1 /* $NetBSD: ip_mroute.c,v 1.128 2013/09/14 11:43:22 martin Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.128 2013/09/14 11:43:22 martin Exp $"); 97 98 #include "opt_inet.h" 99 #include "opt_ipsec.h" 100 #include "opt_pim.h" 101 102 #ifdef PIM 103 #define _PIM_VT 1 104 #endif 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/mbuf.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/protosw.h> 113 #include <sys/errno.h> 114 #include <sys/time.h> 115 #include <sys/kernel.h> 116 #include <sys/kmem.h> 117 #include <sys/ioctl.h> 118 #include <sys/syslog.h> 119 120 #include <net/if.h> 121 #include <net/route.h> 122 #include <net/raw_cb.h> 123 124 #include <netinet/in.h> 125 #include <netinet/in_var.h> 126 #include <netinet/in_systm.h> 127 #include <netinet/ip.h> 128 #include <netinet/ip_var.h> 129 #include <netinet/in_pcb.h> 130 #include <netinet/udp.h> 131 #include <netinet/igmp.h> 132 #include <netinet/igmp_var.h> 133 #include <netinet/ip_mroute.h> 134 #ifdef PIM 135 #include <netinet/pim.h> 136 #include <netinet/pim_var.h> 137 #endif 138 #include <netinet/ip_encap.h> 139 140 #ifdef IPSEC 141 #include <netipsec/ipsec.h> 142 #include <netipsec/key.h> 143 #endif 144 145 #define IP_MULTICASTOPTS 0 146 #define M_PULLUP(m, len) \ 147 do { \ 148 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 149 (m) = m_pullup((m), (len)); \ 150 } while (/*CONSTCOND*/ 0) 151 152 /* 153 * Globals. All but ip_mrouter and ip_mrtproto could be static, 154 * except for netstat or debugging purposes. 155 */ 156 struct socket *ip_mrouter = NULL; 157 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 158 159 #define NO_RTE_FOUND 0x1 160 #define RTE_FOUND 0x2 161 162 #define MFCHASH(a, g) \ 163 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 164 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 165 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 166 u_long mfchash; 167 168 u_char nexpire[MFCTBLSIZ]; 169 struct vif viftable[MAXVIFS]; 170 struct mrtstat mrtstat; 171 u_int mrtdebug = 0; /* debug level */ 172 #define DEBUG_MFC 0x02 173 #define DEBUG_FORWARD 0x04 174 #define DEBUG_EXPIRE 0x08 175 #define DEBUG_XMIT 0x10 176 #define DEBUG_PIM 0x20 177 178 #define VIFI_INVALID ((vifi_t) -1) 179 180 u_int tbfdebug = 0; /* tbf debug level */ 181 #ifdef RSVP_ISI 182 u_int rsvpdebug = 0; /* rsvp debug level */ 183 extern struct socket *ip_rsvpd; 184 extern int rsvp_on; 185 #endif /* RSVP_ISI */ 186 187 /* vif attachment using sys/netinet/ip_encap.c */ 188 static void vif_input(struct mbuf *, ...); 189 static int vif_encapcheck(struct mbuf *, int, int, void *); 190 191 static const struct protosw vif_protosw = 192 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, 193 vif_input, rip_output, 0, rip_ctloutput, 194 rip_usrreq, 195 0, 0, 0, 0, 196 }; 197 198 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 199 #define UPCALL_EXPIRE 6 /* number of timeouts */ 200 201 /* 202 * Define the token bucket filter structures 203 */ 204 205 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 206 207 static int get_sg_cnt(struct sioc_sg_req *); 208 static int get_vif_cnt(struct sioc_vif_req *); 209 static int ip_mrouter_init(struct socket *, int); 210 static int set_assert(int); 211 static int add_vif(struct vifctl *); 212 static int del_vif(vifi_t *); 213 static void update_mfc_params(struct mfc *, struct mfcctl2 *); 214 static void init_mfc_params(struct mfc *, struct mfcctl2 *); 215 static void expire_mfc(struct mfc *); 216 static int add_mfc(struct sockopt *); 217 #ifdef UPCALL_TIMING 218 static void collate(struct timeval *); 219 #endif 220 static int del_mfc(struct sockopt *); 221 static int set_api_config(struct sockopt *); /* chose API capabilities */ 222 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 223 static void expire_upcalls(void *); 224 #ifdef RSVP_ISI 225 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 226 #else 227 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); 228 #endif 229 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 230 static void encap_send(struct ip *, struct vif *, struct mbuf *); 231 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); 232 static void tbf_queue(struct vif *, struct mbuf *); 233 static void tbf_process_q(struct vif *); 234 static void tbf_reprocess_q(void *); 235 static int tbf_dq_sel(struct vif *, struct ip *); 236 static void tbf_send_packet(struct vif *, struct mbuf *); 237 static void tbf_update_tokens(struct vif *); 238 static int priority(struct vif *, struct ip *); 239 240 /* 241 * Bandwidth monitoring 242 */ 243 static void free_bw_list(struct bw_meter *); 244 static int add_bw_upcall(struct bw_upcall *); 245 static int del_bw_upcall(struct bw_upcall *); 246 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); 247 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 248 static void bw_upcalls_send(void); 249 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 250 static void unschedule_bw_meter(struct bw_meter *); 251 static void bw_meter_process(void); 252 static void expire_bw_upcalls_send(void *); 253 static void expire_bw_meter_process(void *); 254 255 #ifdef PIM 256 static int pim_register_send(struct ip *, struct vif *, 257 struct mbuf *, struct mfc *); 258 static int pim_register_send_rp(struct ip *, struct vif *, 259 struct mbuf *, struct mfc *); 260 static int pim_register_send_upcall(struct ip *, struct vif *, 261 struct mbuf *, struct mfc *); 262 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 263 #endif 264 265 /* 266 * 'Interfaces' associated with decapsulator (so we can tell 267 * packets that went through it from ones that get reflected 268 * by a broken gateway). These interfaces are never linked into 269 * the system ifnet list & no routes point to them. I.e., packets 270 * can't be sent this way. They only exist as a placeholder for 271 * multicast source verification. 272 */ 273 #if 0 274 struct ifnet multicast_decap_if[MAXVIFS]; 275 #endif 276 277 #define ENCAP_TTL 64 278 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 279 280 /* prototype IP hdr for encapsulated packets */ 281 struct ip multicast_encap_iphdr = { 282 .ip_hl = sizeof(struct ip) >> 2, 283 .ip_v = IPVERSION, 284 .ip_len = sizeof(struct ip), 285 .ip_ttl = ENCAP_TTL, 286 .ip_p = ENCAP_PROTO, 287 }; 288 289 /* 290 * Bandwidth meter variables and constants 291 */ 292 293 /* 294 * Pending timeouts are stored in a hash table, the key being the 295 * expiration time. Periodically, the entries are analysed and processed. 296 */ 297 #define BW_METER_BUCKETS 1024 298 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 299 struct callout bw_meter_ch; 300 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 301 302 /* 303 * Pending upcalls are stored in a vector which is flushed when 304 * full, or periodically 305 */ 306 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 307 static u_int bw_upcalls_n; /* # of pending upcalls */ 308 struct callout bw_upcalls_ch; 309 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 310 311 #ifdef PIM 312 struct pimstat pimstat; 313 314 /* 315 * Note: the PIM Register encapsulation adds the following in front of a 316 * data packet: 317 * 318 * struct pim_encap_hdr { 319 * struct ip ip; 320 * struct pim_encap_pimhdr pim; 321 * } 322 * 323 */ 324 325 struct pim_encap_pimhdr { 326 struct pim pim; 327 uint32_t flags; 328 }; 329 330 static struct ip pim_encap_iphdr = { 331 .ip_v = IPVERSION, 332 .ip_hl = sizeof(struct ip) >> 2, 333 .ip_len = sizeof(struct ip), 334 .ip_ttl = ENCAP_TTL, 335 .ip_p = IPPROTO_PIM, 336 }; 337 338 static struct pim_encap_pimhdr pim_encap_pimhdr = { 339 { 340 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 341 0, /* reserved */ 342 0, /* checksum */ 343 }, 344 0 /* flags */ 345 }; 346 347 static struct ifnet multicast_register_if; 348 static vifi_t reg_vif_num = VIFI_INVALID; 349 #endif /* PIM */ 350 351 352 /* 353 * Private variables. 354 */ 355 static vifi_t numvifs = 0; 356 357 static struct callout expire_upcalls_ch; 358 359 /* 360 * whether or not special PIM assert processing is enabled. 361 */ 362 static int pim_assert; 363 /* 364 * Rate limit for assert notification messages, in usec 365 */ 366 #define ASSERT_MSG_TIME 3000000 367 368 /* 369 * Kernel multicast routing API capabilities and setup. 370 * If more API capabilities are added to the kernel, they should be 371 * recorded in `mrt_api_support'. 372 */ 373 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 374 MRT_MFC_FLAGS_BORDER_VIF | 375 MRT_MFC_RP | 376 MRT_MFC_BW_UPCALL); 377 static u_int32_t mrt_api_config = 0; 378 379 /* 380 * Find a route for a given origin IP address and Multicast group address 381 * Type of service parameter to be added in the future!!! 382 * Statistics are updated by the caller if needed 383 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 384 */ 385 static struct mfc * 386 mfc_find(struct in_addr *o, struct in_addr *g) 387 { 388 struct mfc *rt; 389 390 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 391 if (in_hosteq(rt->mfc_origin, *o) && 392 in_hosteq(rt->mfc_mcastgrp, *g) && 393 (rt->mfc_stall == NULL)) 394 break; 395 } 396 397 return (rt); 398 } 399 400 /* 401 * Macros to compute elapsed time efficiently 402 * Borrowed from Van Jacobson's scheduling code 403 */ 404 #define TV_DELTA(a, b, delta) do { \ 405 int xxs; \ 406 delta = (a).tv_usec - (b).tv_usec; \ 407 xxs = (a).tv_sec - (b).tv_sec; \ 408 switch (xxs) { \ 409 case 2: \ 410 delta += 1000000; \ 411 /* fall through */ \ 412 case 1: \ 413 delta += 1000000; \ 414 /* fall through */ \ 415 case 0: \ 416 break; \ 417 default: \ 418 delta += (1000000 * xxs); \ 419 break; \ 420 } \ 421 } while (/*CONSTCOND*/ 0) 422 423 #ifdef UPCALL_TIMING 424 u_int32_t upcall_data[51]; 425 #endif /* UPCALL_TIMING */ 426 427 /* 428 * Handle MRT setsockopt commands to modify the multicast routing tables. 429 */ 430 int 431 ip_mrouter_set(struct socket *so, struct sockopt *sopt) 432 { 433 int error; 434 int optval; 435 struct vifctl vifc; 436 vifi_t vifi; 437 struct bw_upcall bwuc; 438 439 if (sopt->sopt_name != MRT_INIT && so != ip_mrouter) 440 error = ENOPROTOOPT; 441 else { 442 switch (sopt->sopt_name) { 443 case MRT_INIT: 444 error = sockopt_getint(sopt, &optval); 445 if (error) 446 break; 447 448 error = ip_mrouter_init(so, optval); 449 break; 450 case MRT_DONE: 451 error = ip_mrouter_done(); 452 break; 453 case MRT_ADD_VIF: 454 error = sockopt_get(sopt, &vifc, sizeof(vifc)); 455 if (error) 456 break; 457 error = add_vif(&vifc); 458 break; 459 case MRT_DEL_VIF: 460 error = sockopt_get(sopt, &vifi, sizeof(vifi)); 461 if (error) 462 break; 463 error = del_vif(&vifi); 464 break; 465 case MRT_ADD_MFC: 466 error = add_mfc(sopt); 467 break; 468 case MRT_DEL_MFC: 469 error = del_mfc(sopt); 470 break; 471 case MRT_ASSERT: 472 error = sockopt_getint(sopt, &optval); 473 if (error) 474 break; 475 error = set_assert(optval); 476 break; 477 case MRT_API_CONFIG: 478 error = set_api_config(sopt); 479 break; 480 case MRT_ADD_BW_UPCALL: 481 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 482 if (error) 483 break; 484 error = add_bw_upcall(&bwuc); 485 break; 486 case MRT_DEL_BW_UPCALL: 487 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 488 if (error) 489 break; 490 error = del_bw_upcall(&bwuc); 491 break; 492 default: 493 error = ENOPROTOOPT; 494 break; 495 } 496 } 497 return (error); 498 } 499 500 /* 501 * Handle MRT getsockopt commands 502 */ 503 int 504 ip_mrouter_get(struct socket *so, struct sockopt *sopt) 505 { 506 int error; 507 508 if (so != ip_mrouter) 509 error = ENOPROTOOPT; 510 else { 511 switch (sopt->sopt_name) { 512 case MRT_VERSION: 513 error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */ 514 break; 515 case MRT_ASSERT: 516 error = sockopt_setint(sopt, pim_assert); 517 break; 518 case MRT_API_SUPPORT: 519 error = sockopt_set(sopt, &mrt_api_support, 520 sizeof(mrt_api_support)); 521 break; 522 case MRT_API_CONFIG: 523 error = sockopt_set(sopt, &mrt_api_config, 524 sizeof(mrt_api_config)); 525 break; 526 default: 527 error = ENOPROTOOPT; 528 break; 529 } 530 } 531 return (error); 532 } 533 534 /* 535 * Handle ioctl commands to obtain information from the cache 536 */ 537 int 538 mrt_ioctl(struct socket *so, u_long cmd, void *data) 539 { 540 int error; 541 542 if (so != ip_mrouter) 543 error = EINVAL; 544 else 545 switch (cmd) { 546 case SIOCGETVIFCNT: 547 error = get_vif_cnt((struct sioc_vif_req *)data); 548 break; 549 case SIOCGETSGCNT: 550 error = get_sg_cnt((struct sioc_sg_req *)data); 551 break; 552 default: 553 error = EINVAL; 554 break; 555 } 556 557 return (error); 558 } 559 560 /* 561 * returns the packet, byte, rpf-failure count for the source group provided 562 */ 563 static int 564 get_sg_cnt(struct sioc_sg_req *req) 565 { 566 int s; 567 struct mfc *rt; 568 569 s = splsoftnet(); 570 rt = mfc_find(&req->src, &req->grp); 571 if (rt == NULL) { 572 splx(s); 573 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 574 return (EADDRNOTAVAIL); 575 } 576 req->pktcnt = rt->mfc_pkt_cnt; 577 req->bytecnt = rt->mfc_byte_cnt; 578 req->wrong_if = rt->mfc_wrong_if; 579 splx(s); 580 581 return (0); 582 } 583 584 /* 585 * returns the input and output packet and byte counts on the vif provided 586 */ 587 static int 588 get_vif_cnt(struct sioc_vif_req *req) 589 { 590 vifi_t vifi = req->vifi; 591 592 if (vifi >= numvifs) 593 return (EINVAL); 594 595 req->icount = viftable[vifi].v_pkt_in; 596 req->ocount = viftable[vifi].v_pkt_out; 597 req->ibytes = viftable[vifi].v_bytes_in; 598 req->obytes = viftable[vifi].v_bytes_out; 599 600 return (0); 601 } 602 603 /* 604 * Enable multicast routing 605 */ 606 static int 607 ip_mrouter_init(struct socket *so, int v) 608 { 609 if (mrtdebug) 610 log(LOG_DEBUG, 611 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 612 so->so_type, so->so_proto->pr_protocol); 613 614 if (so->so_type != SOCK_RAW || 615 so->so_proto->pr_protocol != IPPROTO_IGMP) 616 return (EOPNOTSUPP); 617 618 if (v != 1) 619 return (EINVAL); 620 621 if (ip_mrouter != NULL) 622 return (EADDRINUSE); 623 624 ip_mrouter = so; 625 626 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash); 627 memset((void *)nexpire, 0, sizeof(nexpire)); 628 629 pim_assert = 0; 630 631 callout_init(&expire_upcalls_ch, 0); 632 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 633 expire_upcalls, NULL); 634 635 callout_init(&bw_upcalls_ch, 0); 636 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 637 expire_bw_upcalls_send, NULL); 638 639 callout_init(&bw_meter_ch, 0); 640 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 641 expire_bw_meter_process, NULL); 642 643 if (mrtdebug) 644 log(LOG_DEBUG, "ip_mrouter_init\n"); 645 646 return (0); 647 } 648 649 /* 650 * Disable multicast routing 651 */ 652 int 653 ip_mrouter_done(void) 654 { 655 vifi_t vifi; 656 struct vif *vifp; 657 int i; 658 int s; 659 660 s = splsoftnet(); 661 662 /* Clear out all the vifs currently in use. */ 663 for (vifi = 0; vifi < numvifs; vifi++) { 664 vifp = &viftable[vifi]; 665 if (!in_nullhost(vifp->v_lcl_addr)) 666 reset_vif(vifp); 667 } 668 669 numvifs = 0; 670 pim_assert = 0; 671 mrt_api_config = 0; 672 673 callout_stop(&expire_upcalls_ch); 674 callout_stop(&bw_upcalls_ch); 675 callout_stop(&bw_meter_ch); 676 677 /* 678 * Free all multicast forwarding cache entries. 679 */ 680 for (i = 0; i < MFCTBLSIZ; i++) { 681 struct mfc *rt, *nrt; 682 683 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 684 nrt = LIST_NEXT(rt, mfc_hash); 685 686 expire_mfc(rt); 687 } 688 } 689 690 memset((void *)nexpire, 0, sizeof(nexpire)); 691 hashdone(mfchashtbl, HASH_LIST, mfchash); 692 mfchashtbl = NULL; 693 694 bw_upcalls_n = 0; 695 memset(bw_meter_timers, 0, sizeof(bw_meter_timers)); 696 697 /* Reset de-encapsulation cache. */ 698 699 ip_mrouter = NULL; 700 701 splx(s); 702 703 if (mrtdebug) 704 log(LOG_DEBUG, "ip_mrouter_done\n"); 705 706 return (0); 707 } 708 709 void 710 ip_mrouter_detach(struct ifnet *ifp) 711 { 712 int vifi, i; 713 struct vif *vifp; 714 struct mfc *rt; 715 struct rtdetq *rte; 716 717 /* XXX not sure about side effect to userland routing daemon */ 718 for (vifi = 0; vifi < numvifs; vifi++) { 719 vifp = &viftable[vifi]; 720 if (vifp->v_ifp == ifp) 721 reset_vif(vifp); 722 } 723 for (i = 0; i < MFCTBLSIZ; i++) { 724 if (nexpire[i] == 0) 725 continue; 726 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 727 for (rte = rt->mfc_stall; rte; rte = rte->next) { 728 if (rte->ifp == ifp) 729 rte->ifp = NULL; 730 } 731 } 732 } 733 } 734 735 /* 736 * Set PIM assert processing global 737 */ 738 static int 739 set_assert(int i) 740 { 741 pim_assert = !!i; 742 return (0); 743 } 744 745 /* 746 * Configure API capabilities 747 */ 748 static int 749 set_api_config(struct sockopt *sopt) 750 { 751 u_int32_t apival; 752 int i, error; 753 754 /* 755 * We can set the API capabilities only if it is the first operation 756 * after MRT_INIT. I.e.: 757 * - there are no vifs installed 758 * - pim_assert is not enabled 759 * - the MFC table is empty 760 */ 761 error = sockopt_get(sopt, &apival, sizeof(apival)); 762 if (error) 763 return (error); 764 if (numvifs > 0) 765 return (EPERM); 766 if (pim_assert) 767 return (EPERM); 768 for (i = 0; i < MFCTBLSIZ; i++) { 769 if (LIST_FIRST(&mfchashtbl[i]) != NULL) 770 return (EPERM); 771 } 772 773 mrt_api_config = apival & mrt_api_support; 774 return (0); 775 } 776 777 /* 778 * Add a vif to the vif table 779 */ 780 static int 781 add_vif(struct vifctl *vifcp) 782 { 783 struct vif *vifp; 784 struct ifaddr *ifa; 785 struct ifnet *ifp; 786 int error, s; 787 struct sockaddr_in sin; 788 789 if (vifcp->vifc_vifi >= MAXVIFS) 790 return (EINVAL); 791 if (in_nullhost(vifcp->vifc_lcl_addr)) 792 return (EADDRNOTAVAIL); 793 794 vifp = &viftable[vifcp->vifc_vifi]; 795 if (!in_nullhost(vifp->v_lcl_addr)) 796 return (EADDRINUSE); 797 798 /* Find the interface with an address in AF_INET family. */ 799 #ifdef PIM 800 if (vifcp->vifc_flags & VIFF_REGISTER) { 801 /* 802 * XXX: Because VIFF_REGISTER does not really need a valid 803 * local interface (e.g. it could be 127.0.0.2), we don't 804 * check its address. 805 */ 806 ifp = NULL; 807 } else 808 #endif 809 { 810 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0); 811 ifa = ifa_ifwithaddr(sintosa(&sin)); 812 if (ifa == NULL) 813 return (EADDRNOTAVAIL); 814 ifp = ifa->ifa_ifp; 815 } 816 817 if (vifcp->vifc_flags & VIFF_TUNNEL) { 818 if (vifcp->vifc_flags & VIFF_SRCRT) { 819 log(LOG_ERR, "source routed tunnels not supported\n"); 820 return (EOPNOTSUPP); 821 } 822 823 /* attach this vif to decapsulator dispatch table */ 824 /* 825 * XXX Use addresses in registration so that matching 826 * can be done with radix tree in decapsulator. But, 827 * we need to check inner header for multicast, so 828 * this requires both radix tree lookup and then a 829 * function to check, and this is not supported yet. 830 */ 831 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 832 vif_encapcheck, &vif_protosw, vifp); 833 if (!vifp->v_encap_cookie) 834 return (EINVAL); 835 836 /* Create a fake encapsulation interface. */ 837 ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO); 838 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 839 "mdecap%d", vifcp->vifc_vifi); 840 841 /* Prepare cached route entry. */ 842 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 843 #ifdef PIM 844 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 845 ifp = &multicast_register_if; 846 if (mrtdebug) 847 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 848 (void *)ifp); 849 if (reg_vif_num == VIFI_INVALID) { 850 memset(ifp, 0, sizeof(*ifp)); 851 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 852 "register_vif"); 853 ifp->if_flags = IFF_LOOPBACK; 854 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 855 reg_vif_num = vifcp->vifc_vifi; 856 } 857 #endif 858 } else { 859 /* Make sure the interface supports multicast. */ 860 if ((ifp->if_flags & IFF_MULTICAST) == 0) 861 return (EOPNOTSUPP); 862 863 /* Enable promiscuous reception of all IP multicasts. */ 864 sockaddr_in_init(&sin, &zeroin_addr, 0); 865 error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)); 866 if (error) 867 return (error); 868 } 869 870 s = splsoftnet(); 871 872 /* Define parameters for the tbf structure. */ 873 vifp->tbf_q = NULL; 874 vifp->tbf_t = &vifp->tbf_q; 875 microtime(&vifp->tbf_last_pkt_t); 876 vifp->tbf_n_tok = 0; 877 vifp->tbf_q_len = 0; 878 vifp->tbf_max_q_len = MAXQSIZE; 879 880 vifp->v_flags = vifcp->vifc_flags; 881 vifp->v_threshold = vifcp->vifc_threshold; 882 /* scaling up here allows division by 1024 in critical code */ 883 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 884 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 885 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 886 vifp->v_ifp = ifp; 887 /* Initialize per vif pkt counters. */ 888 vifp->v_pkt_in = 0; 889 vifp->v_pkt_out = 0; 890 vifp->v_bytes_in = 0; 891 vifp->v_bytes_out = 0; 892 893 callout_init(&vifp->v_repq_ch, 0); 894 895 #ifdef RSVP_ISI 896 vifp->v_rsvp_on = 0; 897 vifp->v_rsvpd = NULL; 898 #endif /* RSVP_ISI */ 899 900 splx(s); 901 902 /* Adjust numvifs up if the vifi is higher than numvifs. */ 903 if (numvifs <= vifcp->vifc_vifi) 904 numvifs = vifcp->vifc_vifi + 1; 905 906 if (mrtdebug) 907 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 908 vifcp->vifc_vifi, 909 ntohl(vifcp->vifc_lcl_addr.s_addr), 910 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 911 ntohl(vifcp->vifc_rmt_addr.s_addr), 912 vifcp->vifc_threshold, 913 vifcp->vifc_rate_limit); 914 915 return (0); 916 } 917 918 void 919 reset_vif(struct vif *vifp) 920 { 921 struct mbuf *m, *n; 922 struct ifnet *ifp; 923 struct sockaddr_in sin; 924 925 callout_stop(&vifp->v_repq_ch); 926 927 /* detach this vif from decapsulator dispatch table */ 928 encap_detach(vifp->v_encap_cookie); 929 vifp->v_encap_cookie = NULL; 930 931 /* 932 * Free packets queued at the interface 933 */ 934 for (m = vifp->tbf_q; m != NULL; m = n) { 935 n = m->m_nextpkt; 936 m_freem(m); 937 } 938 939 if (vifp->v_flags & VIFF_TUNNEL) 940 free(vifp->v_ifp, M_MRTABLE); 941 else if (vifp->v_flags & VIFF_REGISTER) { 942 #ifdef PIM 943 reg_vif_num = VIFI_INVALID; 944 #endif 945 } else { 946 sockaddr_in_init(&sin, &zeroin_addr, 0); 947 ifp = vifp->v_ifp; 948 if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin)); 949 } 950 memset((void *)vifp, 0, sizeof(*vifp)); 951 } 952 953 /* 954 * Delete a vif from the vif table 955 */ 956 static int 957 del_vif(vifi_t *vifip) 958 { 959 struct vif *vifp; 960 vifi_t vifi; 961 int s; 962 963 if (*vifip >= numvifs) 964 return (EINVAL); 965 966 vifp = &viftable[*vifip]; 967 if (in_nullhost(vifp->v_lcl_addr)) 968 return (EADDRNOTAVAIL); 969 970 s = splsoftnet(); 971 972 reset_vif(vifp); 973 974 /* Adjust numvifs down */ 975 for (vifi = numvifs; vifi > 0; vifi--) 976 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 977 break; 978 numvifs = vifi; 979 980 splx(s); 981 982 if (mrtdebug) 983 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 984 985 return (0); 986 } 987 988 /* 989 * update an mfc entry without resetting counters and S,G addresses. 990 */ 991 static void 992 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 993 { 994 int i; 995 996 rt->mfc_parent = mfccp->mfcc_parent; 997 for (i = 0; i < numvifs; i++) { 998 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 999 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1000 MRT_MFC_FLAGS_ALL; 1001 } 1002 /* set the RP address */ 1003 if (mrt_api_config & MRT_MFC_RP) 1004 rt->mfc_rp = mfccp->mfcc_rp; 1005 else 1006 rt->mfc_rp = zeroin_addr; 1007 } 1008 1009 /* 1010 * fully initialize an mfc entry from the parameter. 1011 */ 1012 static void 1013 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1014 { 1015 rt->mfc_origin = mfccp->mfcc_origin; 1016 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1017 1018 update_mfc_params(rt, mfccp); 1019 1020 /* initialize pkt counters per src-grp */ 1021 rt->mfc_pkt_cnt = 0; 1022 rt->mfc_byte_cnt = 0; 1023 rt->mfc_wrong_if = 0; 1024 timerclear(&rt->mfc_last_assert); 1025 } 1026 1027 static void 1028 expire_mfc(struct mfc *rt) 1029 { 1030 struct rtdetq *rte, *nrte; 1031 1032 free_bw_list(rt->mfc_bw_meter); 1033 1034 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1035 nrte = rte->next; 1036 m_freem(rte->m); 1037 free(rte, M_MRTABLE); 1038 } 1039 1040 LIST_REMOVE(rt, mfc_hash); 1041 free(rt, M_MRTABLE); 1042 } 1043 1044 /* 1045 * Add an mfc entry 1046 */ 1047 static int 1048 add_mfc(struct sockopt *sopt) 1049 { 1050 struct mfcctl2 mfcctl2; 1051 struct mfcctl2 *mfccp; 1052 struct mfc *rt; 1053 u_int32_t hash = 0; 1054 struct rtdetq *rte, *nrte; 1055 u_short nstl; 1056 int s; 1057 int error; 1058 1059 /* 1060 * select data size depending on API version. 1061 */ 1062 mfccp = &mfcctl2; 1063 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1064 1065 if (mrt_api_config & MRT_API_FLAGS_ALL) 1066 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1067 else 1068 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1069 1070 if (error) 1071 return (error); 1072 1073 s = splsoftnet(); 1074 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1075 1076 /* If an entry already exists, just update the fields */ 1077 if (rt) { 1078 if (mrtdebug & DEBUG_MFC) 1079 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1080 ntohl(mfccp->mfcc_origin.s_addr), 1081 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1082 mfccp->mfcc_parent); 1083 1084 update_mfc_params(rt, mfccp); 1085 1086 splx(s); 1087 return (0); 1088 } 1089 1090 /* 1091 * Find the entry for which the upcall was made and update 1092 */ 1093 nstl = 0; 1094 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1095 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1096 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1097 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1098 rt->mfc_stall != NULL) { 1099 if (nstl++) 1100 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1101 "multiple kernel entries", 1102 ntohl(mfccp->mfcc_origin.s_addr), 1103 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1104 mfccp->mfcc_parent, rt->mfc_stall); 1105 1106 if (mrtdebug & DEBUG_MFC) 1107 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1108 ntohl(mfccp->mfcc_origin.s_addr), 1109 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1110 mfccp->mfcc_parent, rt->mfc_stall); 1111 1112 rte = rt->mfc_stall; 1113 init_mfc_params(rt, mfccp); 1114 rt->mfc_stall = NULL; 1115 1116 rt->mfc_expire = 0; /* Don't clean this guy up */ 1117 nexpire[hash]--; 1118 1119 /* free packets Qed at the end of this entry */ 1120 for (; rte != NULL; rte = nrte) { 1121 nrte = rte->next; 1122 if (rte->ifp) { 1123 #ifdef RSVP_ISI 1124 ip_mdq(rte->m, rte->ifp, rt, -1); 1125 #else 1126 ip_mdq(rte->m, rte->ifp, rt); 1127 #endif /* RSVP_ISI */ 1128 } 1129 m_freem(rte->m); 1130 #ifdef UPCALL_TIMING 1131 collate(&rte->t); 1132 #endif /* UPCALL_TIMING */ 1133 free(rte, M_MRTABLE); 1134 } 1135 } 1136 } 1137 1138 /* 1139 * It is possible that an entry is being inserted without an upcall 1140 */ 1141 if (nstl == 0) { 1142 /* 1143 * No mfc; make a new one 1144 */ 1145 if (mrtdebug & DEBUG_MFC) 1146 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1147 ntohl(mfccp->mfcc_origin.s_addr), 1148 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1149 mfccp->mfcc_parent); 1150 1151 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1152 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1153 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1154 init_mfc_params(rt, mfccp); 1155 if (rt->mfc_expire) 1156 nexpire[hash]--; 1157 rt->mfc_expire = 0; 1158 break; /* XXX */ 1159 } 1160 } 1161 if (rt == NULL) { /* no upcall, so make a new entry */ 1162 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1163 M_NOWAIT); 1164 if (rt == NULL) { 1165 splx(s); 1166 return (ENOBUFS); 1167 } 1168 1169 init_mfc_params(rt, mfccp); 1170 rt->mfc_expire = 0; 1171 rt->mfc_stall = NULL; 1172 rt->mfc_bw_meter = NULL; 1173 1174 /* insert new entry at head of hash chain */ 1175 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1176 } 1177 } 1178 1179 splx(s); 1180 return (0); 1181 } 1182 1183 #ifdef UPCALL_TIMING 1184 /* 1185 * collect delay statistics on the upcalls 1186 */ 1187 static void 1188 collate(struct timeval *t) 1189 { 1190 u_int32_t d; 1191 struct timeval tp; 1192 u_int32_t delta; 1193 1194 microtime(&tp); 1195 1196 if (timercmp(t, &tp, <)) { 1197 TV_DELTA(tp, *t, delta); 1198 1199 d = delta >> 10; 1200 if (d > 50) 1201 d = 50; 1202 1203 ++upcall_data[d]; 1204 } 1205 } 1206 #endif /* UPCALL_TIMING */ 1207 1208 /* 1209 * Delete an mfc entry 1210 */ 1211 static int 1212 del_mfc(struct sockopt *sopt) 1213 { 1214 struct mfcctl2 mfcctl2; 1215 struct mfcctl2 *mfccp; 1216 struct mfc *rt; 1217 int s; 1218 int error; 1219 1220 /* 1221 * XXX: for deleting MFC entries the information in entries 1222 * of size "struct mfcctl" is sufficient. 1223 */ 1224 1225 mfccp = &mfcctl2; 1226 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1227 1228 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1229 if (error) { 1230 /* Try with the size of mfcctl2. */ 1231 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1232 if (error) 1233 return (error); 1234 } 1235 1236 if (mrtdebug & DEBUG_MFC) 1237 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1238 ntohl(mfccp->mfcc_origin.s_addr), 1239 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1240 1241 s = splsoftnet(); 1242 1243 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1244 if (rt == NULL) { 1245 splx(s); 1246 return (EADDRNOTAVAIL); 1247 } 1248 1249 /* 1250 * free the bw_meter entries 1251 */ 1252 free_bw_list(rt->mfc_bw_meter); 1253 rt->mfc_bw_meter = NULL; 1254 1255 LIST_REMOVE(rt, mfc_hash); 1256 free(rt, M_MRTABLE); 1257 1258 splx(s); 1259 return (0); 1260 } 1261 1262 static int 1263 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1264 { 1265 if (s) { 1266 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) { 1267 sorwakeup(s); 1268 return (0); 1269 } 1270 } 1271 m_freem(mm); 1272 return (-1); 1273 } 1274 1275 /* 1276 * IP multicast forwarding function. This function assumes that the packet 1277 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1278 * pointed to by "ifp", and the packet is to be relayed to other networks 1279 * that have members of the packet's destination IP multicast group. 1280 * 1281 * The packet is returned unscathed to the caller, unless it is 1282 * erroneous, in which case a non-zero return value tells the caller to 1283 * discard it. 1284 */ 1285 1286 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1287 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1288 1289 int 1290 #ifdef RSVP_ISI 1291 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) 1292 #else 1293 ip_mforward(struct mbuf *m, struct ifnet *ifp) 1294 #endif /* RSVP_ISI */ 1295 { 1296 struct ip *ip = mtod(m, struct ip *); 1297 struct mfc *rt; 1298 static int srctun = 0; 1299 struct mbuf *mm; 1300 struct sockaddr_in sin; 1301 int s; 1302 vifi_t vifi; 1303 1304 if (mrtdebug & DEBUG_FORWARD) 1305 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1306 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1307 1308 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1309 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1310 /* 1311 * Packet arrived via a physical interface or 1312 * an encapsulated tunnel or a register_vif. 1313 */ 1314 } else { 1315 /* 1316 * Packet arrived through a source-route tunnel. 1317 * Source-route tunnels are no longer supported. 1318 */ 1319 if ((srctun++ % 1000) == 0) 1320 log(LOG_ERR, 1321 "ip_mforward: received source-routed packet from %x\n", 1322 ntohl(ip->ip_src.s_addr)); 1323 1324 return (1); 1325 } 1326 1327 /* 1328 * Clear any in-bound checksum flags for this packet. 1329 */ 1330 m->m_pkthdr.csum_flags = 0; 1331 1332 #ifdef RSVP_ISI 1333 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1334 if (ip->ip_ttl < MAXTTL) 1335 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1336 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1337 struct vif *vifp = viftable + vifi; 1338 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", 1339 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1340 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1341 vifp->v_ifp->if_xname); 1342 } 1343 return (ip_mdq(m, ifp, NULL, vifi)); 1344 } 1345 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1346 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", 1347 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1348 } 1349 #endif /* RSVP_ISI */ 1350 1351 /* 1352 * Don't forward a packet with time-to-live of zero or one, 1353 * or a packet destined to a local-only group. 1354 */ 1355 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1356 return (0); 1357 1358 /* 1359 * Determine forwarding vifs from the forwarding cache table 1360 */ 1361 s = splsoftnet(); 1362 ++mrtstat.mrts_mfc_lookups; 1363 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1364 1365 /* Entry exists, so forward if necessary */ 1366 if (rt != NULL) { 1367 splx(s); 1368 #ifdef RSVP_ISI 1369 return (ip_mdq(m, ifp, rt, -1)); 1370 #else 1371 return (ip_mdq(m, ifp, rt)); 1372 #endif /* RSVP_ISI */ 1373 } else { 1374 /* 1375 * If we don't have a route for packet's origin, 1376 * Make a copy of the packet & send message to routing daemon 1377 */ 1378 1379 struct mbuf *mb0; 1380 struct rtdetq *rte; 1381 u_int32_t hash; 1382 int hlen = ip->ip_hl << 2; 1383 #ifdef UPCALL_TIMING 1384 struct timeval tp; 1385 1386 microtime(&tp); 1387 #endif /* UPCALL_TIMING */ 1388 1389 ++mrtstat.mrts_mfc_misses; 1390 1391 mrtstat.mrts_no_route++; 1392 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1393 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1394 ntohl(ip->ip_src.s_addr), 1395 ntohl(ip->ip_dst.s_addr)); 1396 1397 /* 1398 * Allocate mbufs early so that we don't do extra work if we are 1399 * just going to fail anyway. Make sure to pullup the header so 1400 * that other people can't step on it. 1401 */ 1402 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1403 M_NOWAIT); 1404 if (rte == NULL) { 1405 splx(s); 1406 return (ENOBUFS); 1407 } 1408 mb0 = m_copypacket(m, M_DONTWAIT); 1409 M_PULLUP(mb0, hlen); 1410 if (mb0 == NULL) { 1411 free(rte, M_MRTABLE); 1412 splx(s); 1413 return (ENOBUFS); 1414 } 1415 1416 /* is there an upcall waiting for this flow? */ 1417 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1418 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1419 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1420 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1421 rt->mfc_stall != NULL) 1422 break; 1423 } 1424 1425 if (rt == NULL) { 1426 int i; 1427 struct igmpmsg *im; 1428 1429 /* 1430 * Locate the vifi for the incoming interface for 1431 * this packet. 1432 * If none found, drop packet. 1433 */ 1434 for (vifi = 0; vifi < numvifs && 1435 viftable[vifi].v_ifp != ifp; vifi++) 1436 ; 1437 if (vifi >= numvifs) /* vif not found, drop packet */ 1438 goto non_fatal; 1439 1440 /* no upcall, so make a new entry */ 1441 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1442 M_NOWAIT); 1443 if (rt == NULL) 1444 goto fail; 1445 1446 /* 1447 * Make a copy of the header to send to the user level 1448 * process 1449 */ 1450 mm = m_copym(m, 0, hlen, M_DONTWAIT); 1451 M_PULLUP(mm, hlen); 1452 if (mm == NULL) 1453 goto fail1; 1454 1455 /* 1456 * Send message to routing daemon to install 1457 * a route into the kernel table 1458 */ 1459 1460 im = mtod(mm, struct igmpmsg *); 1461 im->im_msgtype = IGMPMSG_NOCACHE; 1462 im->im_mbz = 0; 1463 im->im_vif = vifi; 1464 1465 mrtstat.mrts_upcalls++; 1466 1467 sockaddr_in_init(&sin, &ip->ip_src, 0); 1468 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1469 log(LOG_WARNING, 1470 "ip_mforward: ip_mrouter socket queue full\n"); 1471 ++mrtstat.mrts_upq_sockfull; 1472 fail1: 1473 free(rt, M_MRTABLE); 1474 fail: 1475 free(rte, M_MRTABLE); 1476 m_freem(mb0); 1477 splx(s); 1478 return (ENOBUFS); 1479 } 1480 1481 /* insert new entry at head of hash chain */ 1482 rt->mfc_origin = ip->ip_src; 1483 rt->mfc_mcastgrp = ip->ip_dst; 1484 rt->mfc_pkt_cnt = 0; 1485 rt->mfc_byte_cnt = 0; 1486 rt->mfc_wrong_if = 0; 1487 rt->mfc_expire = UPCALL_EXPIRE; 1488 nexpire[hash]++; 1489 for (i = 0; i < numvifs; i++) { 1490 rt->mfc_ttls[i] = 0; 1491 rt->mfc_flags[i] = 0; 1492 } 1493 rt->mfc_parent = -1; 1494 1495 /* clear the RP address */ 1496 rt->mfc_rp = zeroin_addr; 1497 1498 rt->mfc_bw_meter = NULL; 1499 1500 /* link into table */ 1501 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1502 /* Add this entry to the end of the queue */ 1503 rt->mfc_stall = rte; 1504 } else { 1505 /* determine if q has overflowed */ 1506 struct rtdetq **p; 1507 int npkts = 0; 1508 1509 /* 1510 * XXX ouch! we need to append to the list, but we 1511 * only have a pointer to the front, so we have to 1512 * scan the entire list every time. 1513 */ 1514 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1515 if (++npkts > MAX_UPQ) { 1516 mrtstat.mrts_upq_ovflw++; 1517 non_fatal: 1518 free(rte, M_MRTABLE); 1519 m_freem(mb0); 1520 splx(s); 1521 return (0); 1522 } 1523 1524 /* Add this entry to the end of the queue */ 1525 *p = rte; 1526 } 1527 1528 rte->next = NULL; 1529 rte->m = mb0; 1530 rte->ifp = ifp; 1531 #ifdef UPCALL_TIMING 1532 rte->t = tp; 1533 #endif /* UPCALL_TIMING */ 1534 1535 splx(s); 1536 1537 return (0); 1538 } 1539 } 1540 1541 1542 /*ARGSUSED*/ 1543 static void 1544 expire_upcalls(void *v) 1545 { 1546 int i; 1547 int s; 1548 1549 s = splsoftnet(); 1550 1551 for (i = 0; i < MFCTBLSIZ; i++) { 1552 struct mfc *rt, *nrt; 1553 1554 if (nexpire[i] == 0) 1555 continue; 1556 1557 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1558 nrt = LIST_NEXT(rt, mfc_hash); 1559 1560 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1561 continue; 1562 nexpire[i]--; 1563 1564 /* 1565 * free the bw_meter entries 1566 */ 1567 while (rt->mfc_bw_meter != NULL) { 1568 struct bw_meter *x = rt->mfc_bw_meter; 1569 1570 rt->mfc_bw_meter = x->bm_mfc_next; 1571 kmem_free(x, sizeof(*x)); 1572 } 1573 1574 ++mrtstat.mrts_cache_cleanups; 1575 if (mrtdebug & DEBUG_EXPIRE) 1576 log(LOG_DEBUG, 1577 "expire_upcalls: expiring (%x %x)\n", 1578 ntohl(rt->mfc_origin.s_addr), 1579 ntohl(rt->mfc_mcastgrp.s_addr)); 1580 1581 expire_mfc(rt); 1582 } 1583 } 1584 1585 splx(s); 1586 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1587 expire_upcalls, NULL); 1588 } 1589 1590 /* 1591 * Packet forwarding routine once entry in the cache is made 1592 */ 1593 static int 1594 #ifdef RSVP_ISI 1595 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1596 #else 1597 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) 1598 #endif /* RSVP_ISI */ 1599 { 1600 struct ip *ip = mtod(m, struct ip *); 1601 vifi_t vifi; 1602 struct vif *vifp; 1603 struct sockaddr_in sin; 1604 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1605 1606 /* 1607 * Macro to send packet on vif. Since RSVP packets don't get counted on 1608 * input, they shouldn't get counted on output, so statistics keeping is 1609 * separate. 1610 */ 1611 #define MC_SEND(ip, vifp, m) do { \ 1612 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1613 encap_send((ip), (vifp), (m)); \ 1614 else \ 1615 phyint_send((ip), (vifp), (m)); \ 1616 } while (/*CONSTCOND*/ 0) 1617 1618 #ifdef RSVP_ISI 1619 /* 1620 * If xmt_vif is not -1, send on only the requested vif. 1621 * 1622 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1623 */ 1624 if (xmt_vif < numvifs) { 1625 #ifdef PIM 1626 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1627 pim_register_send(ip, viftable + xmt_vif, m, rt); 1628 else 1629 #endif 1630 MC_SEND(ip, viftable + xmt_vif, m); 1631 return (1); 1632 } 1633 #endif /* RSVP_ISI */ 1634 1635 /* 1636 * Don't forward if it didn't arrive from the parent vif for its origin. 1637 */ 1638 vifi = rt->mfc_parent; 1639 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1640 /* came in the wrong interface */ 1641 if (mrtdebug & DEBUG_FORWARD) 1642 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1643 ifp, vifi, 1644 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1645 ++mrtstat.mrts_wrong_if; 1646 ++rt->mfc_wrong_if; 1647 /* 1648 * If we are doing PIM assert processing, send a message 1649 * to the routing daemon. 1650 * 1651 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1652 * can complete the SPT switch, regardless of the type 1653 * of the iif (broadcast media, GRE tunnel, etc). 1654 */ 1655 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1656 struct timeval now; 1657 u_int32_t delta; 1658 1659 #ifdef PIM 1660 if (ifp == &multicast_register_if) 1661 pimstat.pims_rcv_registers_wrongiif++; 1662 #endif 1663 1664 /* Get vifi for the incoming packet */ 1665 for (vifi = 0; 1666 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1667 vifi++) 1668 ; 1669 if (vifi >= numvifs) { 1670 /* The iif is not found: ignore the packet. */ 1671 return (0); 1672 } 1673 1674 if (rt->mfc_flags[vifi] & 1675 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1676 /* WRONGVIF disabled: ignore the packet */ 1677 return (0); 1678 } 1679 1680 microtime(&now); 1681 1682 TV_DELTA(rt->mfc_last_assert, now, delta); 1683 1684 if (delta > ASSERT_MSG_TIME) { 1685 struct igmpmsg *im; 1686 int hlen = ip->ip_hl << 2; 1687 struct mbuf *mm = 1688 m_copym(m, 0, hlen, M_DONTWAIT); 1689 1690 M_PULLUP(mm, hlen); 1691 if (mm == NULL) 1692 return (ENOBUFS); 1693 1694 rt->mfc_last_assert = now; 1695 1696 im = mtod(mm, struct igmpmsg *); 1697 im->im_msgtype = IGMPMSG_WRONGVIF; 1698 im->im_mbz = 0; 1699 im->im_vif = vifi; 1700 1701 mrtstat.mrts_upcalls++; 1702 1703 sockaddr_in_init(&sin, &im->im_src, 0); 1704 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1705 log(LOG_WARNING, 1706 "ip_mforward: ip_mrouter socket queue full\n"); 1707 ++mrtstat.mrts_upq_sockfull; 1708 return (ENOBUFS); 1709 } 1710 } 1711 } 1712 return (0); 1713 } 1714 1715 /* If I sourced this packet, it counts as output, else it was input. */ 1716 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1717 viftable[vifi].v_pkt_out++; 1718 viftable[vifi].v_bytes_out += plen; 1719 } else { 1720 viftable[vifi].v_pkt_in++; 1721 viftable[vifi].v_bytes_in += plen; 1722 } 1723 rt->mfc_pkt_cnt++; 1724 rt->mfc_byte_cnt += plen; 1725 1726 /* 1727 * For each vif, decide if a copy of the packet should be forwarded. 1728 * Forward if: 1729 * - the ttl exceeds the vif's threshold 1730 * - there are group members downstream on interface 1731 */ 1732 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1733 if ((rt->mfc_ttls[vifi] > 0) && 1734 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1735 vifp->v_pkt_out++; 1736 vifp->v_bytes_out += plen; 1737 #ifdef PIM 1738 if (vifp->v_flags & VIFF_REGISTER) 1739 pim_register_send(ip, vifp, m, rt); 1740 else 1741 #endif 1742 MC_SEND(ip, vifp, m); 1743 } 1744 1745 /* 1746 * Perform upcall-related bw measuring. 1747 */ 1748 if (rt->mfc_bw_meter != NULL) { 1749 struct bw_meter *x; 1750 struct timeval now; 1751 1752 microtime(&now); 1753 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1754 bw_meter_receive_packet(x, plen, &now); 1755 } 1756 1757 return (0); 1758 } 1759 1760 #ifdef RSVP_ISI 1761 /* 1762 * check if a vif number is legal/ok. This is used by ip_output. 1763 */ 1764 int 1765 legal_vif_num(int vif) 1766 { 1767 if (vif >= 0 && vif < numvifs) 1768 return (1); 1769 else 1770 return (0); 1771 } 1772 #endif /* RSVP_ISI */ 1773 1774 static void 1775 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1776 { 1777 struct mbuf *mb_copy; 1778 int hlen = ip->ip_hl << 2; 1779 1780 /* 1781 * Make a new reference to the packet; make sure that 1782 * the IP header is actually copied, not just referenced, 1783 * so that ip_output() only scribbles on the copy. 1784 */ 1785 mb_copy = m_copypacket(m, M_DONTWAIT); 1786 M_PULLUP(mb_copy, hlen); 1787 if (mb_copy == NULL) 1788 return; 1789 1790 if (vifp->v_rate_limit <= 0) 1791 tbf_send_packet(vifp, mb_copy); 1792 else 1793 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1794 ntohs(ip->ip_len)); 1795 } 1796 1797 static void 1798 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1799 { 1800 struct mbuf *mb_copy; 1801 struct ip *ip_copy; 1802 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1803 1804 /* Take care of delayed checksums */ 1805 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1806 in_delayed_cksum(m); 1807 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1808 } 1809 1810 /* 1811 * copy the old packet & pullup it's IP header into the 1812 * new mbuf so we can modify it. Try to fill the new 1813 * mbuf since if we don't the ethernet driver will. 1814 */ 1815 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1816 if (mb_copy == NULL) 1817 return; 1818 mb_copy->m_data += max_linkhdr; 1819 mb_copy->m_pkthdr.len = len; 1820 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1821 1822 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 1823 m_freem(mb_copy); 1824 return; 1825 } 1826 i = MHLEN - max_linkhdr; 1827 if (i > len) 1828 i = len; 1829 mb_copy = m_pullup(mb_copy, i); 1830 if (mb_copy == NULL) 1831 return; 1832 1833 /* 1834 * fill in the encapsulating IP header. 1835 */ 1836 ip_copy = mtod(mb_copy, struct ip *); 1837 *ip_copy = multicast_encap_iphdr; 1838 if (len < IP_MINFRAGSIZE) 1839 ip_copy->ip_id = 0; 1840 else 1841 ip_copy->ip_id = ip_newid(NULL); 1842 ip_copy->ip_len = htons(len); 1843 ip_copy->ip_src = vifp->v_lcl_addr; 1844 ip_copy->ip_dst = vifp->v_rmt_addr; 1845 1846 /* 1847 * turn the encapsulated IP header back into a valid one. 1848 */ 1849 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr)); 1850 --ip->ip_ttl; 1851 ip->ip_sum = 0; 1852 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1853 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1854 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1855 1856 if (vifp->v_rate_limit <= 0) 1857 tbf_send_packet(vifp, mb_copy); 1858 else 1859 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 1860 } 1861 1862 /* 1863 * De-encapsulate a packet and feed it back through ip input. 1864 */ 1865 static void 1866 vif_input(struct mbuf *m, ...) 1867 { 1868 int off, proto; 1869 va_list ap; 1870 struct vif *vifp; 1871 int s; 1872 struct ifqueue *ifq; 1873 1874 va_start(ap, m); 1875 off = va_arg(ap, int); 1876 proto = va_arg(ap, int); 1877 va_end(ap); 1878 1879 vifp = (struct vif *)encap_getarg(m); 1880 if (!vifp || proto != ENCAP_PROTO) { 1881 m_freem(m); 1882 mrtstat.mrts_bad_tunnel++; 1883 return; 1884 } 1885 1886 m_adj(m, off); 1887 m->m_pkthdr.rcvif = vifp->v_ifp; 1888 ifq = &ipintrq; 1889 s = splnet(); 1890 if (IF_QFULL(ifq)) { 1891 IF_DROP(ifq); 1892 m_freem(m); 1893 } else { 1894 IF_ENQUEUE(ifq, m); 1895 /* 1896 * normally we would need a "schednetisr(NETISR_IP)" 1897 * here but we were called by ip_input and it is going 1898 * to loop back & try to dequeue the packet we just 1899 * queued as soon as we return so we avoid the 1900 * unnecessary software interrrupt. 1901 */ 1902 } 1903 splx(s); 1904 } 1905 1906 /* 1907 * Check if the packet should be received on the vif denoted by arg. 1908 * (The encap selection code will call this once per vif since each is 1909 * registered separately.) 1910 */ 1911 static int 1912 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg) 1913 { 1914 struct vif *vifp; 1915 struct ip ip; 1916 1917 #ifdef DIAGNOSTIC 1918 if (!arg || proto != IPPROTO_IPV4) 1919 panic("unexpected arg in vif_encapcheck"); 1920 #endif 1921 1922 /* 1923 * Accept the packet only if the inner heaader is multicast 1924 * and the outer header matches a tunnel-mode vif. Order 1925 * checks in the hope that common non-matching packets will be 1926 * rejected quickly. Assume that unicast IPv4 traffic in a 1927 * parallel tunnel (e.g. gif(4)) is unlikely. 1928 */ 1929 1930 /* Obtain the outer IP header and the vif pointer. */ 1931 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip); 1932 vifp = (struct vif *)arg; 1933 1934 /* 1935 * The outer source must match the vif's remote peer address. 1936 * For a multicast router with several tunnels, this is the 1937 * only check that will fail on packets in other tunnels, 1938 * assuming the local address is the same. 1939 */ 1940 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 1941 return 0; 1942 1943 /* The outer destination must match the vif's local address. */ 1944 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst)) 1945 return 0; 1946 1947 /* The vif must be of tunnel type. */ 1948 if ((vifp->v_flags & VIFF_TUNNEL) == 0) 1949 return 0; 1950 1951 /* Check that the inner destination is multicast. */ 1952 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip); 1953 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 1954 return 0; 1955 1956 /* 1957 * We have checked that both the outer src and dst addresses 1958 * match the vif, and that the inner destination is multicast 1959 * (224/5). By claiming more than 64, we intend to 1960 * preferentially take packets that also match a parallel 1961 * gif(4). 1962 */ 1963 return 32 + 32 + 5; 1964 } 1965 1966 /* 1967 * Token bucket filter module 1968 */ 1969 static void 1970 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) 1971 { 1972 1973 if (len > MAX_BKT_SIZE) { 1974 /* drop if packet is too large */ 1975 mrtstat.mrts_pkt2large++; 1976 m_freem(m); 1977 return; 1978 } 1979 1980 tbf_update_tokens(vifp); 1981 1982 /* 1983 * If there are enough tokens, and the queue is empty, send this packet 1984 * out immediately. Otherwise, try to insert it on this vif's queue. 1985 */ 1986 if (vifp->tbf_q_len == 0) { 1987 if (len <= vifp->tbf_n_tok) { 1988 vifp->tbf_n_tok -= len; 1989 tbf_send_packet(vifp, m); 1990 } else { 1991 /* queue packet and timeout till later */ 1992 tbf_queue(vifp, m); 1993 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 1994 tbf_reprocess_q, vifp); 1995 } 1996 } else { 1997 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 1998 !tbf_dq_sel(vifp, ip)) { 1999 /* queue full, and couldn't make room */ 2000 mrtstat.mrts_q_overflow++; 2001 m_freem(m); 2002 } else { 2003 /* queue length low enough, or made room */ 2004 tbf_queue(vifp, m); 2005 tbf_process_q(vifp); 2006 } 2007 } 2008 } 2009 2010 /* 2011 * adds a packet to the queue at the interface 2012 */ 2013 static void 2014 tbf_queue(struct vif *vifp, struct mbuf *m) 2015 { 2016 int s = splsoftnet(); 2017 2018 /* insert at tail */ 2019 *vifp->tbf_t = m; 2020 vifp->tbf_t = &m->m_nextpkt; 2021 vifp->tbf_q_len++; 2022 2023 splx(s); 2024 } 2025 2026 2027 /* 2028 * processes the queue at the interface 2029 */ 2030 static void 2031 tbf_process_q(struct vif *vifp) 2032 { 2033 struct mbuf *m; 2034 int len; 2035 int s = splsoftnet(); 2036 2037 /* 2038 * Loop through the queue at the interface and send as many packets 2039 * as possible. 2040 */ 2041 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2042 len = ntohs(mtod(m, struct ip *)->ip_len); 2043 2044 /* determine if the packet can be sent */ 2045 if (len <= vifp->tbf_n_tok) { 2046 /* if so, 2047 * reduce no of tokens, dequeue the packet, 2048 * send the packet. 2049 */ 2050 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2051 vifp->tbf_t = &vifp->tbf_q; 2052 --vifp->tbf_q_len; 2053 2054 m->m_nextpkt = NULL; 2055 vifp->tbf_n_tok -= len; 2056 tbf_send_packet(vifp, m); 2057 } else 2058 break; 2059 } 2060 splx(s); 2061 } 2062 2063 static void 2064 tbf_reprocess_q(void *arg) 2065 { 2066 struct vif *vifp = arg; 2067 2068 if (ip_mrouter == NULL) 2069 return; 2070 2071 tbf_update_tokens(vifp); 2072 tbf_process_q(vifp); 2073 2074 if (vifp->tbf_q_len != 0) 2075 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2076 tbf_reprocess_q, vifp); 2077 } 2078 2079 /* function that will selectively discard a member of the queue 2080 * based on the precedence value and the priority 2081 */ 2082 static int 2083 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2084 { 2085 u_int p; 2086 struct mbuf **mp, *m; 2087 int s = splsoftnet(); 2088 2089 p = priority(vifp, ip); 2090 2091 for (mp = &vifp->tbf_q, m = *mp; 2092 m != NULL; 2093 mp = &m->m_nextpkt, m = *mp) { 2094 if (p > priority(vifp, mtod(m, struct ip *))) { 2095 if ((*mp = m->m_nextpkt) == NULL) 2096 vifp->tbf_t = mp; 2097 --vifp->tbf_q_len; 2098 2099 m_freem(m); 2100 mrtstat.mrts_drop_sel++; 2101 splx(s); 2102 return (1); 2103 } 2104 } 2105 splx(s); 2106 return (0); 2107 } 2108 2109 static void 2110 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2111 { 2112 int error; 2113 int s = splsoftnet(); 2114 2115 if (vifp->v_flags & VIFF_TUNNEL) { 2116 /* If tunnel options */ 2117 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL); 2118 } else { 2119 /* if physical interface option, extract the options and then send */ 2120 struct ip_moptions imo; 2121 2122 imo.imo_multicast_ifp = vifp->v_ifp; 2123 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2124 imo.imo_multicast_loop = 1; 2125 #ifdef RSVP_ISI 2126 imo.imo_multicast_vif = -1; 2127 #endif 2128 2129 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS, 2130 &imo, NULL); 2131 2132 if (mrtdebug & DEBUG_XMIT) 2133 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2134 (long)(vifp - viftable), error); 2135 } 2136 splx(s); 2137 } 2138 2139 /* determine the current time and then 2140 * the elapsed time (between the last time and time now) 2141 * in milliseconds & update the no. of tokens in the bucket 2142 */ 2143 static void 2144 tbf_update_tokens(struct vif *vifp) 2145 { 2146 struct timeval tp; 2147 u_int32_t tm; 2148 int s = splsoftnet(); 2149 2150 microtime(&tp); 2151 2152 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2153 2154 /* 2155 * This formula is actually 2156 * "time in seconds" * "bytes/second". 2157 * 2158 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2159 * 2160 * The (1000/1024) was introduced in add_vif to optimize 2161 * this divide into a shift. 2162 */ 2163 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2164 vifp->tbf_last_pkt_t = tp; 2165 2166 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2167 vifp->tbf_n_tok = MAX_BKT_SIZE; 2168 2169 splx(s); 2170 } 2171 2172 static int 2173 priority(struct vif *vifp, struct ip *ip) 2174 { 2175 int prio = 50; /* the lowest priority -- default case */ 2176 2177 /* temporary hack; may add general packet classifier some day */ 2178 2179 /* 2180 * The UDP port space is divided up into four priority ranges: 2181 * [0, 16384) : unclassified - lowest priority 2182 * [16384, 32768) : audio - highest priority 2183 * [32768, 49152) : whiteboard - medium priority 2184 * [49152, 65536) : video - low priority 2185 */ 2186 if (ip->ip_p == IPPROTO_UDP) { 2187 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2188 2189 switch (ntohs(udp->uh_dport) & 0xc000) { 2190 case 0x4000: 2191 prio = 70; 2192 break; 2193 case 0x8000: 2194 prio = 60; 2195 break; 2196 case 0xc000: 2197 prio = 55; 2198 break; 2199 } 2200 2201 if (tbfdebug > 1) 2202 log(LOG_DEBUG, "port %x prio %d\n", 2203 ntohs(udp->uh_dport), prio); 2204 } 2205 2206 return (prio); 2207 } 2208 2209 /* 2210 * End of token bucket filter modifications 2211 */ 2212 #ifdef RSVP_ISI 2213 int 2214 ip_rsvp_vif_init(struct socket *so, struct mbuf *m) 2215 { 2216 int vifi, s; 2217 2218 if (rsvpdebug) 2219 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", 2220 so->so_type, so->so_proto->pr_protocol); 2221 2222 if (so->so_type != SOCK_RAW || 2223 so->so_proto->pr_protocol != IPPROTO_RSVP) 2224 return (EOPNOTSUPP); 2225 2226 /* Check mbuf. */ 2227 if (m == NULL || m->m_len != sizeof(int)) { 2228 return (EINVAL); 2229 } 2230 vifi = *(mtod(m, int *)); 2231 2232 if (rsvpdebug) 2233 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", 2234 vifi, rsvp_on); 2235 2236 s = splsoftnet(); 2237 2238 /* Check vif. */ 2239 if (!legal_vif_num(vifi)) { 2240 splx(s); 2241 return (EADDRNOTAVAIL); 2242 } 2243 2244 /* Check if socket is available. */ 2245 if (viftable[vifi].v_rsvpd != NULL) { 2246 splx(s); 2247 return (EADDRINUSE); 2248 } 2249 2250 viftable[vifi].v_rsvpd = so; 2251 /* 2252 * This may seem silly, but we need to be sure we don't over-increment 2253 * the RSVP counter, in case something slips up. 2254 */ 2255 if (!viftable[vifi].v_rsvp_on) { 2256 viftable[vifi].v_rsvp_on = 1; 2257 rsvp_on++; 2258 } 2259 2260 splx(s); 2261 return (0); 2262 } 2263 2264 int 2265 ip_rsvp_vif_done(struct socket *so, struct mbuf *m) 2266 { 2267 int vifi, s; 2268 2269 if (rsvpdebug) 2270 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", 2271 so->so_type, so->so_proto->pr_protocol); 2272 2273 if (so->so_type != SOCK_RAW || 2274 so->so_proto->pr_protocol != IPPROTO_RSVP) 2275 return (EOPNOTSUPP); 2276 2277 /* Check mbuf. */ 2278 if (m == NULL || m->m_len != sizeof(int)) { 2279 return (EINVAL); 2280 } 2281 vifi = *(mtod(m, int *)); 2282 2283 s = splsoftnet(); 2284 2285 /* Check vif. */ 2286 if (!legal_vif_num(vifi)) { 2287 splx(s); 2288 return (EADDRNOTAVAIL); 2289 } 2290 2291 if (rsvpdebug) 2292 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", 2293 viftable[vifi].v_rsvpd, so); 2294 2295 viftable[vifi].v_rsvpd = NULL; 2296 /* 2297 * This may seem silly, but we need to be sure we don't over-decrement 2298 * the RSVP counter, in case something slips up. 2299 */ 2300 if (viftable[vifi].v_rsvp_on) { 2301 viftable[vifi].v_rsvp_on = 0; 2302 rsvp_on--; 2303 } 2304 2305 splx(s); 2306 return (0); 2307 } 2308 2309 void 2310 ip_rsvp_force_done(struct socket *so) 2311 { 2312 int vifi, s; 2313 2314 /* Don't bother if it is not the right type of socket. */ 2315 if (so->so_type != SOCK_RAW || 2316 so->so_proto->pr_protocol != IPPROTO_RSVP) 2317 return; 2318 2319 s = splsoftnet(); 2320 2321 /* 2322 * The socket may be attached to more than one vif...this 2323 * is perfectly legal. 2324 */ 2325 for (vifi = 0; vifi < numvifs; vifi++) { 2326 if (viftable[vifi].v_rsvpd == so) { 2327 viftable[vifi].v_rsvpd = NULL; 2328 /* 2329 * This may seem silly, but we need to be sure we don't 2330 * over-decrement the RSVP counter, in case something 2331 * slips up. 2332 */ 2333 if (viftable[vifi].v_rsvp_on) { 2334 viftable[vifi].v_rsvp_on = 0; 2335 rsvp_on--; 2336 } 2337 } 2338 } 2339 2340 splx(s); 2341 return; 2342 } 2343 2344 void 2345 rsvp_input(struct mbuf *m, struct ifnet *ifp) 2346 { 2347 int vifi, s; 2348 struct ip *ip = mtod(m, struct ip *); 2349 struct sockaddr_in rsvp_src; 2350 2351 if (rsvpdebug) 2352 printf("rsvp_input: rsvp_on %d\n", rsvp_on); 2353 2354 /* 2355 * Can still get packets with rsvp_on = 0 if there is a local member 2356 * of the group to which the RSVP packet is addressed. But in this 2357 * case we want to throw the packet away. 2358 */ 2359 if (!rsvp_on) { 2360 m_freem(m); 2361 return; 2362 } 2363 2364 /* 2365 * If the old-style non-vif-associated socket is set, then use 2366 * it and ignore the new ones. 2367 */ 2368 if (ip_rsvpd != NULL) { 2369 if (rsvpdebug) 2370 printf("rsvp_input: " 2371 "Sending packet up old-style socket\n"); 2372 rip_input(m); /*XXX*/ 2373 return; 2374 } 2375 2376 s = splsoftnet(); 2377 2378 if (rsvpdebug) 2379 printf("rsvp_input: check vifs\n"); 2380 2381 /* Find which vif the packet arrived on. */ 2382 for (vifi = 0; vifi < numvifs; vifi++) { 2383 if (viftable[vifi].v_ifp == ifp) 2384 break; 2385 } 2386 2387 if (vifi == numvifs) { 2388 /* Can't find vif packet arrived on. Drop packet. */ 2389 if (rsvpdebug) 2390 printf("rsvp_input: " 2391 "Can't find vif for packet...dropping it.\n"); 2392 m_freem(m); 2393 splx(s); 2394 return; 2395 } 2396 2397 if (rsvpdebug) 2398 printf("rsvp_input: check socket\n"); 2399 2400 if (viftable[vifi].v_rsvpd == NULL) { 2401 /* 2402 * drop packet, since there is no specific socket for this 2403 * interface 2404 */ 2405 if (rsvpdebug) 2406 printf("rsvp_input: No socket defined for vif %d\n", 2407 vifi); 2408 m_freem(m); 2409 splx(s); 2410 return; 2411 } 2412 2413 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0); 2414 2415 if (rsvpdebug && m) 2416 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", 2417 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); 2418 2419 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2420 if (rsvpdebug) 2421 printf("rsvp_input: Failed to append to socket\n"); 2422 else 2423 if (rsvpdebug) 2424 printf("rsvp_input: send packet up\n"); 2425 2426 splx(s); 2427 } 2428 #endif /* RSVP_ISI */ 2429 2430 /* 2431 * Code for bandwidth monitors 2432 */ 2433 2434 /* 2435 * Define common interface for timeval-related methods 2436 */ 2437 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2438 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2439 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2440 2441 static uint32_t 2442 compute_bw_meter_flags(struct bw_upcall *req) 2443 { 2444 uint32_t flags = 0; 2445 2446 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2447 flags |= BW_METER_UNIT_PACKETS; 2448 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2449 flags |= BW_METER_UNIT_BYTES; 2450 if (req->bu_flags & BW_UPCALL_GEQ) 2451 flags |= BW_METER_GEQ; 2452 if (req->bu_flags & BW_UPCALL_LEQ) 2453 flags |= BW_METER_LEQ; 2454 2455 return flags; 2456 } 2457 2458 /* 2459 * Add a bw_meter entry 2460 */ 2461 static int 2462 add_bw_upcall(struct bw_upcall *req) 2463 { 2464 int s; 2465 struct mfc *mfc; 2466 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2467 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2468 struct timeval now; 2469 struct bw_meter *x; 2470 uint32_t flags; 2471 2472 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2473 return EOPNOTSUPP; 2474 2475 /* Test if the flags are valid */ 2476 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2477 return EINVAL; 2478 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2479 return EINVAL; 2480 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2481 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2482 return EINVAL; 2483 2484 /* Test if the threshold time interval is valid */ 2485 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2486 return EINVAL; 2487 2488 flags = compute_bw_meter_flags(req); 2489 2490 /* 2491 * Find if we have already same bw_meter entry 2492 */ 2493 s = splsoftnet(); 2494 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2495 if (mfc == NULL) { 2496 splx(s); 2497 return EADDRNOTAVAIL; 2498 } 2499 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2500 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2501 &req->bu_threshold.b_time, ==)) && 2502 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2503 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2504 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2505 splx(s); 2506 return 0; /* XXX Already installed */ 2507 } 2508 } 2509 2510 /* Allocate the new bw_meter entry */ 2511 x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP); 2512 if (x == NULL) { 2513 splx(s); 2514 return ENOBUFS; 2515 } 2516 2517 /* Set the new bw_meter entry */ 2518 x->bm_threshold.b_time = req->bu_threshold.b_time; 2519 microtime(&now); 2520 x->bm_start_time = now; 2521 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2522 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2523 x->bm_measured.b_packets = 0; 2524 x->bm_measured.b_bytes = 0; 2525 x->bm_flags = flags; 2526 x->bm_time_next = NULL; 2527 x->bm_time_hash = BW_METER_BUCKETS; 2528 2529 /* Add the new bw_meter entry to the front of entries for this MFC */ 2530 x->bm_mfc = mfc; 2531 x->bm_mfc_next = mfc->mfc_bw_meter; 2532 mfc->mfc_bw_meter = x; 2533 schedule_bw_meter(x, &now); 2534 splx(s); 2535 2536 return 0; 2537 } 2538 2539 static void 2540 free_bw_list(struct bw_meter *list) 2541 { 2542 while (list != NULL) { 2543 struct bw_meter *x = list; 2544 2545 list = list->bm_mfc_next; 2546 unschedule_bw_meter(x); 2547 kmem_free(x, sizeof(*x)); 2548 } 2549 } 2550 2551 /* 2552 * Delete one or multiple bw_meter entries 2553 */ 2554 static int 2555 del_bw_upcall(struct bw_upcall *req) 2556 { 2557 int s; 2558 struct mfc *mfc; 2559 struct bw_meter *x; 2560 2561 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2562 return EOPNOTSUPP; 2563 2564 s = splsoftnet(); 2565 /* Find the corresponding MFC entry */ 2566 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2567 if (mfc == NULL) { 2568 splx(s); 2569 return EADDRNOTAVAIL; 2570 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2571 /* 2572 * Delete all bw_meter entries for this mfc 2573 */ 2574 struct bw_meter *list; 2575 2576 list = mfc->mfc_bw_meter; 2577 mfc->mfc_bw_meter = NULL; 2578 free_bw_list(list); 2579 splx(s); 2580 return 0; 2581 } else { /* Delete a single bw_meter entry */ 2582 struct bw_meter *prev; 2583 uint32_t flags = 0; 2584 2585 flags = compute_bw_meter_flags(req); 2586 2587 /* Find the bw_meter entry to delete */ 2588 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2589 prev = x, x = x->bm_mfc_next) { 2590 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2591 &req->bu_threshold.b_time, ==)) && 2592 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2593 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2594 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2595 break; 2596 } 2597 if (x != NULL) { /* Delete entry from the list for this MFC */ 2598 if (prev != NULL) 2599 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2600 else 2601 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2602 2603 unschedule_bw_meter(x); 2604 splx(s); 2605 /* Free the bw_meter entry */ 2606 kmem_free(x, sizeof(*x)); 2607 return 0; 2608 } else { 2609 splx(s); 2610 return EINVAL; 2611 } 2612 } 2613 /* NOTREACHED */ 2614 } 2615 2616 /* 2617 * Perform bandwidth measurement processing that may result in an upcall 2618 */ 2619 static void 2620 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2621 { 2622 struct timeval delta; 2623 2624 delta = *nowp; 2625 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2626 2627 if (x->bm_flags & BW_METER_GEQ) { 2628 /* 2629 * Processing for ">=" type of bw_meter entry 2630 */ 2631 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2632 /* Reset the bw_meter entry */ 2633 x->bm_start_time = *nowp; 2634 x->bm_measured.b_packets = 0; 2635 x->bm_measured.b_bytes = 0; 2636 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2637 } 2638 2639 /* Record that a packet is received */ 2640 x->bm_measured.b_packets++; 2641 x->bm_measured.b_bytes += plen; 2642 2643 /* 2644 * Test if we should deliver an upcall 2645 */ 2646 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2647 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2648 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2649 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2650 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2651 /* Prepare an upcall for delivery */ 2652 bw_meter_prepare_upcall(x, nowp); 2653 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2654 } 2655 } 2656 } else if (x->bm_flags & BW_METER_LEQ) { 2657 /* 2658 * Processing for "<=" type of bw_meter entry 2659 */ 2660 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2661 /* 2662 * We are behind time with the multicast forwarding table 2663 * scanning for "<=" type of bw_meter entries, so test now 2664 * if we should deliver an upcall. 2665 */ 2666 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2667 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2668 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2669 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2670 /* Prepare an upcall for delivery */ 2671 bw_meter_prepare_upcall(x, nowp); 2672 } 2673 /* Reschedule the bw_meter entry */ 2674 unschedule_bw_meter(x); 2675 schedule_bw_meter(x, nowp); 2676 } 2677 2678 /* Record that a packet is received */ 2679 x->bm_measured.b_packets++; 2680 x->bm_measured.b_bytes += plen; 2681 2682 /* 2683 * Test if we should restart the measuring interval 2684 */ 2685 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2686 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2687 (x->bm_flags & BW_METER_UNIT_BYTES && 2688 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2689 /* Don't restart the measuring interval */ 2690 } else { 2691 /* Do restart the measuring interval */ 2692 /* 2693 * XXX: note that we don't unschedule and schedule, because this 2694 * might be too much overhead per packet. Instead, when we process 2695 * all entries for a given timer hash bin, we check whether it is 2696 * really a timeout. If not, we reschedule at that time. 2697 */ 2698 x->bm_start_time = *nowp; 2699 x->bm_measured.b_packets = 0; 2700 x->bm_measured.b_bytes = 0; 2701 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2702 } 2703 } 2704 } 2705 2706 /* 2707 * Prepare a bandwidth-related upcall 2708 */ 2709 static void 2710 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2711 { 2712 struct timeval delta; 2713 struct bw_upcall *u; 2714 2715 /* 2716 * Compute the measured time interval 2717 */ 2718 delta = *nowp; 2719 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2720 2721 /* 2722 * If there are too many pending upcalls, deliver them now 2723 */ 2724 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2725 bw_upcalls_send(); 2726 2727 /* 2728 * Set the bw_upcall entry 2729 */ 2730 u = &bw_upcalls[bw_upcalls_n++]; 2731 u->bu_src = x->bm_mfc->mfc_origin; 2732 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2733 u->bu_threshold.b_time = x->bm_threshold.b_time; 2734 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2735 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2736 u->bu_measured.b_time = delta; 2737 u->bu_measured.b_packets = x->bm_measured.b_packets; 2738 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2739 u->bu_flags = 0; 2740 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2741 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2742 if (x->bm_flags & BW_METER_UNIT_BYTES) 2743 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2744 if (x->bm_flags & BW_METER_GEQ) 2745 u->bu_flags |= BW_UPCALL_GEQ; 2746 if (x->bm_flags & BW_METER_LEQ) 2747 u->bu_flags |= BW_UPCALL_LEQ; 2748 } 2749 2750 /* 2751 * Send the pending bandwidth-related upcalls 2752 */ 2753 static void 2754 bw_upcalls_send(void) 2755 { 2756 struct mbuf *m; 2757 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2758 struct sockaddr_in k_igmpsrc = { 2759 .sin_len = sizeof(k_igmpsrc), 2760 .sin_family = AF_INET, 2761 }; 2762 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2763 0, /* unused2 */ 2764 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2765 0, /* im_mbz */ 2766 0, /* im_vif */ 2767 0, /* unused3 */ 2768 { 0 }, /* im_src */ 2769 { 0 } }; /* im_dst */ 2770 2771 if (bw_upcalls_n == 0) 2772 return; /* No pending upcalls */ 2773 2774 bw_upcalls_n = 0; 2775 2776 /* 2777 * Allocate a new mbuf, initialize it with the header and 2778 * the payload for the pending calls. 2779 */ 2780 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2781 if (m == NULL) { 2782 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2783 return; 2784 } 2785 2786 m->m_len = m->m_pkthdr.len = 0; 2787 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg); 2788 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]); 2789 2790 /* 2791 * Send the upcalls 2792 * XXX do we need to set the address in k_igmpsrc ? 2793 */ 2794 mrtstat.mrts_upcalls++; 2795 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2796 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2797 ++mrtstat.mrts_upq_sockfull; 2798 } 2799 } 2800 2801 /* 2802 * Compute the timeout hash value for the bw_meter entries 2803 */ 2804 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2805 do { \ 2806 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2807 \ 2808 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2809 (hash) = next_timeval.tv_sec; \ 2810 if (next_timeval.tv_usec) \ 2811 (hash)++; /* XXX: make sure we don't timeout early */ \ 2812 (hash) %= BW_METER_BUCKETS; \ 2813 } while (/*CONSTCOND*/ 0) 2814 2815 /* 2816 * Schedule a timer to process periodically bw_meter entry of type "<=" 2817 * by linking the entry in the proper hash bucket. 2818 */ 2819 static void 2820 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2821 { 2822 int time_hash; 2823 2824 if (!(x->bm_flags & BW_METER_LEQ)) 2825 return; /* XXX: we schedule timers only for "<=" entries */ 2826 2827 /* 2828 * Reset the bw_meter entry 2829 */ 2830 x->bm_start_time = *nowp; 2831 x->bm_measured.b_packets = 0; 2832 x->bm_measured.b_bytes = 0; 2833 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2834 2835 /* 2836 * Compute the timeout hash value and insert the entry 2837 */ 2838 BW_METER_TIMEHASH(x, time_hash); 2839 x->bm_time_next = bw_meter_timers[time_hash]; 2840 bw_meter_timers[time_hash] = x; 2841 x->bm_time_hash = time_hash; 2842 } 2843 2844 /* 2845 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2846 * by removing the entry from the proper hash bucket. 2847 */ 2848 static void 2849 unschedule_bw_meter(struct bw_meter *x) 2850 { 2851 int time_hash; 2852 struct bw_meter *prev, *tmp; 2853 2854 if (!(x->bm_flags & BW_METER_LEQ)) 2855 return; /* XXX: we schedule timers only for "<=" entries */ 2856 2857 /* 2858 * Compute the timeout hash value and delete the entry 2859 */ 2860 time_hash = x->bm_time_hash; 2861 if (time_hash >= BW_METER_BUCKETS) 2862 return; /* Entry was not scheduled */ 2863 2864 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2865 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2866 if (tmp == x) 2867 break; 2868 2869 if (tmp == NULL) 2870 panic("unschedule_bw_meter: bw_meter entry not found"); 2871 2872 if (prev != NULL) 2873 prev->bm_time_next = x->bm_time_next; 2874 else 2875 bw_meter_timers[time_hash] = x->bm_time_next; 2876 2877 x->bm_time_next = NULL; 2878 x->bm_time_hash = BW_METER_BUCKETS; 2879 } 2880 2881 /* 2882 * Process all "<=" type of bw_meter that should be processed now, 2883 * and for each entry prepare an upcall if necessary. Each processed 2884 * entry is rescheduled again for the (periodic) processing. 2885 * 2886 * This is run periodically (once per second normally). On each round, 2887 * all the potentially matching entries are in the hash slot that we are 2888 * looking at. 2889 */ 2890 static void 2891 bw_meter_process(void) 2892 { 2893 int s; 2894 static uint32_t last_tv_sec; /* last time we processed this */ 2895 2896 uint32_t loops; 2897 int i; 2898 struct timeval now, process_endtime; 2899 2900 microtime(&now); 2901 if (last_tv_sec == now.tv_sec) 2902 return; /* nothing to do */ 2903 2904 loops = now.tv_sec - last_tv_sec; 2905 last_tv_sec = now.tv_sec; 2906 if (loops > BW_METER_BUCKETS) 2907 loops = BW_METER_BUCKETS; 2908 2909 s = splsoftnet(); 2910 /* 2911 * Process all bins of bw_meter entries from the one after the last 2912 * processed to the current one. On entry, i points to the last bucket 2913 * visited, so we need to increment i at the beginning of the loop. 2914 */ 2915 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2916 struct bw_meter *x, *tmp_list; 2917 2918 if (++i >= BW_METER_BUCKETS) 2919 i = 0; 2920 2921 /* Disconnect the list of bw_meter entries from the bin */ 2922 tmp_list = bw_meter_timers[i]; 2923 bw_meter_timers[i] = NULL; 2924 2925 /* Process the list of bw_meter entries */ 2926 while (tmp_list != NULL) { 2927 x = tmp_list; 2928 tmp_list = tmp_list->bm_time_next; 2929 2930 /* Test if the time interval is over */ 2931 process_endtime = x->bm_start_time; 2932 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2933 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2934 /* Not yet: reschedule, but don't reset */ 2935 int time_hash; 2936 2937 BW_METER_TIMEHASH(x, time_hash); 2938 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2939 /* 2940 * XXX: somehow the bin processing is a bit ahead of time. 2941 * Put the entry in the next bin. 2942 */ 2943 if (++time_hash >= BW_METER_BUCKETS) 2944 time_hash = 0; 2945 } 2946 x->bm_time_next = bw_meter_timers[time_hash]; 2947 bw_meter_timers[time_hash] = x; 2948 x->bm_time_hash = time_hash; 2949 2950 continue; 2951 } 2952 2953 /* 2954 * Test if we should deliver an upcall 2955 */ 2956 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2957 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2958 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2959 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2960 /* Prepare an upcall for delivery */ 2961 bw_meter_prepare_upcall(x, &now); 2962 } 2963 2964 /* 2965 * Reschedule for next processing 2966 */ 2967 schedule_bw_meter(x, &now); 2968 } 2969 } 2970 2971 /* Send all upcalls that are pending delivery */ 2972 bw_upcalls_send(); 2973 2974 splx(s); 2975 } 2976 2977 /* 2978 * A periodic function for sending all upcalls that are pending delivery 2979 */ 2980 static void 2981 expire_bw_upcalls_send(void *unused) 2982 { 2983 int s; 2984 2985 s = splsoftnet(); 2986 bw_upcalls_send(); 2987 splx(s); 2988 2989 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2990 expire_bw_upcalls_send, NULL); 2991 } 2992 2993 /* 2994 * A periodic function for periodic scanning of the multicast forwarding 2995 * table for processing all "<=" bw_meter entries. 2996 */ 2997 static void 2998 expire_bw_meter_process(void *unused) 2999 { 3000 if (mrt_api_config & MRT_MFC_BW_UPCALL) 3001 bw_meter_process(); 3002 3003 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 3004 expire_bw_meter_process, NULL); 3005 } 3006 3007 /* 3008 * End of bandwidth monitoring code 3009 */ 3010 3011 #ifdef PIM 3012 /* 3013 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3014 */ 3015 static int 3016 pim_register_send(struct ip *ip, struct vif *vifp, 3017 struct mbuf *m, struct mfc *rt) 3018 { 3019 struct mbuf *mb_copy, *mm; 3020 3021 if (mrtdebug & DEBUG_PIM) 3022 log(LOG_DEBUG, "pim_register_send: \n"); 3023 3024 mb_copy = pim_register_prepare(ip, m); 3025 if (mb_copy == NULL) 3026 return ENOBUFS; 3027 3028 /* 3029 * Send all the fragments. Note that the mbuf for each fragment 3030 * is freed by the sending machinery. 3031 */ 3032 for (mm = mb_copy; mm; mm = mb_copy) { 3033 mb_copy = mm->m_nextpkt; 3034 mm->m_nextpkt = NULL; 3035 mm = m_pullup(mm, sizeof(struct ip)); 3036 if (mm != NULL) { 3037 ip = mtod(mm, struct ip *); 3038 if ((mrt_api_config & MRT_MFC_RP) && 3039 !in_nullhost(rt->mfc_rp)) { 3040 pim_register_send_rp(ip, vifp, mm, rt); 3041 } else { 3042 pim_register_send_upcall(ip, vifp, mm, rt); 3043 } 3044 } 3045 } 3046 3047 return 0; 3048 } 3049 3050 /* 3051 * Return a copy of the data packet that is ready for PIM Register 3052 * encapsulation. 3053 * XXX: Note that in the returned copy the IP header is a valid one. 3054 */ 3055 static struct mbuf * 3056 pim_register_prepare(struct ip *ip, struct mbuf *m) 3057 { 3058 struct mbuf *mb_copy = NULL; 3059 int mtu; 3060 3061 /* Take care of delayed checksums */ 3062 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3063 in_delayed_cksum(m); 3064 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3065 } 3066 3067 /* 3068 * Copy the old packet & pullup its IP header into the 3069 * new mbuf so we can modify it. 3070 */ 3071 mb_copy = m_copypacket(m, M_DONTWAIT); 3072 if (mb_copy == NULL) 3073 return NULL; 3074 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3075 if (mb_copy == NULL) 3076 return NULL; 3077 3078 /* take care of the TTL */ 3079 ip = mtod(mb_copy, struct ip *); 3080 --ip->ip_ttl; 3081 3082 /* Compute the MTU after the PIM Register encapsulation */ 3083 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3084 3085 if (ntohs(ip->ip_len) <= mtu) { 3086 /* Turn the IP header into a valid one */ 3087 ip->ip_sum = 0; 3088 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3089 } else { 3090 /* Fragment the packet */ 3091 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3092 /* XXX: mb_copy was freed by ip_fragment() */ 3093 return NULL; 3094 } 3095 } 3096 return mb_copy; 3097 } 3098 3099 /* 3100 * Send an upcall with the data packet to the user-level process. 3101 */ 3102 static int 3103 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3104 struct mbuf *mb_copy, struct mfc *rt) 3105 { 3106 struct mbuf *mb_first; 3107 int len = ntohs(ip->ip_len); 3108 struct igmpmsg *im; 3109 struct sockaddr_in k_igmpsrc = { 3110 .sin_len = sizeof(k_igmpsrc), 3111 .sin_family = AF_INET, 3112 }; 3113 3114 /* 3115 * Add a new mbuf with an upcall header 3116 */ 3117 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3118 if (mb_first == NULL) { 3119 m_freem(mb_copy); 3120 return ENOBUFS; 3121 } 3122 mb_first->m_data += max_linkhdr; 3123 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3124 mb_first->m_len = sizeof(struct igmpmsg); 3125 mb_first->m_next = mb_copy; 3126 3127 /* Send message to routing daemon */ 3128 im = mtod(mb_first, struct igmpmsg *); 3129 im->im_msgtype = IGMPMSG_WHOLEPKT; 3130 im->im_mbz = 0; 3131 im->im_vif = vifp - viftable; 3132 im->im_src = ip->ip_src; 3133 im->im_dst = ip->ip_dst; 3134 3135 k_igmpsrc.sin_addr = ip->ip_src; 3136 3137 mrtstat.mrts_upcalls++; 3138 3139 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3140 if (mrtdebug & DEBUG_PIM) 3141 log(LOG_WARNING, 3142 "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n"); 3143 ++mrtstat.mrts_upq_sockfull; 3144 return ENOBUFS; 3145 } 3146 3147 /* Keep statistics */ 3148 pimstat.pims_snd_registers_msgs++; 3149 pimstat.pims_snd_registers_bytes += len; 3150 3151 return 0; 3152 } 3153 3154 /* 3155 * Encapsulate the data packet in PIM Register message and send it to the RP. 3156 */ 3157 static int 3158 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3159 struct mbuf *mb_copy, struct mfc *rt) 3160 { 3161 struct mbuf *mb_first; 3162 struct ip *ip_outer; 3163 struct pim_encap_pimhdr *pimhdr; 3164 int len = ntohs(ip->ip_len); 3165 vifi_t vifi = rt->mfc_parent; 3166 3167 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3168 m_freem(mb_copy); 3169 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3170 } 3171 3172 /* 3173 * Add a new mbuf with the encapsulating header 3174 */ 3175 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3176 if (mb_first == NULL) { 3177 m_freem(mb_copy); 3178 return ENOBUFS; 3179 } 3180 mb_first->m_data += max_linkhdr; 3181 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3182 mb_first->m_next = mb_copy; 3183 3184 mb_first->m_pkthdr.len = len + mb_first->m_len; 3185 3186 /* 3187 * Fill in the encapsulating IP and PIM header 3188 */ 3189 ip_outer = mtod(mb_first, struct ip *); 3190 *ip_outer = pim_encap_iphdr; 3191 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE) 3192 ip_outer->ip_id = 0; 3193 else 3194 ip_outer->ip_id = ip_newid(NULL); 3195 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3196 sizeof(pim_encap_pimhdr)); 3197 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3198 ip_outer->ip_dst = rt->mfc_rp; 3199 /* 3200 * Copy the inner header TOS to the outer header, and take care of the 3201 * IP_DF bit. 3202 */ 3203 ip_outer->ip_tos = ip->ip_tos; 3204 if (ntohs(ip->ip_off) & IP_DF) 3205 ip_outer->ip_off |= htons(IP_DF); 3206 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer 3207 + sizeof(pim_encap_iphdr)); 3208 *pimhdr = pim_encap_pimhdr; 3209 /* If the iif crosses a border, set the Border-bit */ 3210 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3211 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3212 3213 mb_first->m_data += sizeof(pim_encap_iphdr); 3214 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3215 mb_first->m_data -= sizeof(pim_encap_iphdr); 3216 3217 if (vifp->v_rate_limit == 0) 3218 tbf_send_packet(vifp, mb_first); 3219 else 3220 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3221 3222 /* Keep statistics */ 3223 pimstat.pims_snd_registers_msgs++; 3224 pimstat.pims_snd_registers_bytes += len; 3225 3226 return 0; 3227 } 3228 3229 /* 3230 * PIM-SMv2 and PIM-DM messages processing. 3231 * Receives and verifies the PIM control messages, and passes them 3232 * up to the listening socket, using rip_input(). 3233 * The only message with special processing is the PIM_REGISTER message 3234 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3235 * is passed to if_simloop(). 3236 */ 3237 void 3238 pim_input(struct mbuf *m, ...) 3239 { 3240 struct ip *ip = mtod(m, struct ip *); 3241 struct pim *pim; 3242 int minlen; 3243 int datalen; 3244 int ip_tos; 3245 int proto; 3246 int iphlen; 3247 va_list ap; 3248 3249 va_start(ap, m); 3250 iphlen = va_arg(ap, int); 3251 proto = va_arg(ap, int); 3252 va_end(ap); 3253 3254 datalen = ntohs(ip->ip_len) - iphlen; 3255 3256 /* Keep statistics */ 3257 pimstat.pims_rcv_total_msgs++; 3258 pimstat.pims_rcv_total_bytes += datalen; 3259 3260 /* 3261 * Validate lengths 3262 */ 3263 if (datalen < PIM_MINLEN) { 3264 pimstat.pims_rcv_tooshort++; 3265 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3266 datalen, (u_long)ip->ip_src.s_addr); 3267 m_freem(m); 3268 return; 3269 } 3270 3271 /* 3272 * If the packet is at least as big as a REGISTER, go agead 3273 * and grab the PIM REGISTER header size, to avoid another 3274 * possible m_pullup() later. 3275 * 3276 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3277 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3278 */ 3279 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3280 /* 3281 * Get the IP and PIM headers in contiguous memory, and 3282 * possibly the PIM REGISTER header. 3283 */ 3284 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3285 (m = m_pullup(m, minlen)) == NULL) { 3286 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3287 return; 3288 } 3289 /* m_pullup() may have given us a new mbuf so reset ip. */ 3290 ip = mtod(m, struct ip *); 3291 ip_tos = ip->ip_tos; 3292 3293 /* adjust mbuf to point to the PIM header */ 3294 m->m_data += iphlen; 3295 m->m_len -= iphlen; 3296 pim = mtod(m, struct pim *); 3297 3298 /* 3299 * Validate checksum. If PIM REGISTER, exclude the data packet. 3300 * 3301 * XXX: some older PIMv2 implementations don't make this distinction, 3302 * so for compatibility reason perform the checksum over part of the 3303 * message, and if error, then over the whole message. 3304 */ 3305 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3306 /* do nothing, checksum okay */ 3307 } else if (in_cksum(m, datalen)) { 3308 pimstat.pims_rcv_badsum++; 3309 if (mrtdebug & DEBUG_PIM) 3310 log(LOG_DEBUG, "pim_input: invalid checksum\n"); 3311 m_freem(m); 3312 return; 3313 } 3314 3315 /* PIM version check */ 3316 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3317 pimstat.pims_rcv_badversion++; 3318 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3319 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3320 m_freem(m); 3321 return; 3322 } 3323 3324 /* restore mbuf back to the outer IP */ 3325 m->m_data -= iphlen; 3326 m->m_len += iphlen; 3327 3328 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3329 /* 3330 * Since this is a REGISTER, we'll make a copy of the register 3331 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3332 * routing daemon. 3333 */ 3334 int s; 3335 struct sockaddr_in dst = { 3336 .sin_len = sizeof(dst), 3337 .sin_family = AF_INET, 3338 }; 3339 struct mbuf *mcp; 3340 struct ip *encap_ip; 3341 u_int32_t *reghdr; 3342 struct ifnet *vifp; 3343 3344 s = splsoftnet(); 3345 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3346 splx(s); 3347 if (mrtdebug & DEBUG_PIM) 3348 log(LOG_DEBUG, 3349 "pim_input: register vif not set: %d\n", reg_vif_num); 3350 m_freem(m); 3351 return; 3352 } 3353 /* XXX need refcnt? */ 3354 vifp = viftable[reg_vif_num].v_ifp; 3355 splx(s); 3356 3357 /* 3358 * Validate length 3359 */ 3360 if (datalen < PIM_REG_MINLEN) { 3361 pimstat.pims_rcv_tooshort++; 3362 pimstat.pims_rcv_badregisters++; 3363 log(LOG_ERR, 3364 "pim_input: register packet size too small %d from %lx\n", 3365 datalen, (u_long)ip->ip_src.s_addr); 3366 m_freem(m); 3367 return; 3368 } 3369 3370 reghdr = (u_int32_t *)(pim + 1); 3371 encap_ip = (struct ip *)(reghdr + 1); 3372 3373 if (mrtdebug & DEBUG_PIM) { 3374 log(LOG_DEBUG, 3375 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3376 (u_long)ntohl(encap_ip->ip_src.s_addr), 3377 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3378 ntohs(encap_ip->ip_len)); 3379 } 3380 3381 /* verify the version number of the inner packet */ 3382 if (encap_ip->ip_v != IPVERSION) { 3383 pimstat.pims_rcv_badregisters++; 3384 if (mrtdebug & DEBUG_PIM) { 3385 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3386 "of the inner packet\n", encap_ip->ip_v); 3387 } 3388 m_freem(m); 3389 return; 3390 } 3391 3392 /* verify the inner packet is destined to a mcast group */ 3393 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3394 pimstat.pims_rcv_badregisters++; 3395 if (mrtdebug & DEBUG_PIM) 3396 log(LOG_DEBUG, 3397 "pim_input: inner packet of register is not " 3398 "multicast %lx\n", 3399 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3400 m_freem(m); 3401 return; 3402 } 3403 3404 /* If a NULL_REGISTER, pass it to the daemon */ 3405 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3406 goto pim_input_to_daemon; 3407 3408 /* 3409 * Copy the TOS from the outer IP header to the inner IP header. 3410 */ 3411 if (encap_ip->ip_tos != ip_tos) { 3412 /* Outer TOS -> inner TOS */ 3413 encap_ip->ip_tos = ip_tos; 3414 /* Recompute the inner header checksum. Sigh... */ 3415 3416 /* adjust mbuf to point to the inner IP header */ 3417 m->m_data += (iphlen + PIM_MINLEN); 3418 m->m_len -= (iphlen + PIM_MINLEN); 3419 3420 encap_ip->ip_sum = 0; 3421 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3422 3423 /* restore mbuf to point back to the outer IP header */ 3424 m->m_data -= (iphlen + PIM_MINLEN); 3425 m->m_len += (iphlen + PIM_MINLEN); 3426 } 3427 3428 /* 3429 * Decapsulate the inner IP packet and loopback to forward it 3430 * as a normal multicast packet. Also, make a copy of the 3431 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3432 * to pass to the daemon later, so it can take the appropriate 3433 * actions (e.g., send back PIM_REGISTER_STOP). 3434 * XXX: here m->m_data points to the outer IP header. 3435 */ 3436 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT); 3437 if (mcp == NULL) { 3438 log(LOG_ERR, 3439 "pim_input: pim register: could not copy register head\n"); 3440 m_freem(m); 3441 return; 3442 } 3443 3444 /* Keep statistics */ 3445 /* XXX: registers_bytes include only the encap. mcast pkt */ 3446 pimstat.pims_rcv_registers_msgs++; 3447 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3448 3449 /* 3450 * forward the inner ip packet; point m_data at the inner ip. 3451 */ 3452 m_adj(m, iphlen + PIM_MINLEN); 3453 3454 if (mrtdebug & DEBUG_PIM) { 3455 log(LOG_DEBUG, 3456 "pim_input: forwarding decapsulated register: " 3457 "src %lx, dst %lx, vif %d\n", 3458 (u_long)ntohl(encap_ip->ip_src.s_addr), 3459 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3460 reg_vif_num); 3461 } 3462 /* NB: vifp was collected above; can it change on us? */ 3463 looutput(vifp, m, (struct sockaddr *)&dst, NULL); 3464 3465 /* prepare the register head to send to the mrouting daemon */ 3466 m = mcp; 3467 } 3468 3469 pim_input_to_daemon: 3470 /* 3471 * Pass the PIM message up to the daemon; if it is a Register message, 3472 * pass the 'head' only up to the daemon. This includes the 3473 * outer IP header, PIM header, PIM-Register header and the 3474 * inner IP header. 3475 * XXX: the outer IP header pkt size of a Register is not adjust to 3476 * reflect the fact that the inner multicast data is truncated. 3477 */ 3478 rip_input(m, iphlen, proto); 3479 3480 return; 3481 } 3482 #endif /* PIM */ 3483