1 /* $NetBSD: ip_mroute.c,v 1.118 2009/03/18 16:00:22 cegger Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.118 2009/03/18 16:00:22 cegger Exp $"); 97 98 #include "opt_inet.h" 99 #include "opt_ipsec.h" 100 #include "opt_pim.h" 101 102 #ifdef PIM 103 #define _PIM_VT 1 104 #endif 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/mbuf.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/protosw.h> 113 #include <sys/errno.h> 114 #include <sys/time.h> 115 #include <sys/kernel.h> 116 #include <sys/ioctl.h> 117 #include <sys/syslog.h> 118 119 #include <net/if.h> 120 #include <net/route.h> 121 #include <net/raw_cb.h> 122 123 #include <netinet/in.h> 124 #include <netinet/in_var.h> 125 #include <netinet/in_systm.h> 126 #include <netinet/ip.h> 127 #include <netinet/ip_var.h> 128 #include <netinet/in_pcb.h> 129 #include <netinet/udp.h> 130 #include <netinet/igmp.h> 131 #include <netinet/igmp_var.h> 132 #include <netinet/ip_mroute.h> 133 #ifdef PIM 134 #include <netinet/pim.h> 135 #include <netinet/pim_var.h> 136 #endif 137 #include <netinet/ip_encap.h> 138 139 #ifdef IPSEC 140 #include <netinet6/ipsec.h> 141 #include <netkey/key.h> 142 #endif 143 144 #ifdef FAST_IPSEC 145 #include <netipsec/ipsec.h> 146 #include <netipsec/key.h> 147 #endif 148 149 #include <machine/stdarg.h> 150 151 #define IP_MULTICASTOPTS 0 152 #define M_PULLUP(m, len) \ 153 do { \ 154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 155 (m) = m_pullup((m), (len)); \ 156 } while (/*CONSTCOND*/ 0) 157 158 /* 159 * Globals. All but ip_mrouter and ip_mrtproto could be static, 160 * except for netstat or debugging purposes. 161 */ 162 struct socket *ip_mrouter = NULL; 163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 164 165 #define NO_RTE_FOUND 0x1 166 #define RTE_FOUND 0x2 167 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 172 u_long mfchash; 173 174 u_char nexpire[MFCTBLSIZ]; 175 struct vif viftable[MAXVIFS]; 176 struct mrtstat mrtstat; 177 u_int mrtdebug = 0; /* debug level */ 178 #define DEBUG_MFC 0x02 179 #define DEBUG_FORWARD 0x04 180 #define DEBUG_EXPIRE 0x08 181 #define DEBUG_XMIT 0x10 182 #define DEBUG_PIM 0x20 183 184 #define VIFI_INVALID ((vifi_t) -1) 185 186 u_int tbfdebug = 0; /* tbf debug level */ 187 #ifdef RSVP_ISI 188 u_int rsvpdebug = 0; /* rsvp debug level */ 189 extern struct socket *ip_rsvpd; 190 extern int rsvp_on; 191 #endif /* RSVP_ISI */ 192 193 /* vif attachment using sys/netinet/ip_encap.c */ 194 static void vif_input(struct mbuf *, ...); 195 static int vif_encapcheck(struct mbuf *, int, int, void *); 196 197 static const struct protosw vif_protosw = 198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, 199 vif_input, rip_output, 0, rip_ctloutput, 200 rip_usrreq, 201 0, 0, 0, 0, 202 }; 203 204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 205 #define UPCALL_EXPIRE 6 /* number of timeouts */ 206 207 /* 208 * Define the token bucket filter structures 209 */ 210 211 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 212 213 static int get_sg_cnt(struct sioc_sg_req *); 214 static int get_vif_cnt(struct sioc_vif_req *); 215 static int ip_mrouter_init(struct socket *, int); 216 static int set_assert(int); 217 static int add_vif(struct vifctl *); 218 static int del_vif(vifi_t *); 219 static void update_mfc_params(struct mfc *, struct mfcctl2 *); 220 static void init_mfc_params(struct mfc *, struct mfcctl2 *); 221 static void expire_mfc(struct mfc *); 222 static int add_mfc(struct sockopt *); 223 #ifdef UPCALL_TIMING 224 static void collate(struct timeval *); 225 #endif 226 static int del_mfc(struct sockopt *); 227 static int set_api_config(struct sockopt *); /* chose API capabilities */ 228 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 229 static void expire_upcalls(void *); 230 #ifdef RSVP_ISI 231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 232 #else 233 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); 234 #endif 235 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 236 static void encap_send(struct ip *, struct vif *, struct mbuf *); 237 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); 238 static void tbf_queue(struct vif *, struct mbuf *); 239 static void tbf_process_q(struct vif *); 240 static void tbf_reprocess_q(void *); 241 static int tbf_dq_sel(struct vif *, struct ip *); 242 static void tbf_send_packet(struct vif *, struct mbuf *); 243 static void tbf_update_tokens(struct vif *); 244 static int priority(struct vif *, struct ip *); 245 246 /* 247 * Bandwidth monitoring 248 */ 249 static void free_bw_list(struct bw_meter *); 250 static int add_bw_upcall(struct bw_upcall *); 251 static int del_bw_upcall(struct bw_upcall *); 252 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); 253 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 254 static void bw_upcalls_send(void); 255 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 256 static void unschedule_bw_meter(struct bw_meter *); 257 static void bw_meter_process(void); 258 static void expire_bw_upcalls_send(void *); 259 static void expire_bw_meter_process(void *); 260 261 #ifdef PIM 262 static int pim_register_send(struct ip *, struct vif *, 263 struct mbuf *, struct mfc *); 264 static int pim_register_send_rp(struct ip *, struct vif *, 265 struct mbuf *, struct mfc *); 266 static int pim_register_send_upcall(struct ip *, struct vif *, 267 struct mbuf *, struct mfc *); 268 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 269 #endif 270 271 /* 272 * 'Interfaces' associated with decapsulator (so we can tell 273 * packets that went through it from ones that get reflected 274 * by a broken gateway). These interfaces are never linked into 275 * the system ifnet list & no routes point to them. I.e., packets 276 * can't be sent this way. They only exist as a placeholder for 277 * multicast source verification. 278 */ 279 #if 0 280 struct ifnet multicast_decap_if[MAXVIFS]; 281 #endif 282 283 #define ENCAP_TTL 64 284 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 285 286 /* prototype IP hdr for encapsulated packets */ 287 struct ip multicast_encap_iphdr = { 288 .ip_hl = sizeof(struct ip) >> 2, 289 .ip_v = IPVERSION, 290 .ip_len = sizeof(struct ip), 291 .ip_ttl = ENCAP_TTL, 292 .ip_p = ENCAP_PROTO, 293 }; 294 295 /* 296 * Bandwidth meter variables and constants 297 */ 298 299 /* 300 * Pending timeouts are stored in a hash table, the key being the 301 * expiration time. Periodically, the entries are analysed and processed. 302 */ 303 #define BW_METER_BUCKETS 1024 304 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 305 struct callout bw_meter_ch; 306 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 307 308 /* 309 * Pending upcalls are stored in a vector which is flushed when 310 * full, or periodically 311 */ 312 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 313 static u_int bw_upcalls_n; /* # of pending upcalls */ 314 struct callout bw_upcalls_ch; 315 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 316 317 #ifdef PIM 318 struct pimstat pimstat; 319 320 /* 321 * Note: the PIM Register encapsulation adds the following in front of a 322 * data packet: 323 * 324 * struct pim_encap_hdr { 325 * struct ip ip; 326 * struct pim_encap_pimhdr pim; 327 * } 328 * 329 */ 330 331 struct pim_encap_pimhdr { 332 struct pim pim; 333 uint32_t flags; 334 }; 335 336 static struct ip pim_encap_iphdr = { 337 .ip_v = IPVERSION, 338 .ip_hl = sizeof(struct ip) >> 2, 339 .ip_len = sizeof(struct ip), 340 .ip_ttl = ENCAP_TTL, 341 .ip_p = IPPROTO_PIM, 342 }; 343 344 static struct pim_encap_pimhdr pim_encap_pimhdr = { 345 { 346 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 347 0, /* reserved */ 348 0, /* checksum */ 349 }, 350 0 /* flags */ 351 }; 352 353 static struct ifnet multicast_register_if; 354 static vifi_t reg_vif_num = VIFI_INVALID; 355 #endif /* PIM */ 356 357 358 /* 359 * Private variables. 360 */ 361 static vifi_t numvifs = 0; 362 363 static struct callout expire_upcalls_ch; 364 365 /* 366 * whether or not special PIM assert processing is enabled. 367 */ 368 static int pim_assert; 369 /* 370 * Rate limit for assert notification messages, in usec 371 */ 372 #define ASSERT_MSG_TIME 3000000 373 374 /* 375 * Kernel multicast routing API capabilities and setup. 376 * If more API capabilities are added to the kernel, they should be 377 * recorded in `mrt_api_support'. 378 */ 379 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 380 MRT_MFC_FLAGS_BORDER_VIF | 381 MRT_MFC_RP | 382 MRT_MFC_BW_UPCALL); 383 static u_int32_t mrt_api_config = 0; 384 385 /* 386 * Find a route for a given origin IP address and Multicast group address 387 * Type of service parameter to be added in the future!!! 388 * Statistics are updated by the caller if needed 389 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 390 */ 391 static struct mfc * 392 mfc_find(struct in_addr *o, struct in_addr *g) 393 { 394 struct mfc *rt; 395 396 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 397 if (in_hosteq(rt->mfc_origin, *o) && 398 in_hosteq(rt->mfc_mcastgrp, *g) && 399 (rt->mfc_stall == NULL)) 400 break; 401 } 402 403 return (rt); 404 } 405 406 /* 407 * Macros to compute elapsed time efficiently 408 * Borrowed from Van Jacobson's scheduling code 409 */ 410 #define TV_DELTA(a, b, delta) do { \ 411 int xxs; \ 412 delta = (a).tv_usec - (b).tv_usec; \ 413 xxs = (a).tv_sec - (b).tv_sec; \ 414 switch (xxs) { \ 415 case 2: \ 416 delta += 1000000; \ 417 /* fall through */ \ 418 case 1: \ 419 delta += 1000000; \ 420 /* fall through */ \ 421 case 0: \ 422 break; \ 423 default: \ 424 delta += (1000000 * xxs); \ 425 break; \ 426 } \ 427 } while (/*CONSTCOND*/ 0) 428 429 #ifdef UPCALL_TIMING 430 u_int32_t upcall_data[51]; 431 #endif /* UPCALL_TIMING */ 432 433 /* 434 * Handle MRT setsockopt commands to modify the multicast routing tables. 435 */ 436 int 437 ip_mrouter_set(struct socket *so, struct sockopt *sopt) 438 { 439 int error; 440 int optval; 441 struct vifctl vifc; 442 vifi_t vifi; 443 struct bw_upcall bwuc; 444 445 if (sopt->sopt_name != MRT_INIT && so != ip_mrouter) 446 error = ENOPROTOOPT; 447 else { 448 switch (sopt->sopt_name) { 449 case MRT_INIT: 450 error = sockopt_getint(sopt, &optval); 451 if (error) 452 break; 453 454 error = ip_mrouter_init(so, optval); 455 break; 456 case MRT_DONE: 457 error = ip_mrouter_done(); 458 break; 459 case MRT_ADD_VIF: 460 error = sockopt_get(sopt, &vifc, sizeof(vifc)); 461 if (error) 462 break; 463 error = add_vif(&vifc); 464 break; 465 case MRT_DEL_VIF: 466 error = sockopt_get(sopt, &vifi, sizeof(vifi)); 467 if (error) 468 break; 469 error = del_vif(&vifi); 470 break; 471 case MRT_ADD_MFC: 472 error = add_mfc(sopt); 473 break; 474 case MRT_DEL_MFC: 475 error = del_mfc(sopt); 476 break; 477 case MRT_ASSERT: 478 error = sockopt_getint(sopt, &optval); 479 if (error) 480 break; 481 error = set_assert(optval); 482 break; 483 case MRT_API_CONFIG: 484 error = set_api_config(sopt); 485 break; 486 case MRT_ADD_BW_UPCALL: 487 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 488 if (error) 489 break; 490 error = add_bw_upcall(&bwuc); 491 break; 492 case MRT_DEL_BW_UPCALL: 493 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 494 if (error) 495 break; 496 error = del_bw_upcall(&bwuc); 497 break; 498 default: 499 error = ENOPROTOOPT; 500 break; 501 } 502 } 503 return (error); 504 } 505 506 /* 507 * Handle MRT getsockopt commands 508 */ 509 int 510 ip_mrouter_get(struct socket *so, struct sockopt *sopt) 511 { 512 int error; 513 514 if (so != ip_mrouter) 515 error = ENOPROTOOPT; 516 else { 517 switch (sopt->sopt_name) { 518 case MRT_VERSION: 519 error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */ 520 break; 521 case MRT_ASSERT: 522 error = sockopt_setint(sopt, pim_assert); 523 break; 524 case MRT_API_SUPPORT: 525 error = sockopt_set(sopt, &mrt_api_support, 526 sizeof(mrt_api_support)); 527 break; 528 case MRT_API_CONFIG: 529 error = sockopt_set(sopt, &mrt_api_config, 530 sizeof(mrt_api_config)); 531 break; 532 default: 533 error = ENOPROTOOPT; 534 break; 535 } 536 } 537 return (error); 538 } 539 540 /* 541 * Handle ioctl commands to obtain information from the cache 542 */ 543 int 544 mrt_ioctl(struct socket *so, u_long cmd, void *data) 545 { 546 int error; 547 548 if (so != ip_mrouter) 549 error = EINVAL; 550 else 551 switch (cmd) { 552 case SIOCGETVIFCNT: 553 error = get_vif_cnt((struct sioc_vif_req *)data); 554 break; 555 case SIOCGETSGCNT: 556 error = get_sg_cnt((struct sioc_sg_req *)data); 557 break; 558 default: 559 error = EINVAL; 560 break; 561 } 562 563 return (error); 564 } 565 566 /* 567 * returns the packet, byte, rpf-failure count for the source group provided 568 */ 569 static int 570 get_sg_cnt(struct sioc_sg_req *req) 571 { 572 int s; 573 struct mfc *rt; 574 575 s = splsoftnet(); 576 rt = mfc_find(&req->src, &req->grp); 577 if (rt == NULL) { 578 splx(s); 579 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 580 return (EADDRNOTAVAIL); 581 } 582 req->pktcnt = rt->mfc_pkt_cnt; 583 req->bytecnt = rt->mfc_byte_cnt; 584 req->wrong_if = rt->mfc_wrong_if; 585 splx(s); 586 587 return (0); 588 } 589 590 /* 591 * returns the input and output packet and byte counts on the vif provided 592 */ 593 static int 594 get_vif_cnt(struct sioc_vif_req *req) 595 { 596 vifi_t vifi = req->vifi; 597 598 if (vifi >= numvifs) 599 return (EINVAL); 600 601 req->icount = viftable[vifi].v_pkt_in; 602 req->ocount = viftable[vifi].v_pkt_out; 603 req->ibytes = viftable[vifi].v_bytes_in; 604 req->obytes = viftable[vifi].v_bytes_out; 605 606 return (0); 607 } 608 609 /* 610 * Enable multicast routing 611 */ 612 static int 613 ip_mrouter_init(struct socket *so, int v) 614 { 615 if (mrtdebug) 616 log(LOG_DEBUG, 617 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 618 so->so_type, so->so_proto->pr_protocol); 619 620 if (so->so_type != SOCK_RAW || 621 so->so_proto->pr_protocol != IPPROTO_IGMP) 622 return (EOPNOTSUPP); 623 624 if (v != 1) 625 return (EINVAL); 626 627 if (ip_mrouter != NULL) 628 return (EADDRINUSE); 629 630 ip_mrouter = so; 631 632 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash); 633 memset((void *)nexpire, 0, sizeof(nexpire)); 634 635 pim_assert = 0; 636 637 callout_init(&expire_upcalls_ch, 0); 638 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 639 expire_upcalls, NULL); 640 641 callout_init(&bw_upcalls_ch, 0); 642 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 643 expire_bw_upcalls_send, NULL); 644 645 callout_init(&bw_meter_ch, 0); 646 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 647 expire_bw_meter_process, NULL); 648 649 if (mrtdebug) 650 log(LOG_DEBUG, "ip_mrouter_init\n"); 651 652 return (0); 653 } 654 655 /* 656 * Disable multicast routing 657 */ 658 int 659 ip_mrouter_done(void) 660 { 661 vifi_t vifi; 662 struct vif *vifp; 663 int i; 664 int s; 665 666 s = splsoftnet(); 667 668 /* Clear out all the vifs currently in use. */ 669 for (vifi = 0; vifi < numvifs; vifi++) { 670 vifp = &viftable[vifi]; 671 if (!in_nullhost(vifp->v_lcl_addr)) 672 reset_vif(vifp); 673 } 674 675 numvifs = 0; 676 pim_assert = 0; 677 mrt_api_config = 0; 678 679 callout_stop(&expire_upcalls_ch); 680 callout_stop(&bw_upcalls_ch); 681 callout_stop(&bw_meter_ch); 682 683 /* 684 * Free all multicast forwarding cache entries. 685 */ 686 for (i = 0; i < MFCTBLSIZ; i++) { 687 struct mfc *rt, *nrt; 688 689 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 690 nrt = LIST_NEXT(rt, mfc_hash); 691 692 expire_mfc(rt); 693 } 694 } 695 696 memset((void *)nexpire, 0, sizeof(nexpire)); 697 hashdone(mfchashtbl, HASH_LIST, mfchash); 698 mfchashtbl = NULL; 699 700 bw_upcalls_n = 0; 701 memset(bw_meter_timers, 0, sizeof(bw_meter_timers)); 702 703 /* Reset de-encapsulation cache. */ 704 705 ip_mrouter = NULL; 706 707 splx(s); 708 709 if (mrtdebug) 710 log(LOG_DEBUG, "ip_mrouter_done\n"); 711 712 return (0); 713 } 714 715 void 716 ip_mrouter_detach(struct ifnet *ifp) 717 { 718 int vifi, i; 719 struct vif *vifp; 720 struct mfc *rt; 721 struct rtdetq *rte; 722 723 /* XXX not sure about side effect to userland routing daemon */ 724 for (vifi = 0; vifi < numvifs; vifi++) { 725 vifp = &viftable[vifi]; 726 if (vifp->v_ifp == ifp) 727 reset_vif(vifp); 728 } 729 for (i = 0; i < MFCTBLSIZ; i++) { 730 if (nexpire[i] == 0) 731 continue; 732 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 733 for (rte = rt->mfc_stall; rte; rte = rte->next) { 734 if (rte->ifp == ifp) 735 rte->ifp = NULL; 736 } 737 } 738 } 739 } 740 741 /* 742 * Set PIM assert processing global 743 */ 744 static int 745 set_assert(int i) 746 { 747 pim_assert = !!i; 748 return (0); 749 } 750 751 /* 752 * Configure API capabilities 753 */ 754 static int 755 set_api_config(struct sockopt *sopt) 756 { 757 u_int32_t apival; 758 int i, error; 759 760 /* 761 * We can set the API capabilities only if it is the first operation 762 * after MRT_INIT. I.e.: 763 * - there are no vifs installed 764 * - pim_assert is not enabled 765 * - the MFC table is empty 766 */ 767 error = sockopt_get(sopt, &apival, sizeof(apival)); 768 if (error) 769 return (error); 770 if (numvifs > 0) 771 return (EPERM); 772 if (pim_assert) 773 return (EPERM); 774 for (i = 0; i < MFCTBLSIZ; i++) { 775 if (LIST_FIRST(&mfchashtbl[i]) != NULL) 776 return (EPERM); 777 } 778 779 mrt_api_config = apival & mrt_api_support; 780 return (0); 781 } 782 783 /* 784 * Add a vif to the vif table 785 */ 786 static int 787 add_vif(struct vifctl *vifcp) 788 { 789 struct vif *vifp; 790 struct ifaddr *ifa; 791 struct ifnet *ifp; 792 struct ifreq ifr; 793 int error, s; 794 struct sockaddr_in sin; 795 796 if (vifcp->vifc_vifi >= MAXVIFS) 797 return (EINVAL); 798 if (in_nullhost(vifcp->vifc_lcl_addr)) 799 return (EADDRNOTAVAIL); 800 801 vifp = &viftable[vifcp->vifc_vifi]; 802 if (!in_nullhost(vifp->v_lcl_addr)) 803 return (EADDRINUSE); 804 805 /* Find the interface with an address in AF_INET family. */ 806 #ifdef PIM 807 if (vifcp->vifc_flags & VIFF_REGISTER) { 808 /* 809 * XXX: Because VIFF_REGISTER does not really need a valid 810 * local interface (e.g. it could be 127.0.0.2), we don't 811 * check its address. 812 */ 813 ifp = NULL; 814 } else 815 #endif 816 { 817 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0); 818 ifa = ifa_ifwithaddr(sintosa(&sin)); 819 if (ifa == NULL) 820 return (EADDRNOTAVAIL); 821 ifp = ifa->ifa_ifp; 822 } 823 824 if (vifcp->vifc_flags & VIFF_TUNNEL) { 825 if (vifcp->vifc_flags & VIFF_SRCRT) { 826 log(LOG_ERR, "source routed tunnels not supported\n"); 827 return (EOPNOTSUPP); 828 } 829 830 /* attach this vif to decapsulator dispatch table */ 831 /* 832 * XXX Use addresses in registration so that matching 833 * can be done with radix tree in decapsulator. But, 834 * we need to check inner header for multicast, so 835 * this requires both radix tree lookup and then a 836 * function to check, and this is not supported yet. 837 */ 838 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 839 vif_encapcheck, &vif_protosw, vifp); 840 if (!vifp->v_encap_cookie) 841 return (EINVAL); 842 843 /* Create a fake encapsulation interface. */ 844 ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO); 845 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 846 "mdecap%d", vifcp->vifc_vifi); 847 848 /* Prepare cached route entry. */ 849 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 850 #ifdef PIM 851 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 852 ifp = &multicast_register_if; 853 if (mrtdebug) 854 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 855 (void *)ifp); 856 if (reg_vif_num == VIFI_INVALID) { 857 memset(ifp, 0, sizeof(*ifp)); 858 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 859 "register_vif"); 860 ifp->if_flags = IFF_LOOPBACK; 861 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 862 reg_vif_num = vifcp->vifc_vifi; 863 } 864 #endif 865 } else { 866 /* Make sure the interface supports multicast. */ 867 if ((ifp->if_flags & IFF_MULTICAST) == 0) 868 return (EOPNOTSUPP); 869 870 /* Enable promiscuous reception of all IP multicasts. */ 871 sockaddr_in_init(&sin, &zeroin_addr, 0); 872 ifreq_setaddr(SIOCADDMULTI, &ifr, sintosa(&sin)); 873 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, &ifr); 874 if (error) 875 return (error); 876 } 877 878 s = splsoftnet(); 879 880 /* Define parameters for the tbf structure. */ 881 vifp->tbf_q = NULL; 882 vifp->tbf_t = &vifp->tbf_q; 883 microtime(&vifp->tbf_last_pkt_t); 884 vifp->tbf_n_tok = 0; 885 vifp->tbf_q_len = 0; 886 vifp->tbf_max_q_len = MAXQSIZE; 887 888 vifp->v_flags = vifcp->vifc_flags; 889 vifp->v_threshold = vifcp->vifc_threshold; 890 /* scaling up here allows division by 1024 in critical code */ 891 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 892 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 893 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 894 vifp->v_ifp = ifp; 895 /* Initialize per vif pkt counters. */ 896 vifp->v_pkt_in = 0; 897 vifp->v_pkt_out = 0; 898 vifp->v_bytes_in = 0; 899 vifp->v_bytes_out = 0; 900 901 callout_init(&vifp->v_repq_ch, 0); 902 903 #ifdef RSVP_ISI 904 vifp->v_rsvp_on = 0; 905 vifp->v_rsvpd = NULL; 906 #endif /* RSVP_ISI */ 907 908 splx(s); 909 910 /* Adjust numvifs up if the vifi is higher than numvifs. */ 911 if (numvifs <= vifcp->vifc_vifi) 912 numvifs = vifcp->vifc_vifi + 1; 913 914 if (mrtdebug) 915 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 916 vifcp->vifc_vifi, 917 ntohl(vifcp->vifc_lcl_addr.s_addr), 918 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 919 ntohl(vifcp->vifc_rmt_addr.s_addr), 920 vifcp->vifc_threshold, 921 vifcp->vifc_rate_limit); 922 923 return (0); 924 } 925 926 void 927 reset_vif(struct vif *vifp) 928 { 929 struct mbuf *m, *n; 930 struct ifnet *ifp; 931 struct ifreq ifr; 932 struct sockaddr_in sin; 933 934 callout_stop(&vifp->v_repq_ch); 935 936 /* detach this vif from decapsulator dispatch table */ 937 encap_detach(vifp->v_encap_cookie); 938 vifp->v_encap_cookie = NULL; 939 940 /* 941 * Free packets queued at the interface 942 */ 943 for (m = vifp->tbf_q; m != NULL; m = n) { 944 n = m->m_nextpkt; 945 m_freem(m); 946 } 947 948 if (vifp->v_flags & VIFF_TUNNEL) 949 free(vifp->v_ifp, M_MRTABLE); 950 else if (vifp->v_flags & VIFF_REGISTER) { 951 #ifdef PIM 952 reg_vif_num = VIFI_INVALID; 953 #endif 954 } else { 955 sockaddr_in_init(&sin, &zeroin_addr, 0); 956 ifreq_setaddr(SIOCDELMULTI, &ifr, sintosa(&sin)); 957 ifp = vifp->v_ifp; 958 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, &ifr); 959 } 960 memset((void *)vifp, 0, sizeof(*vifp)); 961 } 962 963 /* 964 * Delete a vif from the vif table 965 */ 966 static int 967 del_vif(vifi_t *vifip) 968 { 969 struct vif *vifp; 970 vifi_t vifi; 971 int s; 972 973 if (*vifip >= numvifs) 974 return (EINVAL); 975 976 vifp = &viftable[*vifip]; 977 if (in_nullhost(vifp->v_lcl_addr)) 978 return (EADDRNOTAVAIL); 979 980 s = splsoftnet(); 981 982 reset_vif(vifp); 983 984 /* Adjust numvifs down */ 985 for (vifi = numvifs; vifi > 0; vifi--) 986 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 987 break; 988 numvifs = vifi; 989 990 splx(s); 991 992 if (mrtdebug) 993 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 994 995 return (0); 996 } 997 998 /* 999 * update an mfc entry without resetting counters and S,G addresses. 1000 */ 1001 static void 1002 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1003 { 1004 int i; 1005 1006 rt->mfc_parent = mfccp->mfcc_parent; 1007 for (i = 0; i < numvifs; i++) { 1008 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1009 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1010 MRT_MFC_FLAGS_ALL; 1011 } 1012 /* set the RP address */ 1013 if (mrt_api_config & MRT_MFC_RP) 1014 rt->mfc_rp = mfccp->mfcc_rp; 1015 else 1016 rt->mfc_rp = zeroin_addr; 1017 } 1018 1019 /* 1020 * fully initialize an mfc entry from the parameter. 1021 */ 1022 static void 1023 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1024 { 1025 rt->mfc_origin = mfccp->mfcc_origin; 1026 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1027 1028 update_mfc_params(rt, mfccp); 1029 1030 /* initialize pkt counters per src-grp */ 1031 rt->mfc_pkt_cnt = 0; 1032 rt->mfc_byte_cnt = 0; 1033 rt->mfc_wrong_if = 0; 1034 timerclear(&rt->mfc_last_assert); 1035 } 1036 1037 static void 1038 expire_mfc(struct mfc *rt) 1039 { 1040 struct rtdetq *rte, *nrte; 1041 1042 free_bw_list(rt->mfc_bw_meter); 1043 1044 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1045 nrte = rte->next; 1046 m_freem(rte->m); 1047 free(rte, M_MRTABLE); 1048 } 1049 1050 LIST_REMOVE(rt, mfc_hash); 1051 free(rt, M_MRTABLE); 1052 } 1053 1054 /* 1055 * Add an mfc entry 1056 */ 1057 static int 1058 add_mfc(struct sockopt *sopt) 1059 { 1060 struct mfcctl2 mfcctl2; 1061 struct mfcctl2 *mfccp; 1062 struct mfc *rt; 1063 u_int32_t hash = 0; 1064 struct rtdetq *rte, *nrte; 1065 u_short nstl; 1066 int s; 1067 int mfcctl_size = sizeof(struct mfcctl); 1068 int error; 1069 1070 if (mrt_api_config & MRT_API_FLAGS_ALL) 1071 mfcctl_size = sizeof(struct mfcctl2); 1072 1073 /* 1074 * select data size depending on API version. 1075 */ 1076 mfccp = &mfcctl2; 1077 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1078 1079 if (mrt_api_config & MRT_API_FLAGS_ALL) 1080 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1081 else 1082 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1083 1084 if (error) 1085 return (error); 1086 1087 s = splsoftnet(); 1088 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1089 1090 /* If an entry already exists, just update the fields */ 1091 if (rt) { 1092 if (mrtdebug & DEBUG_MFC) 1093 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1094 ntohl(mfccp->mfcc_origin.s_addr), 1095 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1096 mfccp->mfcc_parent); 1097 1098 update_mfc_params(rt, mfccp); 1099 1100 splx(s); 1101 return (0); 1102 } 1103 1104 /* 1105 * Find the entry for which the upcall was made and update 1106 */ 1107 nstl = 0; 1108 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1109 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1110 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1111 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1112 rt->mfc_stall != NULL) { 1113 if (nstl++) 1114 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1115 "multiple kernel entries", 1116 ntohl(mfccp->mfcc_origin.s_addr), 1117 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1118 mfccp->mfcc_parent, rt->mfc_stall); 1119 1120 if (mrtdebug & DEBUG_MFC) 1121 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1122 ntohl(mfccp->mfcc_origin.s_addr), 1123 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1124 mfccp->mfcc_parent, rt->mfc_stall); 1125 1126 rte = rt->mfc_stall; 1127 init_mfc_params(rt, mfccp); 1128 rt->mfc_stall = NULL; 1129 1130 rt->mfc_expire = 0; /* Don't clean this guy up */ 1131 nexpire[hash]--; 1132 1133 /* free packets Qed at the end of this entry */ 1134 for (; rte != NULL; rte = nrte) { 1135 nrte = rte->next; 1136 if (rte->ifp) { 1137 #ifdef RSVP_ISI 1138 ip_mdq(rte->m, rte->ifp, rt, -1); 1139 #else 1140 ip_mdq(rte->m, rte->ifp, rt); 1141 #endif /* RSVP_ISI */ 1142 } 1143 m_freem(rte->m); 1144 #ifdef UPCALL_TIMING 1145 collate(&rte->t); 1146 #endif /* UPCALL_TIMING */ 1147 free(rte, M_MRTABLE); 1148 } 1149 } 1150 } 1151 1152 /* 1153 * It is possible that an entry is being inserted without an upcall 1154 */ 1155 if (nstl == 0) { 1156 /* 1157 * No mfc; make a new one 1158 */ 1159 if (mrtdebug & DEBUG_MFC) 1160 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1161 ntohl(mfccp->mfcc_origin.s_addr), 1162 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1163 mfccp->mfcc_parent); 1164 1165 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1166 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1167 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1168 init_mfc_params(rt, mfccp); 1169 if (rt->mfc_expire) 1170 nexpire[hash]--; 1171 rt->mfc_expire = 0; 1172 break; /* XXX */ 1173 } 1174 } 1175 if (rt == NULL) { /* no upcall, so make a new entry */ 1176 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1177 M_NOWAIT); 1178 if (rt == NULL) { 1179 splx(s); 1180 return (ENOBUFS); 1181 } 1182 1183 init_mfc_params(rt, mfccp); 1184 rt->mfc_expire = 0; 1185 rt->mfc_stall = NULL; 1186 rt->mfc_bw_meter = NULL; 1187 1188 /* insert new entry at head of hash chain */ 1189 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1190 } 1191 } 1192 1193 splx(s); 1194 return (0); 1195 } 1196 1197 #ifdef UPCALL_TIMING 1198 /* 1199 * collect delay statistics on the upcalls 1200 */ 1201 static void 1202 collate(struct timeval *t) 1203 { 1204 u_int32_t d; 1205 struct timeval tp; 1206 u_int32_t delta; 1207 1208 microtime(&tp); 1209 1210 if (timercmp(t, &tp, <)) { 1211 TV_DELTA(tp, *t, delta); 1212 1213 d = delta >> 10; 1214 if (d > 50) 1215 d = 50; 1216 1217 ++upcall_data[d]; 1218 } 1219 } 1220 #endif /* UPCALL_TIMING */ 1221 1222 /* 1223 * Delete an mfc entry 1224 */ 1225 static int 1226 del_mfc(struct sockopt *sopt) 1227 { 1228 struct mfcctl2 mfcctl2; 1229 struct mfcctl2 *mfccp; 1230 struct mfc *rt; 1231 int s; 1232 int error; 1233 1234 /* 1235 * XXX: for deleting MFC entries the information in entries 1236 * of size "struct mfcctl" is sufficient. 1237 */ 1238 1239 mfccp = &mfcctl2; 1240 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1241 1242 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1243 if (error) { 1244 /* Try with the size of mfcctl2. */ 1245 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1246 if (error) 1247 return (error); 1248 } 1249 1250 if (mrtdebug & DEBUG_MFC) 1251 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1252 ntohl(mfccp->mfcc_origin.s_addr), 1253 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1254 1255 s = splsoftnet(); 1256 1257 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1258 if (rt == NULL) { 1259 splx(s); 1260 return (EADDRNOTAVAIL); 1261 } 1262 1263 /* 1264 * free the bw_meter entries 1265 */ 1266 free_bw_list(rt->mfc_bw_meter); 1267 rt->mfc_bw_meter = NULL; 1268 1269 LIST_REMOVE(rt, mfc_hash); 1270 free(rt, M_MRTABLE); 1271 1272 splx(s); 1273 return (0); 1274 } 1275 1276 static int 1277 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1278 { 1279 if (s) { 1280 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, 1281 (struct mbuf *)NULL) != 0) { 1282 sorwakeup(s); 1283 return (0); 1284 } 1285 } 1286 m_freem(mm); 1287 return (-1); 1288 } 1289 1290 /* 1291 * IP multicast forwarding function. This function assumes that the packet 1292 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1293 * pointed to by "ifp", and the packet is to be relayed to other networks 1294 * that have members of the packet's destination IP multicast group. 1295 * 1296 * The packet is returned unscathed to the caller, unless it is 1297 * erroneous, in which case a non-zero return value tells the caller to 1298 * discard it. 1299 */ 1300 1301 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1302 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1303 1304 int 1305 #ifdef RSVP_ISI 1306 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) 1307 #else 1308 ip_mforward(struct mbuf *m, struct ifnet *ifp) 1309 #endif /* RSVP_ISI */ 1310 { 1311 struct ip *ip = mtod(m, struct ip *); 1312 struct mfc *rt; 1313 static int srctun = 0; 1314 struct mbuf *mm; 1315 struct sockaddr_in sin; 1316 int s; 1317 vifi_t vifi; 1318 1319 if (mrtdebug & DEBUG_FORWARD) 1320 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1321 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1322 1323 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1324 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1325 /* 1326 * Packet arrived via a physical interface or 1327 * an encapsulated tunnel or a register_vif. 1328 */ 1329 } else { 1330 /* 1331 * Packet arrived through a source-route tunnel. 1332 * Source-route tunnels are no longer supported. 1333 */ 1334 if ((srctun++ % 1000) == 0) 1335 log(LOG_ERR, 1336 "ip_mforward: received source-routed packet from %x\n", 1337 ntohl(ip->ip_src.s_addr)); 1338 1339 return (1); 1340 } 1341 1342 /* 1343 * Clear any in-bound checksum flags for this packet. 1344 */ 1345 m->m_pkthdr.csum_flags = 0; 1346 1347 #ifdef RSVP_ISI 1348 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1349 if (ip->ip_ttl < MAXTTL) 1350 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1351 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1352 struct vif *vifp = viftable + vifi; 1353 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", 1354 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1355 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1356 vifp->v_ifp->if_xname); 1357 } 1358 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi)); 1359 } 1360 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1361 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", 1362 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1363 } 1364 #endif /* RSVP_ISI */ 1365 1366 /* 1367 * Don't forward a packet with time-to-live of zero or one, 1368 * or a packet destined to a local-only group. 1369 */ 1370 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1371 return (0); 1372 1373 /* 1374 * Determine forwarding vifs from the forwarding cache table 1375 */ 1376 s = splsoftnet(); 1377 ++mrtstat.mrts_mfc_lookups; 1378 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1379 1380 /* Entry exists, so forward if necessary */ 1381 if (rt != NULL) { 1382 splx(s); 1383 #ifdef RSVP_ISI 1384 return (ip_mdq(m, ifp, rt, -1)); 1385 #else 1386 return (ip_mdq(m, ifp, rt)); 1387 #endif /* RSVP_ISI */ 1388 } else { 1389 /* 1390 * If we don't have a route for packet's origin, 1391 * Make a copy of the packet & send message to routing daemon 1392 */ 1393 1394 struct mbuf *mb0; 1395 struct rtdetq *rte; 1396 u_int32_t hash; 1397 int hlen = ip->ip_hl << 2; 1398 #ifdef UPCALL_TIMING 1399 struct timeval tp; 1400 1401 microtime(&tp); 1402 #endif /* UPCALL_TIMING */ 1403 1404 ++mrtstat.mrts_mfc_misses; 1405 1406 mrtstat.mrts_no_route++; 1407 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1408 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1409 ntohl(ip->ip_src.s_addr), 1410 ntohl(ip->ip_dst.s_addr)); 1411 1412 /* 1413 * Allocate mbufs early so that we don't do extra work if we are 1414 * just going to fail anyway. Make sure to pullup the header so 1415 * that other people can't step on it. 1416 */ 1417 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1418 M_NOWAIT); 1419 if (rte == NULL) { 1420 splx(s); 1421 return (ENOBUFS); 1422 } 1423 mb0 = m_copypacket(m, M_DONTWAIT); 1424 M_PULLUP(mb0, hlen); 1425 if (mb0 == NULL) { 1426 free(rte, M_MRTABLE); 1427 splx(s); 1428 return (ENOBUFS); 1429 } 1430 1431 /* is there an upcall waiting for this flow? */ 1432 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1433 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1434 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1435 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1436 rt->mfc_stall != NULL) 1437 break; 1438 } 1439 1440 if (rt == NULL) { 1441 int i; 1442 struct igmpmsg *im; 1443 1444 /* 1445 * Locate the vifi for the incoming interface for 1446 * this packet. 1447 * If none found, drop packet. 1448 */ 1449 for (vifi = 0; vifi < numvifs && 1450 viftable[vifi].v_ifp != ifp; vifi++) 1451 ; 1452 if (vifi >= numvifs) /* vif not found, drop packet */ 1453 goto non_fatal; 1454 1455 /* no upcall, so make a new entry */ 1456 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1457 M_NOWAIT); 1458 if (rt == NULL) 1459 goto fail; 1460 1461 /* 1462 * Make a copy of the header to send to the user level 1463 * process 1464 */ 1465 mm = m_copym(m, 0, hlen, M_DONTWAIT); 1466 M_PULLUP(mm, hlen); 1467 if (mm == NULL) 1468 goto fail1; 1469 1470 /* 1471 * Send message to routing daemon to install 1472 * a route into the kernel table 1473 */ 1474 1475 im = mtod(mm, struct igmpmsg *); 1476 im->im_msgtype = IGMPMSG_NOCACHE; 1477 im->im_mbz = 0; 1478 im->im_vif = vifi; 1479 1480 mrtstat.mrts_upcalls++; 1481 1482 sockaddr_in_init(&sin, &ip->ip_src, 0); 1483 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1484 log(LOG_WARNING, 1485 "ip_mforward: ip_mrouter socket queue full\n"); 1486 ++mrtstat.mrts_upq_sockfull; 1487 fail1: 1488 free(rt, M_MRTABLE); 1489 fail: 1490 free(rte, M_MRTABLE); 1491 m_freem(mb0); 1492 splx(s); 1493 return (ENOBUFS); 1494 } 1495 1496 /* insert new entry at head of hash chain */ 1497 rt->mfc_origin = ip->ip_src; 1498 rt->mfc_mcastgrp = ip->ip_dst; 1499 rt->mfc_pkt_cnt = 0; 1500 rt->mfc_byte_cnt = 0; 1501 rt->mfc_wrong_if = 0; 1502 rt->mfc_expire = UPCALL_EXPIRE; 1503 nexpire[hash]++; 1504 for (i = 0; i < numvifs; i++) { 1505 rt->mfc_ttls[i] = 0; 1506 rt->mfc_flags[i] = 0; 1507 } 1508 rt->mfc_parent = -1; 1509 1510 /* clear the RP address */ 1511 rt->mfc_rp = zeroin_addr; 1512 1513 rt->mfc_bw_meter = NULL; 1514 1515 /* link into table */ 1516 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1517 /* Add this entry to the end of the queue */ 1518 rt->mfc_stall = rte; 1519 } else { 1520 /* determine if q has overflowed */ 1521 struct rtdetq **p; 1522 int npkts = 0; 1523 1524 /* 1525 * XXX ouch! we need to append to the list, but we 1526 * only have a pointer to the front, so we have to 1527 * scan the entire list every time. 1528 */ 1529 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1530 if (++npkts > MAX_UPQ) { 1531 mrtstat.mrts_upq_ovflw++; 1532 non_fatal: 1533 free(rte, M_MRTABLE); 1534 m_freem(mb0); 1535 splx(s); 1536 return (0); 1537 } 1538 1539 /* Add this entry to the end of the queue */ 1540 *p = rte; 1541 } 1542 1543 rte->next = NULL; 1544 rte->m = mb0; 1545 rte->ifp = ifp; 1546 #ifdef UPCALL_TIMING 1547 rte->t = tp; 1548 #endif /* UPCALL_TIMING */ 1549 1550 splx(s); 1551 1552 return (0); 1553 } 1554 } 1555 1556 1557 /*ARGSUSED*/ 1558 static void 1559 expire_upcalls(void *v) 1560 { 1561 int i; 1562 int s; 1563 1564 s = splsoftnet(); 1565 1566 for (i = 0; i < MFCTBLSIZ; i++) { 1567 struct mfc *rt, *nrt; 1568 1569 if (nexpire[i] == 0) 1570 continue; 1571 1572 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1573 nrt = LIST_NEXT(rt, mfc_hash); 1574 1575 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1576 continue; 1577 nexpire[i]--; 1578 1579 /* 1580 * free the bw_meter entries 1581 */ 1582 while (rt->mfc_bw_meter != NULL) { 1583 struct bw_meter *x = rt->mfc_bw_meter; 1584 1585 rt->mfc_bw_meter = x->bm_mfc_next; 1586 free(x, M_BWMETER); 1587 } 1588 1589 ++mrtstat.mrts_cache_cleanups; 1590 if (mrtdebug & DEBUG_EXPIRE) 1591 log(LOG_DEBUG, 1592 "expire_upcalls: expiring (%x %x)\n", 1593 ntohl(rt->mfc_origin.s_addr), 1594 ntohl(rt->mfc_mcastgrp.s_addr)); 1595 1596 expire_mfc(rt); 1597 } 1598 } 1599 1600 splx(s); 1601 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1602 expire_upcalls, NULL); 1603 } 1604 1605 /* 1606 * Packet forwarding routine once entry in the cache is made 1607 */ 1608 static int 1609 #ifdef RSVP_ISI 1610 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1611 #else 1612 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) 1613 #endif /* RSVP_ISI */ 1614 { 1615 struct ip *ip = mtod(m, struct ip *); 1616 vifi_t vifi; 1617 struct vif *vifp; 1618 struct sockaddr_in sin; 1619 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1620 1621 /* 1622 * Macro to send packet on vif. Since RSVP packets don't get counted on 1623 * input, they shouldn't get counted on output, so statistics keeping is 1624 * separate. 1625 */ 1626 #define MC_SEND(ip, vifp, m) do { \ 1627 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1628 encap_send((ip), (vifp), (m)); \ 1629 else \ 1630 phyint_send((ip), (vifp), (m)); \ 1631 } while (/*CONSTCOND*/ 0) 1632 1633 #ifdef RSVP_ISI 1634 /* 1635 * If xmt_vif is not -1, send on only the requested vif. 1636 * 1637 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1638 */ 1639 if (xmt_vif < numvifs) { 1640 #ifdef PIM 1641 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1642 pim_register_send(ip, viftable + xmt_vif, m, rt); 1643 else 1644 #endif 1645 MC_SEND(ip, viftable + xmt_vif, m); 1646 return (1); 1647 } 1648 #endif /* RSVP_ISI */ 1649 1650 /* 1651 * Don't forward if it didn't arrive from the parent vif for its origin. 1652 */ 1653 vifi = rt->mfc_parent; 1654 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1655 /* came in the wrong interface */ 1656 if (mrtdebug & DEBUG_FORWARD) 1657 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1658 ifp, vifi, 1659 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1660 ++mrtstat.mrts_wrong_if; 1661 ++rt->mfc_wrong_if; 1662 /* 1663 * If we are doing PIM assert processing, send a message 1664 * to the routing daemon. 1665 * 1666 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1667 * can complete the SPT switch, regardless of the type 1668 * of the iif (broadcast media, GRE tunnel, etc). 1669 */ 1670 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1671 struct timeval now; 1672 u_int32_t delta; 1673 1674 #ifdef PIM 1675 if (ifp == &multicast_register_if) 1676 pimstat.pims_rcv_registers_wrongiif++; 1677 #endif 1678 1679 /* Get vifi for the incoming packet */ 1680 for (vifi = 0; 1681 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1682 vifi++) 1683 ; 1684 if (vifi >= numvifs) { 1685 /* The iif is not found: ignore the packet. */ 1686 return (0); 1687 } 1688 1689 if (rt->mfc_flags[vifi] & 1690 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1691 /* WRONGVIF disabled: ignore the packet */ 1692 return (0); 1693 } 1694 1695 microtime(&now); 1696 1697 TV_DELTA(rt->mfc_last_assert, now, delta); 1698 1699 if (delta > ASSERT_MSG_TIME) { 1700 struct igmpmsg *im; 1701 int hlen = ip->ip_hl << 2; 1702 struct mbuf *mm = 1703 m_copym(m, 0, hlen, M_DONTWAIT); 1704 1705 M_PULLUP(mm, hlen); 1706 if (mm == NULL) 1707 return (ENOBUFS); 1708 1709 rt->mfc_last_assert = now; 1710 1711 im = mtod(mm, struct igmpmsg *); 1712 im->im_msgtype = IGMPMSG_WRONGVIF; 1713 im->im_mbz = 0; 1714 im->im_vif = vifi; 1715 1716 mrtstat.mrts_upcalls++; 1717 1718 sockaddr_in_init(&sin, &im->im_src, 0); 1719 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1720 log(LOG_WARNING, 1721 "ip_mforward: ip_mrouter socket queue full\n"); 1722 ++mrtstat.mrts_upq_sockfull; 1723 return (ENOBUFS); 1724 } 1725 } 1726 } 1727 return (0); 1728 } 1729 1730 /* If I sourced this packet, it counts as output, else it was input. */ 1731 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1732 viftable[vifi].v_pkt_out++; 1733 viftable[vifi].v_bytes_out += plen; 1734 } else { 1735 viftable[vifi].v_pkt_in++; 1736 viftable[vifi].v_bytes_in += plen; 1737 } 1738 rt->mfc_pkt_cnt++; 1739 rt->mfc_byte_cnt += plen; 1740 1741 /* 1742 * For each vif, decide if a copy of the packet should be forwarded. 1743 * Forward if: 1744 * - the ttl exceeds the vif's threshold 1745 * - there are group members downstream on interface 1746 */ 1747 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1748 if ((rt->mfc_ttls[vifi] > 0) && 1749 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1750 vifp->v_pkt_out++; 1751 vifp->v_bytes_out += plen; 1752 #ifdef PIM 1753 if (vifp->v_flags & VIFF_REGISTER) 1754 pim_register_send(ip, vifp, m, rt); 1755 else 1756 #endif 1757 MC_SEND(ip, vifp, m); 1758 } 1759 1760 /* 1761 * Perform upcall-related bw measuring. 1762 */ 1763 if (rt->mfc_bw_meter != NULL) { 1764 struct bw_meter *x; 1765 struct timeval now; 1766 1767 microtime(&now); 1768 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1769 bw_meter_receive_packet(x, plen, &now); 1770 } 1771 1772 return (0); 1773 } 1774 1775 #ifdef RSVP_ISI 1776 /* 1777 * check if a vif number is legal/ok. This is used by ip_output. 1778 */ 1779 int 1780 legal_vif_num(int vif) 1781 { 1782 if (vif >= 0 && vif < numvifs) 1783 return (1); 1784 else 1785 return (0); 1786 } 1787 #endif /* RSVP_ISI */ 1788 1789 static void 1790 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1791 { 1792 struct mbuf *mb_copy; 1793 int hlen = ip->ip_hl << 2; 1794 1795 /* 1796 * Make a new reference to the packet; make sure that 1797 * the IP header is actually copied, not just referenced, 1798 * so that ip_output() only scribbles on the copy. 1799 */ 1800 mb_copy = m_copypacket(m, M_DONTWAIT); 1801 M_PULLUP(mb_copy, hlen); 1802 if (mb_copy == NULL) 1803 return; 1804 1805 if (vifp->v_rate_limit <= 0) 1806 tbf_send_packet(vifp, mb_copy); 1807 else 1808 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1809 ntohs(ip->ip_len)); 1810 } 1811 1812 static void 1813 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1814 { 1815 struct mbuf *mb_copy; 1816 struct ip *ip_copy; 1817 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1818 1819 /* Take care of delayed checksums */ 1820 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1821 in_delayed_cksum(m); 1822 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1823 } 1824 1825 /* 1826 * copy the old packet & pullup it's IP header into the 1827 * new mbuf so we can modify it. Try to fill the new 1828 * mbuf since if we don't the ethernet driver will. 1829 */ 1830 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1831 if (mb_copy == NULL) 1832 return; 1833 mb_copy->m_data += max_linkhdr; 1834 mb_copy->m_pkthdr.len = len; 1835 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1836 1837 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 1838 m_freem(mb_copy); 1839 return; 1840 } 1841 i = MHLEN - max_linkhdr; 1842 if (i > len) 1843 i = len; 1844 mb_copy = m_pullup(mb_copy, i); 1845 if (mb_copy == NULL) 1846 return; 1847 1848 /* 1849 * fill in the encapsulating IP header. 1850 */ 1851 ip_copy = mtod(mb_copy, struct ip *); 1852 *ip_copy = multicast_encap_iphdr; 1853 if (len < IP_MINFRAGSIZE) 1854 ip_copy->ip_id = 0; 1855 else 1856 ip_copy->ip_id = ip_newid(NULL); 1857 ip_copy->ip_len = htons(len); 1858 ip_copy->ip_src = vifp->v_lcl_addr; 1859 ip_copy->ip_dst = vifp->v_rmt_addr; 1860 1861 /* 1862 * turn the encapsulated IP header back into a valid one. 1863 */ 1864 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr)); 1865 --ip->ip_ttl; 1866 ip->ip_sum = 0; 1867 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1868 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1869 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1870 1871 if (vifp->v_rate_limit <= 0) 1872 tbf_send_packet(vifp, mb_copy); 1873 else 1874 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 1875 } 1876 1877 /* 1878 * De-encapsulate a packet and feed it back through ip input. 1879 */ 1880 static void 1881 vif_input(struct mbuf *m, ...) 1882 { 1883 int off, proto; 1884 va_list ap; 1885 struct vif *vifp; 1886 int s; 1887 struct ifqueue *ifq; 1888 1889 va_start(ap, m); 1890 off = va_arg(ap, int); 1891 proto = va_arg(ap, int); 1892 va_end(ap); 1893 1894 vifp = (struct vif *)encap_getarg(m); 1895 if (!vifp || proto != ENCAP_PROTO) { 1896 m_freem(m); 1897 mrtstat.mrts_bad_tunnel++; 1898 return; 1899 } 1900 1901 m_adj(m, off); 1902 m->m_pkthdr.rcvif = vifp->v_ifp; 1903 ifq = &ipintrq; 1904 s = splnet(); 1905 if (IF_QFULL(ifq)) { 1906 IF_DROP(ifq); 1907 m_freem(m); 1908 } else { 1909 IF_ENQUEUE(ifq, m); 1910 /* 1911 * normally we would need a "schednetisr(NETISR_IP)" 1912 * here but we were called by ip_input and it is going 1913 * to loop back & try to dequeue the packet we just 1914 * queued as soon as we return so we avoid the 1915 * unnecessary software interrrupt. 1916 */ 1917 } 1918 splx(s); 1919 } 1920 1921 /* 1922 * Check if the packet should be received on the vif denoted by arg. 1923 * (The encap selection code will call this once per vif since each is 1924 * registered separately.) 1925 */ 1926 static int 1927 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg) 1928 { 1929 struct vif *vifp; 1930 struct ip ip; 1931 1932 #ifdef DIAGNOSTIC 1933 if (!arg || proto != IPPROTO_IPV4) 1934 panic("unexpected arg in vif_encapcheck"); 1935 #endif 1936 1937 /* 1938 * Accept the packet only if the inner heaader is multicast 1939 * and the outer header matches a tunnel-mode vif. Order 1940 * checks in the hope that common non-matching packets will be 1941 * rejected quickly. Assume that unicast IPv4 traffic in a 1942 * parallel tunnel (e.g. gif(4)) is unlikely. 1943 */ 1944 1945 /* Obtain the outer IP header and the vif pointer. */ 1946 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip); 1947 vifp = (struct vif *)arg; 1948 1949 /* 1950 * The outer source must match the vif's remote peer address. 1951 * For a multicast router with several tunnels, this is the 1952 * only check that will fail on packets in other tunnels, 1953 * assuming the local address is the same. 1954 */ 1955 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 1956 return 0; 1957 1958 /* The outer destination must match the vif's local address. */ 1959 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst)) 1960 return 0; 1961 1962 /* The vif must be of tunnel type. */ 1963 if ((vifp->v_flags & VIFF_TUNNEL) == 0) 1964 return 0; 1965 1966 /* Check that the inner destination is multicast. */ 1967 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip); 1968 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 1969 return 0; 1970 1971 /* 1972 * We have checked that both the outer src and dst addresses 1973 * match the vif, and that the inner destination is multicast 1974 * (224/5). By claiming more than 64, we intend to 1975 * preferentially take packets that also match a parallel 1976 * gif(4). 1977 */ 1978 return 32 + 32 + 5; 1979 } 1980 1981 /* 1982 * Token bucket filter module 1983 */ 1984 static void 1985 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) 1986 { 1987 1988 if (len > MAX_BKT_SIZE) { 1989 /* drop if packet is too large */ 1990 mrtstat.mrts_pkt2large++; 1991 m_freem(m); 1992 return; 1993 } 1994 1995 tbf_update_tokens(vifp); 1996 1997 /* 1998 * If there are enough tokens, and the queue is empty, send this packet 1999 * out immediately. Otherwise, try to insert it on this vif's queue. 2000 */ 2001 if (vifp->tbf_q_len == 0) { 2002 if (len <= vifp->tbf_n_tok) { 2003 vifp->tbf_n_tok -= len; 2004 tbf_send_packet(vifp, m); 2005 } else { 2006 /* queue packet and timeout till later */ 2007 tbf_queue(vifp, m); 2008 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2009 tbf_reprocess_q, vifp); 2010 } 2011 } else { 2012 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 2013 !tbf_dq_sel(vifp, ip)) { 2014 /* queue full, and couldn't make room */ 2015 mrtstat.mrts_q_overflow++; 2016 m_freem(m); 2017 } else { 2018 /* queue length low enough, or made room */ 2019 tbf_queue(vifp, m); 2020 tbf_process_q(vifp); 2021 } 2022 } 2023 } 2024 2025 /* 2026 * adds a packet to the queue at the interface 2027 */ 2028 static void 2029 tbf_queue(struct vif *vifp, struct mbuf *m) 2030 { 2031 int s = splsoftnet(); 2032 2033 /* insert at tail */ 2034 *vifp->tbf_t = m; 2035 vifp->tbf_t = &m->m_nextpkt; 2036 vifp->tbf_q_len++; 2037 2038 splx(s); 2039 } 2040 2041 2042 /* 2043 * processes the queue at the interface 2044 */ 2045 static void 2046 tbf_process_q(struct vif *vifp) 2047 { 2048 struct mbuf *m; 2049 int len; 2050 int s = splsoftnet(); 2051 2052 /* 2053 * Loop through the queue at the interface and send as many packets 2054 * as possible. 2055 */ 2056 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2057 len = ntohs(mtod(m, struct ip *)->ip_len); 2058 2059 /* determine if the packet can be sent */ 2060 if (len <= vifp->tbf_n_tok) { 2061 /* if so, 2062 * reduce no of tokens, dequeue the packet, 2063 * send the packet. 2064 */ 2065 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2066 vifp->tbf_t = &vifp->tbf_q; 2067 --vifp->tbf_q_len; 2068 2069 m->m_nextpkt = NULL; 2070 vifp->tbf_n_tok -= len; 2071 tbf_send_packet(vifp, m); 2072 } else 2073 break; 2074 } 2075 splx(s); 2076 } 2077 2078 static void 2079 tbf_reprocess_q(void *arg) 2080 { 2081 struct vif *vifp = arg; 2082 2083 if (ip_mrouter == NULL) 2084 return; 2085 2086 tbf_update_tokens(vifp); 2087 tbf_process_q(vifp); 2088 2089 if (vifp->tbf_q_len != 0) 2090 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2091 tbf_reprocess_q, vifp); 2092 } 2093 2094 /* function that will selectively discard a member of the queue 2095 * based on the precedence value and the priority 2096 */ 2097 static int 2098 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2099 { 2100 u_int p; 2101 struct mbuf **mp, *m; 2102 int s = splsoftnet(); 2103 2104 p = priority(vifp, ip); 2105 2106 for (mp = &vifp->tbf_q, m = *mp; 2107 m != NULL; 2108 mp = &m->m_nextpkt, m = *mp) { 2109 if (p > priority(vifp, mtod(m, struct ip *))) { 2110 if ((*mp = m->m_nextpkt) == NULL) 2111 vifp->tbf_t = mp; 2112 --vifp->tbf_q_len; 2113 2114 m_freem(m); 2115 mrtstat.mrts_drop_sel++; 2116 splx(s); 2117 return (1); 2118 } 2119 } 2120 splx(s); 2121 return (0); 2122 } 2123 2124 static void 2125 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2126 { 2127 int error; 2128 int s = splsoftnet(); 2129 2130 if (vifp->v_flags & VIFF_TUNNEL) { 2131 /* If tunnel options */ 2132 ip_output(m, (struct mbuf *)NULL, &vifp->v_route, 2133 IP_FORWARDING, (struct ip_moptions *)NULL, 2134 (struct socket *)NULL); 2135 } else { 2136 /* if physical interface option, extract the options and then send */ 2137 struct ip_moptions imo; 2138 2139 imo.imo_multicast_ifp = vifp->v_ifp; 2140 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2141 imo.imo_multicast_loop = 1; 2142 #ifdef RSVP_ISI 2143 imo.imo_multicast_vif = -1; 2144 #endif 2145 2146 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS, 2147 &imo, NULL); 2148 2149 if (mrtdebug & DEBUG_XMIT) 2150 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2151 (long)(vifp - viftable), error); 2152 } 2153 splx(s); 2154 } 2155 2156 /* determine the current time and then 2157 * the elapsed time (between the last time and time now) 2158 * in milliseconds & update the no. of tokens in the bucket 2159 */ 2160 static void 2161 tbf_update_tokens(struct vif *vifp) 2162 { 2163 struct timeval tp; 2164 u_int32_t tm; 2165 int s = splsoftnet(); 2166 2167 microtime(&tp); 2168 2169 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2170 2171 /* 2172 * This formula is actually 2173 * "time in seconds" * "bytes/second". 2174 * 2175 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2176 * 2177 * The (1000/1024) was introduced in add_vif to optimize 2178 * this divide into a shift. 2179 */ 2180 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2181 vifp->tbf_last_pkt_t = tp; 2182 2183 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2184 vifp->tbf_n_tok = MAX_BKT_SIZE; 2185 2186 splx(s); 2187 } 2188 2189 static int 2190 priority(struct vif *vifp, struct ip *ip) 2191 { 2192 int prio = 50; /* the lowest priority -- default case */ 2193 2194 /* temporary hack; may add general packet classifier some day */ 2195 2196 /* 2197 * The UDP port space is divided up into four priority ranges: 2198 * [0, 16384) : unclassified - lowest priority 2199 * [16384, 32768) : audio - highest priority 2200 * [32768, 49152) : whiteboard - medium priority 2201 * [49152, 65536) : video - low priority 2202 */ 2203 if (ip->ip_p == IPPROTO_UDP) { 2204 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2205 2206 switch (ntohs(udp->uh_dport) & 0xc000) { 2207 case 0x4000: 2208 prio = 70; 2209 break; 2210 case 0x8000: 2211 prio = 60; 2212 break; 2213 case 0xc000: 2214 prio = 55; 2215 break; 2216 } 2217 2218 if (tbfdebug > 1) 2219 log(LOG_DEBUG, "port %x prio %d\n", 2220 ntohs(udp->uh_dport), prio); 2221 } 2222 2223 return (prio); 2224 } 2225 2226 /* 2227 * End of token bucket filter modifications 2228 */ 2229 #ifdef RSVP_ISI 2230 int 2231 ip_rsvp_vif_init(struct socket *so, struct mbuf *m) 2232 { 2233 int vifi, s; 2234 2235 if (rsvpdebug) 2236 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", 2237 so->so_type, so->so_proto->pr_protocol); 2238 2239 if (so->so_type != SOCK_RAW || 2240 so->so_proto->pr_protocol != IPPROTO_RSVP) 2241 return (EOPNOTSUPP); 2242 2243 /* Check mbuf. */ 2244 if (m == NULL || m->m_len != sizeof(int)) { 2245 return (EINVAL); 2246 } 2247 vifi = *(mtod(m, int *)); 2248 2249 if (rsvpdebug) 2250 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", 2251 vifi, rsvp_on); 2252 2253 s = splsoftnet(); 2254 2255 /* Check vif. */ 2256 if (!legal_vif_num(vifi)) { 2257 splx(s); 2258 return (EADDRNOTAVAIL); 2259 } 2260 2261 /* Check if socket is available. */ 2262 if (viftable[vifi].v_rsvpd != NULL) { 2263 splx(s); 2264 return (EADDRINUSE); 2265 } 2266 2267 viftable[vifi].v_rsvpd = so; 2268 /* 2269 * This may seem silly, but we need to be sure we don't over-increment 2270 * the RSVP counter, in case something slips up. 2271 */ 2272 if (!viftable[vifi].v_rsvp_on) { 2273 viftable[vifi].v_rsvp_on = 1; 2274 rsvp_on++; 2275 } 2276 2277 splx(s); 2278 return (0); 2279 } 2280 2281 int 2282 ip_rsvp_vif_done(struct socket *so, struct mbuf *m) 2283 { 2284 int vifi, s; 2285 2286 if (rsvpdebug) 2287 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", 2288 so->so_type, so->so_proto->pr_protocol); 2289 2290 if (so->so_type != SOCK_RAW || 2291 so->so_proto->pr_protocol != IPPROTO_RSVP) 2292 return (EOPNOTSUPP); 2293 2294 /* Check mbuf. */ 2295 if (m == NULL || m->m_len != sizeof(int)) { 2296 return (EINVAL); 2297 } 2298 vifi = *(mtod(m, int *)); 2299 2300 s = splsoftnet(); 2301 2302 /* Check vif. */ 2303 if (!legal_vif_num(vifi)) { 2304 splx(s); 2305 return (EADDRNOTAVAIL); 2306 } 2307 2308 if (rsvpdebug) 2309 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", 2310 viftable[vifi].v_rsvpd, so); 2311 2312 viftable[vifi].v_rsvpd = NULL; 2313 /* 2314 * This may seem silly, but we need to be sure we don't over-decrement 2315 * the RSVP counter, in case something slips up. 2316 */ 2317 if (viftable[vifi].v_rsvp_on) { 2318 viftable[vifi].v_rsvp_on = 0; 2319 rsvp_on--; 2320 } 2321 2322 splx(s); 2323 return (0); 2324 } 2325 2326 void 2327 ip_rsvp_force_done(struct socket *so) 2328 { 2329 int vifi, s; 2330 2331 /* Don't bother if it is not the right type of socket. */ 2332 if (so->so_type != SOCK_RAW || 2333 so->so_proto->pr_protocol != IPPROTO_RSVP) 2334 return; 2335 2336 s = splsoftnet(); 2337 2338 /* 2339 * The socket may be attached to more than one vif...this 2340 * is perfectly legal. 2341 */ 2342 for (vifi = 0; vifi < numvifs; vifi++) { 2343 if (viftable[vifi].v_rsvpd == so) { 2344 viftable[vifi].v_rsvpd = NULL; 2345 /* 2346 * This may seem silly, but we need to be sure we don't 2347 * over-decrement the RSVP counter, in case something 2348 * slips up. 2349 */ 2350 if (viftable[vifi].v_rsvp_on) { 2351 viftable[vifi].v_rsvp_on = 0; 2352 rsvp_on--; 2353 } 2354 } 2355 } 2356 2357 splx(s); 2358 return; 2359 } 2360 2361 void 2362 rsvp_input(struct mbuf *m, struct ifnet *ifp) 2363 { 2364 int vifi, s; 2365 struct ip *ip = mtod(m, struct ip *); 2366 struct sockaddr_in rsvp_src; 2367 2368 if (rsvpdebug) 2369 printf("rsvp_input: rsvp_on %d\n", rsvp_on); 2370 2371 /* 2372 * Can still get packets with rsvp_on = 0 if there is a local member 2373 * of the group to which the RSVP packet is addressed. But in this 2374 * case we want to throw the packet away. 2375 */ 2376 if (!rsvp_on) { 2377 m_freem(m); 2378 return; 2379 } 2380 2381 /* 2382 * If the old-style non-vif-associated socket is set, then use 2383 * it and ignore the new ones. 2384 */ 2385 if (ip_rsvpd != NULL) { 2386 if (rsvpdebug) 2387 printf("rsvp_input: " 2388 "Sending packet up old-style socket\n"); 2389 rip_input(m); /*XXX*/ 2390 return; 2391 } 2392 2393 s = splsoftnet(); 2394 2395 if (rsvpdebug) 2396 printf("rsvp_input: check vifs\n"); 2397 2398 /* Find which vif the packet arrived on. */ 2399 for (vifi = 0; vifi < numvifs; vifi++) { 2400 if (viftable[vifi].v_ifp == ifp) 2401 break; 2402 } 2403 2404 if (vifi == numvifs) { 2405 /* Can't find vif packet arrived on. Drop packet. */ 2406 if (rsvpdebug) 2407 printf("rsvp_input: " 2408 "Can't find vif for packet...dropping it.\n"); 2409 m_freem(m); 2410 splx(s); 2411 return; 2412 } 2413 2414 if (rsvpdebug) 2415 printf("rsvp_input: check socket\n"); 2416 2417 if (viftable[vifi].v_rsvpd == NULL) { 2418 /* 2419 * drop packet, since there is no specific socket for this 2420 * interface 2421 */ 2422 if (rsvpdebug) 2423 printf("rsvp_input: No socket defined for vif %d\n", 2424 vifi); 2425 m_freem(m); 2426 splx(s); 2427 return; 2428 } 2429 2430 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0); 2431 2432 if (rsvpdebug && m) 2433 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", 2434 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); 2435 2436 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2437 if (rsvpdebug) 2438 printf("rsvp_input: Failed to append to socket\n"); 2439 else 2440 if (rsvpdebug) 2441 printf("rsvp_input: send packet up\n"); 2442 2443 splx(s); 2444 } 2445 #endif /* RSVP_ISI */ 2446 2447 /* 2448 * Code for bandwidth monitors 2449 */ 2450 2451 /* 2452 * Define common interface for timeval-related methods 2453 */ 2454 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2455 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2456 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2457 2458 static uint32_t 2459 compute_bw_meter_flags(struct bw_upcall *req) 2460 { 2461 uint32_t flags = 0; 2462 2463 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2464 flags |= BW_METER_UNIT_PACKETS; 2465 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2466 flags |= BW_METER_UNIT_BYTES; 2467 if (req->bu_flags & BW_UPCALL_GEQ) 2468 flags |= BW_METER_GEQ; 2469 if (req->bu_flags & BW_UPCALL_LEQ) 2470 flags |= BW_METER_LEQ; 2471 2472 return flags; 2473 } 2474 2475 /* 2476 * Add a bw_meter entry 2477 */ 2478 static int 2479 add_bw_upcall(struct bw_upcall *req) 2480 { 2481 int s; 2482 struct mfc *mfc; 2483 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2484 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2485 struct timeval now; 2486 struct bw_meter *x; 2487 uint32_t flags; 2488 2489 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2490 return EOPNOTSUPP; 2491 2492 /* Test if the flags are valid */ 2493 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2494 return EINVAL; 2495 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2496 return EINVAL; 2497 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2498 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2499 return EINVAL; 2500 2501 /* Test if the threshold time interval is valid */ 2502 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2503 return EINVAL; 2504 2505 flags = compute_bw_meter_flags(req); 2506 2507 /* 2508 * Find if we have already same bw_meter entry 2509 */ 2510 s = splsoftnet(); 2511 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2512 if (mfc == NULL) { 2513 splx(s); 2514 return EADDRNOTAVAIL; 2515 } 2516 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2517 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2518 &req->bu_threshold.b_time, ==)) && 2519 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2520 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2521 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2522 splx(s); 2523 return 0; /* XXX Already installed */ 2524 } 2525 } 2526 2527 /* Allocate the new bw_meter entry */ 2528 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2529 if (x == NULL) { 2530 splx(s); 2531 return ENOBUFS; 2532 } 2533 2534 /* Set the new bw_meter entry */ 2535 x->bm_threshold.b_time = req->bu_threshold.b_time; 2536 microtime(&now); 2537 x->bm_start_time = now; 2538 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2539 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2540 x->bm_measured.b_packets = 0; 2541 x->bm_measured.b_bytes = 0; 2542 x->bm_flags = flags; 2543 x->bm_time_next = NULL; 2544 x->bm_time_hash = BW_METER_BUCKETS; 2545 2546 /* Add the new bw_meter entry to the front of entries for this MFC */ 2547 x->bm_mfc = mfc; 2548 x->bm_mfc_next = mfc->mfc_bw_meter; 2549 mfc->mfc_bw_meter = x; 2550 schedule_bw_meter(x, &now); 2551 splx(s); 2552 2553 return 0; 2554 } 2555 2556 static void 2557 free_bw_list(struct bw_meter *list) 2558 { 2559 while (list != NULL) { 2560 struct bw_meter *x = list; 2561 2562 list = list->bm_mfc_next; 2563 unschedule_bw_meter(x); 2564 free(x, M_BWMETER); 2565 } 2566 } 2567 2568 /* 2569 * Delete one or multiple bw_meter entries 2570 */ 2571 static int 2572 del_bw_upcall(struct bw_upcall *req) 2573 { 2574 int s; 2575 struct mfc *mfc; 2576 struct bw_meter *x; 2577 2578 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2579 return EOPNOTSUPP; 2580 2581 s = splsoftnet(); 2582 /* Find the corresponding MFC entry */ 2583 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2584 if (mfc == NULL) { 2585 splx(s); 2586 return EADDRNOTAVAIL; 2587 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2588 /* 2589 * Delete all bw_meter entries for this mfc 2590 */ 2591 struct bw_meter *list; 2592 2593 list = mfc->mfc_bw_meter; 2594 mfc->mfc_bw_meter = NULL; 2595 free_bw_list(list); 2596 splx(s); 2597 return 0; 2598 } else { /* Delete a single bw_meter entry */ 2599 struct bw_meter *prev; 2600 uint32_t flags = 0; 2601 2602 flags = compute_bw_meter_flags(req); 2603 2604 /* Find the bw_meter entry to delete */ 2605 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2606 prev = x, x = x->bm_mfc_next) { 2607 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2608 &req->bu_threshold.b_time, ==)) && 2609 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2610 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2611 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2612 break; 2613 } 2614 if (x != NULL) { /* Delete entry from the list for this MFC */ 2615 if (prev != NULL) 2616 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2617 else 2618 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2619 2620 unschedule_bw_meter(x); 2621 splx(s); 2622 /* Free the bw_meter entry */ 2623 free(x, M_BWMETER); 2624 return 0; 2625 } else { 2626 splx(s); 2627 return EINVAL; 2628 } 2629 } 2630 /* NOTREACHED */ 2631 } 2632 2633 /* 2634 * Perform bandwidth measurement processing that may result in an upcall 2635 */ 2636 static void 2637 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2638 { 2639 struct timeval delta; 2640 2641 delta = *nowp; 2642 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2643 2644 if (x->bm_flags & BW_METER_GEQ) { 2645 /* 2646 * Processing for ">=" type of bw_meter entry 2647 */ 2648 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2649 /* Reset the bw_meter entry */ 2650 x->bm_start_time = *nowp; 2651 x->bm_measured.b_packets = 0; 2652 x->bm_measured.b_bytes = 0; 2653 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2654 } 2655 2656 /* Record that a packet is received */ 2657 x->bm_measured.b_packets++; 2658 x->bm_measured.b_bytes += plen; 2659 2660 /* 2661 * Test if we should deliver an upcall 2662 */ 2663 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2664 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2665 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2666 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2667 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2668 /* Prepare an upcall for delivery */ 2669 bw_meter_prepare_upcall(x, nowp); 2670 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2671 } 2672 } 2673 } else if (x->bm_flags & BW_METER_LEQ) { 2674 /* 2675 * Processing for "<=" type of bw_meter entry 2676 */ 2677 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2678 /* 2679 * We are behind time with the multicast forwarding table 2680 * scanning for "<=" type of bw_meter entries, so test now 2681 * if we should deliver an upcall. 2682 */ 2683 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2684 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2685 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2686 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2687 /* Prepare an upcall for delivery */ 2688 bw_meter_prepare_upcall(x, nowp); 2689 } 2690 /* Reschedule the bw_meter entry */ 2691 unschedule_bw_meter(x); 2692 schedule_bw_meter(x, nowp); 2693 } 2694 2695 /* Record that a packet is received */ 2696 x->bm_measured.b_packets++; 2697 x->bm_measured.b_bytes += plen; 2698 2699 /* 2700 * Test if we should restart the measuring interval 2701 */ 2702 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2703 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2704 (x->bm_flags & BW_METER_UNIT_BYTES && 2705 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2706 /* Don't restart the measuring interval */ 2707 } else { 2708 /* Do restart the measuring interval */ 2709 /* 2710 * XXX: note that we don't unschedule and schedule, because this 2711 * might be too much overhead per packet. Instead, when we process 2712 * all entries for a given timer hash bin, we check whether it is 2713 * really a timeout. If not, we reschedule at that time. 2714 */ 2715 x->bm_start_time = *nowp; 2716 x->bm_measured.b_packets = 0; 2717 x->bm_measured.b_bytes = 0; 2718 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2719 } 2720 } 2721 } 2722 2723 /* 2724 * Prepare a bandwidth-related upcall 2725 */ 2726 static void 2727 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2728 { 2729 struct timeval delta; 2730 struct bw_upcall *u; 2731 2732 /* 2733 * Compute the measured time interval 2734 */ 2735 delta = *nowp; 2736 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2737 2738 /* 2739 * If there are too many pending upcalls, deliver them now 2740 */ 2741 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2742 bw_upcalls_send(); 2743 2744 /* 2745 * Set the bw_upcall entry 2746 */ 2747 u = &bw_upcalls[bw_upcalls_n++]; 2748 u->bu_src = x->bm_mfc->mfc_origin; 2749 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2750 u->bu_threshold.b_time = x->bm_threshold.b_time; 2751 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2752 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2753 u->bu_measured.b_time = delta; 2754 u->bu_measured.b_packets = x->bm_measured.b_packets; 2755 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2756 u->bu_flags = 0; 2757 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2758 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2759 if (x->bm_flags & BW_METER_UNIT_BYTES) 2760 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2761 if (x->bm_flags & BW_METER_GEQ) 2762 u->bu_flags |= BW_UPCALL_GEQ; 2763 if (x->bm_flags & BW_METER_LEQ) 2764 u->bu_flags |= BW_UPCALL_LEQ; 2765 } 2766 2767 /* 2768 * Send the pending bandwidth-related upcalls 2769 */ 2770 static void 2771 bw_upcalls_send(void) 2772 { 2773 struct mbuf *m; 2774 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2775 struct sockaddr_in k_igmpsrc = { 2776 .sin_len = sizeof(k_igmpsrc), 2777 .sin_family = AF_INET, 2778 }; 2779 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2780 0, /* unused2 */ 2781 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2782 0, /* im_mbz */ 2783 0, /* im_vif */ 2784 0, /* unused3 */ 2785 { 0 }, /* im_src */ 2786 { 0 } }; /* im_dst */ 2787 2788 if (bw_upcalls_n == 0) 2789 return; /* No pending upcalls */ 2790 2791 bw_upcalls_n = 0; 2792 2793 /* 2794 * Allocate a new mbuf, initialize it with the header and 2795 * the payload for the pending calls. 2796 */ 2797 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2798 if (m == NULL) { 2799 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2800 return; 2801 } 2802 2803 m->m_len = m->m_pkthdr.len = 0; 2804 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg); 2805 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]); 2806 2807 /* 2808 * Send the upcalls 2809 * XXX do we need to set the address in k_igmpsrc ? 2810 */ 2811 mrtstat.mrts_upcalls++; 2812 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2813 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2814 ++mrtstat.mrts_upq_sockfull; 2815 } 2816 } 2817 2818 /* 2819 * Compute the timeout hash value for the bw_meter entries 2820 */ 2821 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2822 do { \ 2823 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2824 \ 2825 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2826 (hash) = next_timeval.tv_sec; \ 2827 if (next_timeval.tv_usec) \ 2828 (hash)++; /* XXX: make sure we don't timeout early */ \ 2829 (hash) %= BW_METER_BUCKETS; \ 2830 } while (/*CONSTCOND*/ 0) 2831 2832 /* 2833 * Schedule a timer to process periodically bw_meter entry of type "<=" 2834 * by linking the entry in the proper hash bucket. 2835 */ 2836 static void 2837 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2838 { 2839 int time_hash; 2840 2841 if (!(x->bm_flags & BW_METER_LEQ)) 2842 return; /* XXX: we schedule timers only for "<=" entries */ 2843 2844 /* 2845 * Reset the bw_meter entry 2846 */ 2847 x->bm_start_time = *nowp; 2848 x->bm_measured.b_packets = 0; 2849 x->bm_measured.b_bytes = 0; 2850 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2851 2852 /* 2853 * Compute the timeout hash value and insert the entry 2854 */ 2855 BW_METER_TIMEHASH(x, time_hash); 2856 x->bm_time_next = bw_meter_timers[time_hash]; 2857 bw_meter_timers[time_hash] = x; 2858 x->bm_time_hash = time_hash; 2859 } 2860 2861 /* 2862 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2863 * by removing the entry from the proper hash bucket. 2864 */ 2865 static void 2866 unschedule_bw_meter(struct bw_meter *x) 2867 { 2868 int time_hash; 2869 struct bw_meter *prev, *tmp; 2870 2871 if (!(x->bm_flags & BW_METER_LEQ)) 2872 return; /* XXX: we schedule timers only for "<=" entries */ 2873 2874 /* 2875 * Compute the timeout hash value and delete the entry 2876 */ 2877 time_hash = x->bm_time_hash; 2878 if (time_hash >= BW_METER_BUCKETS) 2879 return; /* Entry was not scheduled */ 2880 2881 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2882 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2883 if (tmp == x) 2884 break; 2885 2886 if (tmp == NULL) 2887 panic("unschedule_bw_meter: bw_meter entry not found"); 2888 2889 if (prev != NULL) 2890 prev->bm_time_next = x->bm_time_next; 2891 else 2892 bw_meter_timers[time_hash] = x->bm_time_next; 2893 2894 x->bm_time_next = NULL; 2895 x->bm_time_hash = BW_METER_BUCKETS; 2896 } 2897 2898 /* 2899 * Process all "<=" type of bw_meter that should be processed now, 2900 * and for each entry prepare an upcall if necessary. Each processed 2901 * entry is rescheduled again for the (periodic) processing. 2902 * 2903 * This is run periodically (once per second normally). On each round, 2904 * all the potentially matching entries are in the hash slot that we are 2905 * looking at. 2906 */ 2907 static void 2908 bw_meter_process(void) 2909 { 2910 int s; 2911 static uint32_t last_tv_sec; /* last time we processed this */ 2912 2913 uint32_t loops; 2914 int i; 2915 struct timeval now, process_endtime; 2916 2917 microtime(&now); 2918 if (last_tv_sec == now.tv_sec) 2919 return; /* nothing to do */ 2920 2921 loops = now.tv_sec - last_tv_sec; 2922 last_tv_sec = now.tv_sec; 2923 if (loops > BW_METER_BUCKETS) 2924 loops = BW_METER_BUCKETS; 2925 2926 s = splsoftnet(); 2927 /* 2928 * Process all bins of bw_meter entries from the one after the last 2929 * processed to the current one. On entry, i points to the last bucket 2930 * visited, so we need to increment i at the beginning of the loop. 2931 */ 2932 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2933 struct bw_meter *x, *tmp_list; 2934 2935 if (++i >= BW_METER_BUCKETS) 2936 i = 0; 2937 2938 /* Disconnect the list of bw_meter entries from the bin */ 2939 tmp_list = bw_meter_timers[i]; 2940 bw_meter_timers[i] = NULL; 2941 2942 /* Process the list of bw_meter entries */ 2943 while (tmp_list != NULL) { 2944 x = tmp_list; 2945 tmp_list = tmp_list->bm_time_next; 2946 2947 /* Test if the time interval is over */ 2948 process_endtime = x->bm_start_time; 2949 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2950 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2951 /* Not yet: reschedule, but don't reset */ 2952 int time_hash; 2953 2954 BW_METER_TIMEHASH(x, time_hash); 2955 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2956 /* 2957 * XXX: somehow the bin processing is a bit ahead of time. 2958 * Put the entry in the next bin. 2959 */ 2960 if (++time_hash >= BW_METER_BUCKETS) 2961 time_hash = 0; 2962 } 2963 x->bm_time_next = bw_meter_timers[time_hash]; 2964 bw_meter_timers[time_hash] = x; 2965 x->bm_time_hash = time_hash; 2966 2967 continue; 2968 } 2969 2970 /* 2971 * Test if we should deliver an upcall 2972 */ 2973 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2974 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2975 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2976 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2977 /* Prepare an upcall for delivery */ 2978 bw_meter_prepare_upcall(x, &now); 2979 } 2980 2981 /* 2982 * Reschedule for next processing 2983 */ 2984 schedule_bw_meter(x, &now); 2985 } 2986 } 2987 2988 /* Send all upcalls that are pending delivery */ 2989 bw_upcalls_send(); 2990 2991 splx(s); 2992 } 2993 2994 /* 2995 * A periodic function for sending all upcalls that are pending delivery 2996 */ 2997 static void 2998 expire_bw_upcalls_send(void *unused) 2999 { 3000 int s; 3001 3002 s = splsoftnet(); 3003 bw_upcalls_send(); 3004 splx(s); 3005 3006 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 3007 expire_bw_upcalls_send, NULL); 3008 } 3009 3010 /* 3011 * A periodic function for periodic scanning of the multicast forwarding 3012 * table for processing all "<=" bw_meter entries. 3013 */ 3014 static void 3015 expire_bw_meter_process(void *unused) 3016 { 3017 if (mrt_api_config & MRT_MFC_BW_UPCALL) 3018 bw_meter_process(); 3019 3020 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 3021 expire_bw_meter_process, NULL); 3022 } 3023 3024 /* 3025 * End of bandwidth monitoring code 3026 */ 3027 3028 #ifdef PIM 3029 /* 3030 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3031 */ 3032 static int 3033 pim_register_send(struct ip *ip, struct vif *vifp, 3034 struct mbuf *m, struct mfc *rt) 3035 { 3036 struct mbuf *mb_copy, *mm; 3037 3038 if (mrtdebug & DEBUG_PIM) 3039 log(LOG_DEBUG, "pim_register_send: "); 3040 3041 mb_copy = pim_register_prepare(ip, m); 3042 if (mb_copy == NULL) 3043 return ENOBUFS; 3044 3045 /* 3046 * Send all the fragments. Note that the mbuf for each fragment 3047 * is freed by the sending machinery. 3048 */ 3049 for (mm = mb_copy; mm; mm = mb_copy) { 3050 mb_copy = mm->m_nextpkt; 3051 mm->m_nextpkt = NULL; 3052 mm = m_pullup(mm, sizeof(struct ip)); 3053 if (mm != NULL) { 3054 ip = mtod(mm, struct ip *); 3055 if ((mrt_api_config & MRT_MFC_RP) && 3056 !in_nullhost(rt->mfc_rp)) { 3057 pim_register_send_rp(ip, vifp, mm, rt); 3058 } else { 3059 pim_register_send_upcall(ip, vifp, mm, rt); 3060 } 3061 } 3062 } 3063 3064 return 0; 3065 } 3066 3067 /* 3068 * Return a copy of the data packet that is ready for PIM Register 3069 * encapsulation. 3070 * XXX: Note that in the returned copy the IP header is a valid one. 3071 */ 3072 static struct mbuf * 3073 pim_register_prepare(struct ip *ip, struct mbuf *m) 3074 { 3075 struct mbuf *mb_copy = NULL; 3076 int mtu; 3077 3078 /* Take care of delayed checksums */ 3079 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3080 in_delayed_cksum(m); 3081 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3082 } 3083 3084 /* 3085 * Copy the old packet & pullup its IP header into the 3086 * new mbuf so we can modify it. 3087 */ 3088 mb_copy = m_copypacket(m, M_DONTWAIT); 3089 if (mb_copy == NULL) 3090 return NULL; 3091 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3092 if (mb_copy == NULL) 3093 return NULL; 3094 3095 /* take care of the TTL */ 3096 ip = mtod(mb_copy, struct ip *); 3097 --ip->ip_ttl; 3098 3099 /* Compute the MTU after the PIM Register encapsulation */ 3100 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3101 3102 if (ntohs(ip->ip_len) <= mtu) { 3103 /* Turn the IP header into a valid one */ 3104 ip->ip_sum = 0; 3105 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3106 } else { 3107 /* Fragment the packet */ 3108 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3109 /* XXX: mb_copy was freed by ip_fragment() */ 3110 return NULL; 3111 } 3112 } 3113 return mb_copy; 3114 } 3115 3116 /* 3117 * Send an upcall with the data packet to the user-level process. 3118 */ 3119 static int 3120 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3121 struct mbuf *mb_copy, struct mfc *rt) 3122 { 3123 struct mbuf *mb_first; 3124 int len = ntohs(ip->ip_len); 3125 struct igmpmsg *im; 3126 struct sockaddr_in k_igmpsrc = { 3127 .sin_len = sizeof(k_igmpsrc), 3128 .sin_family = AF_INET, 3129 }; 3130 3131 /* 3132 * Add a new mbuf with an upcall header 3133 */ 3134 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3135 if (mb_first == NULL) { 3136 m_freem(mb_copy); 3137 return ENOBUFS; 3138 } 3139 mb_first->m_data += max_linkhdr; 3140 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3141 mb_first->m_len = sizeof(struct igmpmsg); 3142 mb_first->m_next = mb_copy; 3143 3144 /* Send message to routing daemon */ 3145 im = mtod(mb_first, struct igmpmsg *); 3146 im->im_msgtype = IGMPMSG_WHOLEPKT; 3147 im->im_mbz = 0; 3148 im->im_vif = vifp - viftable; 3149 im->im_src = ip->ip_src; 3150 im->im_dst = ip->ip_dst; 3151 3152 k_igmpsrc.sin_addr = ip->ip_src; 3153 3154 mrtstat.mrts_upcalls++; 3155 3156 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3157 if (mrtdebug & DEBUG_PIM) 3158 log(LOG_WARNING, 3159 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 3160 ++mrtstat.mrts_upq_sockfull; 3161 return ENOBUFS; 3162 } 3163 3164 /* Keep statistics */ 3165 pimstat.pims_snd_registers_msgs++; 3166 pimstat.pims_snd_registers_bytes += len; 3167 3168 return 0; 3169 } 3170 3171 /* 3172 * Encapsulate the data packet in PIM Register message and send it to the RP. 3173 */ 3174 static int 3175 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3176 struct mbuf *mb_copy, struct mfc *rt) 3177 { 3178 struct mbuf *mb_first; 3179 struct ip *ip_outer; 3180 struct pim_encap_pimhdr *pimhdr; 3181 int len = ntohs(ip->ip_len); 3182 vifi_t vifi = rt->mfc_parent; 3183 3184 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3185 m_freem(mb_copy); 3186 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3187 } 3188 3189 /* 3190 * Add a new mbuf with the encapsulating header 3191 */ 3192 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3193 if (mb_first == NULL) { 3194 m_freem(mb_copy); 3195 return ENOBUFS; 3196 } 3197 mb_first->m_data += max_linkhdr; 3198 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3199 mb_first->m_next = mb_copy; 3200 3201 mb_first->m_pkthdr.len = len + mb_first->m_len; 3202 3203 /* 3204 * Fill in the encapsulating IP and PIM header 3205 */ 3206 ip_outer = mtod(mb_first, struct ip *); 3207 *ip_outer = pim_encap_iphdr; 3208 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE) 3209 ip_outer->ip_id = 0; 3210 else 3211 ip_outer->ip_id = ip_newid(NULL); 3212 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3213 sizeof(pim_encap_pimhdr)); 3214 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3215 ip_outer->ip_dst = rt->mfc_rp; 3216 /* 3217 * Copy the inner header TOS to the outer header, and take care of the 3218 * IP_DF bit. 3219 */ 3220 ip_outer->ip_tos = ip->ip_tos; 3221 if (ntohs(ip->ip_off) & IP_DF) 3222 ip_outer->ip_off |= htons(IP_DF); 3223 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer 3224 + sizeof(pim_encap_iphdr)); 3225 *pimhdr = pim_encap_pimhdr; 3226 /* If the iif crosses a border, set the Border-bit */ 3227 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3228 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3229 3230 mb_first->m_data += sizeof(pim_encap_iphdr); 3231 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3232 mb_first->m_data -= sizeof(pim_encap_iphdr); 3233 3234 if (vifp->v_rate_limit == 0) 3235 tbf_send_packet(vifp, mb_first); 3236 else 3237 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3238 3239 /* Keep statistics */ 3240 pimstat.pims_snd_registers_msgs++; 3241 pimstat.pims_snd_registers_bytes += len; 3242 3243 return 0; 3244 } 3245 3246 /* 3247 * PIM-SMv2 and PIM-DM messages processing. 3248 * Receives and verifies the PIM control messages, and passes them 3249 * up to the listening socket, using rip_input(). 3250 * The only message with special processing is the PIM_REGISTER message 3251 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3252 * is passed to if_simloop(). 3253 */ 3254 void 3255 pim_input(struct mbuf *m, ...) 3256 { 3257 struct ip *ip = mtod(m, struct ip *); 3258 struct pim *pim; 3259 int minlen; 3260 int datalen; 3261 int ip_tos; 3262 int proto; 3263 int iphlen; 3264 va_list ap; 3265 3266 va_start(ap, m); 3267 iphlen = va_arg(ap, int); 3268 proto = va_arg(ap, int); 3269 va_end(ap); 3270 3271 datalen = ntohs(ip->ip_len) - iphlen; 3272 3273 /* Keep statistics */ 3274 pimstat.pims_rcv_total_msgs++; 3275 pimstat.pims_rcv_total_bytes += datalen; 3276 3277 /* 3278 * Validate lengths 3279 */ 3280 if (datalen < PIM_MINLEN) { 3281 pimstat.pims_rcv_tooshort++; 3282 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3283 datalen, (u_long)ip->ip_src.s_addr); 3284 m_freem(m); 3285 return; 3286 } 3287 3288 /* 3289 * If the packet is at least as big as a REGISTER, go agead 3290 * and grab the PIM REGISTER header size, to avoid another 3291 * possible m_pullup() later. 3292 * 3293 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3294 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3295 */ 3296 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3297 /* 3298 * Get the IP and PIM headers in contiguous memory, and 3299 * possibly the PIM REGISTER header. 3300 */ 3301 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3302 (m = m_pullup(m, minlen)) == NULL) { 3303 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3304 return; 3305 } 3306 /* m_pullup() may have given us a new mbuf so reset ip. */ 3307 ip = mtod(m, struct ip *); 3308 ip_tos = ip->ip_tos; 3309 3310 /* adjust mbuf to point to the PIM header */ 3311 m->m_data += iphlen; 3312 m->m_len -= iphlen; 3313 pim = mtod(m, struct pim *); 3314 3315 /* 3316 * Validate checksum. If PIM REGISTER, exclude the data packet. 3317 * 3318 * XXX: some older PIMv2 implementations don't make this distinction, 3319 * so for compatibility reason perform the checksum over part of the 3320 * message, and if error, then over the whole message. 3321 */ 3322 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3323 /* do nothing, checksum okay */ 3324 } else if (in_cksum(m, datalen)) { 3325 pimstat.pims_rcv_badsum++; 3326 if (mrtdebug & DEBUG_PIM) 3327 log(LOG_DEBUG, "pim_input: invalid checksum"); 3328 m_freem(m); 3329 return; 3330 } 3331 3332 /* PIM version check */ 3333 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3334 pimstat.pims_rcv_badversion++; 3335 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3336 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3337 m_freem(m); 3338 return; 3339 } 3340 3341 /* restore mbuf back to the outer IP */ 3342 m->m_data -= iphlen; 3343 m->m_len += iphlen; 3344 3345 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3346 /* 3347 * Since this is a REGISTER, we'll make a copy of the register 3348 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3349 * routing daemon. 3350 */ 3351 int s; 3352 struct sockaddr_in dst = { 3353 .sin_len = sizeof(dst), 3354 .sin_family = AF_INET, 3355 }; 3356 struct mbuf *mcp; 3357 struct ip *encap_ip; 3358 u_int32_t *reghdr; 3359 struct ifnet *vifp; 3360 3361 s = splsoftnet(); 3362 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3363 splx(s); 3364 if (mrtdebug & DEBUG_PIM) 3365 log(LOG_DEBUG, 3366 "pim_input: register vif not set: %d\n", reg_vif_num); 3367 m_freem(m); 3368 return; 3369 } 3370 /* XXX need refcnt? */ 3371 vifp = viftable[reg_vif_num].v_ifp; 3372 splx(s); 3373 3374 /* 3375 * Validate length 3376 */ 3377 if (datalen < PIM_REG_MINLEN) { 3378 pimstat.pims_rcv_tooshort++; 3379 pimstat.pims_rcv_badregisters++; 3380 log(LOG_ERR, 3381 "pim_input: register packet size too small %d from %lx\n", 3382 datalen, (u_long)ip->ip_src.s_addr); 3383 m_freem(m); 3384 return; 3385 } 3386 3387 reghdr = (u_int32_t *)(pim + 1); 3388 encap_ip = (struct ip *)(reghdr + 1); 3389 3390 if (mrtdebug & DEBUG_PIM) { 3391 log(LOG_DEBUG, 3392 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3393 (u_long)ntohl(encap_ip->ip_src.s_addr), 3394 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3395 ntohs(encap_ip->ip_len)); 3396 } 3397 3398 /* verify the version number of the inner packet */ 3399 if (encap_ip->ip_v != IPVERSION) { 3400 pimstat.pims_rcv_badregisters++; 3401 if (mrtdebug & DEBUG_PIM) { 3402 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3403 "of the inner packet\n", encap_ip->ip_v); 3404 } 3405 m_freem(m); 3406 return; 3407 } 3408 3409 /* verify the inner packet is destined to a mcast group */ 3410 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3411 pimstat.pims_rcv_badregisters++; 3412 if (mrtdebug & DEBUG_PIM) 3413 log(LOG_DEBUG, 3414 "pim_input: inner packet of register is not " 3415 "multicast %lx\n", 3416 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3417 m_freem(m); 3418 return; 3419 } 3420 3421 /* If a NULL_REGISTER, pass it to the daemon */ 3422 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3423 goto pim_input_to_daemon; 3424 3425 /* 3426 * Copy the TOS from the outer IP header to the inner IP header. 3427 */ 3428 if (encap_ip->ip_tos != ip_tos) { 3429 /* Outer TOS -> inner TOS */ 3430 encap_ip->ip_tos = ip_tos; 3431 /* Recompute the inner header checksum. Sigh... */ 3432 3433 /* adjust mbuf to point to the inner IP header */ 3434 m->m_data += (iphlen + PIM_MINLEN); 3435 m->m_len -= (iphlen + PIM_MINLEN); 3436 3437 encap_ip->ip_sum = 0; 3438 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3439 3440 /* restore mbuf to point back to the outer IP header */ 3441 m->m_data -= (iphlen + PIM_MINLEN); 3442 m->m_len += (iphlen + PIM_MINLEN); 3443 } 3444 3445 /* 3446 * Decapsulate the inner IP packet and loopback to forward it 3447 * as a normal multicast packet. Also, make a copy of the 3448 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3449 * to pass to the daemon later, so it can take the appropriate 3450 * actions (e.g., send back PIM_REGISTER_STOP). 3451 * XXX: here m->m_data points to the outer IP header. 3452 */ 3453 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT); 3454 if (mcp == NULL) { 3455 log(LOG_ERR, 3456 "pim_input: pim register: could not copy register head\n"); 3457 m_freem(m); 3458 return; 3459 } 3460 3461 /* Keep statistics */ 3462 /* XXX: registers_bytes include only the encap. mcast pkt */ 3463 pimstat.pims_rcv_registers_msgs++; 3464 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3465 3466 /* 3467 * forward the inner ip packet; point m_data at the inner ip. 3468 */ 3469 m_adj(m, iphlen + PIM_MINLEN); 3470 3471 if (mrtdebug & DEBUG_PIM) { 3472 log(LOG_DEBUG, 3473 "pim_input: forwarding decapsulated register: " 3474 "src %lx, dst %lx, vif %d\n", 3475 (u_long)ntohl(encap_ip->ip_src.s_addr), 3476 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3477 reg_vif_num); 3478 } 3479 /* NB: vifp was collected above; can it change on us? */ 3480 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL); 3481 3482 /* prepare the register head to send to the mrouting daemon */ 3483 m = mcp; 3484 } 3485 3486 pim_input_to_daemon: 3487 /* 3488 * Pass the PIM message up to the daemon; if it is a Register message, 3489 * pass the 'head' only up to the daemon. This includes the 3490 * outer IP header, PIM header, PIM-Register header and the 3491 * inner IP header. 3492 * XXX: the outer IP header pkt size of a Register is not adjust to 3493 * reflect the fact that the inner multicast data is truncated. 3494 */ 3495 rip_input(m, iphlen, proto); 3496 3497 return; 3498 } 3499 #endif /* PIM */ 3500