1 /* $NetBSD: ip_mroute.c,v 1.114 2008/05/22 01:08:03 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.114 2008/05/22 01:08:03 dyoung Exp $"); 97 98 #include "opt_inet.h" 99 #include "opt_ipsec.h" 100 #include "opt_pim.h" 101 102 #ifdef PIM 103 #define _PIM_VT 1 104 #endif 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/mbuf.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/protosw.h> 113 #include <sys/errno.h> 114 #include <sys/time.h> 115 #include <sys/kernel.h> 116 #include <sys/ioctl.h> 117 #include <sys/syslog.h> 118 119 #include <net/if.h> 120 #include <net/route.h> 121 #include <net/raw_cb.h> 122 123 #include <netinet/in.h> 124 #include <netinet/in_var.h> 125 #include <netinet/in_systm.h> 126 #include <netinet/ip.h> 127 #include <netinet/ip_var.h> 128 #include <netinet/in_pcb.h> 129 #include <netinet/udp.h> 130 #include <netinet/igmp.h> 131 #include <netinet/igmp_var.h> 132 #include <netinet/ip_mroute.h> 133 #ifdef PIM 134 #include <netinet/pim.h> 135 #include <netinet/pim_var.h> 136 #endif 137 #include <netinet/ip_encap.h> 138 139 #ifdef IPSEC 140 #include <netinet6/ipsec.h> 141 #include <netkey/key.h> 142 #endif 143 144 #ifdef FAST_IPSEC 145 #include <netipsec/ipsec.h> 146 #include <netipsec/key.h> 147 #endif 148 149 #include <machine/stdarg.h> 150 151 #define IP_MULTICASTOPTS 0 152 #define M_PULLUP(m, len) \ 153 do { \ 154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 155 (m) = m_pullup((m), (len)); \ 156 } while (/*CONSTCOND*/ 0) 157 158 /* 159 * Globals. All but ip_mrouter and ip_mrtproto could be static, 160 * except for netstat or debugging purposes. 161 */ 162 struct socket *ip_mrouter = NULL; 163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 164 165 #define NO_RTE_FOUND 0x1 166 #define RTE_FOUND 0x2 167 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 172 u_long mfchash; 173 174 u_char nexpire[MFCTBLSIZ]; 175 struct vif viftable[MAXVIFS]; 176 struct mrtstat mrtstat; 177 u_int mrtdebug = 0; /* debug level */ 178 #define DEBUG_MFC 0x02 179 #define DEBUG_FORWARD 0x04 180 #define DEBUG_EXPIRE 0x08 181 #define DEBUG_XMIT 0x10 182 #define DEBUG_PIM 0x20 183 184 #define VIFI_INVALID ((vifi_t) -1) 185 186 u_int tbfdebug = 0; /* tbf debug level */ 187 #ifdef RSVP_ISI 188 u_int rsvpdebug = 0; /* rsvp debug level */ 189 extern struct socket *ip_rsvpd; 190 extern int rsvp_on; 191 #endif /* RSVP_ISI */ 192 193 /* vif attachment using sys/netinet/ip_encap.c */ 194 static void vif_input(struct mbuf *, ...); 195 static int vif_encapcheck(struct mbuf *, int, int, void *); 196 197 static const struct protosw vif_protosw = 198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, 199 vif_input, rip_output, 0, rip_ctloutput, 200 rip_usrreq, 201 0, 0, 0, 0, 202 }; 203 204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 205 #define UPCALL_EXPIRE 6 /* number of timeouts */ 206 207 /* 208 * Define the token bucket filter structures 209 */ 210 211 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 212 213 static int get_sg_cnt(struct sioc_sg_req *); 214 static int get_vif_cnt(struct sioc_vif_req *); 215 static int ip_mrouter_init(struct socket *, struct mbuf *); 216 static int get_version(struct mbuf *); 217 static int set_assert(struct mbuf *); 218 static int get_assert(struct mbuf *); 219 static int add_vif(struct mbuf *); 220 static int del_vif(struct mbuf *); 221 static void update_mfc_params(struct mfc *, struct mfcctl2 *); 222 static void init_mfc_params(struct mfc *, struct mfcctl2 *); 223 static void expire_mfc(struct mfc *); 224 static int add_mfc(struct mbuf *); 225 #ifdef UPCALL_TIMING 226 static void collate(struct timeval *); 227 #endif 228 static int del_mfc(struct mbuf *); 229 static int set_api_config(struct mbuf *); /* chose API capabilities */ 230 static int get_api_support(struct mbuf *); 231 static int get_api_config(struct mbuf *); 232 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); 233 static void expire_upcalls(void *); 234 #ifdef RSVP_ISI 235 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); 236 #else 237 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); 238 #endif 239 static void phyint_send(struct ip *, struct vif *, struct mbuf *); 240 static void encap_send(struct ip *, struct vif *, struct mbuf *); 241 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); 242 static void tbf_queue(struct vif *, struct mbuf *); 243 static void tbf_process_q(struct vif *); 244 static void tbf_reprocess_q(void *); 245 static int tbf_dq_sel(struct vif *, struct ip *); 246 static void tbf_send_packet(struct vif *, struct mbuf *); 247 static void tbf_update_tokens(struct vif *); 248 static int priority(struct vif *, struct ip *); 249 250 /* 251 * Bandwidth monitoring 252 */ 253 static void free_bw_list(struct bw_meter *); 254 static int add_bw_upcall(struct mbuf *); 255 static int del_bw_upcall(struct mbuf *); 256 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); 257 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); 258 static void bw_upcalls_send(void); 259 static void schedule_bw_meter(struct bw_meter *, struct timeval *); 260 static void unschedule_bw_meter(struct bw_meter *); 261 static void bw_meter_process(void); 262 static void expire_bw_upcalls_send(void *); 263 static void expire_bw_meter_process(void *); 264 265 #ifdef PIM 266 static int pim_register_send(struct ip *, struct vif *, 267 struct mbuf *, struct mfc *); 268 static int pim_register_send_rp(struct ip *, struct vif *, 269 struct mbuf *, struct mfc *); 270 static int pim_register_send_upcall(struct ip *, struct vif *, 271 struct mbuf *, struct mfc *); 272 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); 273 #endif 274 275 /* 276 * 'Interfaces' associated with decapsulator (so we can tell 277 * packets that went through it from ones that get reflected 278 * by a broken gateway). These interfaces are never linked into 279 * the system ifnet list & no routes point to them. I.e., packets 280 * can't be sent this way. They only exist as a placeholder for 281 * multicast source verification. 282 */ 283 #if 0 284 struct ifnet multicast_decap_if[MAXVIFS]; 285 #endif 286 287 #define ENCAP_TTL 64 288 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 289 290 /* prototype IP hdr for encapsulated packets */ 291 struct ip multicast_encap_iphdr = { 292 .ip_hl = sizeof(struct ip) >> 2, 293 .ip_v = IPVERSION, 294 .ip_len = sizeof(struct ip), 295 .ip_ttl = ENCAP_TTL, 296 .ip_p = ENCAP_PROTO, 297 }; 298 299 /* 300 * Bandwidth meter variables and constants 301 */ 302 303 /* 304 * Pending timeouts are stored in a hash table, the key being the 305 * expiration time. Periodically, the entries are analysed and processed. 306 */ 307 #define BW_METER_BUCKETS 1024 308 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 309 struct callout bw_meter_ch; 310 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 311 312 /* 313 * Pending upcalls are stored in a vector which is flushed when 314 * full, or periodically 315 */ 316 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 317 static u_int bw_upcalls_n; /* # of pending upcalls */ 318 struct callout bw_upcalls_ch; 319 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 320 321 #ifdef PIM 322 struct pimstat pimstat; 323 324 /* 325 * Note: the PIM Register encapsulation adds the following in front of a 326 * data packet: 327 * 328 * struct pim_encap_hdr { 329 * struct ip ip; 330 * struct pim_encap_pimhdr pim; 331 * } 332 * 333 */ 334 335 struct pim_encap_pimhdr { 336 struct pim pim; 337 uint32_t flags; 338 }; 339 340 static struct ip pim_encap_iphdr = { 341 .ip_v = IPVERSION, 342 .ip_hl = sizeof(struct ip) >> 2, 343 .ip_len = sizeof(struct ip), 344 .ip_ttl = ENCAP_TTL, 345 .ip_p = IPPROTO_PIM, 346 }; 347 348 static struct pim_encap_pimhdr pim_encap_pimhdr = { 349 { 350 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 351 0, /* reserved */ 352 0, /* checksum */ 353 }, 354 0 /* flags */ 355 }; 356 357 static struct ifnet multicast_register_if; 358 static vifi_t reg_vif_num = VIFI_INVALID; 359 #endif /* PIM */ 360 361 362 /* 363 * Private variables. 364 */ 365 static vifi_t numvifs = 0; 366 367 static struct callout expire_upcalls_ch; 368 369 /* 370 * whether or not special PIM assert processing is enabled. 371 */ 372 static int pim_assert; 373 /* 374 * Rate limit for assert notification messages, in usec 375 */ 376 #define ASSERT_MSG_TIME 3000000 377 378 /* 379 * Kernel multicast routing API capabilities and setup. 380 * If more API capabilities are added to the kernel, they should be 381 * recorded in `mrt_api_support'. 382 */ 383 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 384 MRT_MFC_FLAGS_BORDER_VIF | 385 MRT_MFC_RP | 386 MRT_MFC_BW_UPCALL); 387 static u_int32_t mrt_api_config = 0; 388 389 /* 390 * Find a route for a given origin IP address and Multicast group address 391 * Type of service parameter to be added in the future!!! 392 * Statistics are updated by the caller if needed 393 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 394 */ 395 static struct mfc * 396 mfc_find(struct in_addr *o, struct in_addr *g) 397 { 398 struct mfc *rt; 399 400 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 401 if (in_hosteq(rt->mfc_origin, *o) && 402 in_hosteq(rt->mfc_mcastgrp, *g) && 403 (rt->mfc_stall == NULL)) 404 break; 405 } 406 407 return (rt); 408 } 409 410 /* 411 * Macros to compute elapsed time efficiently 412 * Borrowed from Van Jacobson's scheduling code 413 */ 414 #define TV_DELTA(a, b, delta) do { \ 415 int xxs; \ 416 delta = (a).tv_usec - (b).tv_usec; \ 417 xxs = (a).tv_sec - (b).tv_sec; \ 418 switch (xxs) { \ 419 case 2: \ 420 delta += 1000000; \ 421 /* fall through */ \ 422 case 1: \ 423 delta += 1000000; \ 424 /* fall through */ \ 425 case 0: \ 426 break; \ 427 default: \ 428 delta += (1000000 * xxs); \ 429 break; \ 430 } \ 431 } while (/*CONSTCOND*/ 0) 432 433 #ifdef UPCALL_TIMING 434 u_int32_t upcall_data[51]; 435 #endif /* UPCALL_TIMING */ 436 437 /* 438 * Handle MRT setsockopt commands to modify the multicast routing tables. 439 */ 440 int 441 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m) 442 { 443 int error; 444 445 if (optname != MRT_INIT && so != ip_mrouter) 446 error = ENOPROTOOPT; 447 else 448 switch (optname) { 449 case MRT_INIT: 450 error = ip_mrouter_init(so, *m); 451 break; 452 case MRT_DONE: 453 error = ip_mrouter_done(); 454 break; 455 case MRT_ADD_VIF: 456 error = add_vif(*m); 457 break; 458 case MRT_DEL_VIF: 459 error = del_vif(*m); 460 break; 461 case MRT_ADD_MFC: 462 error = add_mfc(*m); 463 break; 464 case MRT_DEL_MFC: 465 error = del_mfc(*m); 466 break; 467 case MRT_ASSERT: 468 error = set_assert(*m); 469 break; 470 case MRT_API_CONFIG: 471 error = set_api_config(*m); 472 break; 473 case MRT_ADD_BW_UPCALL: 474 error = add_bw_upcall(*m); 475 break; 476 case MRT_DEL_BW_UPCALL: 477 error = del_bw_upcall(*m); 478 break; 479 default: 480 error = ENOPROTOOPT; 481 break; 482 } 483 484 if (*m) 485 m_free(*m); 486 return (error); 487 } 488 489 /* 490 * Handle MRT getsockopt commands 491 */ 492 int 493 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m) 494 { 495 int error; 496 497 if (so != ip_mrouter) 498 error = ENOPROTOOPT; 499 else { 500 *m = m_get(M_WAIT, MT_SOOPTS); 501 MCLAIM(*m, so->so_mowner); 502 503 switch (optname) { 504 case MRT_VERSION: 505 error = get_version(*m); 506 break; 507 case MRT_ASSERT: 508 error = get_assert(*m); 509 break; 510 case MRT_API_SUPPORT: 511 error = get_api_support(*m); 512 break; 513 case MRT_API_CONFIG: 514 error = get_api_config(*m); 515 break; 516 default: 517 error = ENOPROTOOPT; 518 break; 519 } 520 521 if (error) 522 m_free(*m); 523 } 524 525 return (error); 526 } 527 528 /* 529 * Handle ioctl commands to obtain information from the cache 530 */ 531 int 532 mrt_ioctl(struct socket *so, u_long cmd, void *data) 533 { 534 int error; 535 536 if (so != ip_mrouter) 537 error = EINVAL; 538 else 539 switch (cmd) { 540 case SIOCGETVIFCNT: 541 error = get_vif_cnt((struct sioc_vif_req *)data); 542 break; 543 case SIOCGETSGCNT: 544 error = get_sg_cnt((struct sioc_sg_req *)data); 545 break; 546 default: 547 error = EINVAL; 548 break; 549 } 550 551 return (error); 552 } 553 554 /* 555 * returns the packet, byte, rpf-failure count for the source group provided 556 */ 557 static int 558 get_sg_cnt(struct sioc_sg_req *req) 559 { 560 int s; 561 struct mfc *rt; 562 563 s = splsoftnet(); 564 rt = mfc_find(&req->src, &req->grp); 565 if (rt == NULL) { 566 splx(s); 567 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 568 return (EADDRNOTAVAIL); 569 } 570 req->pktcnt = rt->mfc_pkt_cnt; 571 req->bytecnt = rt->mfc_byte_cnt; 572 req->wrong_if = rt->mfc_wrong_if; 573 splx(s); 574 575 return (0); 576 } 577 578 /* 579 * returns the input and output packet and byte counts on the vif provided 580 */ 581 static int 582 get_vif_cnt(struct sioc_vif_req *req) 583 { 584 vifi_t vifi = req->vifi; 585 586 if (vifi >= numvifs) 587 return (EINVAL); 588 589 req->icount = viftable[vifi].v_pkt_in; 590 req->ocount = viftable[vifi].v_pkt_out; 591 req->ibytes = viftable[vifi].v_bytes_in; 592 req->obytes = viftable[vifi].v_bytes_out; 593 594 return (0); 595 } 596 597 /* 598 * Enable multicast routing 599 */ 600 static int 601 ip_mrouter_init(struct socket *so, struct mbuf *m) 602 { 603 int *v; 604 605 if (mrtdebug) 606 log(LOG_DEBUG, 607 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 608 so->so_type, so->so_proto->pr_protocol); 609 610 if (so->so_type != SOCK_RAW || 611 so->so_proto->pr_protocol != IPPROTO_IGMP) 612 return (EOPNOTSUPP); 613 614 if (m == NULL || m->m_len != sizeof(int)) 615 return (EINVAL); 616 617 v = mtod(m, int *); 618 if (*v != 1) 619 return (EINVAL); 620 621 if (ip_mrouter != NULL) 622 return (EADDRINUSE); 623 624 ip_mrouter = so; 625 626 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash); 627 bzero((void *)nexpire, sizeof(nexpire)); 628 629 pim_assert = 0; 630 631 callout_init(&expire_upcalls_ch, 0); 632 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 633 expire_upcalls, NULL); 634 635 callout_init(&bw_upcalls_ch, 0); 636 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 637 expire_bw_upcalls_send, NULL); 638 639 callout_init(&bw_meter_ch, 0); 640 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 641 expire_bw_meter_process, NULL); 642 643 if (mrtdebug) 644 log(LOG_DEBUG, "ip_mrouter_init\n"); 645 646 return (0); 647 } 648 649 /* 650 * Disable multicast routing 651 */ 652 int 653 ip_mrouter_done(void) 654 { 655 vifi_t vifi; 656 struct vif *vifp; 657 int i; 658 int s; 659 660 s = splsoftnet(); 661 662 /* Clear out all the vifs currently in use. */ 663 for (vifi = 0; vifi < numvifs; vifi++) { 664 vifp = &viftable[vifi]; 665 if (!in_nullhost(vifp->v_lcl_addr)) 666 reset_vif(vifp); 667 } 668 669 numvifs = 0; 670 pim_assert = 0; 671 mrt_api_config = 0; 672 673 callout_stop(&expire_upcalls_ch); 674 callout_stop(&bw_upcalls_ch); 675 callout_stop(&bw_meter_ch); 676 677 /* 678 * Free all multicast forwarding cache entries. 679 */ 680 for (i = 0; i < MFCTBLSIZ; i++) { 681 struct mfc *rt, *nrt; 682 683 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 684 nrt = LIST_NEXT(rt, mfc_hash); 685 686 expire_mfc(rt); 687 } 688 } 689 690 bzero((void *)nexpire, sizeof(nexpire)); 691 free(mfchashtbl, M_MRTABLE); 692 mfchashtbl = NULL; 693 694 bw_upcalls_n = 0; 695 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 696 697 /* Reset de-encapsulation cache. */ 698 699 ip_mrouter = NULL; 700 701 splx(s); 702 703 if (mrtdebug) 704 log(LOG_DEBUG, "ip_mrouter_done\n"); 705 706 return (0); 707 } 708 709 void 710 ip_mrouter_detach(struct ifnet *ifp) 711 { 712 int vifi, i; 713 struct vif *vifp; 714 struct mfc *rt; 715 struct rtdetq *rte; 716 717 /* XXX not sure about side effect to userland routing daemon */ 718 for (vifi = 0; vifi < numvifs; vifi++) { 719 vifp = &viftable[vifi]; 720 if (vifp->v_ifp == ifp) 721 reset_vif(vifp); 722 } 723 for (i = 0; i < MFCTBLSIZ; i++) { 724 if (nexpire[i] == 0) 725 continue; 726 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 727 for (rte = rt->mfc_stall; rte; rte = rte->next) { 728 if (rte->ifp == ifp) 729 rte->ifp = NULL; 730 } 731 } 732 } 733 } 734 735 static int 736 get_version(struct mbuf *m) 737 { 738 int *v = mtod(m, int *); 739 740 *v = 0x0305; /* XXX !!!! */ 741 m->m_len = sizeof(int); 742 return (0); 743 } 744 745 /* 746 * Set PIM assert processing global 747 */ 748 static int 749 set_assert(struct mbuf *m) 750 { 751 int *i; 752 753 if (m == NULL || m->m_len != sizeof(int)) 754 return (EINVAL); 755 756 i = mtod(m, int *); 757 pim_assert = !!*i; 758 return (0); 759 } 760 761 /* 762 * Get PIM assert processing global 763 */ 764 static int 765 get_assert(struct mbuf *m) 766 { 767 int *i = mtod(m, int *); 768 769 *i = pim_assert; 770 m->m_len = sizeof(int); 771 return (0); 772 } 773 774 /* 775 * Configure API capabilities 776 */ 777 static int 778 set_api_config(struct mbuf *m) 779 { 780 int i; 781 u_int32_t *apival; 782 783 if (m == NULL || m->m_len < sizeof(u_int32_t)) 784 return (EINVAL); 785 786 apival = mtod(m, u_int32_t *); 787 788 /* 789 * We can set the API capabilities only if it is the first operation 790 * after MRT_INIT. I.e.: 791 * - there are no vifs installed 792 * - pim_assert is not enabled 793 * - the MFC table is empty 794 */ 795 if (numvifs > 0) { 796 *apival = 0; 797 return (EPERM); 798 } 799 if (pim_assert) { 800 *apival = 0; 801 return (EPERM); 802 } 803 for (i = 0; i < MFCTBLSIZ; i++) { 804 if (LIST_FIRST(&mfchashtbl[i]) != NULL) { 805 *apival = 0; 806 return (EPERM); 807 } 808 } 809 810 mrt_api_config = *apival & mrt_api_support; 811 *apival = mrt_api_config; 812 813 return (0); 814 } 815 816 /* 817 * Get API capabilities 818 */ 819 static int 820 get_api_support(struct mbuf *m) 821 { 822 u_int32_t *apival; 823 824 if (m == NULL || m->m_len < sizeof(u_int32_t)) 825 return (EINVAL); 826 827 apival = mtod(m, u_int32_t *); 828 829 *apival = mrt_api_support; 830 831 return (0); 832 } 833 834 /* 835 * Get API configured capabilities 836 */ 837 static int 838 get_api_config(struct mbuf *m) 839 { 840 u_int32_t *apival; 841 842 if (m == NULL || m->m_len < sizeof(u_int32_t)) 843 return (EINVAL); 844 845 apival = mtod(m, u_int32_t *); 846 847 *apival = mrt_api_config; 848 849 return (0); 850 } 851 852 /* 853 * Add a vif to the vif table 854 */ 855 static int 856 add_vif(struct mbuf *m) 857 { 858 struct vifctl *vifcp; 859 struct vif *vifp; 860 struct ifaddr *ifa; 861 struct ifnet *ifp; 862 struct ifreq ifr; 863 int error, s; 864 struct sockaddr_in sin; 865 866 if (m == NULL || m->m_len < sizeof(struct vifctl)) 867 return (EINVAL); 868 869 vifcp = mtod(m, struct vifctl *); 870 if (vifcp->vifc_vifi >= MAXVIFS) 871 return (EINVAL); 872 if (in_nullhost(vifcp->vifc_lcl_addr)) 873 return (EADDRNOTAVAIL); 874 875 vifp = &viftable[vifcp->vifc_vifi]; 876 if (!in_nullhost(vifp->v_lcl_addr)) 877 return (EADDRINUSE); 878 879 /* Find the interface with an address in AF_INET family. */ 880 #ifdef PIM 881 if (vifcp->vifc_flags & VIFF_REGISTER) { 882 /* 883 * XXX: Because VIFF_REGISTER does not really need a valid 884 * local interface (e.g. it could be 127.0.0.2), we don't 885 * check its address. 886 */ 887 ifp = NULL; 888 } else 889 #endif 890 { 891 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0); 892 ifa = ifa_ifwithaddr(sintosa(&sin)); 893 if (ifa == NULL) 894 return (EADDRNOTAVAIL); 895 ifp = ifa->ifa_ifp; 896 } 897 898 if (vifcp->vifc_flags & VIFF_TUNNEL) { 899 if (vifcp->vifc_flags & VIFF_SRCRT) { 900 log(LOG_ERR, "source routed tunnels not supported\n"); 901 return (EOPNOTSUPP); 902 } 903 904 /* attach this vif to decapsulator dispatch table */ 905 /* 906 * XXX Use addresses in registration so that matching 907 * can be done with radix tree in decapsulator. But, 908 * we need to check inner header for multicast, so 909 * this requires both radix tree lookup and then a 910 * function to check, and this is not supported yet. 911 */ 912 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 913 vif_encapcheck, &vif_protosw, vifp); 914 if (!vifp->v_encap_cookie) 915 return (EINVAL); 916 917 /* Create a fake encapsulation interface. */ 918 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK); 919 bzero(ifp, sizeof(*ifp)); 920 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 921 "mdecap%d", vifcp->vifc_vifi); 922 923 /* Prepare cached route entry. */ 924 bzero(&vifp->v_route, sizeof(vifp->v_route)); 925 #ifdef PIM 926 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 927 ifp = &multicast_register_if; 928 if (mrtdebug) 929 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 930 (void *)ifp); 931 if (reg_vif_num == VIFI_INVALID) { 932 bzero(ifp, sizeof(*ifp)); 933 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 934 "register_vif"); 935 ifp->if_flags = IFF_LOOPBACK; 936 bzero(&vifp->v_route, sizeof(vifp->v_route)); 937 reg_vif_num = vifcp->vifc_vifi; 938 } 939 #endif 940 } else { 941 /* Make sure the interface supports multicast. */ 942 if ((ifp->if_flags & IFF_MULTICAST) == 0) 943 return (EOPNOTSUPP); 944 945 /* Enable promiscuous reception of all IP multicasts. */ 946 sockaddr_in_init(&sin, &zeroin_addr, 0); 947 ifreq_setaddr(SIOCADDMULTI, &ifr, sintosa(&sin)); 948 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, &ifr); 949 if (error) 950 return (error); 951 } 952 953 s = splsoftnet(); 954 955 /* Define parameters for the tbf structure. */ 956 vifp->tbf_q = NULL; 957 vifp->tbf_t = &vifp->tbf_q; 958 microtime(&vifp->tbf_last_pkt_t); 959 vifp->tbf_n_tok = 0; 960 vifp->tbf_q_len = 0; 961 vifp->tbf_max_q_len = MAXQSIZE; 962 963 vifp->v_flags = vifcp->vifc_flags; 964 vifp->v_threshold = vifcp->vifc_threshold; 965 /* scaling up here allows division by 1024 in critical code */ 966 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 967 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 968 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 969 vifp->v_ifp = ifp; 970 /* Initialize per vif pkt counters. */ 971 vifp->v_pkt_in = 0; 972 vifp->v_pkt_out = 0; 973 vifp->v_bytes_in = 0; 974 vifp->v_bytes_out = 0; 975 976 callout_init(&vifp->v_repq_ch, 0); 977 978 #ifdef RSVP_ISI 979 vifp->v_rsvp_on = 0; 980 vifp->v_rsvpd = NULL; 981 #endif /* RSVP_ISI */ 982 983 splx(s); 984 985 /* Adjust numvifs up if the vifi is higher than numvifs. */ 986 if (numvifs <= vifcp->vifc_vifi) 987 numvifs = vifcp->vifc_vifi + 1; 988 989 if (mrtdebug) 990 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 991 vifcp->vifc_vifi, 992 ntohl(vifcp->vifc_lcl_addr.s_addr), 993 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 994 ntohl(vifcp->vifc_rmt_addr.s_addr), 995 vifcp->vifc_threshold, 996 vifcp->vifc_rate_limit); 997 998 return (0); 999 } 1000 1001 void 1002 reset_vif(struct vif *vifp) 1003 { 1004 struct mbuf *m, *n; 1005 struct ifnet *ifp; 1006 struct ifreq ifr; 1007 struct sockaddr_in sin; 1008 1009 callout_stop(&vifp->v_repq_ch); 1010 1011 /* detach this vif from decapsulator dispatch table */ 1012 encap_detach(vifp->v_encap_cookie); 1013 vifp->v_encap_cookie = NULL; 1014 1015 /* 1016 * Free packets queued at the interface 1017 */ 1018 for (m = vifp->tbf_q; m != NULL; m = n) { 1019 n = m->m_nextpkt; 1020 m_freem(m); 1021 } 1022 1023 if (vifp->v_flags & VIFF_TUNNEL) 1024 free(vifp->v_ifp, M_MRTABLE); 1025 else if (vifp->v_flags & VIFF_REGISTER) { 1026 #ifdef PIM 1027 reg_vif_num = VIFI_INVALID; 1028 #endif 1029 } else { 1030 sockaddr_in_init(&sin, &zeroin_addr, 0); 1031 ifreq_setaddr(SIOCDELMULTI, &ifr, sintosa(&sin)); 1032 ifp = vifp->v_ifp; 1033 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, &ifr); 1034 } 1035 bzero((void *)vifp, sizeof(*vifp)); 1036 } 1037 1038 /* 1039 * Delete a vif from the vif table 1040 */ 1041 static int 1042 del_vif(struct mbuf *m) 1043 { 1044 vifi_t *vifip; 1045 struct vif *vifp; 1046 vifi_t vifi; 1047 int s; 1048 1049 if (m == NULL || m->m_len < sizeof(vifi_t)) 1050 return (EINVAL); 1051 1052 vifip = mtod(m, vifi_t *); 1053 if (*vifip >= numvifs) 1054 return (EINVAL); 1055 1056 vifp = &viftable[*vifip]; 1057 if (in_nullhost(vifp->v_lcl_addr)) 1058 return (EADDRNOTAVAIL); 1059 1060 s = splsoftnet(); 1061 1062 reset_vif(vifp); 1063 1064 /* Adjust numvifs down */ 1065 for (vifi = numvifs; vifi > 0; vifi--) 1066 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 1067 break; 1068 numvifs = vifi; 1069 1070 splx(s); 1071 1072 if (mrtdebug) 1073 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 1074 1075 return (0); 1076 } 1077 1078 /* 1079 * update an mfc entry without resetting counters and S,G addresses. 1080 */ 1081 static void 1082 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1083 { 1084 int i; 1085 1086 rt->mfc_parent = mfccp->mfcc_parent; 1087 for (i = 0; i < numvifs; i++) { 1088 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1089 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1090 MRT_MFC_FLAGS_ALL; 1091 } 1092 /* set the RP address */ 1093 if (mrt_api_config & MRT_MFC_RP) 1094 rt->mfc_rp = mfccp->mfcc_rp; 1095 else 1096 rt->mfc_rp = zeroin_addr; 1097 } 1098 1099 /* 1100 * fully initialize an mfc entry from the parameter. 1101 */ 1102 static void 1103 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1104 { 1105 rt->mfc_origin = mfccp->mfcc_origin; 1106 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1107 1108 update_mfc_params(rt, mfccp); 1109 1110 /* initialize pkt counters per src-grp */ 1111 rt->mfc_pkt_cnt = 0; 1112 rt->mfc_byte_cnt = 0; 1113 rt->mfc_wrong_if = 0; 1114 timerclear(&rt->mfc_last_assert); 1115 } 1116 1117 static void 1118 expire_mfc(struct mfc *rt) 1119 { 1120 struct rtdetq *rte, *nrte; 1121 1122 free_bw_list(rt->mfc_bw_meter); 1123 1124 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1125 nrte = rte->next; 1126 m_freem(rte->m); 1127 free(rte, M_MRTABLE); 1128 } 1129 1130 LIST_REMOVE(rt, mfc_hash); 1131 free(rt, M_MRTABLE); 1132 } 1133 1134 /* 1135 * Add an mfc entry 1136 */ 1137 static int 1138 add_mfc(struct mbuf *m) 1139 { 1140 struct mfcctl2 mfcctl2; 1141 struct mfcctl2 *mfccp; 1142 struct mfc *rt; 1143 u_int32_t hash = 0; 1144 struct rtdetq *rte, *nrte; 1145 u_short nstl; 1146 int s; 1147 int mfcctl_size = sizeof(struct mfcctl); 1148 1149 if (mrt_api_config & MRT_API_FLAGS_ALL) 1150 mfcctl_size = sizeof(struct mfcctl2); 1151 1152 if (m == NULL || m->m_len < mfcctl_size) 1153 return (EINVAL); 1154 1155 /* 1156 * select data size depending on API version. 1157 */ 1158 if (mrt_api_config & MRT_API_FLAGS_ALL) { 1159 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *); 1160 bcopy(mp2, (void *)&mfcctl2, sizeof(*mp2)); 1161 } else { 1162 struct mfcctl *mp = mtod(m, struct mfcctl *); 1163 memcpy(&mfcctl2, mp, sizeof(*mp)); 1164 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0, 1165 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1166 } 1167 mfccp = &mfcctl2; 1168 1169 s = splsoftnet(); 1170 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1171 1172 /* If an entry already exists, just update the fields */ 1173 if (rt) { 1174 if (mrtdebug & DEBUG_MFC) 1175 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1176 ntohl(mfccp->mfcc_origin.s_addr), 1177 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1178 mfccp->mfcc_parent); 1179 1180 update_mfc_params(rt, mfccp); 1181 1182 splx(s); 1183 return (0); 1184 } 1185 1186 /* 1187 * Find the entry for which the upcall was made and update 1188 */ 1189 nstl = 0; 1190 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1191 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1192 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1193 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1194 rt->mfc_stall != NULL) { 1195 if (nstl++) 1196 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1197 "multiple kernel entries", 1198 ntohl(mfccp->mfcc_origin.s_addr), 1199 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1200 mfccp->mfcc_parent, rt->mfc_stall); 1201 1202 if (mrtdebug & DEBUG_MFC) 1203 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1204 ntohl(mfccp->mfcc_origin.s_addr), 1205 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1206 mfccp->mfcc_parent, rt->mfc_stall); 1207 1208 rte = rt->mfc_stall; 1209 init_mfc_params(rt, mfccp); 1210 rt->mfc_stall = NULL; 1211 1212 rt->mfc_expire = 0; /* Don't clean this guy up */ 1213 nexpire[hash]--; 1214 1215 /* free packets Qed at the end of this entry */ 1216 for (; rte != NULL; rte = nrte) { 1217 nrte = rte->next; 1218 if (rte->ifp) { 1219 #ifdef RSVP_ISI 1220 ip_mdq(rte->m, rte->ifp, rt, -1); 1221 #else 1222 ip_mdq(rte->m, rte->ifp, rt); 1223 #endif /* RSVP_ISI */ 1224 } 1225 m_freem(rte->m); 1226 #ifdef UPCALL_TIMING 1227 collate(&rte->t); 1228 #endif /* UPCALL_TIMING */ 1229 free(rte, M_MRTABLE); 1230 } 1231 } 1232 } 1233 1234 /* 1235 * It is possible that an entry is being inserted without an upcall 1236 */ 1237 if (nstl == 0) { 1238 /* 1239 * No mfc; make a new one 1240 */ 1241 if (mrtdebug & DEBUG_MFC) 1242 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1243 ntohl(mfccp->mfcc_origin.s_addr), 1244 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1245 mfccp->mfcc_parent); 1246 1247 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1248 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1249 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1250 init_mfc_params(rt, mfccp); 1251 if (rt->mfc_expire) 1252 nexpire[hash]--; 1253 rt->mfc_expire = 0; 1254 break; /* XXX */ 1255 } 1256 } 1257 if (rt == NULL) { /* no upcall, so make a new entry */ 1258 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1259 M_NOWAIT); 1260 if (rt == NULL) { 1261 splx(s); 1262 return (ENOBUFS); 1263 } 1264 1265 init_mfc_params(rt, mfccp); 1266 rt->mfc_expire = 0; 1267 rt->mfc_stall = NULL; 1268 rt->mfc_bw_meter = NULL; 1269 1270 /* insert new entry at head of hash chain */ 1271 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1272 } 1273 } 1274 1275 splx(s); 1276 return (0); 1277 } 1278 1279 #ifdef UPCALL_TIMING 1280 /* 1281 * collect delay statistics on the upcalls 1282 */ 1283 static void 1284 collate(struct timeval *t) 1285 { 1286 u_int32_t d; 1287 struct timeval tp; 1288 u_int32_t delta; 1289 1290 microtime(&tp); 1291 1292 if (timercmp(t, &tp, <)) { 1293 TV_DELTA(tp, *t, delta); 1294 1295 d = delta >> 10; 1296 if (d > 50) 1297 d = 50; 1298 1299 ++upcall_data[d]; 1300 } 1301 } 1302 #endif /* UPCALL_TIMING */ 1303 1304 /* 1305 * Delete an mfc entry 1306 */ 1307 static int 1308 del_mfc(struct mbuf *m) 1309 { 1310 struct mfcctl2 mfcctl2; 1311 struct mfcctl2 *mfccp; 1312 struct mfc *rt; 1313 int s; 1314 int mfcctl_size = sizeof(struct mfcctl); 1315 struct mfcctl *mp = mtod(m, struct mfcctl *); 1316 1317 /* 1318 * XXX: for deleting MFC entries the information in entries 1319 * of size "struct mfcctl" is sufficient. 1320 */ 1321 1322 if (m == NULL || m->m_len < mfcctl_size) 1323 return (EINVAL); 1324 1325 memcpy(&mfcctl2, mp, sizeof(*mp)); 1326 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0, 1327 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1328 1329 mfccp = &mfcctl2; 1330 1331 if (mrtdebug & DEBUG_MFC) 1332 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1333 ntohl(mfccp->mfcc_origin.s_addr), 1334 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1335 1336 s = splsoftnet(); 1337 1338 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1339 if (rt == NULL) { 1340 splx(s); 1341 return (EADDRNOTAVAIL); 1342 } 1343 1344 /* 1345 * free the bw_meter entries 1346 */ 1347 free_bw_list(rt->mfc_bw_meter); 1348 rt->mfc_bw_meter = NULL; 1349 1350 LIST_REMOVE(rt, mfc_hash); 1351 free(rt, M_MRTABLE); 1352 1353 splx(s); 1354 return (0); 1355 } 1356 1357 static int 1358 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) 1359 { 1360 if (s) { 1361 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, 1362 (struct mbuf *)NULL) != 0) { 1363 sorwakeup(s); 1364 return (0); 1365 } 1366 } 1367 m_freem(mm); 1368 return (-1); 1369 } 1370 1371 /* 1372 * IP multicast forwarding function. This function assumes that the packet 1373 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1374 * pointed to by "ifp", and the packet is to be relayed to other networks 1375 * that have members of the packet's destination IP multicast group. 1376 * 1377 * The packet is returned unscathed to the caller, unless it is 1378 * erroneous, in which case a non-zero return value tells the caller to 1379 * discard it. 1380 */ 1381 1382 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1383 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1384 1385 int 1386 #ifdef RSVP_ISI 1387 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) 1388 #else 1389 ip_mforward(struct mbuf *m, struct ifnet *ifp) 1390 #endif /* RSVP_ISI */ 1391 { 1392 struct ip *ip = mtod(m, struct ip *); 1393 struct mfc *rt; 1394 static int srctun = 0; 1395 struct mbuf *mm; 1396 struct sockaddr_in sin; 1397 int s; 1398 vifi_t vifi; 1399 1400 if (mrtdebug & DEBUG_FORWARD) 1401 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1402 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1403 1404 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1405 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1406 /* 1407 * Packet arrived via a physical interface or 1408 * an encapsulated tunnel or a register_vif. 1409 */ 1410 } else { 1411 /* 1412 * Packet arrived through a source-route tunnel. 1413 * Source-route tunnels are no longer supported. 1414 */ 1415 if ((srctun++ % 1000) == 0) 1416 log(LOG_ERR, 1417 "ip_mforward: received source-routed packet from %x\n", 1418 ntohl(ip->ip_src.s_addr)); 1419 1420 return (1); 1421 } 1422 1423 /* 1424 * Clear any in-bound checksum flags for this packet. 1425 */ 1426 m->m_pkthdr.csum_flags = 0; 1427 1428 #ifdef RSVP_ISI 1429 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1430 if (ip->ip_ttl < MAXTTL) 1431 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1432 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1433 struct vif *vifp = viftable + vifi; 1434 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", 1435 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1436 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1437 vifp->v_ifp->if_xname); 1438 } 1439 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi)); 1440 } 1441 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1442 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", 1443 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1444 } 1445 #endif /* RSVP_ISI */ 1446 1447 /* 1448 * Don't forward a packet with time-to-live of zero or one, 1449 * or a packet destined to a local-only group. 1450 */ 1451 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1452 return (0); 1453 1454 /* 1455 * Determine forwarding vifs from the forwarding cache table 1456 */ 1457 s = splsoftnet(); 1458 ++mrtstat.mrts_mfc_lookups; 1459 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1460 1461 /* Entry exists, so forward if necessary */ 1462 if (rt != NULL) { 1463 splx(s); 1464 #ifdef RSVP_ISI 1465 return (ip_mdq(m, ifp, rt, -1)); 1466 #else 1467 return (ip_mdq(m, ifp, rt)); 1468 #endif /* RSVP_ISI */ 1469 } else { 1470 /* 1471 * If we don't have a route for packet's origin, 1472 * Make a copy of the packet & send message to routing daemon 1473 */ 1474 1475 struct mbuf *mb0; 1476 struct rtdetq *rte; 1477 u_int32_t hash; 1478 int hlen = ip->ip_hl << 2; 1479 #ifdef UPCALL_TIMING 1480 struct timeval tp; 1481 1482 microtime(&tp); 1483 #endif /* UPCALL_TIMING */ 1484 1485 ++mrtstat.mrts_mfc_misses; 1486 1487 mrtstat.mrts_no_route++; 1488 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1489 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1490 ntohl(ip->ip_src.s_addr), 1491 ntohl(ip->ip_dst.s_addr)); 1492 1493 /* 1494 * Allocate mbufs early so that we don't do extra work if we are 1495 * just going to fail anyway. Make sure to pullup the header so 1496 * that other people can't step on it. 1497 */ 1498 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1499 M_NOWAIT); 1500 if (rte == NULL) { 1501 splx(s); 1502 return (ENOBUFS); 1503 } 1504 mb0 = m_copypacket(m, M_DONTWAIT); 1505 M_PULLUP(mb0, hlen); 1506 if (mb0 == NULL) { 1507 free(rte, M_MRTABLE); 1508 splx(s); 1509 return (ENOBUFS); 1510 } 1511 1512 /* is there an upcall waiting for this flow? */ 1513 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1514 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1515 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1516 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1517 rt->mfc_stall != NULL) 1518 break; 1519 } 1520 1521 if (rt == NULL) { 1522 int i; 1523 struct igmpmsg *im; 1524 1525 /* 1526 * Locate the vifi for the incoming interface for 1527 * this packet. 1528 * If none found, drop packet. 1529 */ 1530 for (vifi = 0; vifi < numvifs && 1531 viftable[vifi].v_ifp != ifp; vifi++) 1532 ; 1533 if (vifi >= numvifs) /* vif not found, drop packet */ 1534 goto non_fatal; 1535 1536 /* no upcall, so make a new entry */ 1537 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1538 M_NOWAIT); 1539 if (rt == NULL) 1540 goto fail; 1541 1542 /* 1543 * Make a copy of the header to send to the user level 1544 * process 1545 */ 1546 mm = m_copym(m, 0, hlen, M_DONTWAIT); 1547 M_PULLUP(mm, hlen); 1548 if (mm == NULL) 1549 goto fail1; 1550 1551 /* 1552 * Send message to routing daemon to install 1553 * a route into the kernel table 1554 */ 1555 1556 im = mtod(mm, struct igmpmsg *); 1557 im->im_msgtype = IGMPMSG_NOCACHE; 1558 im->im_mbz = 0; 1559 im->im_vif = vifi; 1560 1561 mrtstat.mrts_upcalls++; 1562 1563 sockaddr_in_init(&sin, &ip->ip_src, 0); 1564 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1565 log(LOG_WARNING, 1566 "ip_mforward: ip_mrouter socket queue full\n"); 1567 ++mrtstat.mrts_upq_sockfull; 1568 fail1: 1569 free(rt, M_MRTABLE); 1570 fail: 1571 free(rte, M_MRTABLE); 1572 m_freem(mb0); 1573 splx(s); 1574 return (ENOBUFS); 1575 } 1576 1577 /* insert new entry at head of hash chain */ 1578 rt->mfc_origin = ip->ip_src; 1579 rt->mfc_mcastgrp = ip->ip_dst; 1580 rt->mfc_pkt_cnt = 0; 1581 rt->mfc_byte_cnt = 0; 1582 rt->mfc_wrong_if = 0; 1583 rt->mfc_expire = UPCALL_EXPIRE; 1584 nexpire[hash]++; 1585 for (i = 0; i < numvifs; i++) { 1586 rt->mfc_ttls[i] = 0; 1587 rt->mfc_flags[i] = 0; 1588 } 1589 rt->mfc_parent = -1; 1590 1591 /* clear the RP address */ 1592 rt->mfc_rp = zeroin_addr; 1593 1594 rt->mfc_bw_meter = NULL; 1595 1596 /* link into table */ 1597 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1598 /* Add this entry to the end of the queue */ 1599 rt->mfc_stall = rte; 1600 } else { 1601 /* determine if q has overflowed */ 1602 struct rtdetq **p; 1603 int npkts = 0; 1604 1605 /* 1606 * XXX ouch! we need to append to the list, but we 1607 * only have a pointer to the front, so we have to 1608 * scan the entire list every time. 1609 */ 1610 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1611 if (++npkts > MAX_UPQ) { 1612 mrtstat.mrts_upq_ovflw++; 1613 non_fatal: 1614 free(rte, M_MRTABLE); 1615 m_freem(mb0); 1616 splx(s); 1617 return (0); 1618 } 1619 1620 /* Add this entry to the end of the queue */ 1621 *p = rte; 1622 } 1623 1624 rte->next = NULL; 1625 rte->m = mb0; 1626 rte->ifp = ifp; 1627 #ifdef UPCALL_TIMING 1628 rte->t = tp; 1629 #endif /* UPCALL_TIMING */ 1630 1631 splx(s); 1632 1633 return (0); 1634 } 1635 } 1636 1637 1638 /*ARGSUSED*/ 1639 static void 1640 expire_upcalls(void *v) 1641 { 1642 int i; 1643 int s; 1644 1645 s = splsoftnet(); 1646 1647 for (i = 0; i < MFCTBLSIZ; i++) { 1648 struct mfc *rt, *nrt; 1649 1650 if (nexpire[i] == 0) 1651 continue; 1652 1653 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1654 nrt = LIST_NEXT(rt, mfc_hash); 1655 1656 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1657 continue; 1658 nexpire[i]--; 1659 1660 /* 1661 * free the bw_meter entries 1662 */ 1663 while (rt->mfc_bw_meter != NULL) { 1664 struct bw_meter *x = rt->mfc_bw_meter; 1665 1666 rt->mfc_bw_meter = x->bm_mfc_next; 1667 free(x, M_BWMETER); 1668 } 1669 1670 ++mrtstat.mrts_cache_cleanups; 1671 if (mrtdebug & DEBUG_EXPIRE) 1672 log(LOG_DEBUG, 1673 "expire_upcalls: expiring (%x %x)\n", 1674 ntohl(rt->mfc_origin.s_addr), 1675 ntohl(rt->mfc_mcastgrp.s_addr)); 1676 1677 expire_mfc(rt); 1678 } 1679 } 1680 1681 splx(s); 1682 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1683 expire_upcalls, NULL); 1684 } 1685 1686 /* 1687 * Packet forwarding routine once entry in the cache is made 1688 */ 1689 static int 1690 #ifdef RSVP_ISI 1691 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) 1692 #else 1693 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) 1694 #endif /* RSVP_ISI */ 1695 { 1696 struct ip *ip = mtod(m, struct ip *); 1697 vifi_t vifi; 1698 struct vif *vifp; 1699 struct sockaddr_in sin; 1700 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1701 1702 /* 1703 * Macro to send packet on vif. Since RSVP packets don't get counted on 1704 * input, they shouldn't get counted on output, so statistics keeping is 1705 * separate. 1706 */ 1707 #define MC_SEND(ip, vifp, m) do { \ 1708 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1709 encap_send((ip), (vifp), (m)); \ 1710 else \ 1711 phyint_send((ip), (vifp), (m)); \ 1712 } while (/*CONSTCOND*/ 0) 1713 1714 #ifdef RSVP_ISI 1715 /* 1716 * If xmt_vif is not -1, send on only the requested vif. 1717 * 1718 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1719 */ 1720 if (xmt_vif < numvifs) { 1721 #ifdef PIM 1722 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1723 pim_register_send(ip, viftable + xmt_vif, m, rt); 1724 else 1725 #endif 1726 MC_SEND(ip, viftable + xmt_vif, m); 1727 return (1); 1728 } 1729 #endif /* RSVP_ISI */ 1730 1731 /* 1732 * Don't forward if it didn't arrive from the parent vif for its origin. 1733 */ 1734 vifi = rt->mfc_parent; 1735 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1736 /* came in the wrong interface */ 1737 if (mrtdebug & DEBUG_FORWARD) 1738 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1739 ifp, vifi, 1740 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1741 ++mrtstat.mrts_wrong_if; 1742 ++rt->mfc_wrong_if; 1743 /* 1744 * If we are doing PIM assert processing, send a message 1745 * to the routing daemon. 1746 * 1747 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1748 * can complete the SPT switch, regardless of the type 1749 * of the iif (broadcast media, GRE tunnel, etc). 1750 */ 1751 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1752 struct timeval now; 1753 u_int32_t delta; 1754 1755 #ifdef PIM 1756 if (ifp == &multicast_register_if) 1757 pimstat.pims_rcv_registers_wrongiif++; 1758 #endif 1759 1760 /* Get vifi for the incoming packet */ 1761 for (vifi = 0; 1762 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1763 vifi++) 1764 ; 1765 if (vifi >= numvifs) { 1766 /* The iif is not found: ignore the packet. */ 1767 return (0); 1768 } 1769 1770 if (rt->mfc_flags[vifi] & 1771 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1772 /* WRONGVIF disabled: ignore the packet */ 1773 return (0); 1774 } 1775 1776 microtime(&now); 1777 1778 TV_DELTA(rt->mfc_last_assert, now, delta); 1779 1780 if (delta > ASSERT_MSG_TIME) { 1781 struct igmpmsg *im; 1782 int hlen = ip->ip_hl << 2; 1783 struct mbuf *mm = 1784 m_copym(m, 0, hlen, M_DONTWAIT); 1785 1786 M_PULLUP(mm, hlen); 1787 if (mm == NULL) 1788 return (ENOBUFS); 1789 1790 rt->mfc_last_assert = now; 1791 1792 im = mtod(mm, struct igmpmsg *); 1793 im->im_msgtype = IGMPMSG_WRONGVIF; 1794 im->im_mbz = 0; 1795 im->im_vif = vifi; 1796 1797 mrtstat.mrts_upcalls++; 1798 1799 sockaddr_in_init(&sin, &im->im_src, 0); 1800 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1801 log(LOG_WARNING, 1802 "ip_mforward: ip_mrouter socket queue full\n"); 1803 ++mrtstat.mrts_upq_sockfull; 1804 return (ENOBUFS); 1805 } 1806 } 1807 } 1808 return (0); 1809 } 1810 1811 /* If I sourced this packet, it counts as output, else it was input. */ 1812 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1813 viftable[vifi].v_pkt_out++; 1814 viftable[vifi].v_bytes_out += plen; 1815 } else { 1816 viftable[vifi].v_pkt_in++; 1817 viftable[vifi].v_bytes_in += plen; 1818 } 1819 rt->mfc_pkt_cnt++; 1820 rt->mfc_byte_cnt += plen; 1821 1822 /* 1823 * For each vif, decide if a copy of the packet should be forwarded. 1824 * Forward if: 1825 * - the ttl exceeds the vif's threshold 1826 * - there are group members downstream on interface 1827 */ 1828 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1829 if ((rt->mfc_ttls[vifi] > 0) && 1830 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1831 vifp->v_pkt_out++; 1832 vifp->v_bytes_out += plen; 1833 #ifdef PIM 1834 if (vifp->v_flags & VIFF_REGISTER) 1835 pim_register_send(ip, vifp, m, rt); 1836 else 1837 #endif 1838 MC_SEND(ip, vifp, m); 1839 } 1840 1841 /* 1842 * Perform upcall-related bw measuring. 1843 */ 1844 if (rt->mfc_bw_meter != NULL) { 1845 struct bw_meter *x; 1846 struct timeval now; 1847 1848 microtime(&now); 1849 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1850 bw_meter_receive_packet(x, plen, &now); 1851 } 1852 1853 return (0); 1854 } 1855 1856 #ifdef RSVP_ISI 1857 /* 1858 * check if a vif number is legal/ok. This is used by ip_output. 1859 */ 1860 int 1861 legal_vif_num(int vif) 1862 { 1863 if (vif >= 0 && vif < numvifs) 1864 return (1); 1865 else 1866 return (0); 1867 } 1868 #endif /* RSVP_ISI */ 1869 1870 static void 1871 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1872 { 1873 struct mbuf *mb_copy; 1874 int hlen = ip->ip_hl << 2; 1875 1876 /* 1877 * Make a new reference to the packet; make sure that 1878 * the IP header is actually copied, not just referenced, 1879 * so that ip_output() only scribbles on the copy. 1880 */ 1881 mb_copy = m_copypacket(m, M_DONTWAIT); 1882 M_PULLUP(mb_copy, hlen); 1883 if (mb_copy == NULL) 1884 return; 1885 1886 if (vifp->v_rate_limit <= 0) 1887 tbf_send_packet(vifp, mb_copy); 1888 else 1889 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1890 ntohs(ip->ip_len)); 1891 } 1892 1893 static void 1894 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) 1895 { 1896 struct mbuf *mb_copy; 1897 struct ip *ip_copy; 1898 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1899 1900 /* Take care of delayed checksums */ 1901 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1902 in_delayed_cksum(m); 1903 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1904 } 1905 1906 /* 1907 * copy the old packet & pullup it's IP header into the 1908 * new mbuf so we can modify it. Try to fill the new 1909 * mbuf since if we don't the ethernet driver will. 1910 */ 1911 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1912 if (mb_copy == NULL) 1913 return; 1914 mb_copy->m_data += max_linkhdr; 1915 mb_copy->m_pkthdr.len = len; 1916 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1917 1918 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { 1919 m_freem(mb_copy); 1920 return; 1921 } 1922 i = MHLEN - max_linkhdr; 1923 if (i > len) 1924 i = len; 1925 mb_copy = m_pullup(mb_copy, i); 1926 if (mb_copy == NULL) 1927 return; 1928 1929 /* 1930 * fill in the encapsulating IP header. 1931 */ 1932 ip_copy = mtod(mb_copy, struct ip *); 1933 *ip_copy = multicast_encap_iphdr; 1934 if (len < IP_MINFRAGSIZE) 1935 ip_copy->ip_id = 0; 1936 else 1937 ip_copy->ip_id = ip_newid(NULL); 1938 ip_copy->ip_len = htons(len); 1939 ip_copy->ip_src = vifp->v_lcl_addr; 1940 ip_copy->ip_dst = vifp->v_rmt_addr; 1941 1942 /* 1943 * turn the encapsulated IP header back into a valid one. 1944 */ 1945 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr)); 1946 --ip->ip_ttl; 1947 ip->ip_sum = 0; 1948 mb_copy->m_data += sizeof(multicast_encap_iphdr); 1949 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 1950 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 1951 1952 if (vifp->v_rate_limit <= 0) 1953 tbf_send_packet(vifp, mb_copy); 1954 else 1955 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 1956 } 1957 1958 /* 1959 * De-encapsulate a packet and feed it back through ip input. 1960 */ 1961 static void 1962 vif_input(struct mbuf *m, ...) 1963 { 1964 int off, proto; 1965 va_list ap; 1966 struct vif *vifp; 1967 int s; 1968 struct ifqueue *ifq; 1969 1970 va_start(ap, m); 1971 off = va_arg(ap, int); 1972 proto = va_arg(ap, int); 1973 va_end(ap); 1974 1975 vifp = (struct vif *)encap_getarg(m); 1976 if (!vifp || proto != ENCAP_PROTO) { 1977 m_freem(m); 1978 mrtstat.mrts_bad_tunnel++; 1979 return; 1980 } 1981 1982 m_adj(m, off); 1983 m->m_pkthdr.rcvif = vifp->v_ifp; 1984 ifq = &ipintrq; 1985 s = splnet(); 1986 if (IF_QFULL(ifq)) { 1987 IF_DROP(ifq); 1988 m_freem(m); 1989 } else { 1990 IF_ENQUEUE(ifq, m); 1991 /* 1992 * normally we would need a "schednetisr(NETISR_IP)" 1993 * here but we were called by ip_input and it is going 1994 * to loop back & try to dequeue the packet we just 1995 * queued as soon as we return so we avoid the 1996 * unnecessary software interrrupt. 1997 */ 1998 } 1999 splx(s); 2000 } 2001 2002 /* 2003 * Check if the packet should be received on the vif denoted by arg. 2004 * (The encap selection code will call this once per vif since each is 2005 * registered separately.) 2006 */ 2007 static int 2008 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg) 2009 { 2010 struct vif *vifp; 2011 struct ip ip; 2012 2013 #ifdef DIAGNOSTIC 2014 if (!arg || proto != IPPROTO_IPV4) 2015 panic("unexpected arg in vif_encapcheck"); 2016 #endif 2017 2018 /* 2019 * Accept the packet only if the inner heaader is multicast 2020 * and the outer header matches a tunnel-mode vif. Order 2021 * checks in the hope that common non-matching packets will be 2022 * rejected quickly. Assume that unicast IPv4 traffic in a 2023 * parallel tunnel (e.g. gif(4)) is unlikely. 2024 */ 2025 2026 /* Obtain the outer IP header and the vif pointer. */ 2027 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip); 2028 vifp = (struct vif *)arg; 2029 2030 /* 2031 * The outer source must match the vif's remote peer address. 2032 * For a multicast router with several tunnels, this is the 2033 * only check that will fail on packets in other tunnels, 2034 * assuming the local address is the same. 2035 */ 2036 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 2037 return 0; 2038 2039 /* The outer destination must match the vif's local address. */ 2040 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst)) 2041 return 0; 2042 2043 /* The vif must be of tunnel type. */ 2044 if ((vifp->v_flags & VIFF_TUNNEL) == 0) 2045 return 0; 2046 2047 /* Check that the inner destination is multicast. */ 2048 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip); 2049 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 2050 return 0; 2051 2052 /* 2053 * We have checked that both the outer src and dst addresses 2054 * match the vif, and that the inner destination is multicast 2055 * (224/5). By claiming more than 64, we intend to 2056 * preferentially take packets that also match a parallel 2057 * gif(4). 2058 */ 2059 return 32 + 32 + 5; 2060 } 2061 2062 /* 2063 * Token bucket filter module 2064 */ 2065 static void 2066 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) 2067 { 2068 2069 if (len > MAX_BKT_SIZE) { 2070 /* drop if packet is too large */ 2071 mrtstat.mrts_pkt2large++; 2072 m_freem(m); 2073 return; 2074 } 2075 2076 tbf_update_tokens(vifp); 2077 2078 /* 2079 * If there are enough tokens, and the queue is empty, send this packet 2080 * out immediately. Otherwise, try to insert it on this vif's queue. 2081 */ 2082 if (vifp->tbf_q_len == 0) { 2083 if (len <= vifp->tbf_n_tok) { 2084 vifp->tbf_n_tok -= len; 2085 tbf_send_packet(vifp, m); 2086 } else { 2087 /* queue packet and timeout till later */ 2088 tbf_queue(vifp, m); 2089 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2090 tbf_reprocess_q, vifp); 2091 } 2092 } else { 2093 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 2094 !tbf_dq_sel(vifp, ip)) { 2095 /* queue full, and couldn't make room */ 2096 mrtstat.mrts_q_overflow++; 2097 m_freem(m); 2098 } else { 2099 /* queue length low enough, or made room */ 2100 tbf_queue(vifp, m); 2101 tbf_process_q(vifp); 2102 } 2103 } 2104 } 2105 2106 /* 2107 * adds a packet to the queue at the interface 2108 */ 2109 static void 2110 tbf_queue(struct vif *vifp, struct mbuf *m) 2111 { 2112 int s = splsoftnet(); 2113 2114 /* insert at tail */ 2115 *vifp->tbf_t = m; 2116 vifp->tbf_t = &m->m_nextpkt; 2117 vifp->tbf_q_len++; 2118 2119 splx(s); 2120 } 2121 2122 2123 /* 2124 * processes the queue at the interface 2125 */ 2126 static void 2127 tbf_process_q(struct vif *vifp) 2128 { 2129 struct mbuf *m; 2130 int len; 2131 int s = splsoftnet(); 2132 2133 /* 2134 * Loop through the queue at the interface and send as many packets 2135 * as possible. 2136 */ 2137 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2138 len = ntohs(mtod(m, struct ip *)->ip_len); 2139 2140 /* determine if the packet can be sent */ 2141 if (len <= vifp->tbf_n_tok) { 2142 /* if so, 2143 * reduce no of tokens, dequeue the packet, 2144 * send the packet. 2145 */ 2146 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2147 vifp->tbf_t = &vifp->tbf_q; 2148 --vifp->tbf_q_len; 2149 2150 m->m_nextpkt = NULL; 2151 vifp->tbf_n_tok -= len; 2152 tbf_send_packet(vifp, m); 2153 } else 2154 break; 2155 } 2156 splx(s); 2157 } 2158 2159 static void 2160 tbf_reprocess_q(void *arg) 2161 { 2162 struct vif *vifp = arg; 2163 2164 if (ip_mrouter == NULL) 2165 return; 2166 2167 tbf_update_tokens(vifp); 2168 tbf_process_q(vifp); 2169 2170 if (vifp->tbf_q_len != 0) 2171 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2172 tbf_reprocess_q, vifp); 2173 } 2174 2175 /* function that will selectively discard a member of the queue 2176 * based on the precedence value and the priority 2177 */ 2178 static int 2179 tbf_dq_sel(struct vif *vifp, struct ip *ip) 2180 { 2181 u_int p; 2182 struct mbuf **mp, *m; 2183 int s = splsoftnet(); 2184 2185 p = priority(vifp, ip); 2186 2187 for (mp = &vifp->tbf_q, m = *mp; 2188 m != NULL; 2189 mp = &m->m_nextpkt, m = *mp) { 2190 if (p > priority(vifp, mtod(m, struct ip *))) { 2191 if ((*mp = m->m_nextpkt) == NULL) 2192 vifp->tbf_t = mp; 2193 --vifp->tbf_q_len; 2194 2195 m_freem(m); 2196 mrtstat.mrts_drop_sel++; 2197 splx(s); 2198 return (1); 2199 } 2200 } 2201 splx(s); 2202 return (0); 2203 } 2204 2205 static void 2206 tbf_send_packet(struct vif *vifp, struct mbuf *m) 2207 { 2208 int error; 2209 int s = splsoftnet(); 2210 2211 if (vifp->v_flags & VIFF_TUNNEL) { 2212 /* If tunnel options */ 2213 ip_output(m, (struct mbuf *)NULL, &vifp->v_route, 2214 IP_FORWARDING, (struct ip_moptions *)NULL, 2215 (struct socket *)NULL); 2216 } else { 2217 /* if physical interface option, extract the options and then send */ 2218 struct ip_moptions imo; 2219 2220 imo.imo_multicast_ifp = vifp->v_ifp; 2221 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2222 imo.imo_multicast_loop = 1; 2223 #ifdef RSVP_ISI 2224 imo.imo_multicast_vif = -1; 2225 #endif 2226 2227 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS, 2228 &imo, NULL); 2229 2230 if (mrtdebug & DEBUG_XMIT) 2231 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2232 (long)(vifp - viftable), error); 2233 } 2234 splx(s); 2235 } 2236 2237 /* determine the current time and then 2238 * the elapsed time (between the last time and time now) 2239 * in milliseconds & update the no. of tokens in the bucket 2240 */ 2241 static void 2242 tbf_update_tokens(struct vif *vifp) 2243 { 2244 struct timeval tp; 2245 u_int32_t tm; 2246 int s = splsoftnet(); 2247 2248 microtime(&tp); 2249 2250 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2251 2252 /* 2253 * This formula is actually 2254 * "time in seconds" * "bytes/second". 2255 * 2256 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2257 * 2258 * The (1000/1024) was introduced in add_vif to optimize 2259 * this divide into a shift. 2260 */ 2261 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2262 vifp->tbf_last_pkt_t = tp; 2263 2264 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2265 vifp->tbf_n_tok = MAX_BKT_SIZE; 2266 2267 splx(s); 2268 } 2269 2270 static int 2271 priority(struct vif *vifp, struct ip *ip) 2272 { 2273 int prio = 50; /* the lowest priority -- default case */ 2274 2275 /* temporary hack; may add general packet classifier some day */ 2276 2277 /* 2278 * The UDP port space is divided up into four priority ranges: 2279 * [0, 16384) : unclassified - lowest priority 2280 * [16384, 32768) : audio - highest priority 2281 * [32768, 49152) : whiteboard - medium priority 2282 * [49152, 65536) : video - low priority 2283 */ 2284 if (ip->ip_p == IPPROTO_UDP) { 2285 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2286 2287 switch (ntohs(udp->uh_dport) & 0xc000) { 2288 case 0x4000: 2289 prio = 70; 2290 break; 2291 case 0x8000: 2292 prio = 60; 2293 break; 2294 case 0xc000: 2295 prio = 55; 2296 break; 2297 } 2298 2299 if (tbfdebug > 1) 2300 log(LOG_DEBUG, "port %x prio %d\n", 2301 ntohs(udp->uh_dport), prio); 2302 } 2303 2304 return (prio); 2305 } 2306 2307 /* 2308 * End of token bucket filter modifications 2309 */ 2310 #ifdef RSVP_ISI 2311 int 2312 ip_rsvp_vif_init(struct socket *so, struct mbuf *m) 2313 { 2314 int vifi, s; 2315 2316 if (rsvpdebug) 2317 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", 2318 so->so_type, so->so_proto->pr_protocol); 2319 2320 if (so->so_type != SOCK_RAW || 2321 so->so_proto->pr_protocol != IPPROTO_RSVP) 2322 return (EOPNOTSUPP); 2323 2324 /* Check mbuf. */ 2325 if (m == NULL || m->m_len != sizeof(int)) { 2326 return (EINVAL); 2327 } 2328 vifi = *(mtod(m, int *)); 2329 2330 if (rsvpdebug) 2331 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", 2332 vifi, rsvp_on); 2333 2334 s = splsoftnet(); 2335 2336 /* Check vif. */ 2337 if (!legal_vif_num(vifi)) { 2338 splx(s); 2339 return (EADDRNOTAVAIL); 2340 } 2341 2342 /* Check if socket is available. */ 2343 if (viftable[vifi].v_rsvpd != NULL) { 2344 splx(s); 2345 return (EADDRINUSE); 2346 } 2347 2348 viftable[vifi].v_rsvpd = so; 2349 /* 2350 * This may seem silly, but we need to be sure we don't over-increment 2351 * the RSVP counter, in case something slips up. 2352 */ 2353 if (!viftable[vifi].v_rsvp_on) { 2354 viftable[vifi].v_rsvp_on = 1; 2355 rsvp_on++; 2356 } 2357 2358 splx(s); 2359 return (0); 2360 } 2361 2362 int 2363 ip_rsvp_vif_done(struct socket *so, struct mbuf *m) 2364 { 2365 int vifi, s; 2366 2367 if (rsvpdebug) 2368 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", 2369 so->so_type, so->so_proto->pr_protocol); 2370 2371 if (so->so_type != SOCK_RAW || 2372 so->so_proto->pr_protocol != IPPROTO_RSVP) 2373 return (EOPNOTSUPP); 2374 2375 /* Check mbuf. */ 2376 if (m == NULL || m->m_len != sizeof(int)) { 2377 return (EINVAL); 2378 } 2379 vifi = *(mtod(m, int *)); 2380 2381 s = splsoftnet(); 2382 2383 /* Check vif. */ 2384 if (!legal_vif_num(vifi)) { 2385 splx(s); 2386 return (EADDRNOTAVAIL); 2387 } 2388 2389 if (rsvpdebug) 2390 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", 2391 viftable[vifi].v_rsvpd, so); 2392 2393 viftable[vifi].v_rsvpd = NULL; 2394 /* 2395 * This may seem silly, but we need to be sure we don't over-decrement 2396 * the RSVP counter, in case something slips up. 2397 */ 2398 if (viftable[vifi].v_rsvp_on) { 2399 viftable[vifi].v_rsvp_on = 0; 2400 rsvp_on--; 2401 } 2402 2403 splx(s); 2404 return (0); 2405 } 2406 2407 void 2408 ip_rsvp_force_done(struct socket *so) 2409 { 2410 int vifi, s; 2411 2412 /* Don't bother if it is not the right type of socket. */ 2413 if (so->so_type != SOCK_RAW || 2414 so->so_proto->pr_protocol != IPPROTO_RSVP) 2415 return; 2416 2417 s = splsoftnet(); 2418 2419 /* 2420 * The socket may be attached to more than one vif...this 2421 * is perfectly legal. 2422 */ 2423 for (vifi = 0; vifi < numvifs; vifi++) { 2424 if (viftable[vifi].v_rsvpd == so) { 2425 viftable[vifi].v_rsvpd = NULL; 2426 /* 2427 * This may seem silly, but we need to be sure we don't 2428 * over-decrement the RSVP counter, in case something 2429 * slips up. 2430 */ 2431 if (viftable[vifi].v_rsvp_on) { 2432 viftable[vifi].v_rsvp_on = 0; 2433 rsvp_on--; 2434 } 2435 } 2436 } 2437 2438 splx(s); 2439 return; 2440 } 2441 2442 void 2443 rsvp_input(struct mbuf *m, struct ifnet *ifp) 2444 { 2445 int vifi, s; 2446 struct ip *ip = mtod(m, struct ip *); 2447 struct sockaddr_in rsvp_src; 2448 2449 if (rsvpdebug) 2450 printf("rsvp_input: rsvp_on %d\n", rsvp_on); 2451 2452 /* 2453 * Can still get packets with rsvp_on = 0 if there is a local member 2454 * of the group to which the RSVP packet is addressed. But in this 2455 * case we want to throw the packet away. 2456 */ 2457 if (!rsvp_on) { 2458 m_freem(m); 2459 return; 2460 } 2461 2462 /* 2463 * If the old-style non-vif-associated socket is set, then use 2464 * it and ignore the new ones. 2465 */ 2466 if (ip_rsvpd != NULL) { 2467 if (rsvpdebug) 2468 printf("rsvp_input: " 2469 "Sending packet up old-style socket\n"); 2470 rip_input(m); /*XXX*/ 2471 return; 2472 } 2473 2474 s = splsoftnet(); 2475 2476 if (rsvpdebug) 2477 printf("rsvp_input: check vifs\n"); 2478 2479 /* Find which vif the packet arrived on. */ 2480 for (vifi = 0; vifi < numvifs; vifi++) { 2481 if (viftable[vifi].v_ifp == ifp) 2482 break; 2483 } 2484 2485 if (vifi == numvifs) { 2486 /* Can't find vif packet arrived on. Drop packet. */ 2487 if (rsvpdebug) 2488 printf("rsvp_input: " 2489 "Can't find vif for packet...dropping it.\n"); 2490 m_freem(m); 2491 splx(s); 2492 return; 2493 } 2494 2495 if (rsvpdebug) 2496 printf("rsvp_input: check socket\n"); 2497 2498 if (viftable[vifi].v_rsvpd == NULL) { 2499 /* 2500 * drop packet, since there is no specific socket for this 2501 * interface 2502 */ 2503 if (rsvpdebug) 2504 printf("rsvp_input: No socket defined for vif %d\n", 2505 vifi); 2506 m_freem(m); 2507 splx(s); 2508 return; 2509 } 2510 2511 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0); 2512 2513 if (rsvpdebug && m) 2514 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", 2515 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); 2516 2517 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2518 if (rsvpdebug) 2519 printf("rsvp_input: Failed to append to socket\n"); 2520 else 2521 if (rsvpdebug) 2522 printf("rsvp_input: send packet up\n"); 2523 2524 splx(s); 2525 } 2526 #endif /* RSVP_ISI */ 2527 2528 /* 2529 * Code for bandwidth monitors 2530 */ 2531 2532 /* 2533 * Define common interface for timeval-related methods 2534 */ 2535 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2536 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2537 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2538 2539 static uint32_t 2540 compute_bw_meter_flags(struct bw_upcall *req) 2541 { 2542 uint32_t flags = 0; 2543 2544 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2545 flags |= BW_METER_UNIT_PACKETS; 2546 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2547 flags |= BW_METER_UNIT_BYTES; 2548 if (req->bu_flags & BW_UPCALL_GEQ) 2549 flags |= BW_METER_GEQ; 2550 if (req->bu_flags & BW_UPCALL_LEQ) 2551 flags |= BW_METER_LEQ; 2552 2553 return flags; 2554 } 2555 2556 /* 2557 * Add a bw_meter entry 2558 */ 2559 static int 2560 add_bw_upcall(struct mbuf *m) 2561 { 2562 int s; 2563 struct mfc *mfc; 2564 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2565 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2566 struct timeval now; 2567 struct bw_meter *x; 2568 uint32_t flags; 2569 struct bw_upcall *req; 2570 2571 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2572 return EINVAL; 2573 2574 req = mtod(m, struct bw_upcall *); 2575 2576 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2577 return EOPNOTSUPP; 2578 2579 /* Test if the flags are valid */ 2580 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2581 return EINVAL; 2582 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2583 return EINVAL; 2584 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2585 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2586 return EINVAL; 2587 2588 /* Test if the threshold time interval is valid */ 2589 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2590 return EINVAL; 2591 2592 flags = compute_bw_meter_flags(req); 2593 2594 /* 2595 * Find if we have already same bw_meter entry 2596 */ 2597 s = splsoftnet(); 2598 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2599 if (mfc == NULL) { 2600 splx(s); 2601 return EADDRNOTAVAIL; 2602 } 2603 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2604 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2605 &req->bu_threshold.b_time, ==)) && 2606 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2607 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2608 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2609 splx(s); 2610 return 0; /* XXX Already installed */ 2611 } 2612 } 2613 2614 /* Allocate the new bw_meter entry */ 2615 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2616 if (x == NULL) { 2617 splx(s); 2618 return ENOBUFS; 2619 } 2620 2621 /* Set the new bw_meter entry */ 2622 x->bm_threshold.b_time = req->bu_threshold.b_time; 2623 microtime(&now); 2624 x->bm_start_time = now; 2625 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2626 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2627 x->bm_measured.b_packets = 0; 2628 x->bm_measured.b_bytes = 0; 2629 x->bm_flags = flags; 2630 x->bm_time_next = NULL; 2631 x->bm_time_hash = BW_METER_BUCKETS; 2632 2633 /* Add the new bw_meter entry to the front of entries for this MFC */ 2634 x->bm_mfc = mfc; 2635 x->bm_mfc_next = mfc->mfc_bw_meter; 2636 mfc->mfc_bw_meter = x; 2637 schedule_bw_meter(x, &now); 2638 splx(s); 2639 2640 return 0; 2641 } 2642 2643 static void 2644 free_bw_list(struct bw_meter *list) 2645 { 2646 while (list != NULL) { 2647 struct bw_meter *x = list; 2648 2649 list = list->bm_mfc_next; 2650 unschedule_bw_meter(x); 2651 free(x, M_BWMETER); 2652 } 2653 } 2654 2655 /* 2656 * Delete one or multiple bw_meter entries 2657 */ 2658 static int 2659 del_bw_upcall(struct mbuf *m) 2660 { 2661 int s; 2662 struct mfc *mfc; 2663 struct bw_meter *x; 2664 struct bw_upcall *req; 2665 2666 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2667 return EINVAL; 2668 2669 req = mtod(m, struct bw_upcall *); 2670 2671 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2672 return EOPNOTSUPP; 2673 2674 s = splsoftnet(); 2675 /* Find the corresponding MFC entry */ 2676 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2677 if (mfc == NULL) { 2678 splx(s); 2679 return EADDRNOTAVAIL; 2680 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2681 /* 2682 * Delete all bw_meter entries for this mfc 2683 */ 2684 struct bw_meter *list; 2685 2686 list = mfc->mfc_bw_meter; 2687 mfc->mfc_bw_meter = NULL; 2688 free_bw_list(list); 2689 splx(s); 2690 return 0; 2691 } else { /* Delete a single bw_meter entry */ 2692 struct bw_meter *prev; 2693 uint32_t flags = 0; 2694 2695 flags = compute_bw_meter_flags(req); 2696 2697 /* Find the bw_meter entry to delete */ 2698 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2699 prev = x, x = x->bm_mfc_next) { 2700 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2701 &req->bu_threshold.b_time, ==)) && 2702 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2703 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2704 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2705 break; 2706 } 2707 if (x != NULL) { /* Delete entry from the list for this MFC */ 2708 if (prev != NULL) 2709 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2710 else 2711 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2712 2713 unschedule_bw_meter(x); 2714 splx(s); 2715 /* Free the bw_meter entry */ 2716 free(x, M_BWMETER); 2717 return 0; 2718 } else { 2719 splx(s); 2720 return EINVAL; 2721 } 2722 } 2723 /* NOTREACHED */ 2724 } 2725 2726 /* 2727 * Perform bandwidth measurement processing that may result in an upcall 2728 */ 2729 static void 2730 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2731 { 2732 struct timeval delta; 2733 2734 delta = *nowp; 2735 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2736 2737 if (x->bm_flags & BW_METER_GEQ) { 2738 /* 2739 * Processing for ">=" type of bw_meter entry 2740 */ 2741 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2742 /* Reset the bw_meter entry */ 2743 x->bm_start_time = *nowp; 2744 x->bm_measured.b_packets = 0; 2745 x->bm_measured.b_bytes = 0; 2746 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2747 } 2748 2749 /* Record that a packet is received */ 2750 x->bm_measured.b_packets++; 2751 x->bm_measured.b_bytes += plen; 2752 2753 /* 2754 * Test if we should deliver an upcall 2755 */ 2756 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2757 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2758 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2759 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2760 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2761 /* Prepare an upcall for delivery */ 2762 bw_meter_prepare_upcall(x, nowp); 2763 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2764 } 2765 } 2766 } else if (x->bm_flags & BW_METER_LEQ) { 2767 /* 2768 * Processing for "<=" type of bw_meter entry 2769 */ 2770 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2771 /* 2772 * We are behind time with the multicast forwarding table 2773 * scanning for "<=" type of bw_meter entries, so test now 2774 * if we should deliver an upcall. 2775 */ 2776 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2777 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2778 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2779 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2780 /* Prepare an upcall for delivery */ 2781 bw_meter_prepare_upcall(x, nowp); 2782 } 2783 /* Reschedule the bw_meter entry */ 2784 unschedule_bw_meter(x); 2785 schedule_bw_meter(x, nowp); 2786 } 2787 2788 /* Record that a packet is received */ 2789 x->bm_measured.b_packets++; 2790 x->bm_measured.b_bytes += plen; 2791 2792 /* 2793 * Test if we should restart the measuring interval 2794 */ 2795 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2796 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2797 (x->bm_flags & BW_METER_UNIT_BYTES && 2798 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2799 /* Don't restart the measuring interval */ 2800 } else { 2801 /* Do restart the measuring interval */ 2802 /* 2803 * XXX: note that we don't unschedule and schedule, because this 2804 * might be too much overhead per packet. Instead, when we process 2805 * all entries for a given timer hash bin, we check whether it is 2806 * really a timeout. If not, we reschedule at that time. 2807 */ 2808 x->bm_start_time = *nowp; 2809 x->bm_measured.b_packets = 0; 2810 x->bm_measured.b_bytes = 0; 2811 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2812 } 2813 } 2814 } 2815 2816 /* 2817 * Prepare a bandwidth-related upcall 2818 */ 2819 static void 2820 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2821 { 2822 struct timeval delta; 2823 struct bw_upcall *u; 2824 2825 /* 2826 * Compute the measured time interval 2827 */ 2828 delta = *nowp; 2829 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2830 2831 /* 2832 * If there are too many pending upcalls, deliver them now 2833 */ 2834 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2835 bw_upcalls_send(); 2836 2837 /* 2838 * Set the bw_upcall entry 2839 */ 2840 u = &bw_upcalls[bw_upcalls_n++]; 2841 u->bu_src = x->bm_mfc->mfc_origin; 2842 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2843 u->bu_threshold.b_time = x->bm_threshold.b_time; 2844 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2845 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2846 u->bu_measured.b_time = delta; 2847 u->bu_measured.b_packets = x->bm_measured.b_packets; 2848 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2849 u->bu_flags = 0; 2850 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2851 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2852 if (x->bm_flags & BW_METER_UNIT_BYTES) 2853 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2854 if (x->bm_flags & BW_METER_GEQ) 2855 u->bu_flags |= BW_UPCALL_GEQ; 2856 if (x->bm_flags & BW_METER_LEQ) 2857 u->bu_flags |= BW_UPCALL_LEQ; 2858 } 2859 2860 /* 2861 * Send the pending bandwidth-related upcalls 2862 */ 2863 static void 2864 bw_upcalls_send(void) 2865 { 2866 struct mbuf *m; 2867 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2868 struct sockaddr_in k_igmpsrc = { 2869 .sin_len = sizeof(k_igmpsrc), 2870 .sin_family = AF_INET, 2871 }; 2872 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2873 0, /* unused2 */ 2874 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2875 0, /* im_mbz */ 2876 0, /* im_vif */ 2877 0, /* unused3 */ 2878 { 0 }, /* im_src */ 2879 { 0 } }; /* im_dst */ 2880 2881 if (bw_upcalls_n == 0) 2882 return; /* No pending upcalls */ 2883 2884 bw_upcalls_n = 0; 2885 2886 /* 2887 * Allocate a new mbuf, initialize it with the header and 2888 * the payload for the pending calls. 2889 */ 2890 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2891 if (m == NULL) { 2892 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2893 return; 2894 } 2895 2896 m->m_len = m->m_pkthdr.len = 0; 2897 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg); 2898 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]); 2899 2900 /* 2901 * Send the upcalls 2902 * XXX do we need to set the address in k_igmpsrc ? 2903 */ 2904 mrtstat.mrts_upcalls++; 2905 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2906 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2907 ++mrtstat.mrts_upq_sockfull; 2908 } 2909 } 2910 2911 /* 2912 * Compute the timeout hash value for the bw_meter entries 2913 */ 2914 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2915 do { \ 2916 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2917 \ 2918 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2919 (hash) = next_timeval.tv_sec; \ 2920 if (next_timeval.tv_usec) \ 2921 (hash)++; /* XXX: make sure we don't timeout early */ \ 2922 (hash) %= BW_METER_BUCKETS; \ 2923 } while (/*CONSTCOND*/ 0) 2924 2925 /* 2926 * Schedule a timer to process periodically bw_meter entry of type "<=" 2927 * by linking the entry in the proper hash bucket. 2928 */ 2929 static void 2930 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 2931 { 2932 int time_hash; 2933 2934 if (!(x->bm_flags & BW_METER_LEQ)) 2935 return; /* XXX: we schedule timers only for "<=" entries */ 2936 2937 /* 2938 * Reset the bw_meter entry 2939 */ 2940 x->bm_start_time = *nowp; 2941 x->bm_measured.b_packets = 0; 2942 x->bm_measured.b_bytes = 0; 2943 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2944 2945 /* 2946 * Compute the timeout hash value and insert the entry 2947 */ 2948 BW_METER_TIMEHASH(x, time_hash); 2949 x->bm_time_next = bw_meter_timers[time_hash]; 2950 bw_meter_timers[time_hash] = x; 2951 x->bm_time_hash = time_hash; 2952 } 2953 2954 /* 2955 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 2956 * by removing the entry from the proper hash bucket. 2957 */ 2958 static void 2959 unschedule_bw_meter(struct bw_meter *x) 2960 { 2961 int time_hash; 2962 struct bw_meter *prev, *tmp; 2963 2964 if (!(x->bm_flags & BW_METER_LEQ)) 2965 return; /* XXX: we schedule timers only for "<=" entries */ 2966 2967 /* 2968 * Compute the timeout hash value and delete the entry 2969 */ 2970 time_hash = x->bm_time_hash; 2971 if (time_hash >= BW_METER_BUCKETS) 2972 return; /* Entry was not scheduled */ 2973 2974 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 2975 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 2976 if (tmp == x) 2977 break; 2978 2979 if (tmp == NULL) 2980 panic("unschedule_bw_meter: bw_meter entry not found"); 2981 2982 if (prev != NULL) 2983 prev->bm_time_next = x->bm_time_next; 2984 else 2985 bw_meter_timers[time_hash] = x->bm_time_next; 2986 2987 x->bm_time_next = NULL; 2988 x->bm_time_hash = BW_METER_BUCKETS; 2989 } 2990 2991 /* 2992 * Process all "<=" type of bw_meter that should be processed now, 2993 * and for each entry prepare an upcall if necessary. Each processed 2994 * entry is rescheduled again for the (periodic) processing. 2995 * 2996 * This is run periodically (once per second normally). On each round, 2997 * all the potentially matching entries are in the hash slot that we are 2998 * looking at. 2999 */ 3000 static void 3001 bw_meter_process(void) 3002 { 3003 int s; 3004 static uint32_t last_tv_sec; /* last time we processed this */ 3005 3006 uint32_t loops; 3007 int i; 3008 struct timeval now, process_endtime; 3009 3010 microtime(&now); 3011 if (last_tv_sec == now.tv_sec) 3012 return; /* nothing to do */ 3013 3014 loops = now.tv_sec - last_tv_sec; 3015 last_tv_sec = now.tv_sec; 3016 if (loops > BW_METER_BUCKETS) 3017 loops = BW_METER_BUCKETS; 3018 3019 s = splsoftnet(); 3020 /* 3021 * Process all bins of bw_meter entries from the one after the last 3022 * processed to the current one. On entry, i points to the last bucket 3023 * visited, so we need to increment i at the beginning of the loop. 3024 */ 3025 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 3026 struct bw_meter *x, *tmp_list; 3027 3028 if (++i >= BW_METER_BUCKETS) 3029 i = 0; 3030 3031 /* Disconnect the list of bw_meter entries from the bin */ 3032 tmp_list = bw_meter_timers[i]; 3033 bw_meter_timers[i] = NULL; 3034 3035 /* Process the list of bw_meter entries */ 3036 while (tmp_list != NULL) { 3037 x = tmp_list; 3038 tmp_list = tmp_list->bm_time_next; 3039 3040 /* Test if the time interval is over */ 3041 process_endtime = x->bm_start_time; 3042 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 3043 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 3044 /* Not yet: reschedule, but don't reset */ 3045 int time_hash; 3046 3047 BW_METER_TIMEHASH(x, time_hash); 3048 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 3049 /* 3050 * XXX: somehow the bin processing is a bit ahead of time. 3051 * Put the entry in the next bin. 3052 */ 3053 if (++time_hash >= BW_METER_BUCKETS) 3054 time_hash = 0; 3055 } 3056 x->bm_time_next = bw_meter_timers[time_hash]; 3057 bw_meter_timers[time_hash] = x; 3058 x->bm_time_hash = time_hash; 3059 3060 continue; 3061 } 3062 3063 /* 3064 * Test if we should deliver an upcall 3065 */ 3066 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 3067 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 3068 ((x->bm_flags & BW_METER_UNIT_BYTES) && 3069 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 3070 /* Prepare an upcall for delivery */ 3071 bw_meter_prepare_upcall(x, &now); 3072 } 3073 3074 /* 3075 * Reschedule for next processing 3076 */ 3077 schedule_bw_meter(x, &now); 3078 } 3079 } 3080 3081 /* Send all upcalls that are pending delivery */ 3082 bw_upcalls_send(); 3083 3084 splx(s); 3085 } 3086 3087 /* 3088 * A periodic function for sending all upcalls that are pending delivery 3089 */ 3090 static void 3091 expire_bw_upcalls_send(void *unused) 3092 { 3093 int s; 3094 3095 s = splsoftnet(); 3096 bw_upcalls_send(); 3097 splx(s); 3098 3099 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 3100 expire_bw_upcalls_send, NULL); 3101 } 3102 3103 /* 3104 * A periodic function for periodic scanning of the multicast forwarding 3105 * table for processing all "<=" bw_meter entries. 3106 */ 3107 static void 3108 expire_bw_meter_process(void *unused) 3109 { 3110 if (mrt_api_config & MRT_MFC_BW_UPCALL) 3111 bw_meter_process(); 3112 3113 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 3114 expire_bw_meter_process, NULL); 3115 } 3116 3117 /* 3118 * End of bandwidth monitoring code 3119 */ 3120 3121 #ifdef PIM 3122 /* 3123 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3124 */ 3125 static int 3126 pim_register_send(struct ip *ip, struct vif *vifp, 3127 struct mbuf *m, struct mfc *rt) 3128 { 3129 struct mbuf *mb_copy, *mm; 3130 3131 if (mrtdebug & DEBUG_PIM) 3132 log(LOG_DEBUG, "pim_register_send: "); 3133 3134 mb_copy = pim_register_prepare(ip, m); 3135 if (mb_copy == NULL) 3136 return ENOBUFS; 3137 3138 /* 3139 * Send all the fragments. Note that the mbuf for each fragment 3140 * is freed by the sending machinery. 3141 */ 3142 for (mm = mb_copy; mm; mm = mb_copy) { 3143 mb_copy = mm->m_nextpkt; 3144 mm->m_nextpkt = NULL; 3145 mm = m_pullup(mm, sizeof(struct ip)); 3146 if (mm != NULL) { 3147 ip = mtod(mm, struct ip *); 3148 if ((mrt_api_config & MRT_MFC_RP) && 3149 !in_nullhost(rt->mfc_rp)) { 3150 pim_register_send_rp(ip, vifp, mm, rt); 3151 } else { 3152 pim_register_send_upcall(ip, vifp, mm, rt); 3153 } 3154 } 3155 } 3156 3157 return 0; 3158 } 3159 3160 /* 3161 * Return a copy of the data packet that is ready for PIM Register 3162 * encapsulation. 3163 * XXX: Note that in the returned copy the IP header is a valid one. 3164 */ 3165 static struct mbuf * 3166 pim_register_prepare(struct ip *ip, struct mbuf *m) 3167 { 3168 struct mbuf *mb_copy = NULL; 3169 int mtu; 3170 3171 /* Take care of delayed checksums */ 3172 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3173 in_delayed_cksum(m); 3174 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3175 } 3176 3177 /* 3178 * Copy the old packet & pullup its IP header into the 3179 * new mbuf so we can modify it. 3180 */ 3181 mb_copy = m_copypacket(m, M_DONTWAIT); 3182 if (mb_copy == NULL) 3183 return NULL; 3184 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3185 if (mb_copy == NULL) 3186 return NULL; 3187 3188 /* take care of the TTL */ 3189 ip = mtod(mb_copy, struct ip *); 3190 --ip->ip_ttl; 3191 3192 /* Compute the MTU after the PIM Register encapsulation */ 3193 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3194 3195 if (ntohs(ip->ip_len) <= mtu) { 3196 /* Turn the IP header into a valid one */ 3197 ip->ip_sum = 0; 3198 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3199 } else { 3200 /* Fragment the packet */ 3201 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3202 /* XXX: mb_copy was freed by ip_fragment() */ 3203 return NULL; 3204 } 3205 } 3206 return mb_copy; 3207 } 3208 3209 /* 3210 * Send an upcall with the data packet to the user-level process. 3211 */ 3212 static int 3213 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3214 struct mbuf *mb_copy, struct mfc *rt) 3215 { 3216 struct mbuf *mb_first; 3217 int len = ntohs(ip->ip_len); 3218 struct igmpmsg *im; 3219 struct sockaddr_in k_igmpsrc = { 3220 .sin_len = sizeof(k_igmpsrc), 3221 .sin_family = AF_INET, 3222 }; 3223 3224 /* 3225 * Add a new mbuf with an upcall header 3226 */ 3227 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3228 if (mb_first == NULL) { 3229 m_freem(mb_copy); 3230 return ENOBUFS; 3231 } 3232 mb_first->m_data += max_linkhdr; 3233 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3234 mb_first->m_len = sizeof(struct igmpmsg); 3235 mb_first->m_next = mb_copy; 3236 3237 /* Send message to routing daemon */ 3238 im = mtod(mb_first, struct igmpmsg *); 3239 im->im_msgtype = IGMPMSG_WHOLEPKT; 3240 im->im_mbz = 0; 3241 im->im_vif = vifp - viftable; 3242 im->im_src = ip->ip_src; 3243 im->im_dst = ip->ip_dst; 3244 3245 k_igmpsrc.sin_addr = ip->ip_src; 3246 3247 mrtstat.mrts_upcalls++; 3248 3249 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3250 if (mrtdebug & DEBUG_PIM) 3251 log(LOG_WARNING, 3252 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 3253 ++mrtstat.mrts_upq_sockfull; 3254 return ENOBUFS; 3255 } 3256 3257 /* Keep statistics */ 3258 pimstat.pims_snd_registers_msgs++; 3259 pimstat.pims_snd_registers_bytes += len; 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * Encapsulate the data packet in PIM Register message and send it to the RP. 3266 */ 3267 static int 3268 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3269 struct mbuf *mb_copy, struct mfc *rt) 3270 { 3271 struct mbuf *mb_first; 3272 struct ip *ip_outer; 3273 struct pim_encap_pimhdr *pimhdr; 3274 int len = ntohs(ip->ip_len); 3275 vifi_t vifi = rt->mfc_parent; 3276 3277 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3278 m_freem(mb_copy); 3279 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3280 } 3281 3282 /* 3283 * Add a new mbuf with the encapsulating header 3284 */ 3285 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3286 if (mb_first == NULL) { 3287 m_freem(mb_copy); 3288 return ENOBUFS; 3289 } 3290 mb_first->m_data += max_linkhdr; 3291 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3292 mb_first->m_next = mb_copy; 3293 3294 mb_first->m_pkthdr.len = len + mb_first->m_len; 3295 3296 /* 3297 * Fill in the encapsulating IP and PIM header 3298 */ 3299 ip_outer = mtod(mb_first, struct ip *); 3300 *ip_outer = pim_encap_iphdr; 3301 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE) 3302 ip_outer->ip_id = 0; 3303 else 3304 ip_outer->ip_id = ip_newid(NULL); 3305 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3306 sizeof(pim_encap_pimhdr)); 3307 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3308 ip_outer->ip_dst = rt->mfc_rp; 3309 /* 3310 * Copy the inner header TOS to the outer header, and take care of the 3311 * IP_DF bit. 3312 */ 3313 ip_outer->ip_tos = ip->ip_tos; 3314 if (ntohs(ip->ip_off) & IP_DF) 3315 ip_outer->ip_off |= htons(IP_DF); 3316 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer 3317 + sizeof(pim_encap_iphdr)); 3318 *pimhdr = pim_encap_pimhdr; 3319 /* If the iif crosses a border, set the Border-bit */ 3320 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3321 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3322 3323 mb_first->m_data += sizeof(pim_encap_iphdr); 3324 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3325 mb_first->m_data -= sizeof(pim_encap_iphdr); 3326 3327 if (vifp->v_rate_limit == 0) 3328 tbf_send_packet(vifp, mb_first); 3329 else 3330 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3331 3332 /* Keep statistics */ 3333 pimstat.pims_snd_registers_msgs++; 3334 pimstat.pims_snd_registers_bytes += len; 3335 3336 return 0; 3337 } 3338 3339 /* 3340 * PIM-SMv2 and PIM-DM messages processing. 3341 * Receives and verifies the PIM control messages, and passes them 3342 * up to the listening socket, using rip_input(). 3343 * The only message with special processing is the PIM_REGISTER message 3344 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3345 * is passed to if_simloop(). 3346 */ 3347 void 3348 pim_input(struct mbuf *m, ...) 3349 { 3350 struct ip *ip = mtod(m, struct ip *); 3351 struct pim *pim; 3352 int minlen; 3353 int datalen; 3354 int ip_tos; 3355 int proto; 3356 int iphlen; 3357 va_list ap; 3358 3359 va_start(ap, m); 3360 iphlen = va_arg(ap, int); 3361 proto = va_arg(ap, int); 3362 va_end(ap); 3363 3364 datalen = ntohs(ip->ip_len) - iphlen; 3365 3366 /* Keep statistics */ 3367 pimstat.pims_rcv_total_msgs++; 3368 pimstat.pims_rcv_total_bytes += datalen; 3369 3370 /* 3371 * Validate lengths 3372 */ 3373 if (datalen < PIM_MINLEN) { 3374 pimstat.pims_rcv_tooshort++; 3375 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3376 datalen, (u_long)ip->ip_src.s_addr); 3377 m_freem(m); 3378 return; 3379 } 3380 3381 /* 3382 * If the packet is at least as big as a REGISTER, go agead 3383 * and grab the PIM REGISTER header size, to avoid another 3384 * possible m_pullup() later. 3385 * 3386 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3387 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3388 */ 3389 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3390 /* 3391 * Get the IP and PIM headers in contiguous memory, and 3392 * possibly the PIM REGISTER header. 3393 */ 3394 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3395 (m = m_pullup(m, minlen)) == NULL) { 3396 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3397 return; 3398 } 3399 /* m_pullup() may have given us a new mbuf so reset ip. */ 3400 ip = mtod(m, struct ip *); 3401 ip_tos = ip->ip_tos; 3402 3403 /* adjust mbuf to point to the PIM header */ 3404 m->m_data += iphlen; 3405 m->m_len -= iphlen; 3406 pim = mtod(m, struct pim *); 3407 3408 /* 3409 * Validate checksum. If PIM REGISTER, exclude the data packet. 3410 * 3411 * XXX: some older PIMv2 implementations don't make this distinction, 3412 * so for compatibility reason perform the checksum over part of the 3413 * message, and if error, then over the whole message. 3414 */ 3415 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3416 /* do nothing, checksum okay */ 3417 } else if (in_cksum(m, datalen)) { 3418 pimstat.pims_rcv_badsum++; 3419 if (mrtdebug & DEBUG_PIM) 3420 log(LOG_DEBUG, "pim_input: invalid checksum"); 3421 m_freem(m); 3422 return; 3423 } 3424 3425 /* PIM version check */ 3426 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3427 pimstat.pims_rcv_badversion++; 3428 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3429 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3430 m_freem(m); 3431 return; 3432 } 3433 3434 /* restore mbuf back to the outer IP */ 3435 m->m_data -= iphlen; 3436 m->m_len += iphlen; 3437 3438 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3439 /* 3440 * Since this is a REGISTER, we'll make a copy of the register 3441 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3442 * routing daemon. 3443 */ 3444 int s; 3445 struct sockaddr_in dst = { 3446 .sin_len = sizeof(dst), 3447 .sin_family = AF_INET, 3448 }; 3449 struct mbuf *mcp; 3450 struct ip *encap_ip; 3451 u_int32_t *reghdr; 3452 struct ifnet *vifp; 3453 3454 s = splsoftnet(); 3455 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3456 splx(s); 3457 if (mrtdebug & DEBUG_PIM) 3458 log(LOG_DEBUG, 3459 "pim_input: register vif not set: %d\n", reg_vif_num); 3460 m_freem(m); 3461 return; 3462 } 3463 /* XXX need refcnt? */ 3464 vifp = viftable[reg_vif_num].v_ifp; 3465 splx(s); 3466 3467 /* 3468 * Validate length 3469 */ 3470 if (datalen < PIM_REG_MINLEN) { 3471 pimstat.pims_rcv_tooshort++; 3472 pimstat.pims_rcv_badregisters++; 3473 log(LOG_ERR, 3474 "pim_input: register packet size too small %d from %lx\n", 3475 datalen, (u_long)ip->ip_src.s_addr); 3476 m_freem(m); 3477 return; 3478 } 3479 3480 reghdr = (u_int32_t *)(pim + 1); 3481 encap_ip = (struct ip *)(reghdr + 1); 3482 3483 if (mrtdebug & DEBUG_PIM) { 3484 log(LOG_DEBUG, 3485 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3486 (u_long)ntohl(encap_ip->ip_src.s_addr), 3487 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3488 ntohs(encap_ip->ip_len)); 3489 } 3490 3491 /* verify the version number of the inner packet */ 3492 if (encap_ip->ip_v != IPVERSION) { 3493 pimstat.pims_rcv_badregisters++; 3494 if (mrtdebug & DEBUG_PIM) { 3495 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3496 "of the inner packet\n", encap_ip->ip_v); 3497 } 3498 m_freem(m); 3499 return; 3500 } 3501 3502 /* verify the inner packet is destined to a mcast group */ 3503 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3504 pimstat.pims_rcv_badregisters++; 3505 if (mrtdebug & DEBUG_PIM) 3506 log(LOG_DEBUG, 3507 "pim_input: inner packet of register is not " 3508 "multicast %lx\n", 3509 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3510 m_freem(m); 3511 return; 3512 } 3513 3514 /* If a NULL_REGISTER, pass it to the daemon */ 3515 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3516 goto pim_input_to_daemon; 3517 3518 /* 3519 * Copy the TOS from the outer IP header to the inner IP header. 3520 */ 3521 if (encap_ip->ip_tos != ip_tos) { 3522 /* Outer TOS -> inner TOS */ 3523 encap_ip->ip_tos = ip_tos; 3524 /* Recompute the inner header checksum. Sigh... */ 3525 3526 /* adjust mbuf to point to the inner IP header */ 3527 m->m_data += (iphlen + PIM_MINLEN); 3528 m->m_len -= (iphlen + PIM_MINLEN); 3529 3530 encap_ip->ip_sum = 0; 3531 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3532 3533 /* restore mbuf to point back to the outer IP header */ 3534 m->m_data -= (iphlen + PIM_MINLEN); 3535 m->m_len += (iphlen + PIM_MINLEN); 3536 } 3537 3538 /* 3539 * Decapsulate the inner IP packet and loopback to forward it 3540 * as a normal multicast packet. Also, make a copy of the 3541 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3542 * to pass to the daemon later, so it can take the appropriate 3543 * actions (e.g., send back PIM_REGISTER_STOP). 3544 * XXX: here m->m_data points to the outer IP header. 3545 */ 3546 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT); 3547 if (mcp == NULL) { 3548 log(LOG_ERR, 3549 "pim_input: pim register: could not copy register head\n"); 3550 m_freem(m); 3551 return; 3552 } 3553 3554 /* Keep statistics */ 3555 /* XXX: registers_bytes include only the encap. mcast pkt */ 3556 pimstat.pims_rcv_registers_msgs++; 3557 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3558 3559 /* 3560 * forward the inner ip packet; point m_data at the inner ip. 3561 */ 3562 m_adj(m, iphlen + PIM_MINLEN); 3563 3564 if (mrtdebug & DEBUG_PIM) { 3565 log(LOG_DEBUG, 3566 "pim_input: forwarding decapsulated register: " 3567 "src %lx, dst %lx, vif %d\n", 3568 (u_long)ntohl(encap_ip->ip_src.s_addr), 3569 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3570 reg_vif_num); 3571 } 3572 /* NB: vifp was collected above; can it change on us? */ 3573 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL); 3574 3575 /* prepare the register head to send to the mrouting daemon */ 3576 m = mcp; 3577 } 3578 3579 pim_input_to_daemon: 3580 /* 3581 * Pass the PIM message up to the daemon; if it is a Register message, 3582 * pass the 'head' only up to the daemon. This includes the 3583 * outer IP header, PIM header, PIM-Register header and the 3584 * inner IP header. 3585 * XXX: the outer IP header pkt size of a Register is not adjust to 3586 * reflect the fact that the inner multicast data is truncated. 3587 */ 3588 rip_input(m, iphlen, proto); 3589 3590 return; 3591 } 3592 #endif /* PIM */ 3593