1 /* $NetBSD: ip_mroute.c,v 1.109 2007/11/27 22:45:29 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.109 2007/11/27 22:45:29 christos Exp $"); 97 98 #include "opt_inet.h" 99 #include "opt_ipsec.h" 100 #include "opt_pim.h" 101 102 #ifdef PIM 103 #define _PIM_VT 1 104 #endif 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/mbuf.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/protosw.h> 113 #include <sys/errno.h> 114 #include <sys/time.h> 115 #include <sys/kernel.h> 116 #include <sys/ioctl.h> 117 #include <sys/syslog.h> 118 119 #include <net/if.h> 120 #include <net/route.h> 121 #include <net/raw_cb.h> 122 123 #include <netinet/in.h> 124 #include <netinet/in_var.h> 125 #include <netinet/in_systm.h> 126 #include <netinet/ip.h> 127 #include <netinet/ip_var.h> 128 #include <netinet/in_pcb.h> 129 #include <netinet/udp.h> 130 #include <netinet/igmp.h> 131 #include <netinet/igmp_var.h> 132 #include <netinet/ip_mroute.h> 133 #ifdef PIM 134 #include <netinet/pim.h> 135 #include <netinet/pim_var.h> 136 #endif 137 #include <netinet/ip_encap.h> 138 139 #ifdef IPSEC 140 #include <netinet6/ipsec.h> 141 #include <netkey/key.h> 142 #endif 143 144 #ifdef FAST_IPSEC 145 #include <netipsec/ipsec.h> 146 #include <netipsec/key.h> 147 #endif 148 149 #include <machine/stdarg.h> 150 151 #define IP_MULTICASTOPTS 0 152 #define M_PULLUP(m, len) \ 153 do { \ 154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 155 (m) = m_pullup((m), (len)); \ 156 } while (/*CONSTCOND*/ 0) 157 158 /* 159 * Globals. All but ip_mrouter and ip_mrtproto could be static, 160 * except for netstat or debugging purposes. 161 */ 162 struct socket *ip_mrouter = NULL; 163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 164 165 #define NO_RTE_FOUND 0x1 166 #define RTE_FOUND 0x2 167 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 172 u_long mfchash; 173 174 u_char nexpire[MFCTBLSIZ]; 175 struct vif viftable[MAXVIFS]; 176 struct mrtstat mrtstat; 177 u_int mrtdebug = 0; /* debug level */ 178 #define DEBUG_MFC 0x02 179 #define DEBUG_FORWARD 0x04 180 #define DEBUG_EXPIRE 0x08 181 #define DEBUG_XMIT 0x10 182 #define DEBUG_PIM 0x20 183 184 #define VIFI_INVALID ((vifi_t) -1) 185 186 u_int tbfdebug = 0; /* tbf debug level */ 187 #ifdef RSVP_ISI 188 u_int rsvpdebug = 0; /* rsvp debug level */ 189 extern struct socket *ip_rsvpd; 190 extern int rsvp_on; 191 #endif /* RSVP_ISI */ 192 193 /* vif attachment using sys/netinet/ip_encap.c */ 194 static void vif_input(struct mbuf *, ...); 195 static int vif_encapcheck(struct mbuf *, int, int, void *); 196 197 static const struct protosw vif_protosw = 198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, 199 vif_input, rip_output, 0, rip_ctloutput, 200 rip_usrreq, 201 0, 0, 0, 0, 202 }; 203 204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 205 #define UPCALL_EXPIRE 6 /* number of timeouts */ 206 207 /* 208 * Define the token bucket filter structures 209 */ 210 211 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 212 213 static int get_sg_cnt(struct sioc_sg_req *); 214 static int get_vif_cnt(struct sioc_vif_req *); 215 static int ip_mrouter_init(struct socket *, struct mbuf *); 216 static int get_version(struct mbuf *); 217 static int set_assert(struct mbuf *); 218 static int get_assert(struct mbuf *); 219 static int add_vif(struct mbuf *); 220 static int del_vif(struct mbuf *); 221 static void update_mfc_params(struct mfc *, struct mfcctl2 *); 222 static void init_mfc_params(struct mfc *, struct mfcctl2 *); 223 static void expire_mfc(struct mfc *); 224 static int add_mfc(struct mbuf *); 225 #ifdef UPCALL_TIMING 226 static void collate(struct timeval *); 227 #endif 228 static int del_mfc(struct mbuf *); 229 static int set_api_config(struct mbuf *); /* chose API capabilities */ 230 static int get_api_support(struct mbuf *); 231 static int get_api_config(struct mbuf *); 232 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 233 static void expire_upcalls(void *); 234 #ifdef RSVP_ISI 235 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 236 #else 237 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); 238 #endif 239 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 240 static void encap_send(struct ip *, struct vif *, struct mbuf *); 241 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); 242 static void tbf_queue(struct vif *, struct mbuf *); 243 static void tbf_process_q(struct vif *); 244 static void tbf_reprocess_q(void *); 245 static int tbf_dq_sel(struct vif *, struct ip *); 246 static void tbf_send_packet(struct vif *, struct mbuf *); 247 static void tbf_update_tokens(struct vif *); 248 static int priority(struct vif *, struct ip *); 249 250 /* 251 * Bandwidth monitoring 252 */ 253 static void free_bw_list(struct bw_meter *); 254 static int add_bw_upcall(struct mbuf *); 255 static int del_bw_upcall(struct mbuf *); 256 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); 257 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 258 static void bw_upcalls_send(void); 259 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 260 static void unschedule_bw_meter(struct bw_meter *); 261 static void bw_meter_process(void); 262 static void expire_bw_upcalls_send(void *); 263 static void expire_bw_meter_process(void *); 264 265 #ifdef PIM 266 static int pim_register_send(struct ip *, struct vif *, 267 struct mbuf *, struct mfc *); 268 static int pim_register_send_rp(struct ip *, struct vif *, 269 struct mbuf *, struct mfc *); 270 static int pim_register_send_upcall(struct ip *, struct vif *, 271 struct mbuf *, struct mfc *); 272 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 273 #endif 274 275 /* 276 * 'Interfaces' associated with decapsulator (so we can tell 277 * packets that went through it from ones that get reflected 278 * by a broken gateway). These interfaces are never linked into 279 * the system ifnet list & no routes point to them. I.e., packets 280 * can't be sent this way. They only exist as a placeholder for 281 * multicast source verification. 282 */ 283 #if 0 284 struct ifnet multicast_decap_if[MAXVIFS]; 285 #endif 286 287 #define ENCAP_TTL 64 288 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 289 290 /* prototype IP hdr for encapsulated packets */ 291 struct ip multicast_encap_iphdr = { 292 .ip_hl = sizeof(struct ip) >> 2, 293 .ip_v = IPVERSION, 294 .ip_len = sizeof(struct ip), 295 .ip_ttl = ENCAP_TTL, 296 .ip_p = ENCAP_PROTO, 297 }; 298 299 /* 300 * Bandwidth meter variables and constants 301 */ 302 303 /* 304 * Pending timeouts are stored in a hash table, the key being the 305 * expiration time. Periodically, the entries are analysed and processed. 306 */ 307 #define BW_METER_BUCKETS 1024 308 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 309 struct callout bw_meter_ch; 310 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 311 312 /* 313 * Pending upcalls are stored in a vector which is flushed when 314 * full, or periodically 315 */ 316 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 317 static u_int bw_upcalls_n; /* # of pending upcalls */ 318 struct callout bw_upcalls_ch; 319 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 320 321 #ifdef PIM 322 struct pimstat pimstat; 323 324 /* 325 * Note: the PIM Register encapsulation adds the following in front of a 326 * data packet: 327 * 328 * struct pim_encap_hdr { 329 * struct ip ip; 330 * struct pim_encap_pimhdr pim; 331 * } 332 * 333 */ 334 335 struct pim_encap_pimhdr { 336 struct pim pim; 337 uint32_t flags; 338 }; 339 340 static struct ip pim_encap_iphdr = { 341 .ip_v = IPVERSION, 342 .ip_hl = sizeof(struct ip) >> 2, 343 .ip_len = sizeof(struct ip), 344 .ip_ttl = ENCAP_TTL, 345 .ip_p = IPPROTO_PIM, 346 }; 347 348 static struct pim_encap_pimhdr pim_encap_pimhdr = { 349 { 350 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 351 0, /* reserved */ 352 0, /* checksum */ 353 }, 354 0 /* flags */ 355 }; 356 357 static struct ifnet multicast_register_if; 358 static vifi_t reg_vif_num = VIFI_INVALID; 359 #endif /* PIM */ 360 361 362 /* 363 * Private variables. 364 */ 365 static vifi_t numvifs = 0; 366 367 static struct callout expire_upcalls_ch; 368 369 /* 370 * whether or not special PIM assert processing is enabled. 371 */ 372 static int pim_assert; 373 /* 374 * Rate limit for assert notification messages, in usec 375 */ 376 #define ASSERT_MSG_TIME 3000000 377 378 /* 379 * Kernel multicast routing API capabilities and setup. 380 * If more API capabilities are added to the kernel, they should be 381 * recorded in `mrt_api_support'. 382 */ 383 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 384 MRT_MFC_FLAGS_BORDER_VIF | 385 MRT_MFC_RP | 386 MRT_MFC_BW_UPCALL); 387 static u_int32_t mrt_api_config = 0; 388 389 /* 390 * Find a route for a given origin IP address and Multicast group address 391 * Type of service parameter to be added in the future!!! 392 * Statistics are updated by the caller if needed 393 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 394 */ 395 static struct mfc * 396 mfc_find(struct in_addr *o, struct in_addr *g) 397 { 398 struct mfc *rt; 399 400 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 401 if (in_hosteq(rt->mfc_origin, *o) && 402 in_hosteq(rt->mfc_mcastgrp, *g) && 403 (rt->mfc_stall == NULL)) 404 break; 405 } 406 407 return (rt); 408 } 409 410 /* 411 * Macros to compute elapsed time efficiently 412 * Borrowed from Van Jacobson's scheduling code 413 */ 414 #define TV_DELTA(a, b, delta) do { \ 415 int xxs; \ 416 delta = (a).tv_usec - (b).tv_usec; \ 417 xxs = (a).tv_sec - (b).tv_sec; \ 418 switch (xxs) { \ 419 case 2: \ 420 delta += 1000000; \ 421 /* fall through */ \ 422 case 1: \ 423 delta += 1000000; \ 424 /* fall through */ \ 425 case 0: \ 426 break; \ 427 default: \ 428 delta += (1000000 * xxs); \ 429 break; \ 430 } \ 431 } while (/*CONSTCOND*/ 0) 432 433 #ifdef UPCALL_TIMING 434 u_int32_t upcall_data[51]; 435 #endif /* UPCALL_TIMING */ 436 437 /* 438 * Handle MRT setsockopt commands to modify the multicast routing tables. 439 */ 440 int 441 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m) 442 { 443 int error; 444 445 if (optname != MRT_INIT && so != ip_mrouter) 446 error = ENOPROTOOPT; 447 else 448 switch (optname) { 449 case MRT_INIT: 450 error = ip_mrouter_init(so, *m); 451 break; 452 case MRT_DONE: 453 error = ip_mrouter_done(); 454 break; 455 case MRT_ADD_VIF: 456 error = add_vif(*m); 457 break; 458 case MRT_DEL_VIF: 459 error = del_vif(*m); 460 break; 461 case MRT_ADD_MFC: 462 error = add_mfc(*m); 463 break; 464 case MRT_DEL_MFC: 465 error = del_mfc(*m); 466 break; 467 case MRT_ASSERT: 468 error = set_assert(*m); 469 break; 470 case MRT_API_CONFIG: 471 error = set_api_config(*m); 472 break; 473 case MRT_ADD_BW_UPCALL: 474 error = add_bw_upcall(*m); 475 break; 476 case MRT_DEL_BW_UPCALL: 477 error = del_bw_upcall(*m); 478 break; 479 default: 480 error = ENOPROTOOPT; 481 break; 482 } 483 484 if (*m) 485 m_free(*m); 486 return (error); 487 } 488 489 /* 490 * Handle MRT getsockopt commands 491 */ 492 int 493 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m) 494 { 495 int error; 496 497 if (so != ip_mrouter) 498 error = ENOPROTOOPT; 499 else { 500 *m = m_get(M_WAIT, MT_SOOPTS); 501 MCLAIM(*m, so->so_mowner); 502 503 switch (optname) { 504 case MRT_VERSION: 505 error = get_version(*m); 506 break; 507 case MRT_ASSERT: 508 error = get_assert(*m); 509 break; 510 case MRT_API_SUPPORT: 511 error = get_api_support(*m); 512 break; 513 case MRT_API_CONFIG: 514 error = get_api_config(*m); 515 break; 516 default: 517 error = ENOPROTOOPT; 518 break; 519 } 520 521 if (error) 522 m_free(*m); 523 } 524 525 return (error); 526 } 527 528 /* 529 * Handle ioctl commands to obtain information from the cache 530 */ 531 int 532 mrt_ioctl(struct socket *so, u_long cmd, void *data) 533 { 534 int error; 535 536 if (so != ip_mrouter) 537 error = EINVAL; 538 else 539 switch (cmd) { 540 case SIOCGETVIFCNT: 541 error = get_vif_cnt((struct sioc_vif_req *)data); 542 break; 543 case SIOCGETSGCNT: 544 error = get_sg_cnt((struct sioc_sg_req *)data); 545 break; 546 default: 547 error = EINVAL; 548 break; 549 } 550 551 return (error); 552 } 553 554 /* 555 * returns the packet, byte, rpf-failure count for the source group provided 556 */ 557 static int 558 get_sg_cnt(struct sioc_sg_req *req) 559 { 560 int s; 561 struct mfc *rt; 562 563 s = splsoftnet(); 564 rt = mfc_find(&req->src, &req->grp); 565 if (rt == NULL) { 566 splx(s); 567 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 568 return (EADDRNOTAVAIL); 569 } 570 req->pktcnt = rt->mfc_pkt_cnt; 571 req->bytecnt = rt->mfc_byte_cnt; 572 req->wrong_if = rt->mfc_wrong_if; 573 splx(s); 574 575 return (0); 576 } 577 578 /* 579 * returns the input and output packet and byte counts on the vif provided 580 */ 581 static int 582 get_vif_cnt(struct sioc_vif_req *req) 583 { 584 vifi_t vifi = req->vifi; 585 586 if (vifi >= numvifs) 587 return (EINVAL); 588 589 req->icount = viftable[vifi].v_pkt_in; 590 req->ocount = viftable[vifi].v_pkt_out; 591 req->ibytes = viftable[vifi].v_bytes_in; 592 req->obytes = viftable[vifi].v_bytes_out; 593 594 return (0); 595 } 596 597 /* 598 * Enable multicast routing 599 */ 600 static int 601 ip_mrouter_init(struct socket *so, struct mbuf *m) 602 { 603 int *v; 604 605 if (mrtdebug) 606 log(LOG_DEBUG, 607 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 608 so->so_type, so->so_proto->pr_protocol); 609 610 if (so->so_type != SOCK_RAW || 611 so->so_proto->pr_protocol != IPPROTO_IGMP) 612 return (EOPNOTSUPP); 613 614 if (m == NULL || m->m_len != sizeof(int)) 615 return (EINVAL); 616 617 v = mtod(m, int *); 618 if (*v != 1) 619 return (EINVAL); 620 621 if (ip_mrouter != NULL) 622 return (EADDRINUSE); 623 624 ip_mrouter = so; 625 626 mfchashtbl = 627 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash); 628 bzero((void *)nexpire, sizeof(nexpire)); 629 630 pim_assert = 0; 631 632 callout_init(&expire_upcalls_ch, 0); 633 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 634 expire_upcalls, NULL); 635 636 callout_init(&bw_upcalls_ch, 0); 637 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 638 expire_bw_upcalls_send, NULL); 639 640 callout_init(&bw_meter_ch, 0); 641 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 642 expire_bw_meter_process, NULL); 643 644 if (mrtdebug) 645 log(LOG_DEBUG, "ip_mrouter_init\n"); 646 647 return (0); 648 } 649 650 /* 651 * Disable multicast routing 652 */ 653 int 654 ip_mrouter_done(void) 655 { 656 vifi_t vifi; 657 struct vif *vifp; 658 int i; 659 int s; 660 661 s = splsoftnet(); 662 663 /* Clear out all the vifs currently in use. */ 664 for (vifi = 0; vifi < numvifs; vifi++) { 665 vifp = &viftable[vifi]; 666 if (!in_nullhost(vifp->v_lcl_addr)) 667 reset_vif(vifp); 668 } 669 670 numvifs = 0; 671 pim_assert = 0; 672 mrt_api_config = 0; 673 674 callout_stop(&expire_upcalls_ch); 675 callout_stop(&bw_upcalls_ch); 676 callout_stop(&bw_meter_ch); 677 678 /* 679 * Free all multicast forwarding cache entries. 680 */ 681 for (i = 0; i < MFCTBLSIZ; i++) { 682 struct mfc *rt, *nrt; 683 684 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 685 nrt = LIST_NEXT(rt, mfc_hash); 686 687 expire_mfc(rt); 688 } 689 } 690 691 bzero((void *)nexpire, sizeof(nexpire)); 692 free(mfchashtbl, M_MRTABLE); 693 mfchashtbl = NULL; 694 695 bw_upcalls_n = 0; 696 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 697 698 /* Reset de-encapsulation cache. */ 699 700 ip_mrouter = NULL; 701 702 splx(s); 703 704 if (mrtdebug) 705 log(LOG_DEBUG, "ip_mrouter_done\n"); 706 707 return (0); 708 } 709 710 void 711 ip_mrouter_detach(struct ifnet *ifp) 712 { 713 int vifi, i; 714 struct vif *vifp; 715 struct mfc *rt; 716 struct rtdetq *rte; 717 718 /* XXX not sure about side effect to userland routing daemon */ 719 for (vifi = 0; vifi < numvifs; vifi++) { 720 vifp = &viftable[vifi]; 721 if (vifp->v_ifp == ifp) 722 reset_vif(vifp); 723 } 724 for (i = 0; i < MFCTBLSIZ; i++) { 725 if (nexpire[i] == 0) 726 continue; 727 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 728 for (rte = rt->mfc_stall; rte; rte = rte->next) { 729 if (rte->ifp == ifp) 730 rte->ifp = NULL; 731 } 732 } 733 } 734 } 735 736 static int 737 get_version(struct mbuf *m) 738 { 739 int *v = mtod(m, int *); 740 741 *v = 0x0305; /* XXX !!!! */ 742 m->m_len = sizeof(int); 743 return (0); 744 } 745 746 /* 747 * Set PIM assert processing global 748 */ 749 static int 750 set_assert(struct mbuf *m) 751 { 752 int *i; 753 754 if (m == NULL || m->m_len != sizeof(int)) 755 return (EINVAL); 756 757 i = mtod(m, int *); 758 pim_assert = !!*i; 759 return (0); 760 } 761 762 /* 763 * Get PIM assert processing global 764 */ 765 static int 766 get_assert(struct mbuf *m) 767 { 768 int *i = mtod(m, int *); 769 770 *i = pim_assert; 771 m->m_len = sizeof(int); 772 return (0); 773 } 774 775 /* 776 * Configure API capabilities 777 */ 778 static int 779 set_api_config(struct mbuf *m) 780 { 781 int i; 782 u_int32_t *apival; 783 784 if (m == NULL || m->m_len < sizeof(u_int32_t)) 785 return (EINVAL); 786 787 apival = mtod(m, u_int32_t *); 788 789 /* 790 * We can set the API capabilities only if it is the first operation 791 * after MRT_INIT. I.e.: 792 * - there are no vifs installed 793 * - pim_assert is not enabled 794 * - the MFC table is empty 795 */ 796 if (numvifs > 0) { 797 *apival = 0; 798 return (EPERM); 799 } 800 if (pim_assert) { 801 *apival = 0; 802 return (EPERM); 803 } 804 for (i = 0; i < MFCTBLSIZ; i++) { 805 if (LIST_FIRST(&mfchashtbl[i]) != NULL) { 806 *apival = 0; 807 return (EPERM); 808 } 809 } 810 811 mrt_api_config = *apival & mrt_api_support; 812 *apival = mrt_api_config; 813 814 return (0); 815 } 816 817 /* 818 * Get API capabilities 819 */ 820 static int 821 get_api_support(struct mbuf *m) 822 { 823 u_int32_t *apival; 824 825 if (m == NULL || m->m_len < sizeof(u_int32_t)) 826 return (EINVAL); 827 828 apival = mtod(m, u_int32_t *); 829 830 *apival = mrt_api_support; 831 832 return (0); 833 } 834 835 /* 836 * Get API configured capabilities 837 */ 838 static int 839 get_api_config(struct mbuf *m) 840 { 841 u_int32_t *apival; 842 843 if (m == NULL || m->m_len < sizeof(u_int32_t)) 844 return (EINVAL); 845 846 apival = mtod(m, u_int32_t *); 847 848 *apival = mrt_api_config; 849 850 return (0); 851 } 852 853 /* 854 * Add a vif to the vif table 855 */ 856 static int 857 add_vif(struct mbuf *m) 858 { 859 struct vifctl *vifcp; 860 struct vif *vifp; 861 struct ifaddr *ifa; 862 struct ifnet *ifp; 863 struct ifreq ifr; 864 int error, s; 865 struct sockaddr_in sin; 866 867 if (m == NULL || m->m_len < sizeof(struct vifctl)) 868 return (EINVAL); 869 870 vifcp = mtod(m, struct vifctl *); 871 if (vifcp->vifc_vifi >= MAXVIFS) 872 return (EINVAL); 873 if (in_nullhost(vifcp->vifc_lcl_addr)) 874 return (EADDRNOTAVAIL); 875 876 vifp = &viftable[vifcp->vifc_vifi]; 877 if (!in_nullhost(vifp->v_lcl_addr)) 878 return (EADDRINUSE); 879 880 /* Find the interface with an address in AF_INET family. */ 881 #ifdef PIM 882 if (vifcp->vifc_flags & VIFF_REGISTER) { 883 /* 884 * XXX: Because VIFF_REGISTER does not really need a valid 885 * local interface (e.g. it could be 127.0.0.2), we don't 886 * check its address. 887 */ 888 ifp = NULL; 889 } else 890 #endif 891 { 892 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0); 893 ifa = ifa_ifwithaddr(sintosa(&sin)); 894 if (ifa == NULL) 895 return (EADDRNOTAVAIL); 896 ifp = ifa->ifa_ifp; 897 } 898 899 if (vifcp->vifc_flags & VIFF_TUNNEL) { 900 if (vifcp->vifc_flags & VIFF_SRCRT) { 901 log(LOG_ERR, "source routed tunnels not supported\n"); 902 return (EOPNOTSUPP); 903 } 904 905 /* attach this vif to decapsulator dispatch table */ 906 /* 907 * XXX Use addresses in registration so that matching 908 * can be done with radix tree in decapsulator. But, 909 * we need to check inner header for multicast, so 910 * this requires both radix tree lookup and then a 911 * function to check, and this is not supported yet. 912 */ 913 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 914 vif_encapcheck, &vif_protosw, vifp); 915 if (!vifp->v_encap_cookie) 916 return (EINVAL); 917 918 /* Create a fake encapsulation interface. */ 919 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK); 920 bzero(ifp, sizeof(*ifp)); 921 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 922 "mdecap%d", vifcp->vifc_vifi); 923 924 /* Prepare cached route entry. */ 925 bzero(&vifp->v_route, sizeof(vifp->v_route)); 926 #ifdef PIM 927 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 928 ifp = &multicast_register_if; 929 if (mrtdebug) 930 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 931 (void *)ifp); 932 if (reg_vif_num == VIFI_INVALID) { 933 bzero(ifp, sizeof(*ifp)); 934 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 935 "register_vif"); 936 ifp->if_flags = IFF_LOOPBACK; 937 bzero(&vifp->v_route, sizeof(vifp->v_route)); 938 reg_vif_num = vifcp->vifc_vifi; 939 } 940 #endif 941 } else { 942 /* Make sure the interface supports multicast. */ 943 if ((ifp->if_flags & IFF_MULTICAST) == 0) 944 return (EOPNOTSUPP); 945 946 /* Enable promiscuous reception of all IP multicasts. */ 947 sockaddr_in_init(&sin, &zeroin_addr, 0); 948 ifreq_setaddr(SIOCADDMULTI, &ifr, sintosa(&sin)); 949 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (void *)&ifr); 950 if (error) 951 return (error); 952 } 953 954 s = splsoftnet(); 955 956 /* Define parameters for the tbf structure. */ 957 vifp->tbf_q = NULL; 958 vifp->tbf_t = &vifp->tbf_q; 959 microtime(&vifp->tbf_last_pkt_t); 960 vifp->tbf_n_tok = 0; 961 vifp->tbf_q_len = 0; 962 vifp->tbf_max_q_len = MAXQSIZE; 963 964 vifp->v_flags = vifcp->vifc_flags; 965 vifp->v_threshold = vifcp->vifc_threshold; 966 /* scaling up here allows division by 1024 in critical code */ 967 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 968 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 969 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 970 vifp->v_ifp = ifp; 971 /* Initialize per vif pkt counters. */ 972 vifp->v_pkt_in = 0; 973 vifp->v_pkt_out = 0; 974 vifp->v_bytes_in = 0; 975 vifp->v_bytes_out = 0; 976 977 callout_init(&vifp->v_repq_ch, 0); 978 979 #ifdef RSVP_ISI 980 vifp->v_rsvp_on = 0; 981 vifp->v_rsvpd = NULL; 982 #endif /* RSVP_ISI */ 983 984 splx(s); 985 986 /* Adjust numvifs up if the vifi is higher than numvifs. */ 987 if (numvifs <= vifcp->vifc_vifi) 988 numvifs = vifcp->vifc_vifi + 1; 989 990 if (mrtdebug) 991 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 992 vifcp->vifc_vifi, 993 ntohl(vifcp->vifc_lcl_addr.s_addr), 994 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 995 ntohl(vifcp->vifc_rmt_addr.s_addr), 996 vifcp->vifc_threshold, 997 vifcp->vifc_rate_limit); 998 999 return (0); 1000 } 1001 1002 void 1003 reset_vif(struct vif *vifp) 1004 { 1005 struct mbuf *m, *n; 1006 struct ifnet *ifp; 1007 struct ifreq ifr; 1008 struct sockaddr_in sin; 1009 1010 callout_stop(&vifp->v_repq_ch); 1011 1012 /* detach this vif from decapsulator dispatch table */ 1013 encap_detach(vifp->v_encap_cookie); 1014 vifp->v_encap_cookie = NULL; 1015 1016 /* 1017 * Free packets queued at the interface 1018 */ 1019 for (m = vifp->tbf_q; m != NULL; m = n) { 1020 n = m->m_nextpkt; 1021 m_freem(m); 1022 } 1023 1024 if (vifp->v_flags & VIFF_TUNNEL) 1025 free(vifp->v_ifp, M_MRTABLE); 1026 else if (vifp->v_flags & VIFF_REGISTER) { 1027 #ifdef PIM 1028 reg_vif_num = VIFI_INVALID; 1029 #endif 1030 } else { 1031 sockaddr_in_init(&sin, &zeroin_addr, 0); 1032 ifreq_setaddr(SIOCDELMULTI, &ifr, sintosa(&sin)); 1033 ifp = vifp->v_ifp; 1034 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)&ifr); 1035 } 1036 bzero((void *)vifp, sizeof(*vifp)); 1037 } 1038 1039 /* 1040 * Delete a vif from the vif table 1041 */ 1042 static int 1043 del_vif(struct mbuf *m) 1044 { 1045 vifi_t *vifip; 1046 struct vif *vifp; 1047 vifi_t vifi; 1048 int s; 1049 1050 if (m == NULL || m->m_len < sizeof(vifi_t)) 1051 return (EINVAL); 1052 1053 vifip = mtod(m, vifi_t *); 1054 if (*vifip >= numvifs) 1055 return (EINVAL); 1056 1057 vifp = &viftable[*vifip]; 1058 if (in_nullhost(vifp->v_lcl_addr)) 1059 return (EADDRNOTAVAIL); 1060 1061 s = splsoftnet(); 1062 1063 reset_vif(vifp); 1064 1065 /* Adjust numvifs down */ 1066 for (vifi = numvifs; vifi > 0; vifi--) 1067 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 1068 break; 1069 numvifs = vifi; 1070 1071 splx(s); 1072 1073 if (mrtdebug) 1074 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 1075 1076 return (0); 1077 } 1078 1079 /* 1080 * update an mfc entry without resetting counters and S,G addresses. 1081 */ 1082 static void 1083 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1084 { 1085 int i; 1086 1087 rt->mfc_parent = mfccp->mfcc_parent; 1088 for (i = 0; i < numvifs; i++) { 1089 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1090 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1091 MRT_MFC_FLAGS_ALL; 1092 } 1093 /* set the RP address */ 1094 if (mrt_api_config & MRT_MFC_RP) 1095 rt->mfc_rp = mfccp->mfcc_rp; 1096 else 1097 rt->mfc_rp = zeroin_addr; 1098 } 1099 1100 /* 1101 * fully initialize an mfc entry from the parameter. 1102 */ 1103 static void 1104 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1105 { 1106 rt->mfc_origin = mfccp->mfcc_origin; 1107 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1108 1109 update_mfc_params(rt, mfccp); 1110 1111 /* initialize pkt counters per src-grp */ 1112 rt->mfc_pkt_cnt = 0; 1113 rt->mfc_byte_cnt = 0; 1114 rt->mfc_wrong_if = 0; 1115 timerclear(&rt->mfc_last_assert); 1116 } 1117 1118 static void 1119 expire_mfc(struct mfc *rt) 1120 { 1121 struct rtdetq *rte, *nrte; 1122 1123 free_bw_list(rt->mfc_bw_meter); 1124 1125 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1126 nrte = rte->next; 1127 m_freem(rte->m); 1128 free(rte, M_MRTABLE); 1129 } 1130 1131 LIST_REMOVE(rt, mfc_hash); 1132 free(rt, M_MRTABLE); 1133 } 1134 1135 /* 1136 * Add an mfc entry 1137 */ 1138 static int 1139 add_mfc(struct mbuf *m) 1140 { 1141 struct mfcctl2 mfcctl2; 1142 struct mfcctl2 *mfccp; 1143 struct mfc *rt; 1144 u_int32_t hash = 0; 1145 struct rtdetq *rte, *nrte; 1146 u_short nstl; 1147 int s; 1148 int mfcctl_size = sizeof(struct mfcctl); 1149 1150 if (mrt_api_config & MRT_API_FLAGS_ALL) 1151 mfcctl_size = sizeof(struct mfcctl2); 1152 1153 if (m == NULL || m->m_len < mfcctl_size) 1154 return (EINVAL); 1155 1156 /* 1157 * select data size depending on API version. 1158 */ 1159 if (mrt_api_config & MRT_API_FLAGS_ALL) { 1160 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *); 1161 bcopy(mp2, (void *)&mfcctl2, sizeof(*mp2)); 1162 } else { 1163 struct mfcctl *mp = mtod(m, struct mfcctl *); 1164 memcpy(&mfcctl2, mp, sizeof(*mp)); 1165 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0, 1166 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1167 } 1168 mfccp = &mfcctl2; 1169 1170 s = splsoftnet(); 1171 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1172 1173 /* If an entry already exists, just update the fields */ 1174 if (rt) { 1175 if (mrtdebug & DEBUG_MFC) 1176 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1177 ntohl(mfccp->mfcc_origin.s_addr), 1178 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1179 mfccp->mfcc_parent); 1180 1181 update_mfc_params(rt, mfccp); 1182 1183 splx(s); 1184 return (0); 1185 } 1186 1187 /* 1188 * Find the entry for which the upcall was made and update 1189 */ 1190 nstl = 0; 1191 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1192 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1193 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1194 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1195 rt->mfc_stall != NULL) { 1196 if (nstl++) 1197 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1198 "multiple kernel entries", 1199 ntohl(mfccp->mfcc_origin.s_addr), 1200 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1201 mfccp->mfcc_parent, rt->mfc_stall); 1202 1203 if (mrtdebug & DEBUG_MFC) 1204 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1205 ntohl(mfccp->mfcc_origin.s_addr), 1206 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1207 mfccp->mfcc_parent, rt->mfc_stall); 1208 1209 rte = rt->mfc_stall; 1210 init_mfc_params(rt, mfccp); 1211 rt->mfc_stall = NULL; 1212 1213 rt->mfc_expire = 0; /* Don't clean this guy up */ 1214 nexpire[hash]--; 1215 1216 /* free packets Qed at the end of this entry */ 1217 for (; rte != NULL; rte = nrte) { 1218 nrte = rte->next; 1219 if (rte->ifp) { 1220 #ifdef RSVP_ISI 1221 ip_mdq(rte->m, rte->ifp, rt, -1); 1222 #else 1223 ip_mdq(rte->m, rte->ifp, rt); 1224 #endif /* RSVP_ISI */ 1225 } 1226 m_freem(rte->m); 1227 #ifdef UPCALL_TIMING 1228 collate(&rte->t); 1229 #endif /* UPCALL_TIMING */ 1230 free(rte, M_MRTABLE); 1231 } 1232 } 1233 } 1234 1235 /* 1236 * It is possible that an entry is being inserted without an upcall 1237 */ 1238 if (nstl == 0) { 1239 /* 1240 * No mfc; make a new one 1241 */ 1242 if (mrtdebug & DEBUG_MFC) 1243 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1244 ntohl(mfccp->mfcc_origin.s_addr), 1245 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1246 mfccp->mfcc_parent); 1247 1248 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1249 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1250 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1251 init_mfc_params(rt, mfccp); 1252 if (rt->mfc_expire) 1253 nexpire[hash]--; 1254 rt->mfc_expire = 0; 1255 break; /* XXX */ 1256 } 1257 } 1258 if (rt == NULL) { /* no upcall, so make a new entry */ 1259 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1260 M_NOWAIT); 1261 if (rt == NULL) { 1262 splx(s); 1263 return (ENOBUFS); 1264 } 1265 1266 init_mfc_params(rt, mfccp); 1267 rt->mfc_expire = 0; 1268 rt->mfc_stall = NULL; 1269 rt->mfc_bw_meter = NULL; 1270 1271 /* insert new entry at head of hash chain */ 1272 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1273 } 1274 } 1275 1276 splx(s); 1277 return (0); 1278 } 1279 1280 #ifdef UPCALL_TIMING 1281 /* 1282 * collect delay statistics on the upcalls 1283 */ 1284 static void 1285 collate(struct timeval *t) 1286 { 1287 u_int32_t d; 1288 struct timeval tp; 1289 u_int32_t delta; 1290 1291 microtime(&tp); 1292 1293 if (timercmp(t, &tp, <)) { 1294 TV_DELTA(tp, *t, delta); 1295 1296 d = delta >> 10; 1297 if (d > 50) 1298 d = 50; 1299 1300 ++upcall_data[d]; 1301 } 1302 } 1303 #endif /* UPCALL_TIMING */ 1304 1305 /* 1306 * Delete an mfc entry 1307 */ 1308 static int 1309 del_mfc(struct mbuf *m) 1310 { 1311 struct mfcctl2 mfcctl2; 1312 struct mfcctl2 *mfccp; 1313 struct mfc *rt; 1314 int s; 1315 int mfcctl_size = sizeof(struct mfcctl); 1316 struct mfcctl *mp = mtod(m, struct mfcctl *); 1317 1318 /* 1319 * XXX: for deleting MFC entries the information in entries 1320 * of size "struct mfcctl" is sufficient. 1321 */ 1322 1323 if (m == NULL || m->m_len < mfcctl_size) 1324 return (EINVAL); 1325 1326 memcpy(&mfcctl2, mp, sizeof(*mp)); 1327 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0, 1328 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1329 1330 mfccp = &mfcctl2; 1331 1332 if (mrtdebug & DEBUG_MFC) 1333 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1334 ntohl(mfccp->mfcc_origin.s_addr), 1335 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1336 1337 s = splsoftnet(); 1338 1339 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1340 if (rt == NULL) { 1341 splx(s); 1342 return (EADDRNOTAVAIL); 1343 } 1344 1345 /* 1346 * free the bw_meter entries 1347 */ 1348 free_bw_list(rt->mfc_bw_meter); 1349 rt->mfc_bw_meter = NULL; 1350 1351 LIST_REMOVE(rt, mfc_hash); 1352 free(rt, M_MRTABLE); 1353 1354 splx(s); 1355 return (0); 1356 } 1357 1358 static int 1359 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1360 { 1361 if (s) { 1362 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, 1363 (struct mbuf *)NULL) != 0) { 1364 sorwakeup(s); 1365 return (0); 1366 } 1367 } 1368 m_freem(mm); 1369 return (-1); 1370 } 1371 1372 /* 1373 * IP multicast forwarding function. This function assumes that the packet 1374 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1375 * pointed to by "ifp", and the packet is to be relayed to other networks 1376 * that have members of the packet's destination IP multicast group. 1377 * 1378 * The packet is returned unscathed to the caller, unless it is 1379 * erroneous, in which case a non-zero return value tells the caller to 1380 * discard it. 1381 */ 1382 1383 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1384 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1385 1386 int 1387 #ifdef RSVP_ISI 1388 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) 1389 #else 1390 ip_mforward(struct mbuf *m, struct ifnet *ifp) 1391 #endif /* RSVP_ISI */ 1392 { 1393 struct ip *ip = mtod(m, struct ip *); 1394 struct mfc *rt; 1395 static int srctun = 0; 1396 struct mbuf *mm; 1397 struct sockaddr_in sin; 1398 int s; 1399 vifi_t vifi; 1400 1401 if (mrtdebug & DEBUG_FORWARD) 1402 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1403 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1404 1405 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1406 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1407 /* 1408 * Packet arrived via a physical interface or 1409 * an encapsulated tunnel or a register_vif. 1410 */ 1411 } else { 1412 /* 1413 * Packet arrived through a source-route tunnel. 1414 * Source-route tunnels are no longer supported. 1415 */ 1416 if ((srctun++ % 1000) == 0) 1417 log(LOG_ERR, 1418 "ip_mforward: received source-routed packet from %x\n", 1419 ntohl(ip->ip_src.s_addr)); 1420 1421 return (1); 1422 } 1423 1424 #ifdef RSVP_ISI 1425 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1426 if (ip->ip_ttl < MAXTTL) 1427 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1428 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1429 struct vif *vifp = viftable + vifi; 1430 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", 1431 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1432 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1433 vifp->v_ifp->if_xname); 1434 } 1435 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi)); 1436 } 1437 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1438 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", 1439 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1440 } 1441 #endif /* RSVP_ISI */ 1442 1443 /* 1444 * Don't forward a packet with time-to-live of zero or one, 1445 * or a packet destined to a local-only group. 1446 */ 1447 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1448 return (0); 1449 1450 /* 1451 * Determine forwarding vifs from the forwarding cache table 1452 */ 1453 s = splsoftnet(); 1454 ++mrtstat.mrts_mfc_lookups; 1455 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1456 1457 /* Entry exists, so forward if necessary */ 1458 if (rt != NULL) { 1459 splx(s); 1460 #ifdef RSVP_ISI 1461 return (ip_mdq(m, ifp, rt, -1)); 1462 #else 1463 return (ip_mdq(m, ifp, rt)); 1464 #endif /* RSVP_ISI */ 1465 } else { 1466 /* 1467 * If we don't have a route for packet's origin, 1468 * Make a copy of the packet & send message to routing daemon 1469 */ 1470 1471 struct mbuf *mb0; 1472 struct rtdetq *rte; 1473 u_int32_t hash; 1474 int hlen = ip->ip_hl << 2; 1475 #ifdef UPCALL_TIMING 1476 struct timeval tp; 1477 1478 microtime(&tp); 1479 #endif /* UPCALL_TIMING */ 1480 1481 ++mrtstat.mrts_mfc_misses; 1482 1483 mrtstat.mrts_no_route++; 1484 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1485 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1486 ntohl(ip->ip_src.s_addr), 1487 ntohl(ip->ip_dst.s_addr)); 1488 1489 /* 1490 * Allocate mbufs early so that we don't do extra work if we are 1491 * just going to fail anyway. Make sure to pullup the header so 1492 * that other people can't step on it. 1493 */ 1494 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1495 M_NOWAIT); 1496 if (rte == NULL) { 1497 splx(s); 1498 return (ENOBUFS); 1499 } 1500 mb0 = m_copypacket(m, M_DONTWAIT); 1501 M_PULLUP(mb0, hlen); 1502 if (mb0 == NULL) { 1503 free(rte, M_MRTABLE); 1504 splx(s); 1505 return (ENOBUFS); 1506 } 1507 1508 /* is there an upcall waiting for this flow? */ 1509 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1510 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1511 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1512 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1513 rt->mfc_stall != NULL) 1514 break; 1515 } 1516 1517 if (rt == NULL) { 1518 int i; 1519 struct igmpmsg *im; 1520 1521 /* 1522 * Locate the vifi for the incoming interface for 1523 * this packet. 1524 * If none found, drop packet. 1525 */ 1526 for (vifi = 0; vifi < numvifs && 1527 viftable[vifi].v_ifp != ifp; vifi++) 1528 ; 1529 if (vifi >= numvifs) /* vif not found, drop packet */ 1530 goto non_fatal; 1531 1532 /* no upcall, so make a new entry */ 1533 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1534 M_NOWAIT); 1535 if (rt == NULL) 1536 goto fail; 1537 1538 /* 1539 * Make a copy of the header to send to the user level 1540 * process 1541 */ 1542 mm = m_copym(m, 0, hlen, M_DONTWAIT); 1543 M_PULLUP(mm, hlen); 1544 if (mm == NULL) 1545 goto fail1; 1546 1547 /* 1548 * Send message to routing daemon to install 1549 * a route into the kernel table 1550 */ 1551 1552 im = mtod(mm, struct igmpmsg *); 1553 im->im_msgtype = IGMPMSG_NOCACHE; 1554 im->im_mbz = 0; 1555 im->im_vif = vifi; 1556 1557 mrtstat.mrts_upcalls++; 1558 1559 sockaddr_in_init(&sin, &ip->ip_src, 0); 1560 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1561 log(LOG_WARNING, 1562 "ip_mforward: ip_mrouter socket queue full\n"); 1563 ++mrtstat.mrts_upq_sockfull; 1564 fail1: 1565 free(rt, M_MRTABLE); 1566 fail: 1567 free(rte, M_MRTABLE); 1568 m_freem(mb0); 1569 splx(s); 1570 return (ENOBUFS); 1571 } 1572 1573 /* insert new entry at head of hash chain */ 1574 rt->mfc_origin = ip->ip_src; 1575 rt->mfc_mcastgrp = ip->ip_dst; 1576 rt->mfc_pkt_cnt = 0; 1577 rt->mfc_byte_cnt = 0; 1578 rt->mfc_wrong_if = 0; 1579 rt->mfc_expire = UPCALL_EXPIRE; 1580 nexpire[hash]++; 1581 for (i = 0; i < numvifs; i++) { 1582 rt->mfc_ttls[i] = 0; 1583 rt->mfc_flags[i] = 0; 1584 } 1585 rt->mfc_parent = -1; 1586 1587 /* clear the RP address */ 1588 rt->mfc_rp = zeroin_addr; 1589 1590 rt->mfc_bw_meter = NULL; 1591 1592 /* link into table */ 1593 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1594 /* Add this entry to the end of the queue */ 1595 rt->mfc_stall = rte; 1596 } else { 1597 /* determine if q has overflowed */ 1598 struct rtdetq **p; 1599 int npkts = 0; 1600 1601 /* 1602 * XXX ouch! we need to append to the list, but we 1603 * only have a pointer to the front, so we have to 1604 * scan the entire list every time. 1605 */ 1606 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1607 if (++npkts > MAX_UPQ) { 1608 mrtstat.mrts_upq_ovflw++; 1609 non_fatal: 1610 free(rte, M_MRTABLE); 1611 m_freem(mb0); 1612 splx(s); 1613 return (0); 1614 } 1615 1616 /* Add this entry to the end of the queue */ 1617 *p = rte; 1618 } 1619 1620 rte->next = NULL; 1621 rte->m = mb0; 1622 rte->ifp = ifp; 1623 #ifdef UPCALL_TIMING 1624 rte->t = tp; 1625 #endif /* UPCALL_TIMING */ 1626 1627 splx(s); 1628 1629 return (0); 1630 } 1631 } 1632 1633 1634 /*ARGSUSED*/ 1635 static void 1636 expire_upcalls(void *v) 1637 { 1638 int i; 1639 int s; 1640 1641 s = splsoftnet(); 1642 1643 for (i = 0; i < MFCTBLSIZ; i++) { 1644 struct mfc *rt, *nrt; 1645 1646 if (nexpire[i] == 0) 1647 continue; 1648 1649 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1650 nrt = LIST_NEXT(rt, mfc_hash); 1651 1652 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1653 continue; 1654 nexpire[i]--; 1655 1656 /* 1657 * free the bw_meter entries 1658 */ 1659 while (rt->mfc_bw_meter != NULL) { 1660 struct bw_meter *x = rt->mfc_bw_meter; 1661 1662 rt->mfc_bw_meter = x->bm_mfc_next; 1663 free(x, M_BWMETER); 1664 } 1665 1666 ++mrtstat.mrts_cache_cleanups; 1667 if (mrtdebug & DEBUG_EXPIRE) 1668 log(LOG_DEBUG, 1669 "expire_upcalls: expiring (%x %x)\n", 1670 ntohl(rt->mfc_origin.s_addr), 1671 ntohl(rt->mfc_mcastgrp.s_addr)); 1672 1673 expire_mfc(rt); 1674 } 1675 } 1676 1677 splx(s); 1678 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1679 expire_upcalls, NULL); 1680 } 1681 1682 /* 1683 * Packet forwarding routine once entry in the cache is made 1684 */ 1685 static int 1686 #ifdef RSVP_ISI 1687 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1688 #else 1689 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) 1690 #endif /* RSVP_ISI */ 1691 { 1692 struct ip *ip = mtod(m, struct ip *); 1693 vifi_t vifi; 1694 struct vif *vifp; 1695 struct sockaddr_in sin; 1696 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1697 1698 /* 1699 * Macro to send packet on vif. Since RSVP packets don't get counted on 1700 * input, they shouldn't get counted on output, so statistics keeping is 1701 * separate. 1702 */ 1703 #define MC_SEND(ip, vifp, m) do { \ 1704 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1705 encap_send((ip), (vifp), (m)); \ 1706 else \ 1707 phyint_send((ip), (vifp), (m)); \ 1708 } while (/*CONSTCOND*/ 0) 1709 1710 #ifdef RSVP_ISI 1711 /* 1712 * If xmt_vif is not -1, send on only the requested vif. 1713 * 1714 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1715 */ 1716 if (xmt_vif < numvifs) { 1717 #ifdef PIM 1718 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1719 pim_register_send(ip, viftable + xmt_vif, m, rt); 1720 else 1721 #endif 1722 MC_SEND(ip, viftable + xmt_vif, m); 1723 return (1); 1724 } 1725 #endif /* RSVP_ISI */ 1726 1727 /* 1728 * Don't forward if it didn't arrive from the parent vif for its origin. 1729 */ 1730 vifi = rt->mfc_parent; 1731 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1732 /* came in the wrong interface */ 1733 if (mrtdebug & DEBUG_FORWARD) 1734 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1735 ifp, vifi, 1736 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1737 ++mrtstat.mrts_wrong_if; 1738 ++rt->mfc_wrong_if; 1739 /* 1740 * If we are doing PIM assert processing, send a message 1741 * to the routing daemon. 1742 * 1743 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1744 * can complete the SPT switch, regardless of the type 1745 * of the iif (broadcast media, GRE tunnel, etc). 1746 */ 1747 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1748 struct timeval now; 1749 u_int32_t delta; 1750 1751 #ifdef PIM 1752 if (ifp == &multicast_register_if) 1753 pimstat.pims_rcv_registers_wrongiif++; 1754 #endif 1755 1756 /* Get vifi for the incoming packet */ 1757 for (vifi = 0; 1758 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1759 vifi++) 1760 ; 1761 if (vifi >= numvifs) { 1762 /* The iif is not found: ignore the packet. */ 1763 return (0); 1764 } 1765 1766 if (rt->mfc_flags[vifi] & 1767 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1768 /* WRONGVIF disabled: ignore the packet */ 1769 return (0); 1770 } 1771 1772 microtime(&now); 1773 1774 TV_DELTA(rt->mfc_last_assert, now, delta); 1775 1776 if (delta > ASSERT_MSG_TIME) { 1777 struct igmpmsg *im; 1778 int hlen = ip->ip_hl << 2; 1779 struct mbuf *mm = 1780 m_copym(m, 0, hlen, M_DONTWAIT); 1781 1782 M_PULLUP(mm, hlen); 1783 if (mm == NULL) 1784 return (ENOBUFS); 1785 1786 rt->mfc_last_assert = now; 1787 1788 im = mtod(mm, struct igmpmsg *); 1789 im->im_msgtype = IGMPMSG_WRONGVIF; 1790 im->im_mbz = 0; 1791 im->im_vif = vifi; 1792 1793 mrtstat.mrts_upcalls++; 1794 1795 sockaddr_in_init(&sin, &im->im_src, 0); 1796 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1797 log(LOG_WARNING, 1798 "ip_mforward: ip_mrouter socket queue full\n"); 1799 ++mrtstat.mrts_upq_sockfull; 1800 return (ENOBUFS); 1801 } 1802 } 1803 } 1804 return (0); 1805 } 1806 1807 /* If I sourced this packet, it counts as output, else it was input. */ 1808 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1809 viftable[vifi].v_pkt_out++; 1810 viftable[vifi].v_bytes_out += plen; 1811 } else { 1812 viftable[vifi].v_pkt_in++; 1813 viftable[vifi].v_bytes_in += plen; 1814 } 1815 rt->mfc_pkt_cnt++; 1816 rt->mfc_byte_cnt += plen; 1817 1818 /* 1819 * For each vif, decide if a copy of the packet should be forwarded. 1820 * Forward if: 1821 * - the ttl exceeds the vif's threshold 1822 * - there are group members downstream on interface 1823 */ 1824 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1825 if ((rt->mfc_ttls[vifi] > 0) && 1826 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1827 vifp->v_pkt_out++; 1828 vifp->v_bytes_out += plen; 1829 #ifdef PIM 1830 if (vifp->v_flags & VIFF_REGISTER) 1831 pim_register_send(ip, vifp, m, rt); 1832 else 1833 #endif 1834 MC_SEND(ip, vifp, m); 1835 } 1836 1837 /* 1838 * Perform upcall-related bw measuring. 1839 */ 1840 if (rt->mfc_bw_meter != NULL) { 1841 struct bw_meter *x; 1842 struct timeval now; 1843 1844 microtime(&now); 1845 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1846 bw_meter_receive_packet(x, plen, &now); 1847 } 1848 1849 return (0); 1850 } 1851 1852 #ifdef RSVP_ISI 1853 /* 1854 * check if a vif number is legal/ok. This is used by ip_output. 1855 */ 1856 int 1857 legal_vif_num(int vif) 1858 { 1859 if (vif >= 0 && vif < numvifs) 1860 return (1); 1861 else 1862 return (0); 1863 } 1864 #endif /* RSVP_ISI */ 1865 1866 static void 1867 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1868 { 1869 struct mbuf *mb_copy; 1870 int hlen = ip->ip_hl << 2; 1871 1872 /* 1873 * Make a new reference to the packet; make sure that 1874 * the IP header is actually copied, not just referenced, 1875 * so that ip_output() only scribbles on the copy. 1876 */ 1877 mb_copy = m_copypacket(m, M_DONTWAIT); 1878 M_PULLUP(mb_copy, hlen); 1879 if (mb_copy == NULL) 1880 return; 1881 1882 if (vifp->v_rate_limit <= 0) 1883 tbf_send_packet(vifp, mb_copy); 1884 else 1885 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1886 ntohs(ip->ip_len)); 1887 } 1888 1889 static void 1890 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1891 { 1892 struct mbuf *mb_copy; 1893 struct ip *ip_copy; 1894 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1895 1896 /* Take care of delayed checksums */ 1897 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1898 in_delayed_cksum(m); 1899 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1900 } 1901 1902 /* 1903 * copy the old packet & pullup it's IP header into the 1904 * new mbuf so we can modify it. Try to fill the new 1905 * mbuf since if we don't the ethernet driver will. 1906 */ 1907 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1908 if (mb_copy == NULL) 1909 return; 1910 mb_copy->m_data += max_linkhdr; 1911 mb_copy->m_pkthdr.len = len; 1912 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1913 1914 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 1915 m_freem(mb_copy); 1916 return; 1917 } 1918 i = MHLEN - max_linkhdr; 1919 if (i > len) 1920 i = len; 1921 mb_copy = m_pullup(mb_copy, i); 1922 if (mb_copy == NULL) 1923 return; 1924 1925 /* 1926 * fill in the encapsulating IP header. 1927 */ 1928 ip_copy = mtod(mb_copy, struct ip *); 1929 *ip_copy = multicast_encap_iphdr; 1930 ip_copy->ip_id = ip_newid(); 1931 ip_copy->ip_len = htons(len); 1932 ip_copy->ip_src = vifp->v_lcl_addr; 1933 ip_copy->ip_dst = vifp->v_rmt_addr; 1934 1935 /* 1936 * turn the encapsulated IP header back into a valid one. 1937 */ 1938 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr)); 1939 --ip->ip_ttl; 1940 ip->ip_sum = 0; 1941 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1942 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1943 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1944 1945 if (vifp->v_rate_limit <= 0) 1946 tbf_send_packet(vifp, mb_copy); 1947 else 1948 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 1949 } 1950 1951 /* 1952 * De-encapsulate a packet and feed it back through ip input. 1953 */ 1954 static void 1955 vif_input(struct mbuf *m, ...) 1956 { 1957 int off, proto; 1958 va_list ap; 1959 struct vif *vifp; 1960 int s; 1961 struct ifqueue *ifq; 1962 1963 va_start(ap, m); 1964 off = va_arg(ap, int); 1965 proto = va_arg(ap, int); 1966 va_end(ap); 1967 1968 vifp = (struct vif *)encap_getarg(m); 1969 if (!vifp || proto != ENCAP_PROTO) { 1970 m_freem(m); 1971 mrtstat.mrts_bad_tunnel++; 1972 return; 1973 } 1974 1975 m_adj(m, off); 1976 m->m_pkthdr.rcvif = vifp->v_ifp; 1977 ifq = &ipintrq; 1978 s = splnet(); 1979 if (IF_QFULL(ifq)) { 1980 IF_DROP(ifq); 1981 m_freem(m); 1982 } else { 1983 IF_ENQUEUE(ifq, m); 1984 /* 1985 * normally we would need a "schednetisr(NETISR_IP)" 1986 * here but we were called by ip_input and it is going 1987 * to loop back & try to dequeue the packet we just 1988 * queued as soon as we return so we avoid the 1989 * unnecessary software interrrupt. 1990 */ 1991 } 1992 splx(s); 1993 } 1994 1995 /* 1996 * Check if the packet should be received on the vif denoted by arg. 1997 * (The encap selection code will call this once per vif since each is 1998 * registered separately.) 1999 */ 2000 static int 2001 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg) 2002 { 2003 struct vif *vifp; 2004 struct ip ip; 2005 2006 #ifdef DIAGNOSTIC 2007 if (!arg || proto != IPPROTO_IPV4) 2008 panic("unexpected arg in vif_encapcheck"); 2009 #endif 2010 2011 /* 2012 * Accept the packet only if the inner heaader is multicast 2013 * and the outer header matches a tunnel-mode vif. Order 2014 * checks in the hope that common non-matching packets will be 2015 * rejected quickly. Assume that unicast IPv4 traffic in a 2016 * parallel tunnel (e.g. gif(4)) is unlikely. 2017 */ 2018 2019 /* Obtain the outer IP header and the vif pointer. */ 2020 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip); 2021 vifp = (struct vif *)arg; 2022 2023 /* 2024 * The outer source must match the vif's remote peer address. 2025 * For a multicast router with several tunnels, this is the 2026 * only check that will fail on packets in other tunnels, 2027 * assuming the local address is the same. 2028 */ 2029 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 2030 return 0; 2031 2032 /* The outer destination must match the vif's local address. */ 2033 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst)) 2034 return 0; 2035 2036 /* The vif must be of tunnel type. */ 2037 if ((vifp->v_flags & VIFF_TUNNEL) == 0) 2038 return 0; 2039 2040 /* Check that the inner destination is multicast. */ 2041 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip); 2042 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 2043 return 0; 2044 2045 /* 2046 * We have checked that both the outer src and dst addresses 2047 * match the vif, and that the inner destination is multicast 2048 * (224/5). By claiming more than 64, we intend to 2049 * preferentially take packets that also match a parallel 2050 * gif(4). 2051 */ 2052 return 32 + 32 + 5; 2053 } 2054 2055 /* 2056 * Token bucket filter module 2057 */ 2058 static void 2059 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) 2060 { 2061 2062 if (len > MAX_BKT_SIZE) { 2063 /* drop if packet is too large */ 2064 mrtstat.mrts_pkt2large++; 2065 m_freem(m); 2066 return; 2067 } 2068 2069 tbf_update_tokens(vifp); 2070 2071 /* 2072 * If there are enough tokens, and the queue is empty, send this packet 2073 * out immediately. Otherwise, try to insert it on this vif's queue. 2074 */ 2075 if (vifp->tbf_q_len == 0) { 2076 if (len <= vifp->tbf_n_tok) { 2077 vifp->tbf_n_tok -= len; 2078 tbf_send_packet(vifp, m); 2079 } else { 2080 /* queue packet and timeout till later */ 2081 tbf_queue(vifp, m); 2082 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2083 tbf_reprocess_q, vifp); 2084 } 2085 } else { 2086 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 2087 !tbf_dq_sel(vifp, ip)) { 2088 /* queue full, and couldn't make room */ 2089 mrtstat.mrts_q_overflow++; 2090 m_freem(m); 2091 } else { 2092 /* queue length low enough, or made room */ 2093 tbf_queue(vifp, m); 2094 tbf_process_q(vifp); 2095 } 2096 } 2097 } 2098 2099 /* 2100 * adds a packet to the queue at the interface 2101 */ 2102 static void 2103 tbf_queue(struct vif *vifp, struct mbuf *m) 2104 { 2105 int s = splsoftnet(); 2106 2107 /* insert at tail */ 2108 *vifp->tbf_t = m; 2109 vifp->tbf_t = &m->m_nextpkt; 2110 vifp->tbf_q_len++; 2111 2112 splx(s); 2113 } 2114 2115 2116 /* 2117 * processes the queue at the interface 2118 */ 2119 static void 2120 tbf_process_q(struct vif *vifp) 2121 { 2122 struct mbuf *m; 2123 int len; 2124 int s = splsoftnet(); 2125 2126 /* 2127 * Loop through the queue at the interface and send as many packets 2128 * as possible. 2129 */ 2130 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2131 len = ntohs(mtod(m, struct ip *)->ip_len); 2132 2133 /* determine if the packet can be sent */ 2134 if (len <= vifp->tbf_n_tok) { 2135 /* if so, 2136 * reduce no of tokens, dequeue the packet, 2137 * send the packet. 2138 */ 2139 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2140 vifp->tbf_t = &vifp->tbf_q; 2141 --vifp->tbf_q_len; 2142 2143 m->m_nextpkt = NULL; 2144 vifp->tbf_n_tok -= len; 2145 tbf_send_packet(vifp, m); 2146 } else 2147 break; 2148 } 2149 splx(s); 2150 } 2151 2152 static void 2153 tbf_reprocess_q(void *arg) 2154 { 2155 struct vif *vifp = arg; 2156 2157 if (ip_mrouter == NULL) 2158 return; 2159 2160 tbf_update_tokens(vifp); 2161 tbf_process_q(vifp); 2162 2163 if (vifp->tbf_q_len != 0) 2164 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2165 tbf_reprocess_q, vifp); 2166 } 2167 2168 /* function that will selectively discard a member of the queue 2169 * based on the precedence value and the priority 2170 */ 2171 static int 2172 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2173 { 2174 u_int p; 2175 struct mbuf **mp, *m; 2176 int s = splsoftnet(); 2177 2178 p = priority(vifp, ip); 2179 2180 for (mp = &vifp->tbf_q, m = *mp; 2181 m != NULL; 2182 mp = &m->m_nextpkt, m = *mp) { 2183 if (p > priority(vifp, mtod(m, struct ip *))) { 2184 if ((*mp = m->m_nextpkt) == NULL) 2185 vifp->tbf_t = mp; 2186 --vifp->tbf_q_len; 2187 2188 m_freem(m); 2189 mrtstat.mrts_drop_sel++; 2190 splx(s); 2191 return (1); 2192 } 2193 } 2194 splx(s); 2195 return (0); 2196 } 2197 2198 static void 2199 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2200 { 2201 int error; 2202 int s = splsoftnet(); 2203 2204 if (vifp->v_flags & VIFF_TUNNEL) { 2205 /* If tunnel options */ 2206 ip_output(m, (struct mbuf *)NULL, &vifp->v_route, 2207 IP_FORWARDING, (struct ip_moptions *)NULL, 2208 (struct socket *)NULL); 2209 } else { 2210 /* if physical interface option, extract the options and then send */ 2211 struct ip_moptions imo; 2212 2213 imo.imo_multicast_ifp = vifp->v_ifp; 2214 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2215 imo.imo_multicast_loop = 1; 2216 #ifdef RSVP_ISI 2217 imo.imo_multicast_vif = -1; 2218 #endif 2219 2220 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS, 2221 &imo, NULL); 2222 2223 if (mrtdebug & DEBUG_XMIT) 2224 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2225 (long)(vifp - viftable), error); 2226 } 2227 splx(s); 2228 } 2229 2230 /* determine the current time and then 2231 * the elapsed time (between the last time and time now) 2232 * in milliseconds & update the no. of tokens in the bucket 2233 */ 2234 static void 2235 tbf_update_tokens(struct vif *vifp) 2236 { 2237 struct timeval tp; 2238 u_int32_t tm; 2239 int s = splsoftnet(); 2240 2241 microtime(&tp); 2242 2243 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2244 2245 /* 2246 * This formula is actually 2247 * "time in seconds" * "bytes/second". 2248 * 2249 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2250 * 2251 * The (1000/1024) was introduced in add_vif to optimize 2252 * this divide into a shift. 2253 */ 2254 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2255 vifp->tbf_last_pkt_t = tp; 2256 2257 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2258 vifp->tbf_n_tok = MAX_BKT_SIZE; 2259 2260 splx(s); 2261 } 2262 2263 static int 2264 priority(struct vif *vifp, struct ip *ip) 2265 { 2266 int prio = 50; /* the lowest priority -- default case */ 2267 2268 /* temporary hack; may add general packet classifier some day */ 2269 2270 /* 2271 * The UDP port space is divided up into four priority ranges: 2272 * [0, 16384) : unclassified - lowest priority 2273 * [16384, 32768) : audio - highest priority 2274 * [32768, 49152) : whiteboard - medium priority 2275 * [49152, 65536) : video - low priority 2276 */ 2277 if (ip->ip_p == IPPROTO_UDP) { 2278 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2279 2280 switch (ntohs(udp->uh_dport) & 0xc000) { 2281 case 0x4000: 2282 prio = 70; 2283 break; 2284 case 0x8000: 2285 prio = 60; 2286 break; 2287 case 0xc000: 2288 prio = 55; 2289 break; 2290 } 2291 2292 if (tbfdebug > 1) 2293 log(LOG_DEBUG, "port %x prio %d\n", 2294 ntohs(udp->uh_dport), prio); 2295 } 2296 2297 return (prio); 2298 } 2299 2300 /* 2301 * End of token bucket filter modifications 2302 */ 2303 #ifdef RSVP_ISI 2304 int 2305 ip_rsvp_vif_init(struct socket *so, struct mbuf *m) 2306 { 2307 int vifi, s; 2308 2309 if (rsvpdebug) 2310 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", 2311 so->so_type, so->so_proto->pr_protocol); 2312 2313 if (so->so_type != SOCK_RAW || 2314 so->so_proto->pr_protocol != IPPROTO_RSVP) 2315 return (EOPNOTSUPP); 2316 2317 /* Check mbuf. */ 2318 if (m == NULL || m->m_len != sizeof(int)) { 2319 return (EINVAL); 2320 } 2321 vifi = *(mtod(m, int *)); 2322 2323 if (rsvpdebug) 2324 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", 2325 vifi, rsvp_on); 2326 2327 s = splsoftnet(); 2328 2329 /* Check vif. */ 2330 if (!legal_vif_num(vifi)) { 2331 splx(s); 2332 return (EADDRNOTAVAIL); 2333 } 2334 2335 /* Check if socket is available. */ 2336 if (viftable[vifi].v_rsvpd != NULL) { 2337 splx(s); 2338 return (EADDRINUSE); 2339 } 2340 2341 viftable[vifi].v_rsvpd = so; 2342 /* 2343 * This may seem silly, but we need to be sure we don't over-increment 2344 * the RSVP counter, in case something slips up. 2345 */ 2346 if (!viftable[vifi].v_rsvp_on) { 2347 viftable[vifi].v_rsvp_on = 1; 2348 rsvp_on++; 2349 } 2350 2351 splx(s); 2352 return (0); 2353 } 2354 2355 int 2356 ip_rsvp_vif_done(struct socket *so, struct mbuf *m) 2357 { 2358 int vifi, s; 2359 2360 if (rsvpdebug) 2361 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", 2362 so->so_type, so->so_proto->pr_protocol); 2363 2364 if (so->so_type != SOCK_RAW || 2365 so->so_proto->pr_protocol != IPPROTO_RSVP) 2366 return (EOPNOTSUPP); 2367 2368 /* Check mbuf. */ 2369 if (m == NULL || m->m_len != sizeof(int)) { 2370 return (EINVAL); 2371 } 2372 vifi = *(mtod(m, int *)); 2373 2374 s = splsoftnet(); 2375 2376 /* Check vif. */ 2377 if (!legal_vif_num(vifi)) { 2378 splx(s); 2379 return (EADDRNOTAVAIL); 2380 } 2381 2382 if (rsvpdebug) 2383 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", 2384 viftable[vifi].v_rsvpd, so); 2385 2386 viftable[vifi].v_rsvpd = NULL; 2387 /* 2388 * This may seem silly, but we need to be sure we don't over-decrement 2389 * the RSVP counter, in case something slips up. 2390 */ 2391 if (viftable[vifi].v_rsvp_on) { 2392 viftable[vifi].v_rsvp_on = 0; 2393 rsvp_on--; 2394 } 2395 2396 splx(s); 2397 return (0); 2398 } 2399 2400 void 2401 ip_rsvp_force_done(struct socket *so) 2402 { 2403 int vifi, s; 2404 2405 /* Don't bother if it is not the right type of socket. */ 2406 if (so->so_type != SOCK_RAW || 2407 so->so_proto->pr_protocol != IPPROTO_RSVP) 2408 return; 2409 2410 s = splsoftnet(); 2411 2412 /* 2413 * The socket may be attached to more than one vif...this 2414 * is perfectly legal. 2415 */ 2416 for (vifi = 0; vifi < numvifs; vifi++) { 2417 if (viftable[vifi].v_rsvpd == so) { 2418 viftable[vifi].v_rsvpd = NULL; 2419 /* 2420 * This may seem silly, but we need to be sure we don't 2421 * over-decrement the RSVP counter, in case something 2422 * slips up. 2423 */ 2424 if (viftable[vifi].v_rsvp_on) { 2425 viftable[vifi].v_rsvp_on = 0; 2426 rsvp_on--; 2427 } 2428 } 2429 } 2430 2431 splx(s); 2432 return; 2433 } 2434 2435 void 2436 rsvp_input(struct mbuf *m, struct ifnet *ifp) 2437 { 2438 int vifi, s; 2439 struct ip *ip = mtod(m, struct ip *); 2440 struct sockaddr_in rsvp_src; 2441 2442 if (rsvpdebug) 2443 printf("rsvp_input: rsvp_on %d\n", rsvp_on); 2444 2445 /* 2446 * Can still get packets with rsvp_on = 0 if there is a local member 2447 * of the group to which the RSVP packet is addressed. But in this 2448 * case we want to throw the packet away. 2449 */ 2450 if (!rsvp_on) { 2451 m_freem(m); 2452 return; 2453 } 2454 2455 /* 2456 * If the old-style non-vif-associated socket is set, then use 2457 * it and ignore the new ones. 2458 */ 2459 if (ip_rsvpd != NULL) { 2460 if (rsvpdebug) 2461 printf("rsvp_input: " 2462 "Sending packet up old-style socket\n"); 2463 rip_input(m); /*XXX*/ 2464 return; 2465 } 2466 2467 s = splsoftnet(); 2468 2469 if (rsvpdebug) 2470 printf("rsvp_input: check vifs\n"); 2471 2472 /* Find which vif the packet arrived on. */ 2473 for (vifi = 0; vifi < numvifs; vifi++) { 2474 if (viftable[vifi].v_ifp == ifp) 2475 break; 2476 } 2477 2478 if (vifi == numvifs) { 2479 /* Can't find vif packet arrived on. Drop packet. */ 2480 if (rsvpdebug) 2481 printf("rsvp_input: " 2482 "Can't find vif for packet...dropping it.\n"); 2483 m_freem(m); 2484 splx(s); 2485 return; 2486 } 2487 2488 if (rsvpdebug) 2489 printf("rsvp_input: check socket\n"); 2490 2491 if (viftable[vifi].v_rsvpd == NULL) { 2492 /* 2493 * drop packet, since there is no specific socket for this 2494 * interface 2495 */ 2496 if (rsvpdebug) 2497 printf("rsvp_input: No socket defined for vif %d\n", 2498 vifi); 2499 m_freem(m); 2500 splx(s); 2501 return; 2502 } 2503 2504 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0); 2505 2506 if (rsvpdebug && m) 2507 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", 2508 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); 2509 2510 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2511 if (rsvpdebug) 2512 printf("rsvp_input: Failed to append to socket\n"); 2513 else 2514 if (rsvpdebug) 2515 printf("rsvp_input: send packet up\n"); 2516 2517 splx(s); 2518 } 2519 #endif /* RSVP_ISI */ 2520 2521 /* 2522 * Code for bandwidth monitors 2523 */ 2524 2525 /* 2526 * Define common interface for timeval-related methods 2527 */ 2528 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2529 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2530 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2531 2532 static uint32_t 2533 compute_bw_meter_flags(struct bw_upcall *req) 2534 { 2535 uint32_t flags = 0; 2536 2537 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2538 flags |= BW_METER_UNIT_PACKETS; 2539 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2540 flags |= BW_METER_UNIT_BYTES; 2541 if (req->bu_flags & BW_UPCALL_GEQ) 2542 flags |= BW_METER_GEQ; 2543 if (req->bu_flags & BW_UPCALL_LEQ) 2544 flags |= BW_METER_LEQ; 2545 2546 return flags; 2547 } 2548 2549 /* 2550 * Add a bw_meter entry 2551 */ 2552 static int 2553 add_bw_upcall(struct mbuf *m) 2554 { 2555 int s; 2556 struct mfc *mfc; 2557 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2558 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2559 struct timeval now; 2560 struct bw_meter *x; 2561 uint32_t flags; 2562 struct bw_upcall *req; 2563 2564 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2565 return EINVAL; 2566 2567 req = mtod(m, struct bw_upcall *); 2568 2569 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2570 return EOPNOTSUPP; 2571 2572 /* Test if the flags are valid */ 2573 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2574 return EINVAL; 2575 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2576 return EINVAL; 2577 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2578 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2579 return EINVAL; 2580 2581 /* Test if the threshold time interval is valid */ 2582 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2583 return EINVAL; 2584 2585 flags = compute_bw_meter_flags(req); 2586 2587 /* 2588 * Find if we have already same bw_meter entry 2589 */ 2590 s = splsoftnet(); 2591 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2592 if (mfc == NULL) { 2593 splx(s); 2594 return EADDRNOTAVAIL; 2595 } 2596 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2597 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2598 &req->bu_threshold.b_time, ==)) && 2599 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2600 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2601 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2602 splx(s); 2603 return 0; /* XXX Already installed */ 2604 } 2605 } 2606 2607 /* Allocate the new bw_meter entry */ 2608 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2609 if (x == NULL) { 2610 splx(s); 2611 return ENOBUFS; 2612 } 2613 2614 /* Set the new bw_meter entry */ 2615 x->bm_threshold.b_time = req->bu_threshold.b_time; 2616 microtime(&now); 2617 x->bm_start_time = now; 2618 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2619 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2620 x->bm_measured.b_packets = 0; 2621 x->bm_measured.b_bytes = 0; 2622 x->bm_flags = flags; 2623 x->bm_time_next = NULL; 2624 x->bm_time_hash = BW_METER_BUCKETS; 2625 2626 /* Add the new bw_meter entry to the front of entries for this MFC */ 2627 x->bm_mfc = mfc; 2628 x->bm_mfc_next = mfc->mfc_bw_meter; 2629 mfc->mfc_bw_meter = x; 2630 schedule_bw_meter(x, &now); 2631 splx(s); 2632 2633 return 0; 2634 } 2635 2636 static void 2637 free_bw_list(struct bw_meter *list) 2638 { 2639 while (list != NULL) { 2640 struct bw_meter *x = list; 2641 2642 list = list->bm_mfc_next; 2643 unschedule_bw_meter(x); 2644 free(x, M_BWMETER); 2645 } 2646 } 2647 2648 /* 2649 * Delete one or multiple bw_meter entries 2650 */ 2651 static int 2652 del_bw_upcall(struct mbuf *m) 2653 { 2654 int s; 2655 struct mfc *mfc; 2656 struct bw_meter *x; 2657 struct bw_upcall *req; 2658 2659 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2660 return EINVAL; 2661 2662 req = mtod(m, struct bw_upcall *); 2663 2664 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2665 return EOPNOTSUPP; 2666 2667 s = splsoftnet(); 2668 /* Find the corresponding MFC entry */ 2669 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2670 if (mfc == NULL) { 2671 splx(s); 2672 return EADDRNOTAVAIL; 2673 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2674 /* 2675 * Delete all bw_meter entries for this mfc 2676 */ 2677 struct bw_meter *list; 2678 2679 list = mfc->mfc_bw_meter; 2680 mfc->mfc_bw_meter = NULL; 2681 free_bw_list(list); 2682 splx(s); 2683 return 0; 2684 } else { /* Delete a single bw_meter entry */ 2685 struct bw_meter *prev; 2686 uint32_t flags = 0; 2687 2688 flags = compute_bw_meter_flags(req); 2689 2690 /* Find the bw_meter entry to delete */ 2691 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2692 prev = x, x = x->bm_mfc_next) { 2693 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2694 &req->bu_threshold.b_time, ==)) && 2695 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2696 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2697 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2698 break; 2699 } 2700 if (x != NULL) { /* Delete entry from the list for this MFC */ 2701 if (prev != NULL) 2702 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2703 else 2704 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2705 2706 unschedule_bw_meter(x); 2707 splx(s); 2708 /* Free the bw_meter entry */ 2709 free(x, M_BWMETER); 2710 return 0; 2711 } else { 2712 splx(s); 2713 return EINVAL; 2714 } 2715 } 2716 /* NOTREACHED */ 2717 } 2718 2719 /* 2720 * Perform bandwidth measurement processing that may result in an upcall 2721 */ 2722 static void 2723 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2724 { 2725 struct timeval delta; 2726 2727 delta = *nowp; 2728 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2729 2730 if (x->bm_flags & BW_METER_GEQ) { 2731 /* 2732 * Processing for ">=" type of bw_meter entry 2733 */ 2734 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2735 /* Reset the bw_meter entry */ 2736 x->bm_start_time = *nowp; 2737 x->bm_measured.b_packets = 0; 2738 x->bm_measured.b_bytes = 0; 2739 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2740 } 2741 2742 /* Record that a packet is received */ 2743 x->bm_measured.b_packets++; 2744 x->bm_measured.b_bytes += plen; 2745 2746 /* 2747 * Test if we should deliver an upcall 2748 */ 2749 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2750 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2751 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2752 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2753 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2754 /* Prepare an upcall for delivery */ 2755 bw_meter_prepare_upcall(x, nowp); 2756 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2757 } 2758 } 2759 } else if (x->bm_flags & BW_METER_LEQ) { 2760 /* 2761 * Processing for "<=" type of bw_meter entry 2762 */ 2763 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2764 /* 2765 * We are behind time with the multicast forwarding table 2766 * scanning for "<=" type of bw_meter entries, so test now 2767 * if we should deliver an upcall. 2768 */ 2769 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2770 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2771 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2772 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2773 /* Prepare an upcall for delivery */ 2774 bw_meter_prepare_upcall(x, nowp); 2775 } 2776 /* Reschedule the bw_meter entry */ 2777 unschedule_bw_meter(x); 2778 schedule_bw_meter(x, nowp); 2779 } 2780 2781 /* Record that a packet is received */ 2782 x->bm_measured.b_packets++; 2783 x->bm_measured.b_bytes += plen; 2784 2785 /* 2786 * Test if we should restart the measuring interval 2787 */ 2788 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2789 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2790 (x->bm_flags & BW_METER_UNIT_BYTES && 2791 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2792 /* Don't restart the measuring interval */ 2793 } else { 2794 /* Do restart the measuring interval */ 2795 /* 2796 * XXX: note that we don't unschedule and schedule, because this 2797 * might be too much overhead per packet. Instead, when we process 2798 * all entries for a given timer hash bin, we check whether it is 2799 * really a timeout. If not, we reschedule at that time. 2800 */ 2801 x->bm_start_time = *nowp; 2802 x->bm_measured.b_packets = 0; 2803 x->bm_measured.b_bytes = 0; 2804 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2805 } 2806 } 2807 } 2808 2809 /* 2810 * Prepare a bandwidth-related upcall 2811 */ 2812 static void 2813 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2814 { 2815 struct timeval delta; 2816 struct bw_upcall *u; 2817 2818 /* 2819 * Compute the measured time interval 2820 */ 2821 delta = *nowp; 2822 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2823 2824 /* 2825 * If there are too many pending upcalls, deliver them now 2826 */ 2827 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2828 bw_upcalls_send(); 2829 2830 /* 2831 * Set the bw_upcall entry 2832 */ 2833 u = &bw_upcalls[bw_upcalls_n++]; 2834 u->bu_src = x->bm_mfc->mfc_origin; 2835 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2836 u->bu_threshold.b_time = x->bm_threshold.b_time; 2837 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2838 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2839 u->bu_measured.b_time = delta; 2840 u->bu_measured.b_packets = x->bm_measured.b_packets; 2841 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2842 u->bu_flags = 0; 2843 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2844 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2845 if (x->bm_flags & BW_METER_UNIT_BYTES) 2846 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2847 if (x->bm_flags & BW_METER_GEQ) 2848 u->bu_flags |= BW_UPCALL_GEQ; 2849 if (x->bm_flags & BW_METER_LEQ) 2850 u->bu_flags |= BW_UPCALL_LEQ; 2851 } 2852 2853 /* 2854 * Send the pending bandwidth-related upcalls 2855 */ 2856 static void 2857 bw_upcalls_send(void) 2858 { 2859 struct mbuf *m; 2860 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2861 struct sockaddr_in k_igmpsrc = { 2862 .sin_len = sizeof(k_igmpsrc), 2863 .sin_family = AF_INET, 2864 }; 2865 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2866 0, /* unused2 */ 2867 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2868 0, /* im_mbz */ 2869 0, /* im_vif */ 2870 0, /* unused3 */ 2871 { 0 }, /* im_src */ 2872 { 0 } }; /* im_dst */ 2873 2874 if (bw_upcalls_n == 0) 2875 return; /* No pending upcalls */ 2876 2877 bw_upcalls_n = 0; 2878 2879 /* 2880 * Allocate a new mbuf, initialize it with the header and 2881 * the payload for the pending calls. 2882 */ 2883 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2884 if (m == NULL) { 2885 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2886 return; 2887 } 2888 2889 m->m_len = m->m_pkthdr.len = 0; 2890 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg); 2891 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]); 2892 2893 /* 2894 * Send the upcalls 2895 * XXX do we need to set the address in k_igmpsrc ? 2896 */ 2897 mrtstat.mrts_upcalls++; 2898 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2899 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2900 ++mrtstat.mrts_upq_sockfull; 2901 } 2902 } 2903 2904 /* 2905 * Compute the timeout hash value for the bw_meter entries 2906 */ 2907 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2908 do { \ 2909 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2910 \ 2911 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2912 (hash) = next_timeval.tv_sec; \ 2913 if (next_timeval.tv_usec) \ 2914 (hash)++; /* XXX: make sure we don't timeout early */ \ 2915 (hash) %= BW_METER_BUCKETS; \ 2916 } while (/*CONSTCOND*/ 0) 2917 2918 /* 2919 * Schedule a timer to process periodically bw_meter entry of type "<=" 2920 * by linking the entry in the proper hash bucket. 2921 */ 2922 static void 2923 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2924 { 2925 int time_hash; 2926 2927 if (!(x->bm_flags & BW_METER_LEQ)) 2928 return; /* XXX: we schedule timers only for "<=" entries */ 2929 2930 /* 2931 * Reset the bw_meter entry 2932 */ 2933 x->bm_start_time = *nowp; 2934 x->bm_measured.b_packets = 0; 2935 x->bm_measured.b_bytes = 0; 2936 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2937 2938 /* 2939 * Compute the timeout hash value and insert the entry 2940 */ 2941 BW_METER_TIMEHASH(x, time_hash); 2942 x->bm_time_next = bw_meter_timers[time_hash]; 2943 bw_meter_timers[time_hash] = x; 2944 x->bm_time_hash = time_hash; 2945 } 2946 2947 /* 2948 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2949 * by removing the entry from the proper hash bucket. 2950 */ 2951 static void 2952 unschedule_bw_meter(struct bw_meter *x) 2953 { 2954 int time_hash; 2955 struct bw_meter *prev, *tmp; 2956 2957 if (!(x->bm_flags & BW_METER_LEQ)) 2958 return; /* XXX: we schedule timers only for "<=" entries */ 2959 2960 /* 2961 * Compute the timeout hash value and delete the entry 2962 */ 2963 time_hash = x->bm_time_hash; 2964 if (time_hash >= BW_METER_BUCKETS) 2965 return; /* Entry was not scheduled */ 2966 2967 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2968 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2969 if (tmp == x) 2970 break; 2971 2972 if (tmp == NULL) 2973 panic("unschedule_bw_meter: bw_meter entry not found"); 2974 2975 if (prev != NULL) 2976 prev->bm_time_next = x->bm_time_next; 2977 else 2978 bw_meter_timers[time_hash] = x->bm_time_next; 2979 2980 x->bm_time_next = NULL; 2981 x->bm_time_hash = BW_METER_BUCKETS; 2982 } 2983 2984 /* 2985 * Process all "<=" type of bw_meter that should be processed now, 2986 * and for each entry prepare an upcall if necessary. Each processed 2987 * entry is rescheduled again for the (periodic) processing. 2988 * 2989 * This is run periodically (once per second normally). On each round, 2990 * all the potentially matching entries are in the hash slot that we are 2991 * looking at. 2992 */ 2993 static void 2994 bw_meter_process(void) 2995 { 2996 int s; 2997 static uint32_t last_tv_sec; /* last time we processed this */ 2998 2999 uint32_t loops; 3000 int i; 3001 struct timeval now, process_endtime; 3002 3003 microtime(&now); 3004 if (last_tv_sec == now.tv_sec) 3005 return; /* nothing to do */ 3006 3007 loops = now.tv_sec - last_tv_sec; 3008 last_tv_sec = now.tv_sec; 3009 if (loops > BW_METER_BUCKETS) 3010 loops = BW_METER_BUCKETS; 3011 3012 s = splsoftnet(); 3013 /* 3014 * Process all bins of bw_meter entries from the one after the last 3015 * processed to the current one. On entry, i points to the last bucket 3016 * visited, so we need to increment i at the beginning of the loop. 3017 */ 3018 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 3019 struct bw_meter *x, *tmp_list; 3020 3021 if (++i >= BW_METER_BUCKETS) 3022 i = 0; 3023 3024 /* Disconnect the list of bw_meter entries from the bin */ 3025 tmp_list = bw_meter_timers[i]; 3026 bw_meter_timers[i] = NULL; 3027 3028 /* Process the list of bw_meter entries */ 3029 while (tmp_list != NULL) { 3030 x = tmp_list; 3031 tmp_list = tmp_list->bm_time_next; 3032 3033 /* Test if the time interval is over */ 3034 process_endtime = x->bm_start_time; 3035 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 3036 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 3037 /* Not yet: reschedule, but don't reset */ 3038 int time_hash; 3039 3040 BW_METER_TIMEHASH(x, time_hash); 3041 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 3042 /* 3043 * XXX: somehow the bin processing is a bit ahead of time. 3044 * Put the entry in the next bin. 3045 */ 3046 if (++time_hash >= BW_METER_BUCKETS) 3047 time_hash = 0; 3048 } 3049 x->bm_time_next = bw_meter_timers[time_hash]; 3050 bw_meter_timers[time_hash] = x; 3051 x->bm_time_hash = time_hash; 3052 3053 continue; 3054 } 3055 3056 /* 3057 * Test if we should deliver an upcall 3058 */ 3059 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 3060 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 3061 ((x->bm_flags & BW_METER_UNIT_BYTES) && 3062 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 3063 /* Prepare an upcall for delivery */ 3064 bw_meter_prepare_upcall(x, &now); 3065 } 3066 3067 /* 3068 * Reschedule for next processing 3069 */ 3070 schedule_bw_meter(x, &now); 3071 } 3072 } 3073 3074 /* Send all upcalls that are pending delivery */ 3075 bw_upcalls_send(); 3076 3077 splx(s); 3078 } 3079 3080 /* 3081 * A periodic function for sending all upcalls that are pending delivery 3082 */ 3083 static void 3084 expire_bw_upcalls_send(void *unused) 3085 { 3086 int s; 3087 3088 s = splsoftnet(); 3089 bw_upcalls_send(); 3090 splx(s); 3091 3092 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 3093 expire_bw_upcalls_send, NULL); 3094 } 3095 3096 /* 3097 * A periodic function for periodic scanning of the multicast forwarding 3098 * table for processing all "<=" bw_meter entries. 3099 */ 3100 static void 3101 expire_bw_meter_process(void *unused) 3102 { 3103 if (mrt_api_config & MRT_MFC_BW_UPCALL) 3104 bw_meter_process(); 3105 3106 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 3107 expire_bw_meter_process, NULL); 3108 } 3109 3110 /* 3111 * End of bandwidth monitoring code 3112 */ 3113 3114 #ifdef PIM 3115 /* 3116 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3117 */ 3118 static int 3119 pim_register_send(struct ip *ip, struct vif *vifp, 3120 struct mbuf *m, struct mfc *rt) 3121 { 3122 struct mbuf *mb_copy, *mm; 3123 3124 if (mrtdebug & DEBUG_PIM) 3125 log(LOG_DEBUG, "pim_register_send: "); 3126 3127 mb_copy = pim_register_prepare(ip, m); 3128 if (mb_copy == NULL) 3129 return ENOBUFS; 3130 3131 /* 3132 * Send all the fragments. Note that the mbuf for each fragment 3133 * is freed by the sending machinery. 3134 */ 3135 for (mm = mb_copy; mm; mm = mb_copy) { 3136 mb_copy = mm->m_nextpkt; 3137 mm->m_nextpkt = NULL; 3138 mm = m_pullup(mm, sizeof(struct ip)); 3139 if (mm != NULL) { 3140 ip = mtod(mm, struct ip *); 3141 if ((mrt_api_config & MRT_MFC_RP) && 3142 !in_nullhost(rt->mfc_rp)) { 3143 pim_register_send_rp(ip, vifp, mm, rt); 3144 } else { 3145 pim_register_send_upcall(ip, vifp, mm, rt); 3146 } 3147 } 3148 } 3149 3150 return 0; 3151 } 3152 3153 /* 3154 * Return a copy of the data packet that is ready for PIM Register 3155 * encapsulation. 3156 * XXX: Note that in the returned copy the IP header is a valid one. 3157 */ 3158 static struct mbuf * 3159 pim_register_prepare(struct ip *ip, struct mbuf *m) 3160 { 3161 struct mbuf *mb_copy = NULL; 3162 int mtu; 3163 3164 /* Take care of delayed checksums */ 3165 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3166 in_delayed_cksum(m); 3167 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3168 } 3169 3170 /* 3171 * Copy the old packet & pullup its IP header into the 3172 * new mbuf so we can modify it. 3173 */ 3174 mb_copy = m_copypacket(m, M_DONTWAIT); 3175 if (mb_copy == NULL) 3176 return NULL; 3177 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3178 if (mb_copy == NULL) 3179 return NULL; 3180 3181 /* take care of the TTL */ 3182 ip = mtod(mb_copy, struct ip *); 3183 --ip->ip_ttl; 3184 3185 /* Compute the MTU after the PIM Register encapsulation */ 3186 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3187 3188 if (ntohs(ip->ip_len) <= mtu) { 3189 /* Turn the IP header into a valid one */ 3190 ip->ip_sum = 0; 3191 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3192 } else { 3193 /* Fragment the packet */ 3194 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3195 /* XXX: mb_copy was freed by ip_fragment() */ 3196 return NULL; 3197 } 3198 } 3199 return mb_copy; 3200 } 3201 3202 /* 3203 * Send an upcall with the data packet to the user-level process. 3204 */ 3205 static int 3206 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3207 struct mbuf *mb_copy, struct mfc *rt) 3208 { 3209 struct mbuf *mb_first; 3210 int len = ntohs(ip->ip_len); 3211 struct igmpmsg *im; 3212 struct sockaddr_in k_igmpsrc = { 3213 .sin_len = sizeof(k_igmpsrc), 3214 .sin_family = AF_INET, 3215 }; 3216 3217 /* 3218 * Add a new mbuf with an upcall header 3219 */ 3220 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3221 if (mb_first == NULL) { 3222 m_freem(mb_copy); 3223 return ENOBUFS; 3224 } 3225 mb_first->m_data += max_linkhdr; 3226 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3227 mb_first->m_len = sizeof(struct igmpmsg); 3228 mb_first->m_next = mb_copy; 3229 3230 /* Send message to routing daemon */ 3231 im = mtod(mb_first, struct igmpmsg *); 3232 im->im_msgtype = IGMPMSG_WHOLEPKT; 3233 im->im_mbz = 0; 3234 im->im_vif = vifp - viftable; 3235 im->im_src = ip->ip_src; 3236 im->im_dst = ip->ip_dst; 3237 3238 k_igmpsrc.sin_addr = ip->ip_src; 3239 3240 mrtstat.mrts_upcalls++; 3241 3242 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3243 if (mrtdebug & DEBUG_PIM) 3244 log(LOG_WARNING, 3245 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 3246 ++mrtstat.mrts_upq_sockfull; 3247 return ENOBUFS; 3248 } 3249 3250 /* Keep statistics */ 3251 pimstat.pims_snd_registers_msgs++; 3252 pimstat.pims_snd_registers_bytes += len; 3253 3254 return 0; 3255 } 3256 3257 /* 3258 * Encapsulate the data packet in PIM Register message and send it to the RP. 3259 */ 3260 static int 3261 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3262 struct mbuf *mb_copy, struct mfc *rt) 3263 { 3264 struct mbuf *mb_first; 3265 struct ip *ip_outer; 3266 struct pim_encap_pimhdr *pimhdr; 3267 int len = ntohs(ip->ip_len); 3268 vifi_t vifi = rt->mfc_parent; 3269 3270 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3271 m_freem(mb_copy); 3272 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3273 } 3274 3275 /* 3276 * Add a new mbuf with the encapsulating header 3277 */ 3278 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3279 if (mb_first == NULL) { 3280 m_freem(mb_copy); 3281 return ENOBUFS; 3282 } 3283 mb_first->m_data += max_linkhdr; 3284 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3285 mb_first->m_next = mb_copy; 3286 3287 mb_first->m_pkthdr.len = len + mb_first->m_len; 3288 3289 /* 3290 * Fill in the encapsulating IP and PIM header 3291 */ 3292 ip_outer = mtod(mb_first, struct ip *); 3293 *ip_outer = pim_encap_iphdr; 3294 ip_outer->ip_id = ip_newid(); 3295 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3296 sizeof(pim_encap_pimhdr)); 3297 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3298 ip_outer->ip_dst = rt->mfc_rp; 3299 /* 3300 * Copy the inner header TOS to the outer header, and take care of the 3301 * IP_DF bit. 3302 */ 3303 ip_outer->ip_tos = ip->ip_tos; 3304 if (ntohs(ip->ip_off) & IP_DF) 3305 ip_outer->ip_off |= htons(IP_DF); 3306 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer 3307 + sizeof(pim_encap_iphdr)); 3308 *pimhdr = pim_encap_pimhdr; 3309 /* If the iif crosses a border, set the Border-bit */ 3310 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3311 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3312 3313 mb_first->m_data += sizeof(pim_encap_iphdr); 3314 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3315 mb_first->m_data -= sizeof(pim_encap_iphdr); 3316 3317 if (vifp->v_rate_limit == 0) 3318 tbf_send_packet(vifp, mb_first); 3319 else 3320 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3321 3322 /* Keep statistics */ 3323 pimstat.pims_snd_registers_msgs++; 3324 pimstat.pims_snd_registers_bytes += len; 3325 3326 return 0; 3327 } 3328 3329 /* 3330 * PIM-SMv2 and PIM-DM messages processing. 3331 * Receives and verifies the PIM control messages, and passes them 3332 * up to the listening socket, using rip_input(). 3333 * The only message with special processing is the PIM_REGISTER message 3334 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3335 * is passed to if_simloop(). 3336 */ 3337 void 3338 pim_input(struct mbuf *m, ...) 3339 { 3340 struct ip *ip = mtod(m, struct ip *); 3341 struct pim *pim; 3342 int minlen; 3343 int datalen; 3344 int ip_tos; 3345 int proto; 3346 int iphlen; 3347 va_list ap; 3348 3349 va_start(ap, m); 3350 iphlen = va_arg(ap, int); 3351 proto = va_arg(ap, int); 3352 va_end(ap); 3353 3354 datalen = ntohs(ip->ip_len) - iphlen; 3355 3356 /* Keep statistics */ 3357 pimstat.pims_rcv_total_msgs++; 3358 pimstat.pims_rcv_total_bytes += datalen; 3359 3360 /* 3361 * Validate lengths 3362 */ 3363 if (datalen < PIM_MINLEN) { 3364 pimstat.pims_rcv_tooshort++; 3365 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3366 datalen, (u_long)ip->ip_src.s_addr); 3367 m_freem(m); 3368 return; 3369 } 3370 3371 /* 3372 * If the packet is at least as big as a REGISTER, go agead 3373 * and grab the PIM REGISTER header size, to avoid another 3374 * possible m_pullup() later. 3375 * 3376 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3377 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3378 */ 3379 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3380 /* 3381 * Get the IP and PIM headers in contiguous memory, and 3382 * possibly the PIM REGISTER header. 3383 */ 3384 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3385 (m = m_pullup(m, minlen)) == NULL) { 3386 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3387 return; 3388 } 3389 /* m_pullup() may have given us a new mbuf so reset ip. */ 3390 ip = mtod(m, struct ip *); 3391 ip_tos = ip->ip_tos; 3392 3393 /* adjust mbuf to point to the PIM header */ 3394 m->m_data += iphlen; 3395 m->m_len -= iphlen; 3396 pim = mtod(m, struct pim *); 3397 3398 /* 3399 * Validate checksum. If PIM REGISTER, exclude the data packet. 3400 * 3401 * XXX: some older PIMv2 implementations don't make this distinction, 3402 * so for compatibility reason perform the checksum over part of the 3403 * message, and if error, then over the whole message. 3404 */ 3405 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3406 /* do nothing, checksum okay */ 3407 } else if (in_cksum(m, datalen)) { 3408 pimstat.pims_rcv_badsum++; 3409 if (mrtdebug & DEBUG_PIM) 3410 log(LOG_DEBUG, "pim_input: invalid checksum"); 3411 m_freem(m); 3412 return; 3413 } 3414 3415 /* PIM version check */ 3416 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3417 pimstat.pims_rcv_badversion++; 3418 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3419 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3420 m_freem(m); 3421 return; 3422 } 3423 3424 /* restore mbuf back to the outer IP */ 3425 m->m_data -= iphlen; 3426 m->m_len += iphlen; 3427 3428 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3429 /* 3430 * Since this is a REGISTER, we'll make a copy of the register 3431 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3432 * routing daemon. 3433 */ 3434 int s; 3435 struct sockaddr_in dst = { 3436 .sin_len = sizeof(dst), 3437 .sin_family = AF_INET, 3438 }; 3439 struct mbuf *mcp; 3440 struct ip *encap_ip; 3441 u_int32_t *reghdr; 3442 struct ifnet *vifp; 3443 3444 s = splsoftnet(); 3445 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3446 splx(s); 3447 if (mrtdebug & DEBUG_PIM) 3448 log(LOG_DEBUG, 3449 "pim_input: register vif not set: %d\n", reg_vif_num); 3450 m_freem(m); 3451 return; 3452 } 3453 /* XXX need refcnt? */ 3454 vifp = viftable[reg_vif_num].v_ifp; 3455 splx(s); 3456 3457 /* 3458 * Validate length 3459 */ 3460 if (datalen < PIM_REG_MINLEN) { 3461 pimstat.pims_rcv_tooshort++; 3462 pimstat.pims_rcv_badregisters++; 3463 log(LOG_ERR, 3464 "pim_input: register packet size too small %d from %lx\n", 3465 datalen, (u_long)ip->ip_src.s_addr); 3466 m_freem(m); 3467 return; 3468 } 3469 3470 reghdr = (u_int32_t *)(pim + 1); 3471 encap_ip = (struct ip *)(reghdr + 1); 3472 3473 if (mrtdebug & DEBUG_PIM) { 3474 log(LOG_DEBUG, 3475 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3476 (u_long)ntohl(encap_ip->ip_src.s_addr), 3477 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3478 ntohs(encap_ip->ip_len)); 3479 } 3480 3481 /* verify the version number of the inner packet */ 3482 if (encap_ip->ip_v != IPVERSION) { 3483 pimstat.pims_rcv_badregisters++; 3484 if (mrtdebug & DEBUG_PIM) { 3485 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3486 "of the inner packet\n", encap_ip->ip_v); 3487 } 3488 m_freem(m); 3489 return; 3490 } 3491 3492 /* verify the inner packet is destined to a mcast group */ 3493 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3494 pimstat.pims_rcv_badregisters++; 3495 if (mrtdebug & DEBUG_PIM) 3496 log(LOG_DEBUG, 3497 "pim_input: inner packet of register is not " 3498 "multicast %lx\n", 3499 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3500 m_freem(m); 3501 return; 3502 } 3503 3504 /* If a NULL_REGISTER, pass it to the daemon */ 3505 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3506 goto pim_input_to_daemon; 3507 3508 /* 3509 * Copy the TOS from the outer IP header to the inner IP header. 3510 */ 3511 if (encap_ip->ip_tos != ip_tos) { 3512 /* Outer TOS -> inner TOS */ 3513 encap_ip->ip_tos = ip_tos; 3514 /* Recompute the inner header checksum. Sigh... */ 3515 3516 /* adjust mbuf to point to the inner IP header */ 3517 m->m_data += (iphlen + PIM_MINLEN); 3518 m->m_len -= (iphlen + PIM_MINLEN); 3519 3520 encap_ip->ip_sum = 0; 3521 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3522 3523 /* restore mbuf to point back to the outer IP header */ 3524 m->m_data -= (iphlen + PIM_MINLEN); 3525 m->m_len += (iphlen + PIM_MINLEN); 3526 } 3527 3528 /* 3529 * Decapsulate the inner IP packet and loopback to forward it 3530 * as a normal multicast packet. Also, make a copy of the 3531 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3532 * to pass to the daemon later, so it can take the appropriate 3533 * actions (e.g., send back PIM_REGISTER_STOP). 3534 * XXX: here m->m_data points to the outer IP header. 3535 */ 3536 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT); 3537 if (mcp == NULL) { 3538 log(LOG_ERR, 3539 "pim_input: pim register: could not copy register head\n"); 3540 m_freem(m); 3541 return; 3542 } 3543 3544 /* Keep statistics */ 3545 /* XXX: registers_bytes include only the encap. mcast pkt */ 3546 pimstat.pims_rcv_registers_msgs++; 3547 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3548 3549 /* 3550 * forward the inner ip packet; point m_data at the inner ip. 3551 */ 3552 m_adj(m, iphlen + PIM_MINLEN); 3553 3554 if (mrtdebug & DEBUG_PIM) { 3555 log(LOG_DEBUG, 3556 "pim_input: forwarding decapsulated register: " 3557 "src %lx, dst %lx, vif %d\n", 3558 (u_long)ntohl(encap_ip->ip_src.s_addr), 3559 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3560 reg_vif_num); 3561 } 3562 /* NB: vifp was collected above; can it change on us? */ 3563 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL); 3564 3565 /* prepare the register head to send to the mrouting daemon */ 3566 m = mcp; 3567 } 3568 3569 pim_input_to_daemon: 3570 /* 3571 * Pass the PIM message up to the daemon; if it is a Register message, 3572 * pass the 'head' only up to the daemon. This includes the 3573 * outer IP header, PIM header, PIM-Register header and the 3574 * inner IP header. 3575 * XXX: the outer IP header pkt size of a Register is not adjust to 3576 * reflect the fact that the inner multicast data is truncated. 3577 */ 3578 rip_input(m, iphlen, proto); 3579 3580 return; 3581 } 3582 #endif /* PIM */ 3583