 { 2861 struct mbuf *m; 2862 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2863 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2864 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2865 0, /* unused2 */ 2866 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2867 0, /* im_mbz */ 2868 0, /* im_vif */ 2869 0, /* unused3 */ 2870 { 0 }, /* im_src */ 2871 { 0 } }; /* im_dst */ 2872 2873 if (bw_upcalls_n == 0) 2874 return; /* No pending upcalls */ 2875 2876 bw_upcalls_n = 0; 2877 2878 /* 2879 * Allocate a new mbuf, initialize it with the header and 2880 * the payload for the pending calls. 2881 */ 2882 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2883 if (m == NULL) { 2884 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2885 return; 2886 } 2887 2888 m->m_len = m->m_pkthdr.len = 0; 2889 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2890 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2891 2892 /* 2893 * Send the upcalls 2894 * XXX do we need to set the address in k_igmpsrc ? 2895 */ 2896 mrtstat.mrts_upcalls++; 2897 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2898 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2899 ++mrtstat.mrts_upq_sockfull; 2900 } 2901 } 2902 2903 /* 2904 * Compute the timeout hash value for the bw_meter entries 2905 */ 2906 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2907 do { \ 2908 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2909 \ 2910 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2911 (hash) = next_timeval.tv_sec; \ 2912 if (next_timeval.tv_usec) \ 2913 (hash)++; /* XXX: make sure we don't timeout early */ \ 2914 (hash) %= BW_METER_BUCKETS; \ 2915 } while (/*CONSTCOND*/ 0) 2916 2917 /* 2918 * Schedule a timer to process periodically bw_meter entry of type "<=" 2919 * by linking the entry in the proper hash bucket. 2920 */ 2921 static void 2922 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2923 { 2924 int time_hash; 2925 2926 if (!(x->bm_flags & BW_METER_LEQ)) 2927 return; /* XXX: we schedule timers only for "<=" entries */ 2928 2929 /* 2930 * Reset the bw_meter entry 2931 */ 2932 x->bm_start_time = *nowp; 2933 x->bm_measured.b_packets = 0; 2934 x->bm_measured.b_bytes = 0; 2935 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2936 2937 /* 2938 * Compute the timeout hash value and insert the entry 2939 */ 2940 BW_METER_TIMEHASH(x, time_hash); 2941 x->bm_time_next = bw_meter_timers[time_hash]; 2942 bw_meter_timers[time_hash] = x; 2943 x->bm_time_hash = time_hash; 2944 } 2945 2946 /* 2947 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2948 * by removing the entry from the proper hash bucket. 2949 */ 2950 static void 2951 unschedule_bw_meter(struct bw_meter *x) 2952 { 2953 int time_hash; 2954 struct bw_meter *prev, *tmp; 2955 2956 if (!(x->bm_flags & BW_METER_LEQ)) 2957 return; /* XXX: we schedule timers only for "<=" entries */ 2958 2959 /* 2960 * Compute the timeout hash value and delete the entry 2961 */ 2962 time_hash = x->bm_time_hash; 2963 if (time_hash >= BW_METER_BUCKETS) 2964 return; /* Entry was not scheduled */ 2965 2966 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2967 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2968 if (tmp == x) 2969 break; 2970 2971 if (tmp == NULL) 2972 panic("unschedule_bw_meter: bw_meter entry not found"); 2973 2974 if (prev != NULL) 2975 prev->bm_time_next = x->bm_time_next; 2976 else 2977 bw_meter_timers[time_hash] = x->bm_time_next; 2978 2979 x->bm_time_next = NULL; 2980 x->bm_time_hash = BW_METER_BUCKETS; 2981 } 2982 2983 /* 2984 * Process all "<=" type of bw_meter that should be processed now, 2985 * and for each entry prepare an upcall if necessary. Each processed 2986 * entry is rescheduled again for the (periodic) processing. 2987 * 2988 * This is run periodically (once per second normally). On each round, 2989 * all the potentially matching entries are in the hash slot that we are 2990 * looking at. 2991 */ 2992 static void 2993 bw_meter_process(void) 2994 { 2995 int s; 2996 static uint32_t last_tv_sec; /* last time we processed this */ 2997 2998 uint32_t loops; 2999 int i; 3000 struct timeval now, process_endtime; 3001 3002 microtime(&now); 3003 if (last_tv_sec == now.tv_sec) 3004 return; /* nothing to do */ 3005 3006 loops = now.tv_sec - last_tv_sec; 3007 last_tv_sec = now.tv_sec; 3008 if (loops > BW_METER_BUCKETS) 3009 loops = BW_METER_BUCKETS; 3010 3011 s = splsoftnet(); 3012 /* 3013 * Process all bins of bw_meter entries from the one after the last 3014 * processed to the current one. On entry, i points to the last bucket 3015 * visited, so we need to increment i at the beginning of the loop. 3016 */ 3017 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 3018 struct bw_meter *x, *tmp_list; 3019 3020 if (++i >= BW_METER_BUCKETS) 3021 i = 0; 3022 3023 /* Disconnect the list of bw_meter entries from the bin */ 3024 tmp_list = bw_meter_timers[i]; 3025 bw_meter_timers[i] = NULL; 3026 3027 /* Process the list of bw_meter entries */ 3028 while (tmp_list != NULL) { 3029 x = tmp_list; 3030 tmp_list = tmp_list->bm_time_next; 3031 3032 /* Test if the time interval is over */ 3033 process_endtime = x->bm_start_time; 3034 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 3035 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 3036 /* Not yet: reschedule, but don't reset */ 3037 int time_hash; 3038 3039 BW_METER_TIMEHASH(x, time_hash); 3040 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 3041 /* 3042 * XXX: somehow the bin processing is a bit ahead of time. 3043 * Put the entry in the next bin. 3044 */ 3045 if (++time_hash >= BW_METER_BUCKETS) 3046 time_hash = 0; 3047 } 3048 x->bm_time_next = bw_meter_timers[time_hash]; 3049 bw_meter_timers[time_hash] = x; 3050 x->bm_time_hash = time_hash; 3051 3052 continue; 3053 } 3054 3055 /* 3056 * Test if we should deliver an upcall 3057 */ 3058 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 3059 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 3060 ((x->bm_flags & BW_METER_UNIT_BYTES) && 3061 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 3062 /* Prepare an upcall for delivery */ 3063 bw_meter_prepare_upcall(x, &now); 3064 } 3065 3066 /* 3067 * Reschedule for next processing 3068 */ 3069 schedule_bw_meter(x, &now); 3070 } 3071 } 3072 3073 /* Send all upcalls that are pending delivery */ 3074 bw_upcalls_send(); 3075 3076 splx(s); 3077 } 3078 3079 /* 3080 * A periodic function for sending all upcalls that are pending delivery 3081 */ 3082 static void 3083 expire_bw_upcalls_send(void *unused) 3084 { 3085 int s; 3086 3087 s = splsoftnet(); 3088 bw_upcalls_send(); 3089 splx(s); 3090 3091 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 3092 expire_bw_upcalls_send, NULL); 3093 } 3094 3095 /* 3096 * A periodic function for periodic scanning of the multicast forwarding 3097 * table for processing all "<=" bw_meter entries. 3098 */ 3099 static void 3100 expire_bw_meter_process(void *unused) 3101 { 3102 if (mrt_api_config & MRT_MFC_BW_UPCALL) 3103 bw_meter_process(); 3104 3105 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 3106 expire_bw_meter_process, NULL); 3107 } 3108 3109 /* 3110 * End of bandwidth monitoring code 3111 */ 3112 3113 #ifdef PIM 3114 /* 3115 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3116 */ 3117 static int 3118 pim_register_send(struct ip *ip, struct vif *vifp, 3119 struct mbuf *m, struct mfc *rt) 3120 { 3121 struct mbuf *mb_copy, *mm; 3122 3123 if (mrtdebug & DEBUG_PIM) 3124 log(LOG_DEBUG, "pim_register_send: "); 3125 3126 mb_copy = pim_register_prepare(ip, m); 3127 if (mb_copy == NULL) 3128 return ENOBUFS; 3129 3130 /* 3131 * Send all the fragments. Note that the mbuf for each fragment 3132 * is freed by the sending machinery. 3133 */ 3134 for (mm = mb_copy; mm; mm = mb_copy) { 3135 mb_copy = mm->m_nextpkt; 3136 mm->m_nextpkt = NULL; 3137 mm = m_pullup(mm, sizeof(struct ip)); 3138 if (mm != NULL) { 3139 ip = mtod(mm, struct ip *); 3140 if ((mrt_api_config & MRT_MFC_RP) && 3141 !in_nullhost(rt->mfc_rp)) { 3142 pim_register_send_rp(ip, vifp, mm, rt); 3143 } else { 3144 pim_register_send_upcall(ip, vifp, mm, rt); 3145 } 3146 } 3147 } 3148 3149 return 0; 3150 } 3151 3152 /* 3153 * Return a copy of the data packet that is ready for PIM Register 3154 * encapsulation. 3155 * XXX: Note that in the returned copy the IP header is a valid one. 3156 */ 3157 static struct mbuf * 3158 pim_register_prepare(struct ip *ip, struct mbuf *m) 3159 { 3160 struct mbuf *mb_copy = NULL; 3161 int mtu; 3162 3163 /* Take care of delayed checksums */ 3164 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3165 in_delayed_cksum(m); 3166 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3167 } 3168 3169 /* 3170 * Copy the old packet & pullup its IP header into the 3171 * new mbuf so we can modify it. 3172 */ 3173 mb_copy = m_copy(m, 0, M_COPYALL); 3174 if (mb_copy == NULL) 3175 return NULL; 3176 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3177 if (mb_copy == NULL) 3178 return NULL; 3179 3180 /* take care of the TTL */ 3181 ip = mtod(mb_copy, struct ip *); 3182 --ip->ip_ttl; 3183 3184 /* Compute the MTU after the PIM Register encapsulation */ 3185 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3186 3187 if (ntohs(ip->ip_len) <= mtu) { 3188 /* Turn the IP header into a valid one */ 3189 ip->ip_sum = 0; 3190 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3191 } else { 3192 /* Fragment the packet */ 3193 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3194 /* XXX: mb_copy was freed by ip_fragment() */ 3195 return NULL; 3196 } 3197 } 3198 return mb_copy; 3199 } 3200 3201 /* 3202 * Send an upcall with the data packet to the user-level process. 3203 */ 3204 static int 3205 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3206 struct mbuf *mb_copy, struct mfc *rt) 3207 { 3208 struct mbuf *mb_first; 3209 int len = ntohs(ip->ip_len); 3210 struct igmpmsg *im; 3211 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 3212 3213 /* 3214 * Add a new mbuf with an upcall header 3215 */ 3216 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3217 if (mb_first == NULL) { 3218 m_freem(mb_copy); 3219 return ENOBUFS; 3220 } 3221 mb_first->m_data += max_linkhdr; 3222 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3223 mb_first->m_len = sizeof(struct igmpmsg); 3224 mb_first->m_next = mb_copy; 3225 3226 /* Send message to routing daemon */ 3227 im = mtod(mb_first, struct igmpmsg *); 3228 im->im_msgtype = IGMPMSG_WHOLEPKT; 3229 im->im_mbz = 0; 3230 im->im_vif = vifp - viftable; 3231 im->im_src = ip->ip_src; 3232 im->im_dst = ip->ip_dst; 3233 3234 k_igmpsrc.sin_addr = ip->ip_src; 3235 3236 mrtstat.mrts_upcalls++; 3237 3238 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3239 if (mrtdebug & DEBUG_PIM) 3240 log(LOG_WARNING, 3241 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 3242 ++mrtstat.mrts_upq_sockfull; 3243 return ENOBUFS; 3244 } 3245 3246 /* Keep statistics */ 3247 pimstat.pims_snd_registers_msgs++; 3248 pimstat.pims_snd_registers_bytes += len; 3249 3250 return 0; 3251 } 3252 3253 /* 3254 * Encapsulate the data packet in PIM Register message and send it to the RP. 3255 */ 3256 static int 3257 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3258 struct mbuf *mb_copy, struct mfc *rt) 3259 { 3260 struct mbuf *mb_first; 3261 struct ip *ip_outer; 3262 struct pim_encap_pimhdr *pimhdr; 3263 int len = ntohs(ip->ip_len); 3264 vifi_t vifi = rt->mfc_parent; 3265 3266 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3267 m_freem(mb_copy); 3268 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3269 } 3270 3271 /* 3272 * Add a new mbuf with the encapsulating header 3273 */ 3274 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3275 if (mb_first == NULL) { 3276 m_freem(mb_copy); 3277 return ENOBUFS; 3278 } 3279 mb_first->m_data += max_linkhdr; 3280 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3281 mb_first->m_next = mb_copy; 3282 3283 mb_first->m_pkthdr.len = len + mb_first->m_len; 3284 3285 /* 3286 * Fill in the encapsulating IP and PIM header 3287 */ 3288 ip_outer = mtod(mb_first, struct ip *); 3289 *ip_outer = pim_encap_iphdr; 3290 ip_outer->ip_id = ip_newid(); 3291 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3292 sizeof(pim_encap_pimhdr)); 3293 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3294 ip_outer->ip_dst = rt->mfc_rp; 3295 /* 3296 * Copy the inner header TOS to the outer header, and take care of the 3297 * IP_DF bit. 3298 */ 3299 ip_outer->ip_tos = ip->ip_tos; 3300 if (ntohs(ip->ip_off) & IP_DF) 3301 ip_outer->ip_off |= IP_DF; 3302 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 3303 + sizeof(pim_encap_iphdr)); 3304 *pimhdr = pim_encap_pimhdr; 3305 /* If the iif crosses a border, set the Border-bit */ 3306 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3307 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3308 3309 mb_first->m_data += sizeof(pim_encap_iphdr); 3310 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3311 mb_first->m_data -= sizeof(pim_encap_iphdr); 3312 3313 if (vifp->v_rate_limit == 0) 3314 tbf_send_packet(vifp, mb_first); 3315 else 3316 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3317 3318 /* Keep statistics */ 3319 pimstat.pims_snd_registers_msgs++; 3320 pimstat.pims_snd_registers_bytes += len; 3321 3322 return 0; 3323 } 3324 3325 /* 3326 * PIM-SMv2 and PIM-DM messages processing. 3327 * Receives and verifies the PIM control messages, and passes them 3328 * up to the listening socket, using rip_input(). 3329 * The only message with special processing is the PIM_REGISTER message 3330 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3331 * is passed to if_simloop(). 3332 */ 3333 void 3334 pim_input(struct mbuf *m, ...) 3335 { 3336 struct ip *ip = mtod(m, struct ip *); 3337 struct pim *pim; 3338 int minlen; 3339 int datalen; 3340 int ip_tos; 3341 int proto; 3342 int iphlen; 3343 va_list ap; 3344 3345 va_start(ap, m); 3346 iphlen = va_arg(ap, int); 3347 proto = va_arg(ap, int); 3348 va_end(ap); 3349 3350 datalen = ntohs(ip->ip_len) - iphlen; 3351 3352 /* Keep statistics */ 3353 pimstat.pims_rcv_total_msgs++; 3354 pimstat.pims_rcv_total_bytes += datalen; 3355 3356 /* 3357 * Validate lengths 3358 */ 3359 if (datalen < PIM_MINLEN) { 3360 pimstat.pims_rcv_tooshort++; 3361 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3362 datalen, (u_long)ip->ip_src.s_addr); 3363 m_freem(m); 3364 return; 3365 } 3366 3367 /* 3368 * If the packet is at least as big as a REGISTER, go agead 3369 * and grab the PIM REGISTER header size, to avoid another 3370 * possible m_pullup() later. 3371 * 3372 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3373 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3374 */ 3375 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3376 /* 3377 * Get the IP and PIM headers in contiguous memory, and 3378 * possibly the PIM REGISTER header. 3379 */ 3380 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3381 (m = m_pullup(m, minlen)) == NULL) { 3382 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3383 return; 3384 } 3385 /* m_pullup() may have given us a new mbuf so reset ip. */ 3386 ip = mtod(m, struct ip *); 3387 ip_tos = ip->ip_tos; 3388 3389 /* adjust mbuf to point to the PIM header */ 3390 m->m_data += iphlen; 3391 m->m_len -= iphlen; 3392 pim = mtod(m, struct pim *); 3393 3394 /* 3395 * Validate checksum. If PIM REGISTER, exclude the data packet. 3396 * 3397 * XXX: some older PIMv2 implementations don't make this distinction, 3398 * so for compatibility reason perform the checksum over part of the 3399 * message, and if error, then over the whole message. 3400 */ 3401 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3402 /* do nothing, checksum okay */ 3403 } else if (in_cksum(m, datalen)) { 3404 pimstat.pims_rcv_badsum++; 3405 if (mrtdebug & DEBUG_PIM) 3406 log(LOG_DEBUG, "pim_input: invalid checksum"); 3407 m_freem(m); 3408 return; 3409 } 3410 3411 /* PIM version check */ 3412 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3413 pimstat.pims_rcv_badversion++; 3414 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3415 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3416 m_freem(m); 3417 return; 3418 } 3419 3420 /* restore mbuf back to the outer IP */ 3421 m->m_data -= iphlen; 3422 m->m_len += iphlen; 3423 3424 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3425 /* 3426 * Since this is a REGISTER, we'll make a copy of the register 3427 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3428 * routing daemon. 3429 */ 3430 int s; 3431 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 3432 struct mbuf *mcp; 3433 struct ip *encap_ip; 3434 u_int32_t *reghdr; 3435 struct ifnet *vifp; 3436 3437 s = splsoftnet(); 3438 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3439 splx(s); 3440 if (mrtdebug & DEBUG_PIM) 3441 log(LOG_DEBUG, 3442 "pim_input: register vif not set: %d\n", reg_vif_num); 3443 m_freem(m); 3444 return; 3445 } 3446 /* XXX need refcnt? */ 3447 vifp = viftable[reg_vif_num].v_ifp; 3448 splx(s); 3449 3450 /* 3451 * Validate length 3452 */ 3453 if (datalen < PIM_REG_MINLEN) { 3454 pimstat.pims_rcv_tooshort++; 3455 pimstat.pims_rcv_badregisters++; 3456 log(LOG_ERR, 3457 "pim_input: register packet size too small %d from %lx\n", 3458 datalen, (u_long)ip->ip_src.s_addr); 3459 m_freem(m); 3460 return; 3461 } 3462 3463 reghdr = (u_int32_t *)(pim + 1); 3464 encap_ip = (struct ip *)(reghdr + 1); 3465 3466 if (mrtdebug & DEBUG_PIM) { 3467 log(LOG_DEBUG, 3468 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3469 (u_long)ntohl(encap_ip->ip_src.s_addr), 3470 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3471 ntohs(encap_ip->ip_len)); 3472 } 3473 3474 /* verify the version number of the inner packet */ 3475 if (encap_ip->ip_v != IPVERSION) { 3476 pimstat.pims_rcv_badregisters++; 3477 if (mrtdebug & DEBUG_PIM) { 3478 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3479 "of the inner packet\n", encap_ip->ip_v); 3480 } 3481 m_freem(m); 3482 return; 3483 } 3484 3485 /* verify the inner packet is destined to a mcast group */ 3486 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3487 pimstat.pims_rcv_badregisters++; 3488 if (mrtdebug & DEBUG_PIM) 3489 log(LOG_DEBUG, 3490 "pim_input: inner packet of register is not " 3491 "multicast %lx\n", 3492 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3493 m_freem(m); 3494 return; 3495 } 3496 3497 /* If a NULL_REGISTER, pass it to the daemon */ 3498 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3499 goto pim_input_to_daemon; 3500 3501 /* 3502 * Copy the TOS from the outer IP header to the inner IP header. 3503 */ 3504 if (encap_ip->ip_tos != ip_tos) { 3505 /* Outer TOS -> inner TOS */ 3506 encap_ip->ip_tos = ip_tos; 3507 /* Recompute the inner header checksum. Sigh... */ 3508 3509 /* adjust mbuf to point to the inner IP header */ 3510 m->m_data += (iphlen + PIM_MINLEN); 3511 m->m_len -= (iphlen + PIM_MINLEN); 3512 3513 encap_ip->ip_sum = 0; 3514 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3515 3516 /* restore mbuf to point back to the outer IP header */ 3517 m->m_data -= (iphlen + PIM_MINLEN); 3518 m->m_len += (iphlen + PIM_MINLEN); 3519 } 3520 3521 /* 3522 * Decapsulate the inner IP packet and loopback to forward it 3523 * as a normal multicast packet. Also, make a copy of the 3524 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3525 * to pass to the daemon later, so it can take the appropriate 3526 * actions (e.g., send back PIM_REGISTER_STOP). 3527 * XXX: here m->m_data points to the outer IP header. 3528 */ 3529 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 3530 if (mcp == NULL) { 3531 log(LOG_ERR, 3532 "pim_input: pim register: could not copy register head\n"); 3533 m_freem(m); 3534 return; 3535 } 3536 3537 /* Keep statistics */ 3538 /* XXX: registers_bytes include only the encap. mcast pkt */ 3539 pimstat.pims_rcv_registers_msgs++; 3540 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3541 3542 /* 3543 * forward the inner ip packet; point m_data at the inner ip. 3544 */ 3545 m_adj(m, iphlen + PIM_MINLEN); 3546 3547 if (mrtdebug & DEBUG_PIM) { 3548 log(LOG_DEBUG, 3549 "pim_input: forwarding decapsulated register: " 3550 "src %lx, dst %lx, vif %d\n", 3551 (u_long)ntohl(encap_ip->ip_src.s_addr), 3552 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3553 reg_vif_num); 3554 } 3555 /* NB: vifp was collected above; can it change on us? */ 3556 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL); 3557 3558 /* prepare the register head to send to the mrouting daemon */ 3559 m = mcp; 3560 } 3561 3562 pim_input_to_daemon: 3563 /* 3564 * Pass the PIM message up to the daemon; if it is a Register message, 3565 * pass the 'head' only up to the daemon. This includes the 3566 * outer IP header, PIM header, PIM-Register header and the 3567 * inner IP header. 3568 * XXX: the outer IP header pkt size of a Register is not adjust to 3569 * reflect the fact that the inner multicast data is truncated. 3570 */ 3571 rip_input(m, iphlen, proto); 3572 3573 return; 3574 } 3575 #endif /* PIM */ 3576