1 /* $NetBSD: ip_mroute.c,v 1.132 2015/08/24 22:21:26 pooka Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.132 2015/08/24 22:21:26 pooka Exp $"); 97 98 #ifdef _KERNEL_OPT 99 #include "opt_inet.h" 100 #include "opt_ipsec.h" 101 #include "opt_pim.h" 102 #endif 103 104 #ifdef PIM 105 #define _PIM_VT 1 106 #endif 107 108 #include <sys/param.h> 109 #include <sys/systm.h> 110 #include <sys/callout.h> 111 #include <sys/mbuf.h> 112 #include <sys/socket.h> 113 #include <sys/socketvar.h> 114 #include <sys/protosw.h> 115 #include <sys/errno.h> 116 #include <sys/time.h> 117 #include <sys/kernel.h> 118 #include <sys/kmem.h> 119 #include <sys/ioctl.h> 120 #include <sys/syslog.h> 121 122 #include <net/if.h> 123 #include <net/route.h> 124 #include <net/raw_cb.h> 125 126 #include <netinet/in.h> 127 #include <netinet/in_var.h> 128 #include <netinet/in_systm.h> 129 #include <netinet/ip.h> 130 #include <netinet/ip_var.h> 131 #include <netinet/in_pcb.h> 132 #include <netinet/udp.h> 133 #include <netinet/igmp.h> 134 #include <netinet/igmp_var.h> 135 #include <netinet/ip_mroute.h> 136 #ifdef PIM 137 #include <netinet/pim.h> 138 #include <netinet/pim_var.h> 139 #endif 140 #include <netinet/ip_encap.h> 141 142 #ifdef IPSEC 143 #include <netipsec/ipsec.h> 144 #include <netipsec/key.h> 145 #endif 146 147 #define IP_MULTICASTOPTS 0 148 #define M_PULLUP(m, len) \ 149 do { \ 150 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 151 (m) = m_pullup((m), (len)); \ 152 } while (/*CONSTCOND*/ 0) 153 154 /* 155 * Globals. All but ip_mrouter and ip_mrtproto could be static, 156 * except for netstat or debugging purposes. 157 */ 158 struct socket *ip_mrouter = NULL; 159 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 160 161 #define NO_RTE_FOUND 0x1 162 #define RTE_FOUND 0x2 163 164 #define MFCHASH(a, g) \ 165 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 166 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 167 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 168 u_long mfchash; 169 170 u_char nexpire[MFCTBLSIZ]; 171 struct vif viftable[MAXVIFS]; 172 struct mrtstat mrtstat; 173 u_int mrtdebug = 0; /* debug level */ 174 #define DEBUG_MFC 0x02 175 #define DEBUG_FORWARD 0x04 176 #define DEBUG_EXPIRE 0x08 177 #define DEBUG_XMIT 0x10 178 #define DEBUG_PIM 0x20 179 180 #define VIFI_INVALID ((vifi_t) -1) 181 182 u_int tbfdebug = 0; /* tbf debug level */ 183 #ifdef RSVP_ISI 184 u_int rsvpdebug = 0; /* rsvp debug level */ 185 extern struct socket *ip_rsvpd; 186 extern int rsvp_on; 187 #endif /* RSVP_ISI */ 188 189 /* vif attachment using sys/netinet/ip_encap.c */ 190 static void vif_input(struct mbuf *, ...); 191 static int vif_encapcheck(struct mbuf *, int, int, void *); 192 193 static const struct protosw vif_protosw = { 194 .pr_type = SOCK_RAW, 195 .pr_domain = &inetdomain, 196 .pr_protocol = IPPROTO_IPV4, 197 .pr_flags = PR_ATOMIC|PR_ADDR, 198 .pr_input = vif_input, 199 .pr_output = rip_output, 200 .pr_ctloutput = rip_ctloutput, 201 .pr_usrreqs = &rip_usrreqs, 202 }; 203 204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 205 #define UPCALL_EXPIRE 6 /* number of timeouts */ 206 207 /* 208 * Define the token bucket filter structures 209 */ 210 211 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 212 213 static int get_sg_cnt(struct sioc_sg_req *); 214 static int get_vif_cnt(struct sioc_vif_req *); 215 static int ip_mrouter_init(struct socket *, int); 216 static int set_assert(int); 217 static int add_vif(struct vifctl *); 218 static int del_vif(vifi_t *); 219 static void update_mfc_params(struct mfc *, struct mfcctl2 *); 220 static void init_mfc_params(struct mfc *, struct mfcctl2 *); 221 static void expire_mfc(struct mfc *); 222 static int add_mfc(struct sockopt *); 223 #ifdef UPCALL_TIMING 224 static void collate(struct timeval *); 225 #endif 226 static int del_mfc(struct sockopt *); 227 static int set_api_config(struct sockopt *); /* chose API capabilities */ 228 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 229 static void expire_upcalls(void *); 230 #ifdef RSVP_ISI 231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 232 #else 233 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); 234 #endif 235 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 236 static void encap_send(struct ip *, struct vif *, struct mbuf *); 237 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); 238 static void tbf_queue(struct vif *, struct mbuf *); 239 static void tbf_process_q(struct vif *); 240 static void tbf_reprocess_q(void *); 241 static int tbf_dq_sel(struct vif *, struct ip *); 242 static void tbf_send_packet(struct vif *, struct mbuf *); 243 static void tbf_update_tokens(struct vif *); 244 static int priority(struct vif *, struct ip *); 245 246 /* 247 * Bandwidth monitoring 248 */ 249 static void free_bw_list(struct bw_meter *); 250 static int add_bw_upcall(struct bw_upcall *); 251 static int del_bw_upcall(struct bw_upcall *); 252 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); 253 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 254 static void bw_upcalls_send(void); 255 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 256 static void unschedule_bw_meter(struct bw_meter *); 257 static void bw_meter_process(void); 258 static void expire_bw_upcalls_send(void *); 259 static void expire_bw_meter_process(void *); 260 261 #ifdef PIM 262 static int pim_register_send(struct ip *, struct vif *, 263 struct mbuf *, struct mfc *); 264 static int pim_register_send_rp(struct ip *, struct vif *, 265 struct mbuf *, struct mfc *); 266 static int pim_register_send_upcall(struct ip *, struct vif *, 267 struct mbuf *, struct mfc *); 268 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 269 #endif 270 271 /* 272 * 'Interfaces' associated with decapsulator (so we can tell 273 * packets that went through it from ones that get reflected 274 * by a broken gateway). These interfaces are never linked into 275 * the system ifnet list & no routes point to them. I.e., packets 276 * can't be sent this way. They only exist as a placeholder for 277 * multicast source verification. 278 */ 279 #if 0 280 struct ifnet multicast_decap_if[MAXVIFS]; 281 #endif 282 283 #define ENCAP_TTL 64 284 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 285 286 /* prototype IP hdr for encapsulated packets */ 287 struct ip multicast_encap_iphdr = { 288 .ip_hl = sizeof(struct ip) >> 2, 289 .ip_v = IPVERSION, 290 .ip_len = sizeof(struct ip), 291 .ip_ttl = ENCAP_TTL, 292 .ip_p = ENCAP_PROTO, 293 }; 294 295 /* 296 * Bandwidth meter variables and constants 297 */ 298 299 /* 300 * Pending timeouts are stored in a hash table, the key being the 301 * expiration time. Periodically, the entries are analysed and processed. 302 */ 303 #define BW_METER_BUCKETS 1024 304 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 305 struct callout bw_meter_ch; 306 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 307 308 /* 309 * Pending upcalls are stored in a vector which is flushed when 310 * full, or periodically 311 */ 312 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 313 static u_int bw_upcalls_n; /* # of pending upcalls */ 314 struct callout bw_upcalls_ch; 315 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 316 317 #ifdef PIM 318 struct pimstat pimstat; 319 320 /* 321 * Note: the PIM Register encapsulation adds the following in front of a 322 * data packet: 323 * 324 * struct pim_encap_hdr { 325 * struct ip ip; 326 * struct pim_encap_pimhdr pim; 327 * } 328 * 329 */ 330 331 struct pim_encap_pimhdr { 332 struct pim pim; 333 uint32_t flags; 334 }; 335 336 static struct ip pim_encap_iphdr = { 337 .ip_v = IPVERSION, 338 .ip_hl = sizeof(struct ip) >> 2, 339 .ip_len = sizeof(struct ip), 340 .ip_ttl = ENCAP_TTL, 341 .ip_p = IPPROTO_PIM, 342 }; 343 344 static struct pim_encap_pimhdr pim_encap_pimhdr = { 345 { 346 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 347 0, /* reserved */ 348 0, /* checksum */ 349 }, 350 0 /* flags */ 351 }; 352 353 static struct ifnet multicast_register_if; 354 static vifi_t reg_vif_num = VIFI_INVALID; 355 #endif /* PIM */ 356 357 358 /* 359 * Private variables. 360 */ 361 static vifi_t numvifs = 0; 362 363 static struct callout expire_upcalls_ch; 364 365 /* 366 * whether or not special PIM assert processing is enabled. 367 */ 368 static int pim_assert; 369 /* 370 * Rate limit for assert notification messages, in usec 371 */ 372 #define ASSERT_MSG_TIME 3000000 373 374 /* 375 * Kernel multicast routing API capabilities and setup. 376 * If more API capabilities are added to the kernel, they should be 377 * recorded in `mrt_api_support'. 378 */ 379 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 380 MRT_MFC_FLAGS_BORDER_VIF | 381 MRT_MFC_RP | 382 MRT_MFC_BW_UPCALL); 383 static u_int32_t mrt_api_config = 0; 384 385 /* 386 * Find a route for a given origin IP address and Multicast group address 387 * Type of service parameter to be added in the future!!! 388 * Statistics are updated by the caller if needed 389 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 390 */ 391 static struct mfc * 392 mfc_find(struct in_addr *o, struct in_addr *g) 393 { 394 struct mfc *rt; 395 396 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 397 if (in_hosteq(rt->mfc_origin, *o) && 398 in_hosteq(rt->mfc_mcastgrp, *g) && 399 (rt->mfc_stall == NULL)) 400 break; 401 } 402 403 return (rt); 404 } 405 406 /* 407 * Macros to compute elapsed time efficiently 408 * Borrowed from Van Jacobson's scheduling code 409 */ 410 #define TV_DELTA(a, b, delta) do { \ 411 int xxs; \ 412 delta = (a).tv_usec - (b).tv_usec; \ 413 xxs = (a).tv_sec - (b).tv_sec; \ 414 switch (xxs) { \ 415 case 2: \ 416 delta += 1000000; \ 417 /* fall through */ \ 418 case 1: \ 419 delta += 1000000; \ 420 /* fall through */ \ 421 case 0: \ 422 break; \ 423 default: \ 424 delta += (1000000 * xxs); \ 425 break; \ 426 } \ 427 } while (/*CONSTCOND*/ 0) 428 429 #ifdef UPCALL_TIMING 430 u_int32_t upcall_data[51]; 431 #endif /* UPCALL_TIMING */ 432 433 /* 434 * Handle MRT setsockopt commands to modify the multicast routing tables. 435 */ 436 int 437 ip_mrouter_set(struct socket *so, struct sockopt *sopt) 438 { 439 int error; 440 int optval; 441 struct vifctl vifc; 442 vifi_t vifi; 443 struct bw_upcall bwuc; 444 445 if (sopt->sopt_name != MRT_INIT && so != ip_mrouter) 446 error = ENOPROTOOPT; 447 else { 448 switch (sopt->sopt_name) { 449 case MRT_INIT: 450 error = sockopt_getint(sopt, &optval); 451 if (error) 452 break; 453 454 error = ip_mrouter_init(so, optval); 455 break; 456 case MRT_DONE: 457 error = ip_mrouter_done(); 458 break; 459 case MRT_ADD_VIF: 460 error = sockopt_get(sopt, &vifc, sizeof(vifc)); 461 if (error) 462 break; 463 error = add_vif(&vifc); 464 break; 465 case MRT_DEL_VIF: 466 error = sockopt_get(sopt, &vifi, sizeof(vifi)); 467 if (error) 468 break; 469 error = del_vif(&vifi); 470 break; 471 case MRT_ADD_MFC: 472 error = add_mfc(sopt); 473 break; 474 case MRT_DEL_MFC: 475 error = del_mfc(sopt); 476 break; 477 case MRT_ASSERT: 478 error = sockopt_getint(sopt, &optval); 479 if (error) 480 break; 481 error = set_assert(optval); 482 break; 483 case MRT_API_CONFIG: 484 error = set_api_config(sopt); 485 break; 486 case MRT_ADD_BW_UPCALL: 487 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 488 if (error) 489 break; 490 error = add_bw_upcall(&bwuc); 491 break; 492 case MRT_DEL_BW_UPCALL: 493 error = sockopt_get(sopt, &bwuc, sizeof(bwuc)); 494 if (error) 495 break; 496 error = del_bw_upcall(&bwuc); 497 break; 498 default: 499 error = ENOPROTOOPT; 500 break; 501 } 502 } 503 return (error); 504 } 505 506 /* 507 * Handle MRT getsockopt commands 508 */ 509 int 510 ip_mrouter_get(struct socket *so, struct sockopt *sopt) 511 { 512 int error; 513 514 if (so != ip_mrouter) 515 error = ENOPROTOOPT; 516 else { 517 switch (sopt->sopt_name) { 518 case MRT_VERSION: 519 error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */ 520 break; 521 case MRT_ASSERT: 522 error = sockopt_setint(sopt, pim_assert); 523 break; 524 case MRT_API_SUPPORT: 525 error = sockopt_set(sopt, &mrt_api_support, 526 sizeof(mrt_api_support)); 527 break; 528 case MRT_API_CONFIG: 529 error = sockopt_set(sopt, &mrt_api_config, 530 sizeof(mrt_api_config)); 531 break; 532 default: 533 error = ENOPROTOOPT; 534 break; 535 } 536 } 537 return (error); 538 } 539 540 /* 541 * Handle ioctl commands to obtain information from the cache 542 */ 543 int 544 mrt_ioctl(struct socket *so, u_long cmd, void *data) 545 { 546 int error; 547 548 if (so != ip_mrouter) 549 error = EINVAL; 550 else 551 switch (cmd) { 552 case SIOCGETVIFCNT: 553 error = get_vif_cnt((struct sioc_vif_req *)data); 554 break; 555 case SIOCGETSGCNT: 556 error = get_sg_cnt((struct sioc_sg_req *)data); 557 break; 558 default: 559 error = EINVAL; 560 break; 561 } 562 563 return (error); 564 } 565 566 /* 567 * returns the packet, byte, rpf-failure count for the source group provided 568 */ 569 static int 570 get_sg_cnt(struct sioc_sg_req *req) 571 { 572 int s; 573 struct mfc *rt; 574 575 s = splsoftnet(); 576 rt = mfc_find(&req->src, &req->grp); 577 if (rt == NULL) { 578 splx(s); 579 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 580 return (EADDRNOTAVAIL); 581 } 582 req->pktcnt = rt->mfc_pkt_cnt; 583 req->bytecnt = rt->mfc_byte_cnt; 584 req->wrong_if = rt->mfc_wrong_if; 585 splx(s); 586 587 return (0); 588 } 589 590 /* 591 * returns the input and output packet and byte counts on the vif provided 592 */ 593 static int 594 get_vif_cnt(struct sioc_vif_req *req) 595 { 596 vifi_t vifi = req->vifi; 597 598 if (vifi >= numvifs) 599 return (EINVAL); 600 601 req->icount = viftable[vifi].v_pkt_in; 602 req->ocount = viftable[vifi].v_pkt_out; 603 req->ibytes = viftable[vifi].v_bytes_in; 604 req->obytes = viftable[vifi].v_bytes_out; 605 606 return (0); 607 } 608 609 /* 610 * Enable multicast routing 611 */ 612 static int 613 ip_mrouter_init(struct socket *so, int v) 614 { 615 if (mrtdebug) 616 log(LOG_DEBUG, 617 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 618 so->so_type, so->so_proto->pr_protocol); 619 620 if (so->so_type != SOCK_RAW || 621 so->so_proto->pr_protocol != IPPROTO_IGMP) 622 return (EOPNOTSUPP); 623 624 if (v != 1) 625 return (EINVAL); 626 627 if (ip_mrouter != NULL) 628 return (EADDRINUSE); 629 630 ip_mrouter = so; 631 632 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash); 633 memset((void *)nexpire, 0, sizeof(nexpire)); 634 635 pim_assert = 0; 636 637 callout_init(&expire_upcalls_ch, 0); 638 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 639 expire_upcalls, NULL); 640 641 callout_init(&bw_upcalls_ch, 0); 642 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 643 expire_bw_upcalls_send, NULL); 644 645 callout_init(&bw_meter_ch, 0); 646 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 647 expire_bw_meter_process, NULL); 648 649 if (mrtdebug) 650 log(LOG_DEBUG, "ip_mrouter_init\n"); 651 652 return (0); 653 } 654 655 /* 656 * Disable multicast routing 657 */ 658 int 659 ip_mrouter_done(void) 660 { 661 vifi_t vifi; 662 struct vif *vifp; 663 int i; 664 int s; 665 666 s = splsoftnet(); 667 668 /* Clear out all the vifs currently in use. */ 669 for (vifi = 0; vifi < numvifs; vifi++) { 670 vifp = &viftable[vifi]; 671 if (!in_nullhost(vifp->v_lcl_addr)) 672 reset_vif(vifp); 673 } 674 675 numvifs = 0; 676 pim_assert = 0; 677 mrt_api_config = 0; 678 679 callout_stop(&expire_upcalls_ch); 680 callout_stop(&bw_upcalls_ch); 681 callout_stop(&bw_meter_ch); 682 683 /* 684 * Free all multicast forwarding cache entries. 685 */ 686 for (i = 0; i < MFCTBLSIZ; i++) { 687 struct mfc *rt, *nrt; 688 689 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 690 nrt = LIST_NEXT(rt, mfc_hash); 691 692 expire_mfc(rt); 693 } 694 } 695 696 memset((void *)nexpire, 0, sizeof(nexpire)); 697 hashdone(mfchashtbl, HASH_LIST, mfchash); 698 mfchashtbl = NULL; 699 700 bw_upcalls_n = 0; 701 memset(bw_meter_timers, 0, sizeof(bw_meter_timers)); 702 703 /* Reset de-encapsulation cache. */ 704 705 ip_mrouter = NULL; 706 707 splx(s); 708 709 if (mrtdebug) 710 log(LOG_DEBUG, "ip_mrouter_done\n"); 711 712 return (0); 713 } 714 715 void 716 ip_mrouter_detach(struct ifnet *ifp) 717 { 718 int vifi, i; 719 struct vif *vifp; 720 struct mfc *rt; 721 struct rtdetq *rte; 722 723 /* XXX not sure about side effect to userland routing daemon */ 724 for (vifi = 0; vifi < numvifs; vifi++) { 725 vifp = &viftable[vifi]; 726 if (vifp->v_ifp == ifp) 727 reset_vif(vifp); 728 } 729 for (i = 0; i < MFCTBLSIZ; i++) { 730 if (nexpire[i] == 0) 731 continue; 732 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 733 for (rte = rt->mfc_stall; rte; rte = rte->next) { 734 if (rte->ifp == ifp) 735 rte->ifp = NULL; 736 } 737 } 738 } 739 } 740 741 /* 742 * Set PIM assert processing global 743 */ 744 static int 745 set_assert(int i) 746 { 747 pim_assert = !!i; 748 return (0); 749 } 750 751 /* 752 * Configure API capabilities 753 */ 754 static int 755 set_api_config(struct sockopt *sopt) 756 { 757 u_int32_t apival; 758 int i, error; 759 760 /* 761 * We can set the API capabilities only if it is the first operation 762 * after MRT_INIT. I.e.: 763 * - there are no vifs installed 764 * - pim_assert is not enabled 765 * - the MFC table is empty 766 */ 767 error = sockopt_get(sopt, &apival, sizeof(apival)); 768 if (error) 769 return (error); 770 if (numvifs > 0) 771 return (EPERM); 772 if (pim_assert) 773 return (EPERM); 774 for (i = 0; i < MFCTBLSIZ; i++) { 775 if (LIST_FIRST(&mfchashtbl[i]) != NULL) 776 return (EPERM); 777 } 778 779 mrt_api_config = apival & mrt_api_support; 780 return (0); 781 } 782 783 /* 784 * Add a vif to the vif table 785 */ 786 static int 787 add_vif(struct vifctl *vifcp) 788 { 789 struct vif *vifp; 790 struct ifaddr *ifa; 791 struct ifnet *ifp; 792 int error, s; 793 struct sockaddr_in sin; 794 795 if (vifcp->vifc_vifi >= MAXVIFS) 796 return (EINVAL); 797 if (in_nullhost(vifcp->vifc_lcl_addr)) 798 return (EADDRNOTAVAIL); 799 800 vifp = &viftable[vifcp->vifc_vifi]; 801 if (!in_nullhost(vifp->v_lcl_addr)) 802 return (EADDRINUSE); 803 804 /* Find the interface with an address in AF_INET family. */ 805 #ifdef PIM 806 if (vifcp->vifc_flags & VIFF_REGISTER) { 807 /* 808 * XXX: Because VIFF_REGISTER does not really need a valid 809 * local interface (e.g. it could be 127.0.0.2), we don't 810 * check its address. 811 */ 812 ifp = NULL; 813 } else 814 #endif 815 { 816 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0); 817 ifa = ifa_ifwithaddr(sintosa(&sin)); 818 if (ifa == NULL) 819 return (EADDRNOTAVAIL); 820 ifp = ifa->ifa_ifp; 821 } 822 823 if (vifcp->vifc_flags & VIFF_TUNNEL) { 824 if (vifcp->vifc_flags & VIFF_SRCRT) { 825 log(LOG_ERR, "source routed tunnels not supported\n"); 826 return (EOPNOTSUPP); 827 } 828 829 /* attach this vif to decapsulator dispatch table */ 830 /* 831 * XXX Use addresses in registration so that matching 832 * can be done with radix tree in decapsulator. But, 833 * we need to check inner header for multicast, so 834 * this requires both radix tree lookup and then a 835 * function to check, and this is not supported yet. 836 */ 837 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 838 vif_encapcheck, &vif_protosw, vifp); 839 if (!vifp->v_encap_cookie) 840 return (EINVAL); 841 842 /* Create a fake encapsulation interface. */ 843 ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO); 844 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 845 "mdecap%d", vifcp->vifc_vifi); 846 847 /* Prepare cached route entry. */ 848 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 849 #ifdef PIM 850 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 851 ifp = &multicast_register_if; 852 if (mrtdebug) 853 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 854 (void *)ifp); 855 if (reg_vif_num == VIFI_INVALID) { 856 memset(ifp, 0, sizeof(*ifp)); 857 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 858 "register_vif"); 859 ifp->if_flags = IFF_LOOPBACK; 860 memset(&vifp->v_route, 0, sizeof(vifp->v_route)); 861 reg_vif_num = vifcp->vifc_vifi; 862 } 863 #endif 864 } else { 865 /* Make sure the interface supports multicast. */ 866 if ((ifp->if_flags & IFF_MULTICAST) == 0) 867 return (EOPNOTSUPP); 868 869 /* Enable promiscuous reception of all IP multicasts. */ 870 sockaddr_in_init(&sin, &zeroin_addr, 0); 871 error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)); 872 if (error) 873 return (error); 874 } 875 876 s = splsoftnet(); 877 878 /* Define parameters for the tbf structure. */ 879 vifp->tbf_q = NULL; 880 vifp->tbf_t = &vifp->tbf_q; 881 microtime(&vifp->tbf_last_pkt_t); 882 vifp->tbf_n_tok = 0; 883 vifp->tbf_q_len = 0; 884 vifp->tbf_max_q_len = MAXQSIZE; 885 886 vifp->v_flags = vifcp->vifc_flags; 887 vifp->v_threshold = vifcp->vifc_threshold; 888 /* scaling up here allows division by 1024 in critical code */ 889 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 890 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 891 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 892 vifp->v_ifp = ifp; 893 /* Initialize per vif pkt counters. */ 894 vifp->v_pkt_in = 0; 895 vifp->v_pkt_out = 0; 896 vifp->v_bytes_in = 0; 897 vifp->v_bytes_out = 0; 898 899 callout_init(&vifp->v_repq_ch, 0); 900 901 #ifdef RSVP_ISI 902 vifp->v_rsvp_on = 0; 903 vifp->v_rsvpd = NULL; 904 #endif /* RSVP_ISI */ 905 906 splx(s); 907 908 /* Adjust numvifs up if the vifi is higher than numvifs. */ 909 if (numvifs <= vifcp->vifc_vifi) 910 numvifs = vifcp->vifc_vifi + 1; 911 912 if (mrtdebug) 913 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 914 vifcp->vifc_vifi, 915 ntohl(vifcp->vifc_lcl_addr.s_addr), 916 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 917 ntohl(vifcp->vifc_rmt_addr.s_addr), 918 vifcp->vifc_threshold, 919 vifcp->vifc_rate_limit); 920 921 return (0); 922 } 923 924 void 925 reset_vif(struct vif *vifp) 926 { 927 struct mbuf *m, *n; 928 struct ifnet *ifp; 929 struct sockaddr_in sin; 930 931 callout_stop(&vifp->v_repq_ch); 932 933 /* detach this vif from decapsulator dispatch table */ 934 encap_detach(vifp->v_encap_cookie); 935 vifp->v_encap_cookie = NULL; 936 937 /* 938 * Free packets queued at the interface 939 */ 940 for (m = vifp->tbf_q; m != NULL; m = n) { 941 n = m->m_nextpkt; 942 m_freem(m); 943 } 944 945 if (vifp->v_flags & VIFF_TUNNEL) 946 free(vifp->v_ifp, M_MRTABLE); 947 else if (vifp->v_flags & VIFF_REGISTER) { 948 #ifdef PIM 949 reg_vif_num = VIFI_INVALID; 950 #endif 951 } else { 952 sockaddr_in_init(&sin, &zeroin_addr, 0); 953 ifp = vifp->v_ifp; 954 if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin)); 955 } 956 memset((void *)vifp, 0, sizeof(*vifp)); 957 } 958 959 /* 960 * Delete a vif from the vif table 961 */ 962 static int 963 del_vif(vifi_t *vifip) 964 { 965 struct vif *vifp; 966 vifi_t vifi; 967 int s; 968 969 if (*vifip >= numvifs) 970 return (EINVAL); 971 972 vifp = &viftable[*vifip]; 973 if (in_nullhost(vifp->v_lcl_addr)) 974 return (EADDRNOTAVAIL); 975 976 s = splsoftnet(); 977 978 reset_vif(vifp); 979 980 /* Adjust numvifs down */ 981 for (vifi = numvifs; vifi > 0; vifi--) 982 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 983 break; 984 numvifs = vifi; 985 986 splx(s); 987 988 if (mrtdebug) 989 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 990 991 return (0); 992 } 993 994 /* 995 * update an mfc entry without resetting counters and S,G addresses. 996 */ 997 static void 998 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 999 { 1000 int i; 1001 1002 rt->mfc_parent = mfccp->mfcc_parent; 1003 for (i = 0; i < numvifs; i++) { 1004 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1005 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1006 MRT_MFC_FLAGS_ALL; 1007 } 1008 /* set the RP address */ 1009 if (mrt_api_config & MRT_MFC_RP) 1010 rt->mfc_rp = mfccp->mfcc_rp; 1011 else 1012 rt->mfc_rp = zeroin_addr; 1013 } 1014 1015 /* 1016 * fully initialize an mfc entry from the parameter. 1017 */ 1018 static void 1019 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1020 { 1021 rt->mfc_origin = mfccp->mfcc_origin; 1022 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1023 1024 update_mfc_params(rt, mfccp); 1025 1026 /* initialize pkt counters per src-grp */ 1027 rt->mfc_pkt_cnt = 0; 1028 rt->mfc_byte_cnt = 0; 1029 rt->mfc_wrong_if = 0; 1030 timerclear(&rt->mfc_last_assert); 1031 } 1032 1033 static void 1034 expire_mfc(struct mfc *rt) 1035 { 1036 struct rtdetq *rte, *nrte; 1037 1038 free_bw_list(rt->mfc_bw_meter); 1039 1040 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1041 nrte = rte->next; 1042 m_freem(rte->m); 1043 free(rte, M_MRTABLE); 1044 } 1045 1046 LIST_REMOVE(rt, mfc_hash); 1047 free(rt, M_MRTABLE); 1048 } 1049 1050 /* 1051 * Add an mfc entry 1052 */ 1053 static int 1054 add_mfc(struct sockopt *sopt) 1055 { 1056 struct mfcctl2 mfcctl2; 1057 struct mfcctl2 *mfccp; 1058 struct mfc *rt; 1059 u_int32_t hash = 0; 1060 struct rtdetq *rte, *nrte; 1061 u_short nstl; 1062 int s; 1063 int error; 1064 1065 /* 1066 * select data size depending on API version. 1067 */ 1068 mfccp = &mfcctl2; 1069 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1070 1071 if (mrt_api_config & MRT_API_FLAGS_ALL) 1072 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1073 else 1074 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1075 1076 if (error) 1077 return (error); 1078 1079 s = splsoftnet(); 1080 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1081 1082 /* If an entry already exists, just update the fields */ 1083 if (rt) { 1084 if (mrtdebug & DEBUG_MFC) 1085 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1086 ntohl(mfccp->mfcc_origin.s_addr), 1087 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1088 mfccp->mfcc_parent); 1089 1090 update_mfc_params(rt, mfccp); 1091 1092 splx(s); 1093 return (0); 1094 } 1095 1096 /* 1097 * Find the entry for which the upcall was made and update 1098 */ 1099 nstl = 0; 1100 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1101 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1102 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1103 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1104 rt->mfc_stall != NULL) { 1105 if (nstl++) 1106 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1107 "multiple kernel entries", 1108 ntohl(mfccp->mfcc_origin.s_addr), 1109 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1110 mfccp->mfcc_parent, rt->mfc_stall); 1111 1112 if (mrtdebug & DEBUG_MFC) 1113 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1114 ntohl(mfccp->mfcc_origin.s_addr), 1115 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1116 mfccp->mfcc_parent, rt->mfc_stall); 1117 1118 rte = rt->mfc_stall; 1119 init_mfc_params(rt, mfccp); 1120 rt->mfc_stall = NULL; 1121 1122 rt->mfc_expire = 0; /* Don't clean this guy up */ 1123 nexpire[hash]--; 1124 1125 /* free packets Qed at the end of this entry */ 1126 for (; rte != NULL; rte = nrte) { 1127 nrte = rte->next; 1128 if (rte->ifp) { 1129 #ifdef RSVP_ISI 1130 ip_mdq(rte->m, rte->ifp, rt, -1); 1131 #else 1132 ip_mdq(rte->m, rte->ifp, rt); 1133 #endif /* RSVP_ISI */ 1134 } 1135 m_freem(rte->m); 1136 #ifdef UPCALL_TIMING 1137 collate(&rte->t); 1138 #endif /* UPCALL_TIMING */ 1139 free(rte, M_MRTABLE); 1140 } 1141 } 1142 } 1143 1144 /* 1145 * It is possible that an entry is being inserted without an upcall 1146 */ 1147 if (nstl == 0) { 1148 /* 1149 * No mfc; make a new one 1150 */ 1151 if (mrtdebug & DEBUG_MFC) 1152 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1153 ntohl(mfccp->mfcc_origin.s_addr), 1154 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1155 mfccp->mfcc_parent); 1156 1157 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1158 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1159 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1160 init_mfc_params(rt, mfccp); 1161 if (rt->mfc_expire) 1162 nexpire[hash]--; 1163 rt->mfc_expire = 0; 1164 break; /* XXX */ 1165 } 1166 } 1167 if (rt == NULL) { /* no upcall, so make a new entry */ 1168 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1169 M_NOWAIT); 1170 if (rt == NULL) { 1171 splx(s); 1172 return (ENOBUFS); 1173 } 1174 1175 init_mfc_params(rt, mfccp); 1176 rt->mfc_expire = 0; 1177 rt->mfc_stall = NULL; 1178 rt->mfc_bw_meter = NULL; 1179 1180 /* insert new entry at head of hash chain */ 1181 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1182 } 1183 } 1184 1185 splx(s); 1186 return (0); 1187 } 1188 1189 #ifdef UPCALL_TIMING 1190 /* 1191 * collect delay statistics on the upcalls 1192 */ 1193 static void 1194 collate(struct timeval *t) 1195 { 1196 u_int32_t d; 1197 struct timeval tp; 1198 u_int32_t delta; 1199 1200 microtime(&tp); 1201 1202 if (timercmp(t, &tp, <)) { 1203 TV_DELTA(tp, *t, delta); 1204 1205 d = delta >> 10; 1206 if (d > 50) 1207 d = 50; 1208 1209 ++upcall_data[d]; 1210 } 1211 } 1212 #endif /* UPCALL_TIMING */ 1213 1214 /* 1215 * Delete an mfc entry 1216 */ 1217 static int 1218 del_mfc(struct sockopt *sopt) 1219 { 1220 struct mfcctl2 mfcctl2; 1221 struct mfcctl2 *mfccp; 1222 struct mfc *rt; 1223 int s; 1224 int error; 1225 1226 /* 1227 * XXX: for deleting MFC entries the information in entries 1228 * of size "struct mfcctl" is sufficient. 1229 */ 1230 1231 mfccp = &mfcctl2; 1232 memset(&mfcctl2, 0, sizeof(mfcctl2)); 1233 1234 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl)); 1235 if (error) { 1236 /* Try with the size of mfcctl2. */ 1237 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2)); 1238 if (error) 1239 return (error); 1240 } 1241 1242 if (mrtdebug & DEBUG_MFC) 1243 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1244 ntohl(mfccp->mfcc_origin.s_addr), 1245 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1246 1247 s = splsoftnet(); 1248 1249 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1250 if (rt == NULL) { 1251 splx(s); 1252 return (EADDRNOTAVAIL); 1253 } 1254 1255 /* 1256 * free the bw_meter entries 1257 */ 1258 free_bw_list(rt->mfc_bw_meter); 1259 rt->mfc_bw_meter = NULL; 1260 1261 LIST_REMOVE(rt, mfc_hash); 1262 free(rt, M_MRTABLE); 1263 1264 splx(s); 1265 return (0); 1266 } 1267 1268 static int 1269 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1270 { 1271 if (s) { 1272 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) { 1273 sorwakeup(s); 1274 return (0); 1275 } 1276 } 1277 m_freem(mm); 1278 return (-1); 1279 } 1280 1281 /* 1282 * IP multicast forwarding function. This function assumes that the packet 1283 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1284 * pointed to by "ifp", and the packet is to be relayed to other networks 1285 * that have members of the packet's destination IP multicast group. 1286 * 1287 * The packet is returned unscathed to the caller, unless it is 1288 * erroneous, in which case a non-zero return value tells the caller to 1289 * discard it. 1290 */ 1291 1292 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1293 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1294 1295 int 1296 #ifdef RSVP_ISI 1297 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) 1298 #else 1299 ip_mforward(struct mbuf *m, struct ifnet *ifp) 1300 #endif /* RSVP_ISI */ 1301 { 1302 struct ip *ip = mtod(m, struct ip *); 1303 struct mfc *rt; 1304 static int srctun = 0; 1305 struct mbuf *mm; 1306 struct sockaddr_in sin; 1307 int s; 1308 vifi_t vifi; 1309 1310 if (mrtdebug & DEBUG_FORWARD) 1311 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1312 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1313 1314 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1315 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1316 /* 1317 * Packet arrived via a physical interface or 1318 * an encapsulated tunnel or a register_vif. 1319 */ 1320 } else { 1321 /* 1322 * Packet arrived through a source-route tunnel. 1323 * Source-route tunnels are no longer supported. 1324 */ 1325 if ((srctun++ % 1000) == 0) 1326 log(LOG_ERR, 1327 "ip_mforward: received source-routed packet from %x\n", 1328 ntohl(ip->ip_src.s_addr)); 1329 1330 return (1); 1331 } 1332 1333 /* 1334 * Clear any in-bound checksum flags for this packet. 1335 */ 1336 m->m_pkthdr.csum_flags = 0; 1337 1338 #ifdef RSVP_ISI 1339 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1340 if (ip->ip_ttl < MAXTTL) 1341 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1342 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1343 struct vif *vifp = viftable + vifi; 1344 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", 1345 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1346 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1347 vifp->v_ifp->if_xname); 1348 } 1349 return (ip_mdq(m, ifp, NULL, vifi)); 1350 } 1351 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1352 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", 1353 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1354 } 1355 #endif /* RSVP_ISI */ 1356 1357 /* 1358 * Don't forward a packet with time-to-live of zero or one, 1359 * or a packet destined to a local-only group. 1360 */ 1361 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1362 return (0); 1363 1364 /* 1365 * Determine forwarding vifs from the forwarding cache table 1366 */ 1367 s = splsoftnet(); 1368 ++mrtstat.mrts_mfc_lookups; 1369 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1370 1371 /* Entry exists, so forward if necessary */ 1372 if (rt != NULL) { 1373 splx(s); 1374 #ifdef RSVP_ISI 1375 return (ip_mdq(m, ifp, rt, -1)); 1376 #else 1377 return (ip_mdq(m, ifp, rt)); 1378 #endif /* RSVP_ISI */ 1379 } else { 1380 /* 1381 * If we don't have a route for packet's origin, 1382 * Make a copy of the packet & send message to routing daemon 1383 */ 1384 1385 struct mbuf *mb0; 1386 struct rtdetq *rte; 1387 u_int32_t hash; 1388 int hlen = ip->ip_hl << 2; 1389 #ifdef UPCALL_TIMING 1390 struct timeval tp; 1391 1392 microtime(&tp); 1393 #endif /* UPCALL_TIMING */ 1394 1395 ++mrtstat.mrts_mfc_misses; 1396 1397 mrtstat.mrts_no_route++; 1398 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1399 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1400 ntohl(ip->ip_src.s_addr), 1401 ntohl(ip->ip_dst.s_addr)); 1402 1403 /* 1404 * Allocate mbufs early so that we don't do extra work if we are 1405 * just going to fail anyway. Make sure to pullup the header so 1406 * that other people can't step on it. 1407 */ 1408 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1409 M_NOWAIT); 1410 if (rte == NULL) { 1411 splx(s); 1412 return (ENOBUFS); 1413 } 1414 mb0 = m_copypacket(m, M_DONTWAIT); 1415 M_PULLUP(mb0, hlen); 1416 if (mb0 == NULL) { 1417 free(rte, M_MRTABLE); 1418 splx(s); 1419 return (ENOBUFS); 1420 } 1421 1422 /* is there an upcall waiting for this flow? */ 1423 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1424 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1425 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1426 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1427 rt->mfc_stall != NULL) 1428 break; 1429 } 1430 1431 if (rt == NULL) { 1432 int i; 1433 struct igmpmsg *im; 1434 1435 /* 1436 * Locate the vifi for the incoming interface for 1437 * this packet. 1438 * If none found, drop packet. 1439 */ 1440 for (vifi = 0; vifi < numvifs && 1441 viftable[vifi].v_ifp != ifp; vifi++) 1442 ; 1443 if (vifi >= numvifs) /* vif not found, drop packet */ 1444 goto non_fatal; 1445 1446 /* no upcall, so make a new entry */ 1447 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1448 M_NOWAIT); 1449 if (rt == NULL) 1450 goto fail; 1451 1452 /* 1453 * Make a copy of the header to send to the user level 1454 * process 1455 */ 1456 mm = m_copym(m, 0, hlen, M_DONTWAIT); 1457 M_PULLUP(mm, hlen); 1458 if (mm == NULL) 1459 goto fail1; 1460 1461 /* 1462 * Send message to routing daemon to install 1463 * a route into the kernel table 1464 */ 1465 1466 im = mtod(mm, struct igmpmsg *); 1467 im->im_msgtype = IGMPMSG_NOCACHE; 1468 im->im_mbz = 0; 1469 im->im_vif = vifi; 1470 1471 mrtstat.mrts_upcalls++; 1472 1473 sockaddr_in_init(&sin, &ip->ip_src, 0); 1474 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1475 log(LOG_WARNING, 1476 "ip_mforward: ip_mrouter socket queue full\n"); 1477 ++mrtstat.mrts_upq_sockfull; 1478 fail1: 1479 free(rt, M_MRTABLE); 1480 fail: 1481 free(rte, M_MRTABLE); 1482 m_freem(mb0); 1483 splx(s); 1484 return (ENOBUFS); 1485 } 1486 1487 /* insert new entry at head of hash chain */ 1488 rt->mfc_origin = ip->ip_src; 1489 rt->mfc_mcastgrp = ip->ip_dst; 1490 rt->mfc_pkt_cnt = 0; 1491 rt->mfc_byte_cnt = 0; 1492 rt->mfc_wrong_if = 0; 1493 rt->mfc_expire = UPCALL_EXPIRE; 1494 nexpire[hash]++; 1495 for (i = 0; i < numvifs; i++) { 1496 rt->mfc_ttls[i] = 0; 1497 rt->mfc_flags[i] = 0; 1498 } 1499 rt->mfc_parent = -1; 1500 1501 /* clear the RP address */ 1502 rt->mfc_rp = zeroin_addr; 1503 1504 rt->mfc_bw_meter = NULL; 1505 1506 /* link into table */ 1507 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1508 /* Add this entry to the end of the queue */ 1509 rt->mfc_stall = rte; 1510 } else { 1511 /* determine if q has overflowed */ 1512 struct rtdetq **p; 1513 int npkts = 0; 1514 1515 /* 1516 * XXX ouch! we need to append to the list, but we 1517 * only have a pointer to the front, so we have to 1518 * scan the entire list every time. 1519 */ 1520 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1521 if (++npkts > MAX_UPQ) { 1522 mrtstat.mrts_upq_ovflw++; 1523 non_fatal: 1524 free(rte, M_MRTABLE); 1525 m_freem(mb0); 1526 splx(s); 1527 return (0); 1528 } 1529 1530 /* Add this entry to the end of the queue */ 1531 *p = rte; 1532 } 1533 1534 rte->next = NULL; 1535 rte->m = mb0; 1536 rte->ifp = ifp; 1537 #ifdef UPCALL_TIMING 1538 rte->t = tp; 1539 #endif /* UPCALL_TIMING */ 1540 1541 splx(s); 1542 1543 return (0); 1544 } 1545 } 1546 1547 1548 /*ARGSUSED*/ 1549 static void 1550 expire_upcalls(void *v) 1551 { 1552 int i; 1553 int s; 1554 1555 s = splsoftnet(); 1556 1557 for (i = 0; i < MFCTBLSIZ; i++) { 1558 struct mfc *rt, *nrt; 1559 1560 if (nexpire[i] == 0) 1561 continue; 1562 1563 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1564 nrt = LIST_NEXT(rt, mfc_hash); 1565 1566 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1567 continue; 1568 nexpire[i]--; 1569 1570 /* 1571 * free the bw_meter entries 1572 */ 1573 while (rt->mfc_bw_meter != NULL) { 1574 struct bw_meter *x = rt->mfc_bw_meter; 1575 1576 rt->mfc_bw_meter = x->bm_mfc_next; 1577 kmem_free(x, sizeof(*x)); 1578 } 1579 1580 ++mrtstat.mrts_cache_cleanups; 1581 if (mrtdebug & DEBUG_EXPIRE) 1582 log(LOG_DEBUG, 1583 "expire_upcalls: expiring (%x %x)\n", 1584 ntohl(rt->mfc_origin.s_addr), 1585 ntohl(rt->mfc_mcastgrp.s_addr)); 1586 1587 expire_mfc(rt); 1588 } 1589 } 1590 1591 splx(s); 1592 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1593 expire_upcalls, NULL); 1594 } 1595 1596 /* 1597 * Packet forwarding routine once entry in the cache is made 1598 */ 1599 static int 1600 #ifdef RSVP_ISI 1601 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1602 #else 1603 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) 1604 #endif /* RSVP_ISI */ 1605 { 1606 struct ip *ip = mtod(m, struct ip *); 1607 vifi_t vifi; 1608 struct vif *vifp; 1609 struct sockaddr_in sin; 1610 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1611 1612 /* 1613 * Macro to send packet on vif. Since RSVP packets don't get counted on 1614 * input, they shouldn't get counted on output, so statistics keeping is 1615 * separate. 1616 */ 1617 #define MC_SEND(ip, vifp, m) do { \ 1618 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1619 encap_send((ip), (vifp), (m)); \ 1620 else \ 1621 phyint_send((ip), (vifp), (m)); \ 1622 } while (/*CONSTCOND*/ 0) 1623 1624 #ifdef RSVP_ISI 1625 /* 1626 * If xmt_vif is not -1, send on only the requested vif. 1627 * 1628 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1629 */ 1630 if (xmt_vif < numvifs) { 1631 #ifdef PIM 1632 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1633 pim_register_send(ip, viftable + xmt_vif, m, rt); 1634 else 1635 #endif 1636 MC_SEND(ip, viftable + xmt_vif, m); 1637 return (1); 1638 } 1639 #endif /* RSVP_ISI */ 1640 1641 /* 1642 * Don't forward if it didn't arrive from the parent vif for its origin. 1643 */ 1644 vifi = rt->mfc_parent; 1645 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1646 /* came in the wrong interface */ 1647 if (mrtdebug & DEBUG_FORWARD) 1648 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1649 ifp, vifi, 1650 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1651 ++mrtstat.mrts_wrong_if; 1652 ++rt->mfc_wrong_if; 1653 /* 1654 * If we are doing PIM assert processing, send a message 1655 * to the routing daemon. 1656 * 1657 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1658 * can complete the SPT switch, regardless of the type 1659 * of the iif (broadcast media, GRE tunnel, etc). 1660 */ 1661 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1662 struct timeval now; 1663 u_int32_t delta; 1664 1665 #ifdef PIM 1666 if (ifp == &multicast_register_if) 1667 pimstat.pims_rcv_registers_wrongiif++; 1668 #endif 1669 1670 /* Get vifi for the incoming packet */ 1671 for (vifi = 0; 1672 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1673 vifi++) 1674 ; 1675 if (vifi >= numvifs) { 1676 /* The iif is not found: ignore the packet. */ 1677 return (0); 1678 } 1679 1680 if (rt->mfc_flags[vifi] & 1681 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1682 /* WRONGVIF disabled: ignore the packet */ 1683 return (0); 1684 } 1685 1686 microtime(&now); 1687 1688 TV_DELTA(rt->mfc_last_assert, now, delta); 1689 1690 if (delta > ASSERT_MSG_TIME) { 1691 struct igmpmsg *im; 1692 int hlen = ip->ip_hl << 2; 1693 struct mbuf *mm = 1694 m_copym(m, 0, hlen, M_DONTWAIT); 1695 1696 M_PULLUP(mm, hlen); 1697 if (mm == NULL) 1698 return (ENOBUFS); 1699 1700 rt->mfc_last_assert = now; 1701 1702 im = mtod(mm, struct igmpmsg *); 1703 im->im_msgtype = IGMPMSG_WRONGVIF; 1704 im->im_mbz = 0; 1705 im->im_vif = vifi; 1706 1707 mrtstat.mrts_upcalls++; 1708 1709 sockaddr_in_init(&sin, &im->im_src, 0); 1710 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1711 log(LOG_WARNING, 1712 "ip_mforward: ip_mrouter socket queue full\n"); 1713 ++mrtstat.mrts_upq_sockfull; 1714 return (ENOBUFS); 1715 } 1716 } 1717 } 1718 return (0); 1719 } 1720 1721 /* If I sourced this packet, it counts as output, else it was input. */ 1722 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1723 viftable[vifi].v_pkt_out++; 1724 viftable[vifi].v_bytes_out += plen; 1725 } else { 1726 viftable[vifi].v_pkt_in++; 1727 viftable[vifi].v_bytes_in += plen; 1728 } 1729 rt->mfc_pkt_cnt++; 1730 rt->mfc_byte_cnt += plen; 1731 1732 /* 1733 * For each vif, decide if a copy of the packet should be forwarded. 1734 * Forward if: 1735 * - the ttl exceeds the vif's threshold 1736 * - there are group members downstream on interface 1737 */ 1738 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1739 if ((rt->mfc_ttls[vifi] > 0) && 1740 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1741 vifp->v_pkt_out++; 1742 vifp->v_bytes_out += plen; 1743 #ifdef PIM 1744 if (vifp->v_flags & VIFF_REGISTER) 1745 pim_register_send(ip, vifp, m, rt); 1746 else 1747 #endif 1748 MC_SEND(ip, vifp, m); 1749 } 1750 1751 /* 1752 * Perform upcall-related bw measuring. 1753 */ 1754 if (rt->mfc_bw_meter != NULL) { 1755 struct bw_meter *x; 1756 struct timeval now; 1757 1758 microtime(&now); 1759 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1760 bw_meter_receive_packet(x, plen, &now); 1761 } 1762 1763 return (0); 1764 } 1765 1766 #ifdef RSVP_ISI 1767 /* 1768 * check if a vif number is legal/ok. This is used by ip_output. 1769 */ 1770 int 1771 legal_vif_num(int vif) 1772 { 1773 if (vif >= 0 && vif < numvifs) 1774 return (1); 1775 else 1776 return (0); 1777 } 1778 #endif /* RSVP_ISI */ 1779 1780 static void 1781 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1782 { 1783 struct mbuf *mb_copy; 1784 int hlen = ip->ip_hl << 2; 1785 1786 /* 1787 * Make a new reference to the packet; make sure that 1788 * the IP header is actually copied, not just referenced, 1789 * so that ip_output() only scribbles on the copy. 1790 */ 1791 mb_copy = m_copypacket(m, M_DONTWAIT); 1792 M_PULLUP(mb_copy, hlen); 1793 if (mb_copy == NULL) 1794 return; 1795 1796 if (vifp->v_rate_limit <= 0) 1797 tbf_send_packet(vifp, mb_copy); 1798 else 1799 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1800 ntohs(ip->ip_len)); 1801 } 1802 1803 static void 1804 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1805 { 1806 struct mbuf *mb_copy; 1807 struct ip *ip_copy; 1808 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1809 1810 /* Take care of delayed checksums */ 1811 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1812 in_delayed_cksum(m); 1813 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1814 } 1815 1816 /* 1817 * copy the old packet & pullup its IP header into the 1818 * new mbuf so we can modify it. Try to fill the new 1819 * mbuf since if we don't the ethernet driver will. 1820 */ 1821 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1822 if (mb_copy == NULL) 1823 return; 1824 mb_copy->m_data += max_linkhdr; 1825 mb_copy->m_pkthdr.len = len; 1826 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1827 1828 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 1829 m_freem(mb_copy); 1830 return; 1831 } 1832 i = MHLEN - max_linkhdr; 1833 if (i > len) 1834 i = len; 1835 mb_copy = m_pullup(mb_copy, i); 1836 if (mb_copy == NULL) 1837 return; 1838 1839 /* 1840 * fill in the encapsulating IP header. 1841 */ 1842 ip_copy = mtod(mb_copy, struct ip *); 1843 *ip_copy = multicast_encap_iphdr; 1844 if (len < IP_MINFRAGSIZE) 1845 ip_copy->ip_id = 0; 1846 else 1847 ip_copy->ip_id = ip_newid(NULL); 1848 ip_copy->ip_len = htons(len); 1849 ip_copy->ip_src = vifp->v_lcl_addr; 1850 ip_copy->ip_dst = vifp->v_rmt_addr; 1851 1852 /* 1853 * turn the encapsulated IP header back into a valid one. 1854 */ 1855 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr)); 1856 --ip->ip_ttl; 1857 ip->ip_sum = 0; 1858 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1859 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1860 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1861 1862 if (vifp->v_rate_limit <= 0) 1863 tbf_send_packet(vifp, mb_copy); 1864 else 1865 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 1866 } 1867 1868 /* 1869 * De-encapsulate a packet and feed it back through ip input. 1870 */ 1871 static void 1872 vif_input(struct mbuf *m, ...) 1873 { 1874 int off, proto; 1875 va_list ap; 1876 struct vif *vifp; 1877 1878 va_start(ap, m); 1879 off = va_arg(ap, int); 1880 proto = va_arg(ap, int); 1881 va_end(ap); 1882 1883 vifp = (struct vif *)encap_getarg(m); 1884 if (!vifp || proto != ENCAP_PROTO) { 1885 m_freem(m); 1886 mrtstat.mrts_bad_tunnel++; 1887 return; 1888 } 1889 1890 m_adj(m, off); 1891 m->m_pkthdr.rcvif = vifp->v_ifp; 1892 1893 if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) { 1894 m_freem(m); 1895 } 1896 } 1897 1898 /* 1899 * Check if the packet should be received on the vif denoted by arg. 1900 * (The encap selection code will call this once per vif since each is 1901 * registered separately.) 1902 */ 1903 static int 1904 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg) 1905 { 1906 struct vif *vifp; 1907 struct ip ip; 1908 1909 #ifdef DIAGNOSTIC 1910 if (!arg || proto != IPPROTO_IPV4) 1911 panic("unexpected arg in vif_encapcheck"); 1912 #endif 1913 1914 /* 1915 * Accept the packet only if the inner heaader is multicast 1916 * and the outer header matches a tunnel-mode vif. Order 1917 * checks in the hope that common non-matching packets will be 1918 * rejected quickly. Assume that unicast IPv4 traffic in a 1919 * parallel tunnel (e.g. gif(4)) is unlikely. 1920 */ 1921 1922 /* Obtain the outer IP header and the vif pointer. */ 1923 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip); 1924 vifp = (struct vif *)arg; 1925 1926 /* 1927 * The outer source must match the vif's remote peer address. 1928 * For a multicast router with several tunnels, this is the 1929 * only check that will fail on packets in other tunnels, 1930 * assuming the local address is the same. 1931 */ 1932 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 1933 return 0; 1934 1935 /* The outer destination must match the vif's local address. */ 1936 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst)) 1937 return 0; 1938 1939 /* The vif must be of tunnel type. */ 1940 if ((vifp->v_flags & VIFF_TUNNEL) == 0) 1941 return 0; 1942 1943 /* Check that the inner destination is multicast. */ 1944 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip); 1945 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 1946 return 0; 1947 1948 /* 1949 * We have checked that both the outer src and dst addresses 1950 * match the vif, and that the inner destination is multicast 1951 * (224/5). By claiming more than 64, we intend to 1952 * preferentially take packets that also match a parallel 1953 * gif(4). 1954 */ 1955 return 32 + 32 + 5; 1956 } 1957 1958 /* 1959 * Token bucket filter module 1960 */ 1961 static void 1962 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) 1963 { 1964 1965 if (len > MAX_BKT_SIZE) { 1966 /* drop if packet is too large */ 1967 mrtstat.mrts_pkt2large++; 1968 m_freem(m); 1969 return; 1970 } 1971 1972 tbf_update_tokens(vifp); 1973 1974 /* 1975 * If there are enough tokens, and the queue is empty, send this packet 1976 * out immediately. Otherwise, try to insert it on this vif's queue. 1977 */ 1978 if (vifp->tbf_q_len == 0) { 1979 if (len <= vifp->tbf_n_tok) { 1980 vifp->tbf_n_tok -= len; 1981 tbf_send_packet(vifp, m); 1982 } else { 1983 /* queue packet and timeout till later */ 1984 tbf_queue(vifp, m); 1985 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 1986 tbf_reprocess_q, vifp); 1987 } 1988 } else { 1989 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 1990 !tbf_dq_sel(vifp, ip)) { 1991 /* queue full, and couldn't make room */ 1992 mrtstat.mrts_q_overflow++; 1993 m_freem(m); 1994 } else { 1995 /* queue length low enough, or made room */ 1996 tbf_queue(vifp, m); 1997 tbf_process_q(vifp); 1998 } 1999 } 2000 } 2001 2002 /* 2003 * adds a packet to the queue at the interface 2004 */ 2005 static void 2006 tbf_queue(struct vif *vifp, struct mbuf *m) 2007 { 2008 int s = splsoftnet(); 2009 2010 /* insert at tail */ 2011 *vifp->tbf_t = m; 2012 vifp->tbf_t = &m->m_nextpkt; 2013 vifp->tbf_q_len++; 2014 2015 splx(s); 2016 } 2017 2018 2019 /* 2020 * processes the queue at the interface 2021 */ 2022 static void 2023 tbf_process_q(struct vif *vifp) 2024 { 2025 struct mbuf *m; 2026 int len; 2027 int s = splsoftnet(); 2028 2029 /* 2030 * Loop through the queue at the interface and send as many packets 2031 * as possible. 2032 */ 2033 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2034 len = ntohs(mtod(m, struct ip *)->ip_len); 2035 2036 /* determine if the packet can be sent */ 2037 if (len <= vifp->tbf_n_tok) { 2038 /* if so, 2039 * reduce no of tokens, dequeue the packet, 2040 * send the packet. 2041 */ 2042 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2043 vifp->tbf_t = &vifp->tbf_q; 2044 --vifp->tbf_q_len; 2045 2046 m->m_nextpkt = NULL; 2047 vifp->tbf_n_tok -= len; 2048 tbf_send_packet(vifp, m); 2049 } else 2050 break; 2051 } 2052 splx(s); 2053 } 2054 2055 static void 2056 tbf_reprocess_q(void *arg) 2057 { 2058 struct vif *vifp = arg; 2059 2060 if (ip_mrouter == NULL) 2061 return; 2062 2063 tbf_update_tokens(vifp); 2064 tbf_process_q(vifp); 2065 2066 if (vifp->tbf_q_len != 0) 2067 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2068 tbf_reprocess_q, vifp); 2069 } 2070 2071 /* function that will selectively discard a member of the queue 2072 * based on the precedence value and the priority 2073 */ 2074 static int 2075 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2076 { 2077 u_int p; 2078 struct mbuf **mp, *m; 2079 int s = splsoftnet(); 2080 2081 p = priority(vifp, ip); 2082 2083 for (mp = &vifp->tbf_q, m = *mp; 2084 m != NULL; 2085 mp = &m->m_nextpkt, m = *mp) { 2086 if (p > priority(vifp, mtod(m, struct ip *))) { 2087 if ((*mp = m->m_nextpkt) == NULL) 2088 vifp->tbf_t = mp; 2089 --vifp->tbf_q_len; 2090 2091 m_freem(m); 2092 mrtstat.mrts_drop_sel++; 2093 splx(s); 2094 return (1); 2095 } 2096 } 2097 splx(s); 2098 return (0); 2099 } 2100 2101 static void 2102 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2103 { 2104 int error; 2105 int s = splsoftnet(); 2106 2107 if (vifp->v_flags & VIFF_TUNNEL) { 2108 /* If tunnel options */ 2109 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL); 2110 } else { 2111 /* if physical interface option, extract the options and then send */ 2112 struct ip_moptions imo; 2113 2114 imo.imo_multicast_ifp = vifp->v_ifp; 2115 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2116 imo.imo_multicast_loop = 1; 2117 #ifdef RSVP_ISI 2118 imo.imo_multicast_vif = -1; 2119 #endif 2120 2121 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS, 2122 &imo, NULL); 2123 2124 if (mrtdebug & DEBUG_XMIT) 2125 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2126 (long)(vifp - viftable), error); 2127 } 2128 splx(s); 2129 } 2130 2131 /* determine the current time and then 2132 * the elapsed time (between the last time and time now) 2133 * in milliseconds & update the no. of tokens in the bucket 2134 */ 2135 static void 2136 tbf_update_tokens(struct vif *vifp) 2137 { 2138 struct timeval tp; 2139 u_int32_t tm; 2140 int s = splsoftnet(); 2141 2142 microtime(&tp); 2143 2144 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2145 2146 /* 2147 * This formula is actually 2148 * "time in seconds" * "bytes/second". 2149 * 2150 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2151 * 2152 * The (1000/1024) was introduced in add_vif to optimize 2153 * this divide into a shift. 2154 */ 2155 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2156 vifp->tbf_last_pkt_t = tp; 2157 2158 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2159 vifp->tbf_n_tok = MAX_BKT_SIZE; 2160 2161 splx(s); 2162 } 2163 2164 static int 2165 priority(struct vif *vifp, struct ip *ip) 2166 { 2167 int prio = 50; /* the lowest priority -- default case */ 2168 2169 /* temporary hack; may add general packet classifier some day */ 2170 2171 /* 2172 * The UDP port space is divided up into four priority ranges: 2173 * [0, 16384) : unclassified - lowest priority 2174 * [16384, 32768) : audio - highest priority 2175 * [32768, 49152) : whiteboard - medium priority 2176 * [49152, 65536) : video - low priority 2177 */ 2178 if (ip->ip_p == IPPROTO_UDP) { 2179 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2180 2181 switch (ntohs(udp->uh_dport) & 0xc000) { 2182 case 0x4000: 2183 prio = 70; 2184 break; 2185 case 0x8000: 2186 prio = 60; 2187 break; 2188 case 0xc000: 2189 prio = 55; 2190 break; 2191 } 2192 2193 if (tbfdebug > 1) 2194 log(LOG_DEBUG, "port %x prio %d\n", 2195 ntohs(udp->uh_dport), prio); 2196 } 2197 2198 return (prio); 2199 } 2200 2201 /* 2202 * End of token bucket filter modifications 2203 */ 2204 #ifdef RSVP_ISI 2205 int 2206 ip_rsvp_vif_init(struct socket *so, struct mbuf *m) 2207 { 2208 int vifi, s; 2209 2210 if (rsvpdebug) 2211 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", 2212 so->so_type, so->so_proto->pr_protocol); 2213 2214 if (so->so_type != SOCK_RAW || 2215 so->so_proto->pr_protocol != IPPROTO_RSVP) 2216 return (EOPNOTSUPP); 2217 2218 /* Check mbuf. */ 2219 if (m == NULL || m->m_len != sizeof(int)) { 2220 return (EINVAL); 2221 } 2222 vifi = *(mtod(m, int *)); 2223 2224 if (rsvpdebug) 2225 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", 2226 vifi, rsvp_on); 2227 2228 s = splsoftnet(); 2229 2230 /* Check vif. */ 2231 if (!legal_vif_num(vifi)) { 2232 splx(s); 2233 return (EADDRNOTAVAIL); 2234 } 2235 2236 /* Check if socket is available. */ 2237 if (viftable[vifi].v_rsvpd != NULL) { 2238 splx(s); 2239 return (EADDRINUSE); 2240 } 2241 2242 viftable[vifi].v_rsvpd = so; 2243 /* 2244 * This may seem silly, but we need to be sure we don't over-increment 2245 * the RSVP counter, in case something slips up. 2246 */ 2247 if (!viftable[vifi].v_rsvp_on) { 2248 viftable[vifi].v_rsvp_on = 1; 2249 rsvp_on++; 2250 } 2251 2252 splx(s); 2253 return (0); 2254 } 2255 2256 int 2257 ip_rsvp_vif_done(struct socket *so, struct mbuf *m) 2258 { 2259 int vifi, s; 2260 2261 if (rsvpdebug) 2262 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", 2263 so->so_type, so->so_proto->pr_protocol); 2264 2265 if (so->so_type != SOCK_RAW || 2266 so->so_proto->pr_protocol != IPPROTO_RSVP) 2267 return (EOPNOTSUPP); 2268 2269 /* Check mbuf. */ 2270 if (m == NULL || m->m_len != sizeof(int)) { 2271 return (EINVAL); 2272 } 2273 vifi = *(mtod(m, int *)); 2274 2275 s = splsoftnet(); 2276 2277 /* Check vif. */ 2278 if (!legal_vif_num(vifi)) { 2279 splx(s); 2280 return (EADDRNOTAVAIL); 2281 } 2282 2283 if (rsvpdebug) 2284 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", 2285 viftable[vifi].v_rsvpd, so); 2286 2287 viftable[vifi].v_rsvpd = NULL; 2288 /* 2289 * This may seem silly, but we need to be sure we don't over-decrement 2290 * the RSVP counter, in case something slips up. 2291 */ 2292 if (viftable[vifi].v_rsvp_on) { 2293 viftable[vifi].v_rsvp_on = 0; 2294 rsvp_on--; 2295 } 2296 2297 splx(s); 2298 return (0); 2299 } 2300 2301 void 2302 ip_rsvp_force_done(struct socket *so) 2303 { 2304 int vifi, s; 2305 2306 /* Don't bother if it is not the right type of socket. */ 2307 if (so->so_type != SOCK_RAW || 2308 so->so_proto->pr_protocol != IPPROTO_RSVP) 2309 return; 2310 2311 s = splsoftnet(); 2312 2313 /* 2314 * The socket may be attached to more than one vif...this 2315 * is perfectly legal. 2316 */ 2317 for (vifi = 0; vifi < numvifs; vifi++) { 2318 if (viftable[vifi].v_rsvpd == so) { 2319 viftable[vifi].v_rsvpd = NULL; 2320 /* 2321 * This may seem silly, but we need to be sure we don't 2322 * over-decrement the RSVP counter, in case something 2323 * slips up. 2324 */ 2325 if (viftable[vifi].v_rsvp_on) { 2326 viftable[vifi].v_rsvp_on = 0; 2327 rsvp_on--; 2328 } 2329 } 2330 } 2331 2332 splx(s); 2333 return; 2334 } 2335 2336 void 2337 rsvp_input(struct mbuf *m, struct ifnet *ifp) 2338 { 2339 int vifi, s; 2340 struct ip *ip = mtod(m, struct ip *); 2341 struct sockaddr_in rsvp_src; 2342 2343 if (rsvpdebug) 2344 printf("rsvp_input: rsvp_on %d\n", rsvp_on); 2345 2346 /* 2347 * Can still get packets with rsvp_on = 0 if there is a local member 2348 * of the group to which the RSVP packet is addressed. But in this 2349 * case we want to throw the packet away. 2350 */ 2351 if (!rsvp_on) { 2352 m_freem(m); 2353 return; 2354 } 2355 2356 /* 2357 * If the old-style non-vif-associated socket is set, then use 2358 * it and ignore the new ones. 2359 */ 2360 if (ip_rsvpd != NULL) { 2361 if (rsvpdebug) 2362 printf("rsvp_input: " 2363 "Sending packet up old-style socket\n"); 2364 rip_input(m); /*XXX*/ 2365 return; 2366 } 2367 2368 s = splsoftnet(); 2369 2370 if (rsvpdebug) 2371 printf("rsvp_input: check vifs\n"); 2372 2373 /* Find which vif the packet arrived on. */ 2374 for (vifi = 0; vifi < numvifs; vifi++) { 2375 if (viftable[vifi].v_ifp == ifp) 2376 break; 2377 } 2378 2379 if (vifi == numvifs) { 2380 /* Can't find vif packet arrived on. Drop packet. */ 2381 if (rsvpdebug) 2382 printf("rsvp_input: " 2383 "Can't find vif for packet...dropping it.\n"); 2384 m_freem(m); 2385 splx(s); 2386 return; 2387 } 2388 2389 if (rsvpdebug) 2390 printf("rsvp_input: check socket\n"); 2391 2392 if (viftable[vifi].v_rsvpd == NULL) { 2393 /* 2394 * drop packet, since there is no specific socket for this 2395 * interface 2396 */ 2397 if (rsvpdebug) 2398 printf("rsvp_input: No socket defined for vif %d\n", 2399 vifi); 2400 m_freem(m); 2401 splx(s); 2402 return; 2403 } 2404 2405 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0); 2406 2407 if (rsvpdebug && m) 2408 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", 2409 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); 2410 2411 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2412 if (rsvpdebug) 2413 printf("rsvp_input: Failed to append to socket\n"); 2414 else 2415 if (rsvpdebug) 2416 printf("rsvp_input: send packet up\n"); 2417 2418 splx(s); 2419 } 2420 #endif /* RSVP_ISI */ 2421 2422 /* 2423 * Code for bandwidth monitors 2424 */ 2425 2426 /* 2427 * Define common interface for timeval-related methods 2428 */ 2429 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2430 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2431 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2432 2433 static uint32_t 2434 compute_bw_meter_flags(struct bw_upcall *req) 2435 { 2436 uint32_t flags = 0; 2437 2438 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2439 flags |= BW_METER_UNIT_PACKETS; 2440 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2441 flags |= BW_METER_UNIT_BYTES; 2442 if (req->bu_flags & BW_UPCALL_GEQ) 2443 flags |= BW_METER_GEQ; 2444 if (req->bu_flags & BW_UPCALL_LEQ) 2445 flags |= BW_METER_LEQ; 2446 2447 return flags; 2448 } 2449 2450 /* 2451 * Add a bw_meter entry 2452 */ 2453 static int 2454 add_bw_upcall(struct bw_upcall *req) 2455 { 2456 int s; 2457 struct mfc *mfc; 2458 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2459 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2460 struct timeval now; 2461 struct bw_meter *x; 2462 uint32_t flags; 2463 2464 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2465 return EOPNOTSUPP; 2466 2467 /* Test if the flags are valid */ 2468 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2469 return EINVAL; 2470 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2471 return EINVAL; 2472 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2473 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2474 return EINVAL; 2475 2476 /* Test if the threshold time interval is valid */ 2477 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2478 return EINVAL; 2479 2480 flags = compute_bw_meter_flags(req); 2481 2482 /* 2483 * Find if we have already same bw_meter entry 2484 */ 2485 s = splsoftnet(); 2486 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2487 if (mfc == NULL) { 2488 splx(s); 2489 return EADDRNOTAVAIL; 2490 } 2491 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2492 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2493 &req->bu_threshold.b_time, ==)) && 2494 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2495 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2496 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2497 splx(s); 2498 return 0; /* XXX Already installed */ 2499 } 2500 } 2501 2502 /* Allocate the new bw_meter entry */ 2503 x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP); 2504 if (x == NULL) { 2505 splx(s); 2506 return ENOBUFS; 2507 } 2508 2509 /* Set the new bw_meter entry */ 2510 x->bm_threshold.b_time = req->bu_threshold.b_time; 2511 microtime(&now); 2512 x->bm_start_time = now; 2513 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2514 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2515 x->bm_measured.b_packets = 0; 2516 x->bm_measured.b_bytes = 0; 2517 x->bm_flags = flags; 2518 x->bm_time_next = NULL; 2519 x->bm_time_hash = BW_METER_BUCKETS; 2520 2521 /* Add the new bw_meter entry to the front of entries for this MFC */ 2522 x->bm_mfc = mfc; 2523 x->bm_mfc_next = mfc->mfc_bw_meter; 2524 mfc->mfc_bw_meter = x; 2525 schedule_bw_meter(x, &now); 2526 splx(s); 2527 2528 return 0; 2529 } 2530 2531 static void 2532 free_bw_list(struct bw_meter *list) 2533 { 2534 while (list != NULL) { 2535 struct bw_meter *x = list; 2536 2537 list = list->bm_mfc_next; 2538 unschedule_bw_meter(x); 2539 kmem_free(x, sizeof(*x)); 2540 } 2541 } 2542 2543 /* 2544 * Delete one or multiple bw_meter entries 2545 */ 2546 static int 2547 del_bw_upcall(struct bw_upcall *req) 2548 { 2549 int s; 2550 struct mfc *mfc; 2551 struct bw_meter *x; 2552 2553 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2554 return EOPNOTSUPP; 2555 2556 s = splsoftnet(); 2557 /* Find the corresponding MFC entry */ 2558 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2559 if (mfc == NULL) { 2560 splx(s); 2561 return EADDRNOTAVAIL; 2562 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2563 /* 2564 * Delete all bw_meter entries for this mfc 2565 */ 2566 struct bw_meter *list; 2567 2568 list = mfc->mfc_bw_meter; 2569 mfc->mfc_bw_meter = NULL; 2570 free_bw_list(list); 2571 splx(s); 2572 return 0; 2573 } else { /* Delete a single bw_meter entry */ 2574 struct bw_meter *prev; 2575 uint32_t flags = 0; 2576 2577 flags = compute_bw_meter_flags(req); 2578 2579 /* Find the bw_meter entry to delete */ 2580 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2581 prev = x, x = x->bm_mfc_next) { 2582 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2583 &req->bu_threshold.b_time, ==)) && 2584 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2585 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2586 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2587 break; 2588 } 2589 if (x != NULL) { /* Delete entry from the list for this MFC */ 2590 if (prev != NULL) 2591 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2592 else 2593 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2594 2595 unschedule_bw_meter(x); 2596 splx(s); 2597 /* Free the bw_meter entry */ 2598 kmem_free(x, sizeof(*x)); 2599 return 0; 2600 } else { 2601 splx(s); 2602 return EINVAL; 2603 } 2604 } 2605 /* NOTREACHED */ 2606 } 2607 2608 /* 2609 * Perform bandwidth measurement processing that may result in an upcall 2610 */ 2611 static void 2612 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2613 { 2614 struct timeval delta; 2615 2616 delta = *nowp; 2617 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2618 2619 if (x->bm_flags & BW_METER_GEQ) { 2620 /* 2621 * Processing for ">=" type of bw_meter entry 2622 */ 2623 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2624 /* Reset the bw_meter entry */ 2625 x->bm_start_time = *nowp; 2626 x->bm_measured.b_packets = 0; 2627 x->bm_measured.b_bytes = 0; 2628 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2629 } 2630 2631 /* Record that a packet is received */ 2632 x->bm_measured.b_packets++; 2633 x->bm_measured.b_bytes += plen; 2634 2635 /* 2636 * Test if we should deliver an upcall 2637 */ 2638 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2639 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2640 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2641 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2642 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2643 /* Prepare an upcall for delivery */ 2644 bw_meter_prepare_upcall(x, nowp); 2645 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2646 } 2647 } 2648 } else if (x->bm_flags & BW_METER_LEQ) { 2649 /* 2650 * Processing for "<=" type of bw_meter entry 2651 */ 2652 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2653 /* 2654 * We are behind time with the multicast forwarding table 2655 * scanning for "<=" type of bw_meter entries, so test now 2656 * if we should deliver an upcall. 2657 */ 2658 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2659 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2660 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2661 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2662 /* Prepare an upcall for delivery */ 2663 bw_meter_prepare_upcall(x, nowp); 2664 } 2665 /* Reschedule the bw_meter entry */ 2666 unschedule_bw_meter(x); 2667 schedule_bw_meter(x, nowp); 2668 } 2669 2670 /* Record that a packet is received */ 2671 x->bm_measured.b_packets++; 2672 x->bm_measured.b_bytes += plen; 2673 2674 /* 2675 * Test if we should restart the measuring interval 2676 */ 2677 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2678 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2679 (x->bm_flags & BW_METER_UNIT_BYTES && 2680 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2681 /* Don't restart the measuring interval */ 2682 } else { 2683 /* Do restart the measuring interval */ 2684 /* 2685 * XXX: note that we don't unschedule and schedule, because this 2686 * might be too much overhead per packet. Instead, when we process 2687 * all entries for a given timer hash bin, we check whether it is 2688 * really a timeout. If not, we reschedule at that time. 2689 */ 2690 x->bm_start_time = *nowp; 2691 x->bm_measured.b_packets = 0; 2692 x->bm_measured.b_bytes = 0; 2693 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2694 } 2695 } 2696 } 2697 2698 /* 2699 * Prepare a bandwidth-related upcall 2700 */ 2701 static void 2702 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2703 { 2704 struct timeval delta; 2705 struct bw_upcall *u; 2706 2707 /* 2708 * Compute the measured time interval 2709 */ 2710 delta = *nowp; 2711 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2712 2713 /* 2714 * If there are too many pending upcalls, deliver them now 2715 */ 2716 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2717 bw_upcalls_send(); 2718 2719 /* 2720 * Set the bw_upcall entry 2721 */ 2722 u = &bw_upcalls[bw_upcalls_n++]; 2723 u->bu_src = x->bm_mfc->mfc_origin; 2724 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2725 u->bu_threshold.b_time = x->bm_threshold.b_time; 2726 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2727 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2728 u->bu_measured.b_time = delta; 2729 u->bu_measured.b_packets = x->bm_measured.b_packets; 2730 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2731 u->bu_flags = 0; 2732 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2733 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2734 if (x->bm_flags & BW_METER_UNIT_BYTES) 2735 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2736 if (x->bm_flags & BW_METER_GEQ) 2737 u->bu_flags |= BW_UPCALL_GEQ; 2738 if (x->bm_flags & BW_METER_LEQ) 2739 u->bu_flags |= BW_UPCALL_LEQ; 2740 } 2741 2742 /* 2743 * Send the pending bandwidth-related upcalls 2744 */ 2745 static void 2746 bw_upcalls_send(void) 2747 { 2748 struct mbuf *m; 2749 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2750 struct sockaddr_in k_igmpsrc = { 2751 .sin_len = sizeof(k_igmpsrc), 2752 .sin_family = AF_INET, 2753 }; 2754 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2755 0, /* unused2 */ 2756 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2757 0, /* im_mbz */ 2758 0, /* im_vif */ 2759 0, /* unused3 */ 2760 { 0 }, /* im_src */ 2761 { 0 } }; /* im_dst */ 2762 2763 if (bw_upcalls_n == 0) 2764 return; /* No pending upcalls */ 2765 2766 bw_upcalls_n = 0; 2767 2768 /* 2769 * Allocate a new mbuf, initialize it with the header and 2770 * the payload for the pending calls. 2771 */ 2772 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2773 if (m == NULL) { 2774 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2775 return; 2776 } 2777 2778 m->m_len = m->m_pkthdr.len = 0; 2779 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg); 2780 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]); 2781 2782 /* 2783 * Send the upcalls 2784 * XXX do we need to set the address in k_igmpsrc ? 2785 */ 2786 mrtstat.mrts_upcalls++; 2787 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2788 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2789 ++mrtstat.mrts_upq_sockfull; 2790 } 2791 } 2792 2793 /* 2794 * Compute the timeout hash value for the bw_meter entries 2795 */ 2796 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2797 do { \ 2798 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2799 \ 2800 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2801 (hash) = next_timeval.tv_sec; \ 2802 if (next_timeval.tv_usec) \ 2803 (hash)++; /* XXX: make sure we don't timeout early */ \ 2804 (hash) %= BW_METER_BUCKETS; \ 2805 } while (/*CONSTCOND*/ 0) 2806 2807 /* 2808 * Schedule a timer to process periodically bw_meter entry of type "<=" 2809 * by linking the entry in the proper hash bucket. 2810 */ 2811 static void 2812 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2813 { 2814 int time_hash; 2815 2816 if (!(x->bm_flags & BW_METER_LEQ)) 2817 return; /* XXX: we schedule timers only for "<=" entries */ 2818 2819 /* 2820 * Reset the bw_meter entry 2821 */ 2822 x->bm_start_time = *nowp; 2823 x->bm_measured.b_packets = 0; 2824 x->bm_measured.b_bytes = 0; 2825 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2826 2827 /* 2828 * Compute the timeout hash value and insert the entry 2829 */ 2830 BW_METER_TIMEHASH(x, time_hash); 2831 x->bm_time_next = bw_meter_timers[time_hash]; 2832 bw_meter_timers[time_hash] = x; 2833 x->bm_time_hash = time_hash; 2834 } 2835 2836 /* 2837 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2838 * by removing the entry from the proper hash bucket. 2839 */ 2840 static void 2841 unschedule_bw_meter(struct bw_meter *x) 2842 { 2843 int time_hash; 2844 struct bw_meter *prev, *tmp; 2845 2846 if (!(x->bm_flags & BW_METER_LEQ)) 2847 return; /* XXX: we schedule timers only for "<=" entries */ 2848 2849 /* 2850 * Compute the timeout hash value and delete the entry 2851 */ 2852 time_hash = x->bm_time_hash; 2853 if (time_hash >= BW_METER_BUCKETS) 2854 return; /* Entry was not scheduled */ 2855 2856 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2857 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2858 if (tmp == x) 2859 break; 2860 2861 if (tmp == NULL) 2862 panic("unschedule_bw_meter: bw_meter entry not found"); 2863 2864 if (prev != NULL) 2865 prev->bm_time_next = x->bm_time_next; 2866 else 2867 bw_meter_timers[time_hash] = x->bm_time_next; 2868 2869 x->bm_time_next = NULL; 2870 x->bm_time_hash = BW_METER_BUCKETS; 2871 } 2872 2873 /* 2874 * Process all "<=" type of bw_meter that should be processed now, 2875 * and for each entry prepare an upcall if necessary. Each processed 2876 * entry is rescheduled again for the (periodic) processing. 2877 * 2878 * This is run periodically (once per second normally). On each round, 2879 * all the potentially matching entries are in the hash slot that we are 2880 * looking at. 2881 */ 2882 static void 2883 bw_meter_process(void) 2884 { 2885 int s; 2886 static uint32_t last_tv_sec; /* last time we processed this */ 2887 2888 uint32_t loops; 2889 int i; 2890 struct timeval now, process_endtime; 2891 2892 microtime(&now); 2893 if (last_tv_sec == now.tv_sec) 2894 return; /* nothing to do */ 2895 2896 loops = now.tv_sec - last_tv_sec; 2897 last_tv_sec = now.tv_sec; 2898 if (loops > BW_METER_BUCKETS) 2899 loops = BW_METER_BUCKETS; 2900 2901 s = splsoftnet(); 2902 /* 2903 * Process all bins of bw_meter entries from the one after the last 2904 * processed to the current one. On entry, i points to the last bucket 2905 * visited, so we need to increment i at the beginning of the loop. 2906 */ 2907 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 2908 struct bw_meter *x, *tmp_list; 2909 2910 if (++i >= BW_METER_BUCKETS) 2911 i = 0; 2912 2913 /* Disconnect the list of bw_meter entries from the bin */ 2914 tmp_list = bw_meter_timers[i]; 2915 bw_meter_timers[i] = NULL; 2916 2917 /* Process the list of bw_meter entries */ 2918 while (tmp_list != NULL) { 2919 x = tmp_list; 2920 tmp_list = tmp_list->bm_time_next; 2921 2922 /* Test if the time interval is over */ 2923 process_endtime = x->bm_start_time; 2924 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 2925 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 2926 /* Not yet: reschedule, but don't reset */ 2927 int time_hash; 2928 2929 BW_METER_TIMEHASH(x, time_hash); 2930 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 2931 /* 2932 * XXX: somehow the bin processing is a bit ahead of time. 2933 * Put the entry in the next bin. 2934 */ 2935 if (++time_hash >= BW_METER_BUCKETS) 2936 time_hash = 0; 2937 } 2938 x->bm_time_next = bw_meter_timers[time_hash]; 2939 bw_meter_timers[time_hash] = x; 2940 x->bm_time_hash = time_hash; 2941 2942 continue; 2943 } 2944 2945 /* 2946 * Test if we should deliver an upcall 2947 */ 2948 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2949 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2950 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2951 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2952 /* Prepare an upcall for delivery */ 2953 bw_meter_prepare_upcall(x, &now); 2954 } 2955 2956 /* 2957 * Reschedule for next processing 2958 */ 2959 schedule_bw_meter(x, &now); 2960 } 2961 } 2962 2963 /* Send all upcalls that are pending delivery */ 2964 bw_upcalls_send(); 2965 2966 splx(s); 2967 } 2968 2969 /* 2970 * A periodic function for sending all upcalls that are pending delivery 2971 */ 2972 static void 2973 expire_bw_upcalls_send(void *unused) 2974 { 2975 int s; 2976 2977 s = splsoftnet(); 2978 bw_upcalls_send(); 2979 splx(s); 2980 2981 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 2982 expire_bw_upcalls_send, NULL); 2983 } 2984 2985 /* 2986 * A periodic function for periodic scanning of the multicast forwarding 2987 * table for processing all "<=" bw_meter entries. 2988 */ 2989 static void 2990 expire_bw_meter_process(void *unused) 2991 { 2992 if (mrt_api_config & MRT_MFC_BW_UPCALL) 2993 bw_meter_process(); 2994 2995 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 2996 expire_bw_meter_process, NULL); 2997 } 2998 2999 /* 3000 * End of bandwidth monitoring code 3001 */ 3002 3003 #ifdef PIM 3004 /* 3005 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3006 */ 3007 static int 3008 pim_register_send(struct ip *ip, struct vif *vifp, 3009 struct mbuf *m, struct mfc *rt) 3010 { 3011 struct mbuf *mb_copy, *mm; 3012 3013 if (mrtdebug & DEBUG_PIM) 3014 log(LOG_DEBUG, "pim_register_send: \n"); 3015 3016 mb_copy = pim_register_prepare(ip, m); 3017 if (mb_copy == NULL) 3018 return ENOBUFS; 3019 3020 /* 3021 * Send all the fragments. Note that the mbuf for each fragment 3022 * is freed by the sending machinery. 3023 */ 3024 for (mm = mb_copy; mm; mm = mb_copy) { 3025 mb_copy = mm->m_nextpkt; 3026 mm->m_nextpkt = NULL; 3027 mm = m_pullup(mm, sizeof(struct ip)); 3028 if (mm != NULL) { 3029 ip = mtod(mm, struct ip *); 3030 if ((mrt_api_config & MRT_MFC_RP) && 3031 !in_nullhost(rt->mfc_rp)) { 3032 pim_register_send_rp(ip, vifp, mm, rt); 3033 } else { 3034 pim_register_send_upcall(ip, vifp, mm, rt); 3035 } 3036 } 3037 } 3038 3039 return 0; 3040 } 3041 3042 /* 3043 * Return a copy of the data packet that is ready for PIM Register 3044 * encapsulation. 3045 * XXX: Note that in the returned copy the IP header is a valid one. 3046 */ 3047 static struct mbuf * 3048 pim_register_prepare(struct ip *ip, struct mbuf *m) 3049 { 3050 struct mbuf *mb_copy = NULL; 3051 int mtu; 3052 3053 /* Take care of delayed checksums */ 3054 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3055 in_delayed_cksum(m); 3056 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3057 } 3058 3059 /* 3060 * Copy the old packet & pullup its IP header into the 3061 * new mbuf so we can modify it. 3062 */ 3063 mb_copy = m_copypacket(m, M_DONTWAIT); 3064 if (mb_copy == NULL) 3065 return NULL; 3066 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3067 if (mb_copy == NULL) 3068 return NULL; 3069 3070 /* take care of the TTL */ 3071 ip = mtod(mb_copy, struct ip *); 3072 --ip->ip_ttl; 3073 3074 /* Compute the MTU after the PIM Register encapsulation */ 3075 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3076 3077 if (ntohs(ip->ip_len) <= mtu) { 3078 /* Turn the IP header into a valid one */ 3079 ip->ip_sum = 0; 3080 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3081 } else { 3082 /* Fragment the packet */ 3083 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3084 /* XXX: mb_copy was freed by ip_fragment() */ 3085 return NULL; 3086 } 3087 } 3088 return mb_copy; 3089 } 3090 3091 /* 3092 * Send an upcall with the data packet to the user-level process. 3093 */ 3094 static int 3095 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3096 struct mbuf *mb_copy, struct mfc *rt) 3097 { 3098 struct mbuf *mb_first; 3099 int len = ntohs(ip->ip_len); 3100 struct igmpmsg *im; 3101 struct sockaddr_in k_igmpsrc = { 3102 .sin_len = sizeof(k_igmpsrc), 3103 .sin_family = AF_INET, 3104 }; 3105 3106 /* 3107 * Add a new mbuf with an upcall header 3108 */ 3109 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3110 if (mb_first == NULL) { 3111 m_freem(mb_copy); 3112 return ENOBUFS; 3113 } 3114 mb_first->m_data += max_linkhdr; 3115 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3116 mb_first->m_len = sizeof(struct igmpmsg); 3117 mb_first->m_next = mb_copy; 3118 3119 /* Send message to routing daemon */ 3120 im = mtod(mb_first, struct igmpmsg *); 3121 im->im_msgtype = IGMPMSG_WHOLEPKT; 3122 im->im_mbz = 0; 3123 im->im_vif = vifp - viftable; 3124 im->im_src = ip->ip_src; 3125 im->im_dst = ip->ip_dst; 3126 3127 k_igmpsrc.sin_addr = ip->ip_src; 3128 3129 mrtstat.mrts_upcalls++; 3130 3131 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3132 if (mrtdebug & DEBUG_PIM) 3133 log(LOG_WARNING, 3134 "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n"); 3135 ++mrtstat.mrts_upq_sockfull; 3136 return ENOBUFS; 3137 } 3138 3139 /* Keep statistics */ 3140 pimstat.pims_snd_registers_msgs++; 3141 pimstat.pims_snd_registers_bytes += len; 3142 3143 return 0; 3144 } 3145 3146 /* 3147 * Encapsulate the data packet in PIM Register message and send it to the RP. 3148 */ 3149 static int 3150 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3151 struct mbuf *mb_copy, struct mfc *rt) 3152 { 3153 struct mbuf *mb_first; 3154 struct ip *ip_outer; 3155 struct pim_encap_pimhdr *pimhdr; 3156 int len = ntohs(ip->ip_len); 3157 vifi_t vifi = rt->mfc_parent; 3158 3159 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3160 m_freem(mb_copy); 3161 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3162 } 3163 3164 /* 3165 * Add a new mbuf with the encapsulating header 3166 */ 3167 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3168 if (mb_first == NULL) { 3169 m_freem(mb_copy); 3170 return ENOBUFS; 3171 } 3172 mb_first->m_data += max_linkhdr; 3173 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3174 mb_first->m_next = mb_copy; 3175 3176 mb_first->m_pkthdr.len = len + mb_first->m_len; 3177 3178 /* 3179 * Fill in the encapsulating IP and PIM header 3180 */ 3181 ip_outer = mtod(mb_first, struct ip *); 3182 *ip_outer = pim_encap_iphdr; 3183 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE) 3184 ip_outer->ip_id = 0; 3185 else 3186 ip_outer->ip_id = ip_newid(NULL); 3187 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3188 sizeof(pim_encap_pimhdr)); 3189 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3190 ip_outer->ip_dst = rt->mfc_rp; 3191 /* 3192 * Copy the inner header TOS to the outer header, and take care of the 3193 * IP_DF bit. 3194 */ 3195 ip_outer->ip_tos = ip->ip_tos; 3196 if (ntohs(ip->ip_off) & IP_DF) 3197 ip_outer->ip_off |= htons(IP_DF); 3198 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer 3199 + sizeof(pim_encap_iphdr)); 3200 *pimhdr = pim_encap_pimhdr; 3201 /* If the iif crosses a border, set the Border-bit */ 3202 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3203 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3204 3205 mb_first->m_data += sizeof(pim_encap_iphdr); 3206 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3207 mb_first->m_data -= sizeof(pim_encap_iphdr); 3208 3209 if (vifp->v_rate_limit == 0) 3210 tbf_send_packet(vifp, mb_first); 3211 else 3212 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3213 3214 /* Keep statistics */ 3215 pimstat.pims_snd_registers_msgs++; 3216 pimstat.pims_snd_registers_bytes += len; 3217 3218 return 0; 3219 } 3220 3221 /* 3222 * PIM-SMv2 and PIM-DM messages processing. 3223 * Receives and verifies the PIM control messages, and passes them 3224 * up to the listening socket, using rip_input(). 3225 * The only message with special processing is the PIM_REGISTER message 3226 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3227 * is passed to if_simloop(). 3228 */ 3229 void 3230 pim_input(struct mbuf *m, ...) 3231 { 3232 struct ip *ip = mtod(m, struct ip *); 3233 struct pim *pim; 3234 int minlen; 3235 int datalen; 3236 int ip_tos; 3237 int proto; 3238 int iphlen; 3239 va_list ap; 3240 3241 va_start(ap, m); 3242 iphlen = va_arg(ap, int); 3243 proto = va_arg(ap, int); 3244 va_end(ap); 3245 3246 datalen = ntohs(ip->ip_len) - iphlen; 3247 3248 /* Keep statistics */ 3249 pimstat.pims_rcv_total_msgs++; 3250 pimstat.pims_rcv_total_bytes += datalen; 3251 3252 /* 3253 * Validate lengths 3254 */ 3255 if (datalen < PIM_MINLEN) { 3256 pimstat.pims_rcv_tooshort++; 3257 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3258 datalen, (u_long)ip->ip_src.s_addr); 3259 m_freem(m); 3260 return; 3261 } 3262 3263 /* 3264 * If the packet is at least as big as a REGISTER, go agead 3265 * and grab the PIM REGISTER header size, to avoid another 3266 * possible m_pullup() later. 3267 * 3268 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3269 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3270 */ 3271 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3272 /* 3273 * Get the IP and PIM headers in contiguous memory, and 3274 * possibly the PIM REGISTER header. 3275 */ 3276 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3277 (m = m_pullup(m, minlen)) == NULL) { 3278 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3279 return; 3280 } 3281 /* m_pullup() may have given us a new mbuf so reset ip. */ 3282 ip = mtod(m, struct ip *); 3283 ip_tos = ip->ip_tos; 3284 3285 /* adjust mbuf to point to the PIM header */ 3286 m->m_data += iphlen; 3287 m->m_len -= iphlen; 3288 pim = mtod(m, struct pim *); 3289 3290 /* 3291 * Validate checksum. If PIM REGISTER, exclude the data packet. 3292 * 3293 * XXX: some older PIMv2 implementations don't make this distinction, 3294 * so for compatibility reason perform the checksum over part of the 3295 * message, and if error, then over the whole message. 3296 */ 3297 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3298 /* do nothing, checksum okay */ 3299 } else if (in_cksum(m, datalen)) { 3300 pimstat.pims_rcv_badsum++; 3301 if (mrtdebug & DEBUG_PIM) 3302 log(LOG_DEBUG, "pim_input: invalid checksum\n"); 3303 m_freem(m); 3304 return; 3305 } 3306 3307 /* PIM version check */ 3308 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3309 pimstat.pims_rcv_badversion++; 3310 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3311 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3312 m_freem(m); 3313 return; 3314 } 3315 3316 /* restore mbuf back to the outer IP */ 3317 m->m_data -= iphlen; 3318 m->m_len += iphlen; 3319 3320 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3321 /* 3322 * Since this is a REGISTER, we'll make a copy of the register 3323 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3324 * routing daemon. 3325 */ 3326 int s; 3327 struct sockaddr_in dst = { 3328 .sin_len = sizeof(dst), 3329 .sin_family = AF_INET, 3330 }; 3331 struct mbuf *mcp; 3332 struct ip *encap_ip; 3333 u_int32_t *reghdr; 3334 struct ifnet *vifp; 3335 3336 s = splsoftnet(); 3337 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3338 splx(s); 3339 if (mrtdebug & DEBUG_PIM) 3340 log(LOG_DEBUG, 3341 "pim_input: register vif not set: %d\n", reg_vif_num); 3342 m_freem(m); 3343 return; 3344 } 3345 /* XXX need refcnt? */ 3346 vifp = viftable[reg_vif_num].v_ifp; 3347 splx(s); 3348 3349 /* 3350 * Validate length 3351 */ 3352 if (datalen < PIM_REG_MINLEN) { 3353 pimstat.pims_rcv_tooshort++; 3354 pimstat.pims_rcv_badregisters++; 3355 log(LOG_ERR, 3356 "pim_input: register packet size too small %d from %lx\n", 3357 datalen, (u_long)ip->ip_src.s_addr); 3358 m_freem(m); 3359 return; 3360 } 3361 3362 reghdr = (u_int32_t *)(pim + 1); 3363 encap_ip = (struct ip *)(reghdr + 1); 3364 3365 if (mrtdebug & DEBUG_PIM) { 3366 log(LOG_DEBUG, 3367 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3368 (u_long)ntohl(encap_ip->ip_src.s_addr), 3369 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3370 ntohs(encap_ip->ip_len)); 3371 } 3372 3373 /* verify the version number of the inner packet */ 3374 if (encap_ip->ip_v != IPVERSION) { 3375 pimstat.pims_rcv_badregisters++; 3376 if (mrtdebug & DEBUG_PIM) { 3377 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3378 "of the inner packet\n", encap_ip->ip_v); 3379 } 3380 m_freem(m); 3381 return; 3382 } 3383 3384 /* verify the inner packet is destined to a mcast group */ 3385 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3386 pimstat.pims_rcv_badregisters++; 3387 if (mrtdebug & DEBUG_PIM) 3388 log(LOG_DEBUG, 3389 "pim_input: inner packet of register is not " 3390 "multicast %lx\n", 3391 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3392 m_freem(m); 3393 return; 3394 } 3395 3396 /* If a NULL_REGISTER, pass it to the daemon */ 3397 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3398 goto pim_input_to_daemon; 3399 3400 /* 3401 * Copy the TOS from the outer IP header to the inner IP header. 3402 */ 3403 if (encap_ip->ip_tos != ip_tos) { 3404 /* Outer TOS -> inner TOS */ 3405 encap_ip->ip_tos = ip_tos; 3406 /* Recompute the inner header checksum. Sigh... */ 3407 3408 /* adjust mbuf to point to the inner IP header */ 3409 m->m_data += (iphlen + PIM_MINLEN); 3410 m->m_len -= (iphlen + PIM_MINLEN); 3411 3412 encap_ip->ip_sum = 0; 3413 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3414 3415 /* restore mbuf to point back to the outer IP header */ 3416 m->m_data -= (iphlen + PIM_MINLEN); 3417 m->m_len += (iphlen + PIM_MINLEN); 3418 } 3419 3420 /* 3421 * Decapsulate the inner IP packet and loopback to forward it 3422 * as a normal multicast packet. Also, make a copy of the 3423 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3424 * to pass to the daemon later, so it can take the appropriate 3425 * actions (e.g., send back PIM_REGISTER_STOP). 3426 * XXX: here m->m_data points to the outer IP header. 3427 */ 3428 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT); 3429 if (mcp == NULL) { 3430 log(LOG_ERR, 3431 "pim_input: pim register: could not copy register head\n"); 3432 m_freem(m); 3433 return; 3434 } 3435 3436 /* Keep statistics */ 3437 /* XXX: registers_bytes include only the encap. mcast pkt */ 3438 pimstat.pims_rcv_registers_msgs++; 3439 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3440 3441 /* 3442 * forward the inner ip packet; point m_data at the inner ip. 3443 */ 3444 m_adj(m, iphlen + PIM_MINLEN); 3445 3446 if (mrtdebug & DEBUG_PIM) { 3447 log(LOG_DEBUG, 3448 "pim_input: forwarding decapsulated register: " 3449 "src %lx, dst %lx, vif %d\n", 3450 (u_long)ntohl(encap_ip->ip_src.s_addr), 3451 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3452 reg_vif_num); 3453 } 3454 /* NB: vifp was collected above; can it change on us? */ 3455 looutput(vifp, m, (struct sockaddr *)&dst, NULL); 3456 3457 /* prepare the register head to send to the mrouting daemon */ 3458 m = mcp; 3459 } 3460 3461 pim_input_to_daemon: 3462 /* 3463 * Pass the PIM message up to the daemon; if it is a Register message, 3464 * pass the 'head' only up to the daemon. This includes the 3465 * outer IP header, PIM header, PIM-Register header and the 3466 * inner IP header. 3467 * XXX: the outer IP header pkt size of a Register is not adjust to 3468 * reflect the fact that the inner multicast data is truncated. 3469 */ 3470 rip_input(m, iphlen, proto); 3471 3472 return; 3473 } 3474 #endif /* PIM */ 3475