1 /* $NetBSD: ip_mroute.c,v 1.86 2004/09/04 23:30:07 manu Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Stephen Deering of Stanford University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 35 */ 36 37 /* 38 * Copyright (c) 1989 Stephen Deering 39 * 40 * This code is derived from software contributed to Berkeley by 41 * Stephen Deering of Stanford University. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 72 */ 73 74 /* 75 * IP multicast forwarding procedures 76 * 77 * Written by David Waitzman, BBN Labs, August 1988. 78 * Modified by Steve Deering, Stanford, February 1989. 79 * Modified by Mark J. Steiglitz, Stanford, May, 1991 80 * Modified by Van Jacobson, LBL, January 1993 81 * Modified by Ajit Thyagarajan, PARC, August 1993 82 * Modified by Bill Fenner, PARC, April 1994 83 * Modified by Charles M. Hannum, NetBSD, May 1995. 84 * Modified by Ahmed Helmy, SGI, June 1996 85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 87 * Modified by Hitoshi Asaeda, WIDE, August 2000 88 * Modified by Pavlin Radoslavov, ICSI, October 2002 89 * 90 * MROUTING Revision: 1.2 91 * and PIM-SMv2 and PIM-DM support, advanced API support, 92 * bandwidth metering and signaling 93 */ 94 95 #include <sys/cdefs.h> 96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.86 2004/09/04 23:30:07 manu Exp $"); 97 98 #include "opt_inet.h" 99 #include "opt_ipsec.h" 100 #include "opt_pim.h" 101 102 #ifdef PIM 103 #define _PIM_VT 1 104 #endif 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/mbuf.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/protosw.h> 113 #include <sys/errno.h> 114 #include <sys/time.h> 115 #include <sys/kernel.h> 116 #include <sys/ioctl.h> 117 #include <sys/syslog.h> 118 119 #include <net/if.h> 120 #include <net/route.h> 121 #include <net/raw_cb.h> 122 123 #include <netinet/in.h> 124 #include <netinet/in_var.h> 125 #include <netinet/in_systm.h> 126 #include <netinet/ip.h> 127 #include <netinet/ip_var.h> 128 #include <netinet/in_pcb.h> 129 #include <netinet/udp.h> 130 #include <netinet/igmp.h> 131 #include <netinet/igmp_var.h> 132 #include <netinet/ip_mroute.h> 133 #ifdef PIM 134 #include <netinet/pim.h> 135 #include <netinet/pim_var.h> 136 #endif 137 #include <netinet/ip_encap.h> 138 139 #ifdef IPSEC 140 #include <netinet6/ipsec.h> 141 #include <netkey/key.h> 142 #endif 143 144 #ifdef FAST_IPSEC 145 #include <netipsec/ipsec.h> 146 #include <netipsec/key.h> 147 #endif 148 149 #include <machine/stdarg.h> 150 151 #define IP_MULTICASTOPTS 0 152 #define M_PULLUP(m, len) \ 153 do { \ 154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ 155 (m) = m_pullup((m), (len)); \ 156 } while (/*CONSTCOND*/ 0) 157 158 /* 159 * Globals. All but ip_mrouter and ip_mrtproto could be static, 160 * except for netstat or debugging purposes. 161 */ 162 struct socket *ip_mrouter = NULL; 163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ 164 165 #define NO_RTE_FOUND 0x1 166 #define RTE_FOUND 0x2 167 168 #define MFCHASH(a, g) \ 169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ 170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) 171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; 172 u_long mfchash; 173 174 u_char nexpire[MFCTBLSIZ]; 175 struct vif viftable[MAXVIFS]; 176 struct mrtstat mrtstat; 177 u_int mrtdebug = 0; /* debug level */ 178 #define DEBUG_MFC 0x02 179 #define DEBUG_FORWARD 0x04 180 #define DEBUG_EXPIRE 0x08 181 #define DEBUG_XMIT 0x10 182 #define DEBUG_PIM 0x20 183 184 #define VIFI_INVALID ((vifi_t) -1) 185 186 u_int tbfdebug = 0; /* tbf debug level */ 187 #ifdef RSVP_ISI 188 u_int rsvpdebug = 0; /* rsvp debug level */ 189 extern struct socket *ip_rsvpd; 190 extern int rsvp_on; 191 #endif /* RSVP_ISI */ 192 193 /* vif attachment using sys/netinet/ip_encap.c */ 194 static void vif_input __P((struct mbuf *, ...)); 195 static int vif_encapcheck __P((const struct mbuf *, int, int, void *)); 196 197 static const struct protosw vif_protosw = 198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, 199 vif_input, rip_output, 0, rip_ctloutput, 200 rip_usrreq, 201 0, 0, 0, 0, 202 }; 203 204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ 205 #define UPCALL_EXPIRE 6 /* number of timeouts */ 206 207 /* 208 * Define the token bucket filter structures 209 */ 210 211 #define TBF_REPROCESS (hz / 100) /* 100x / second */ 212 213 static int get_sg_cnt __P((struct sioc_sg_req *)); 214 static int get_vif_cnt __P((struct sioc_vif_req *)); 215 static int ip_mrouter_init __P((struct socket *, struct mbuf *)); 216 static int get_version __P((struct mbuf *)); 217 static int set_assert __P((struct mbuf *)); 218 static int get_assert __P((struct mbuf *)); 219 static int add_vif __P((struct mbuf *)); 220 static int del_vif __P((struct mbuf *)); 221 static void update_mfc_params __P((struct mfc *, struct mfcctl2 *)); 222 static void init_mfc_params __P((struct mfc *, struct mfcctl2 *)); 223 static void expire_mfc __P((struct mfc *)); 224 static int add_mfc __P((struct mbuf *)); 225 #ifdef UPCALL_TIMING 226 static void collate __P((struct timeval *)); 227 #endif 228 static int del_mfc __P((struct mbuf *)); 229 static int set_api_config __P((struct mbuf *)); /* chose API capabilities */ 230 static int get_api_support __P((struct mbuf *)); 231 static int get_api_config __P((struct mbuf *)); 232 static int socket_send __P((struct socket *, struct mbuf *, 233 struct sockaddr_in *)); 234 static void expire_upcalls __P((void *)); 235 #ifdef RSVP_ISI 236 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t)); 237 #else 238 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *)); 239 #endif 240 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *)); 241 static void encap_send __P((struct ip *, struct vif *, struct mbuf *)); 242 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *, 243 u_int32_t)); 244 static void tbf_queue __P((struct vif *, struct mbuf *)); 245 static void tbf_process_q __P((struct vif *)); 246 static void tbf_reprocess_q __P((void *)); 247 static int tbf_dq_sel __P((struct vif *, struct ip *)); 248 static void tbf_send_packet __P((struct vif *, struct mbuf *)); 249 static void tbf_update_tokens __P((struct vif *)); 250 static int priority __P((struct vif *, struct ip *)); 251 252 /* 253 * Bandwidth monitoring 254 */ 255 static void free_bw_list __P((struct bw_meter *)); 256 static int add_bw_upcall __P((struct mbuf *)); 257 static int del_bw_upcall __P((struct mbuf *)); 258 static void bw_meter_receive_packet __P((struct bw_meter *, int , struct timeval *)); 259 static void bw_meter_prepare_upcall __P((struct bw_meter *, struct timeval *)); 260 static void bw_upcalls_send __P((void)); 261 static void schedule_bw_meter __P((struct bw_meter *, struct timeval *)); 262 static void unschedule_bw_meter __P((struct bw_meter *)); 263 static void bw_meter_process __P((void)); 264 static void expire_bw_upcalls_send __P((void *)); 265 static void expire_bw_meter_process __P((void *)); 266 267 #ifdef PIM 268 static int pim_register_send __P((struct ip *, struct vif *, 269 struct mbuf *, struct mfc *)); 270 static int pim_register_send_rp __P((struct ip *, struct vif *, 271 struct mbuf *, struct mfc *)); 272 static int pim_register_send_upcall __P((struct ip *, struct vif *, 273 struct mbuf *, struct mfc *)); 274 static struct mbuf *pim_register_prepare __P((struct ip *, struct mbuf *)); 275 #endif 276 277 /* 278 * 'Interfaces' associated with decapsulator (so we can tell 279 * packets that went through it from ones that get reflected 280 * by a broken gateway). These interfaces are never linked into 281 * the system ifnet list & no routes point to them. I.e., packets 282 * can't be sent this way. They only exist as a placeholder for 283 * multicast source verification. 284 */ 285 #if 0 286 struct ifnet multicast_decap_if[MAXVIFS]; 287 #endif 288 289 #define ENCAP_TTL 64 290 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ 291 292 /* prototype IP hdr for encapsulated packets */ 293 struct ip multicast_encap_iphdr = { 294 #if BYTE_ORDER == LITTLE_ENDIAN 295 sizeof(struct ip) >> 2, IPVERSION, 296 #else 297 IPVERSION, sizeof(struct ip) >> 2, 298 #endif 299 0, /* tos */ 300 sizeof(struct ip), /* total length */ 301 0, /* id */ 302 0, /* frag offset */ 303 ENCAP_TTL, ENCAP_PROTO, 304 0, /* checksum */ 305 }; 306 307 /* 308 * Bandwidth meter variables and constants 309 */ 310 311 /* 312 * Pending timeouts are stored in a hash table, the key being the 313 * expiration time. Periodically, the entries are analysed and processed. 314 */ 315 #define BW_METER_BUCKETS 1024 316 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; 317 struct callout bw_meter_ch; 318 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ 319 320 /* 321 * Pending upcalls are stored in a vector which is flushed when 322 * full, or periodically 323 */ 324 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; 325 static u_int bw_upcalls_n; /* # of pending upcalls */ 326 struct callout bw_upcalls_ch; 327 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ 328 329 #ifdef PIM 330 struct pimstat pimstat; 331 332 /* 333 * Note: the PIM Register encapsulation adds the following in front of a 334 * data packet: 335 * 336 * struct pim_encap_hdr { 337 * struct ip ip; 338 * struct pim_encap_pimhdr pim; 339 * } 340 * 341 */ 342 343 struct pim_encap_pimhdr { 344 struct pim pim; 345 uint32_t flags; 346 }; 347 348 static struct ip pim_encap_iphdr = { 349 #if BYTE_ORDER == LITTLE_ENDIAN 350 sizeof(struct ip) >> 2, 351 IPVERSION, 352 #else 353 IPVERSION, 354 sizeof(struct ip) >> 2, 355 #endif 356 0, /* tos */ 357 sizeof(struct ip), /* total length */ 358 0, /* id */ 359 0, /* frag offset */ 360 ENCAP_TTL, 361 IPPROTO_PIM, 362 0, /* checksum */ 363 }; 364 365 static struct pim_encap_pimhdr pim_encap_pimhdr = { 366 { 367 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 368 0, /* reserved */ 369 0, /* checksum */ 370 }, 371 0 /* flags */ 372 }; 373 374 static struct ifnet multicast_register_if; 375 static vifi_t reg_vif_num = VIFI_INVALID; 376 #endif /* PIM */ 377 378 379 /* 380 * Private variables. 381 */ 382 static vifi_t numvifs = 0; 383 384 static struct callout expire_upcalls_ch; 385 386 /* 387 * one-back cache used by vif_encapcheck to locate a tunnel's vif 388 * given a datagram's src ip address. 389 */ 390 static struct in_addr last_encap_src; 391 static struct vif *last_encap_vif; 392 393 /* 394 * whether or not special PIM assert processing is enabled. 395 */ 396 static int pim_assert; 397 /* 398 * Rate limit for assert notification messages, in usec 399 */ 400 #define ASSERT_MSG_TIME 3000000 401 402 /* 403 * Kernel multicast routing API capabilities and setup. 404 * If more API capabilities are added to the kernel, they should be 405 * recorded in `mrt_api_support'. 406 */ 407 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | 408 MRT_MFC_FLAGS_BORDER_VIF | 409 MRT_MFC_RP | 410 MRT_MFC_BW_UPCALL); 411 static u_int32_t mrt_api_config = 0; 412 413 /* 414 * Find a route for a given origin IP address and Multicast group address 415 * Type of service parameter to be added in the future!!! 416 * Statistics are updated by the caller if needed 417 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) 418 */ 419 static struct mfc * 420 mfc_find(struct in_addr *o, struct in_addr *g) 421 { 422 struct mfc *rt; 423 424 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { 425 if (in_hosteq(rt->mfc_origin, *o) && 426 in_hosteq(rt->mfc_mcastgrp, *g) && 427 (rt->mfc_stall == NULL)) 428 break; 429 } 430 431 return (rt); 432 } 433 434 /* 435 * Macros to compute elapsed time efficiently 436 * Borrowed from Van Jacobson's scheduling code 437 */ 438 #define TV_DELTA(a, b, delta) do { \ 439 int xxs; \ 440 delta = (a).tv_usec - (b).tv_usec; \ 441 xxs = (a).tv_sec - (b).tv_sec; \ 442 switch (xxs) { \ 443 case 2: \ 444 delta += 1000000; \ 445 /* fall through */ \ 446 case 1: \ 447 delta += 1000000; \ 448 /* fall through */ \ 449 case 0: \ 450 break; \ 451 default: \ 452 delta += (1000000 * xxs); \ 453 break; \ 454 } \ 455 } while (/*CONSTCOND*/ 0) 456 457 #ifdef UPCALL_TIMING 458 u_int32_t upcall_data[51]; 459 #endif /* UPCALL_TIMING */ 460 461 /* 462 * Handle MRT setsockopt commands to modify the multicast routing tables. 463 */ 464 int 465 ip_mrouter_set(so, optname, m) 466 struct socket *so; 467 int optname; 468 struct mbuf **m; 469 { 470 int error; 471 472 if (optname != MRT_INIT && so != ip_mrouter) 473 error = ENOPROTOOPT; 474 else 475 switch (optname) { 476 case MRT_INIT: 477 error = ip_mrouter_init(so, *m); 478 break; 479 case MRT_DONE: 480 error = ip_mrouter_done(); 481 break; 482 case MRT_ADD_VIF: 483 error = add_vif(*m); 484 break; 485 case MRT_DEL_VIF: 486 error = del_vif(*m); 487 break; 488 case MRT_ADD_MFC: 489 error = add_mfc(*m); 490 break; 491 case MRT_DEL_MFC: 492 error = del_mfc(*m); 493 break; 494 case MRT_ASSERT: 495 error = set_assert(*m); 496 break; 497 case MRT_API_CONFIG: 498 error = set_api_config(*m); 499 break; 500 case MRT_ADD_BW_UPCALL: 501 error = add_bw_upcall(*m); 502 break; 503 case MRT_DEL_BW_UPCALL: 504 error = del_bw_upcall(*m); 505 break; 506 default: 507 error = ENOPROTOOPT; 508 break; 509 } 510 511 if (*m) 512 m_free(*m); 513 return (error); 514 } 515 516 /* 517 * Handle MRT getsockopt commands 518 */ 519 int 520 ip_mrouter_get(so, optname, m) 521 struct socket *so; 522 int optname; 523 struct mbuf **m; 524 { 525 int error; 526 527 if (so != ip_mrouter) 528 error = ENOPROTOOPT; 529 else { 530 *m = m_get(M_WAIT, MT_SOOPTS); 531 MCLAIM(*m, so->so_mowner); 532 533 switch (optname) { 534 case MRT_VERSION: 535 error = get_version(*m); 536 break; 537 case MRT_ASSERT: 538 error = get_assert(*m); 539 break; 540 case MRT_API_SUPPORT: 541 error = get_api_support(*m); 542 break; 543 case MRT_API_CONFIG: 544 error = get_api_config(*m); 545 break; 546 default: 547 error = ENOPROTOOPT; 548 break; 549 } 550 551 if (error) 552 m_free(*m); 553 } 554 555 return (error); 556 } 557 558 /* 559 * Handle ioctl commands to obtain information from the cache 560 */ 561 int 562 mrt_ioctl(so, cmd, data) 563 struct socket *so; 564 u_long cmd; 565 caddr_t data; 566 { 567 int error; 568 569 if (so != ip_mrouter) 570 error = EINVAL; 571 else 572 switch (cmd) { 573 case SIOCGETVIFCNT: 574 error = get_vif_cnt((struct sioc_vif_req *)data); 575 break; 576 case SIOCGETSGCNT: 577 error = get_sg_cnt((struct sioc_sg_req *)data); 578 break; 579 default: 580 error = EINVAL; 581 break; 582 } 583 584 return (error); 585 } 586 587 /* 588 * returns the packet, byte, rpf-failure count for the source group provided 589 */ 590 static int 591 get_sg_cnt(req) 592 struct sioc_sg_req *req; 593 { 594 int s; 595 struct mfc *rt; 596 597 s = splsoftnet(); 598 rt = mfc_find(&req->src, &req->grp); 599 if (rt == NULL) { 600 splx(s); 601 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; 602 return (EADDRNOTAVAIL); 603 } 604 req->pktcnt = rt->mfc_pkt_cnt; 605 req->bytecnt = rt->mfc_byte_cnt; 606 req->wrong_if = rt->mfc_wrong_if; 607 splx(s); 608 609 return (0); 610 } 611 612 /* 613 * returns the input and output packet and byte counts on the vif provided 614 */ 615 static int 616 get_vif_cnt(req) 617 struct sioc_vif_req *req; 618 { 619 vifi_t vifi = req->vifi; 620 621 if (vifi >= numvifs) 622 return (EINVAL); 623 624 req->icount = viftable[vifi].v_pkt_in; 625 req->ocount = viftable[vifi].v_pkt_out; 626 req->ibytes = viftable[vifi].v_bytes_in; 627 req->obytes = viftable[vifi].v_bytes_out; 628 629 return (0); 630 } 631 632 /* 633 * Enable multicast routing 634 */ 635 static int 636 ip_mrouter_init(so, m) 637 struct socket *so; 638 struct mbuf *m; 639 { 640 int *v; 641 642 if (mrtdebug) 643 log(LOG_DEBUG, 644 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", 645 so->so_type, so->so_proto->pr_protocol); 646 647 if (so->so_type != SOCK_RAW || 648 so->so_proto->pr_protocol != IPPROTO_IGMP) 649 return (EOPNOTSUPP); 650 651 if (m == NULL || m->m_len < sizeof(int)) 652 return (EINVAL); 653 654 v = mtod(m, int *); 655 if (*v != 1) 656 return (EINVAL); 657 658 if (ip_mrouter != NULL) 659 return (EADDRINUSE); 660 661 ip_mrouter = so; 662 663 mfchashtbl = 664 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash); 665 bzero((caddr_t)nexpire, sizeof(nexpire)); 666 667 pim_assert = 0; 668 669 callout_init(&expire_upcalls_ch); 670 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 671 expire_upcalls, NULL); 672 673 callout_init(&bw_upcalls_ch); 674 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 675 expire_bw_upcalls_send, NULL); 676 677 callout_init(&bw_meter_ch); 678 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 679 expire_bw_meter_process, NULL); 680 681 if (mrtdebug) 682 log(LOG_DEBUG, "ip_mrouter_init\n"); 683 684 return (0); 685 } 686 687 /* 688 * Disable multicast routing 689 */ 690 int 691 ip_mrouter_done() 692 { 693 vifi_t vifi; 694 struct vif *vifp; 695 int i; 696 int s; 697 698 s = splsoftnet(); 699 700 /* Clear out all the vifs currently in use. */ 701 for (vifi = 0; vifi < numvifs; vifi++) { 702 vifp = &viftable[vifi]; 703 if (!in_nullhost(vifp->v_lcl_addr)) 704 reset_vif(vifp); 705 } 706 707 numvifs = 0; 708 pim_assert = 0; 709 mrt_api_config = 0; 710 711 callout_stop(&expire_upcalls_ch); 712 callout_stop(&bw_upcalls_ch); 713 callout_stop(&bw_meter_ch); 714 715 /* 716 * Free all multicast forwarding cache entries. 717 */ 718 for (i = 0; i < MFCTBLSIZ; i++) { 719 struct mfc *rt, *nrt; 720 721 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 722 nrt = LIST_NEXT(rt, mfc_hash); 723 724 expire_mfc(rt); 725 } 726 } 727 728 bzero((caddr_t)nexpire, sizeof(nexpire)); 729 free(mfchashtbl, M_MRTABLE); 730 mfchashtbl = NULL; 731 732 bw_upcalls_n = 0; 733 bzero(bw_meter_timers, sizeof(bw_meter_timers)); 734 735 /* Reset de-encapsulation cache. */ 736 737 ip_mrouter = NULL; 738 739 splx(s); 740 741 if (mrtdebug) 742 log(LOG_DEBUG, "ip_mrouter_done\n"); 743 744 return (0); 745 } 746 747 void 748 ip_mrouter_detach(ifp) 749 struct ifnet *ifp; 750 { 751 int vifi, i; 752 struct vif *vifp; 753 struct mfc *rt; 754 struct rtdetq *rte; 755 756 /* XXX not sure about side effect to userland routing daemon */ 757 for (vifi = 0; vifi < numvifs; vifi++) { 758 vifp = &viftable[vifi]; 759 if (vifp->v_ifp == ifp) 760 reset_vif(vifp); 761 } 762 for (i = 0; i < MFCTBLSIZ; i++) { 763 if (nexpire[i] == 0) 764 continue; 765 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { 766 for (rte = rt->mfc_stall; rte; rte = rte->next) { 767 if (rte->ifp == ifp) 768 rte->ifp = NULL; 769 } 770 } 771 } 772 } 773 774 static int 775 get_version(m) 776 struct mbuf *m; 777 { 778 int *v = mtod(m, int *); 779 780 *v = 0x0305; /* XXX !!!! */ 781 m->m_len = sizeof(int); 782 return (0); 783 } 784 785 /* 786 * Set PIM assert processing global 787 */ 788 static int 789 set_assert(m) 790 struct mbuf *m; 791 { 792 int *i; 793 794 if (m == NULL || m->m_len < sizeof(int)) 795 return (EINVAL); 796 797 i = mtod(m, int *); 798 pim_assert = !!*i; 799 return (0); 800 } 801 802 /* 803 * Get PIM assert processing global 804 */ 805 static int 806 get_assert(m) 807 struct mbuf *m; 808 { 809 int *i = mtod(m, int *); 810 811 *i = pim_assert; 812 m->m_len = sizeof(int); 813 return (0); 814 } 815 816 /* 817 * Configure API capabilities 818 */ 819 static int 820 set_api_config(struct mbuf *m) 821 { 822 int i; 823 u_int32_t *apival; 824 825 if (m == NULL || m->m_len < sizeof(u_int32_t)) 826 return (EINVAL); 827 828 apival = mtod(m, u_int32_t *); 829 830 /* 831 * We can set the API capabilities only if it is the first operation 832 * after MRT_INIT. I.e.: 833 * - there are no vifs installed 834 * - pim_assert is not enabled 835 * - the MFC table is empty 836 */ 837 if (numvifs > 0) { 838 *apival = 0; 839 return (EPERM); 840 } 841 if (pim_assert) { 842 *apival = 0; 843 return (EPERM); 844 } 845 for (i = 0; i < MFCTBLSIZ; i++) { 846 if (LIST_FIRST(&mfchashtbl[i]) != NULL) { 847 *apival = 0; 848 return (EPERM); 849 } 850 } 851 852 mrt_api_config = *apival & mrt_api_support; 853 *apival = mrt_api_config; 854 855 return (0); 856 } 857 858 /* 859 * Get API capabilities 860 */ 861 static int 862 get_api_support(struct mbuf *m) 863 { 864 u_int32_t *apival; 865 866 if (m == NULL || m->m_len < sizeof(u_int32_t)) 867 return (EINVAL); 868 869 apival = mtod(m, u_int32_t *); 870 871 *apival = mrt_api_support; 872 873 return (0); 874 } 875 876 /* 877 * Get API configured capabilities 878 */ 879 static int 880 get_api_config(struct mbuf *m) 881 { 882 u_int32_t *apival; 883 884 if (m == NULL || m->m_len < sizeof(u_int32_t)) 885 return (EINVAL); 886 887 apival = mtod(m, u_int32_t *); 888 889 *apival = mrt_api_config; 890 891 return (0); 892 } 893 894 static struct sockaddr_in sin = { sizeof(sin), AF_INET }; 895 896 /* 897 * Add a vif to the vif table 898 */ 899 static int 900 add_vif(m) 901 struct mbuf *m; 902 { 903 struct vifctl *vifcp; 904 struct vif *vifp; 905 struct ifaddr *ifa; 906 struct ifnet *ifp; 907 struct ifreq ifr; 908 int error, s; 909 910 if (m == NULL || m->m_len < sizeof(struct vifctl)) 911 return (EINVAL); 912 913 vifcp = mtod(m, struct vifctl *); 914 if (vifcp->vifc_vifi >= MAXVIFS) 915 return (EINVAL); 916 if (in_nullhost(vifcp->vifc_lcl_addr)) 917 return (EADDRNOTAVAIL); 918 919 vifp = &viftable[vifcp->vifc_vifi]; 920 if (!in_nullhost(vifp->v_lcl_addr)) 921 return (EADDRINUSE); 922 923 /* Find the interface with an address in AF_INET family. */ 924 #ifdef PIM 925 if (vifcp->vifc_flags & VIFF_REGISTER) { 926 /* 927 * XXX: Because VIFF_REGISTER does not really need a valid 928 * local interface (e.g. it could be 127.0.0.2), we don't 929 * check its address. 930 */ 931 ifp = NULL; 932 } else 933 #endif 934 { 935 sin.sin_addr = vifcp->vifc_lcl_addr; 936 ifa = ifa_ifwithaddr(sintosa(&sin)); 937 if (ifa == NULL) 938 return (EADDRNOTAVAIL); 939 ifp = ifa->ifa_ifp; 940 } 941 942 if (vifcp->vifc_flags & VIFF_TUNNEL) { 943 if (vifcp->vifc_flags & VIFF_SRCRT) { 944 log(LOG_ERR, "source routed tunnels not supported\n"); 945 return (EOPNOTSUPP); 946 } 947 948 /* attach this vif to decapsulator dispatch table */ 949 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, 950 vif_encapcheck, &vif_protosw, vifp); 951 if (!vifp->v_encap_cookie) 952 return (EINVAL); 953 954 /* Create a fake encapsulation interface. */ 955 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK); 956 bzero(ifp, sizeof(*ifp)); 957 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 958 "mdecap%d", vifcp->vifc_vifi); 959 960 /* Prepare cached route entry. */ 961 bzero(&vifp->v_route, sizeof(vifp->v_route)); 962 #ifdef PIM 963 } else if (vifcp->vifc_flags & VIFF_REGISTER) { 964 ifp = &multicast_register_if; 965 if (mrtdebug) 966 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", 967 (void *)ifp); 968 if (reg_vif_num == VIFI_INVALID) { 969 bzero(ifp, sizeof(*ifp)); 970 snprintf(ifp->if_xname, sizeof(ifp->if_xname), 971 "register_vif"); 972 ifp->if_flags = IFF_LOOPBACK; 973 bzero(&vifp->v_route, sizeof(vifp->v_route)); 974 reg_vif_num = vifcp->vifc_vifi; 975 } 976 #endif 977 } else { 978 /* Make sure the interface supports multicast. */ 979 if ((ifp->if_flags & IFF_MULTICAST) == 0) 980 return (EOPNOTSUPP); 981 982 /* Enable promiscuous reception of all IP multicasts. */ 983 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); 984 satosin(&ifr.ifr_addr)->sin_family = AF_INET; 985 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; 986 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr); 987 if (error) 988 return (error); 989 } 990 991 s = splsoftnet(); 992 993 /* Define parameters for the tbf structure. */ 994 vifp->tbf_q = NULL; 995 vifp->tbf_t = &vifp->tbf_q; 996 microtime(&vifp->tbf_last_pkt_t); 997 vifp->tbf_n_tok = 0; 998 vifp->tbf_q_len = 0; 999 vifp->tbf_max_q_len = MAXQSIZE; 1000 1001 vifp->v_flags = vifcp->vifc_flags; 1002 vifp->v_threshold = vifcp->vifc_threshold; 1003 /* scaling up here allows division by 1024 in critical code */ 1004 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; 1005 vifp->v_lcl_addr = vifcp->vifc_lcl_addr; 1006 vifp->v_rmt_addr = vifcp->vifc_rmt_addr; 1007 vifp->v_ifp = ifp; 1008 /* Initialize per vif pkt counters. */ 1009 vifp->v_pkt_in = 0; 1010 vifp->v_pkt_out = 0; 1011 vifp->v_bytes_in = 0; 1012 vifp->v_bytes_out = 0; 1013 1014 callout_init(&vifp->v_repq_ch); 1015 1016 #ifdef RSVP_ISI 1017 vifp->v_rsvp_on = 0; 1018 vifp->v_rsvpd = NULL; 1019 #endif /* RSVP_ISI */ 1020 1021 splx(s); 1022 1023 /* Adjust numvifs up if the vifi is higher than numvifs. */ 1024 if (numvifs <= vifcp->vifc_vifi) 1025 numvifs = vifcp->vifc_vifi + 1; 1026 1027 if (mrtdebug) 1028 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", 1029 vifcp->vifc_vifi, 1030 ntohl(vifcp->vifc_lcl_addr.s_addr), 1031 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", 1032 ntohl(vifcp->vifc_rmt_addr.s_addr), 1033 vifcp->vifc_threshold, 1034 vifcp->vifc_rate_limit); 1035 1036 return (0); 1037 } 1038 1039 void 1040 reset_vif(vifp) 1041 struct vif *vifp; 1042 { 1043 struct mbuf *m, *n; 1044 struct ifnet *ifp; 1045 struct ifreq ifr; 1046 1047 callout_stop(&vifp->v_repq_ch); 1048 1049 /* detach this vif from decapsulator dispatch table */ 1050 encap_detach(vifp->v_encap_cookie); 1051 vifp->v_encap_cookie = NULL; 1052 1053 /* 1054 * Free packets queued at the interface 1055 */ 1056 for (m = vifp->tbf_q; m != NULL; m = n) { 1057 n = m->m_nextpkt; 1058 m_freem(m); 1059 } 1060 1061 if (vifp->v_flags & VIFF_TUNNEL) { 1062 free(vifp->v_ifp, M_MRTABLE); 1063 if (vifp == last_encap_vif) { 1064 last_encap_vif = NULL; 1065 last_encap_src = zeroin_addr; 1066 } 1067 } else if (vifp->v_flags & VIFF_REGISTER) { 1068 #ifdef PIM 1069 if (vifp->v_flags & VIFF_REGISTER) 1070 reg_vif_num = VIFI_INVALID; 1071 #endif 1072 } else { 1073 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); 1074 satosin(&ifr.ifr_addr)->sin_family = AF_INET; 1075 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; 1076 ifp = vifp->v_ifp; 1077 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr); 1078 } 1079 bzero((caddr_t)vifp, sizeof(*vifp)); 1080 } 1081 1082 /* 1083 * Delete a vif from the vif table 1084 */ 1085 static int 1086 del_vif(m) 1087 struct mbuf *m; 1088 { 1089 vifi_t *vifip; 1090 struct vif *vifp; 1091 vifi_t vifi; 1092 int s; 1093 1094 if (m == NULL || m->m_len < sizeof(vifi_t)) 1095 return (EINVAL); 1096 1097 vifip = mtod(m, vifi_t *); 1098 if (*vifip >= numvifs) 1099 return (EINVAL); 1100 1101 vifp = &viftable[*vifip]; 1102 if (in_nullhost(vifp->v_lcl_addr)) 1103 return (EADDRNOTAVAIL); 1104 1105 s = splsoftnet(); 1106 1107 reset_vif(vifp); 1108 1109 /* Adjust numvifs down */ 1110 for (vifi = numvifs; vifi > 0; vifi--) 1111 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) 1112 break; 1113 numvifs = vifi; 1114 1115 splx(s); 1116 1117 if (mrtdebug) 1118 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); 1119 1120 return (0); 1121 } 1122 1123 /* 1124 * update an mfc entry without resetting counters and S,G addresses. 1125 */ 1126 static void 1127 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1128 { 1129 int i; 1130 1131 rt->mfc_parent = mfccp->mfcc_parent; 1132 for (i = 0; i < numvifs; i++) { 1133 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; 1134 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & 1135 MRT_MFC_FLAGS_ALL; 1136 } 1137 /* set the RP address */ 1138 if (mrt_api_config & MRT_MFC_RP) 1139 rt->mfc_rp = mfccp->mfcc_rp; 1140 else 1141 rt->mfc_rp = zeroin_addr; 1142 } 1143 1144 /* 1145 * fully initialize an mfc entry from the parameter. 1146 */ 1147 static void 1148 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) 1149 { 1150 rt->mfc_origin = mfccp->mfcc_origin; 1151 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; 1152 1153 update_mfc_params(rt, mfccp); 1154 1155 /* initialize pkt counters per src-grp */ 1156 rt->mfc_pkt_cnt = 0; 1157 rt->mfc_byte_cnt = 0; 1158 rt->mfc_wrong_if = 0; 1159 timerclear(&rt->mfc_last_assert); 1160 } 1161 1162 static void 1163 expire_mfc(rt) 1164 struct mfc *rt; 1165 { 1166 struct rtdetq *rte, *nrte; 1167 1168 free_bw_list(rt->mfc_bw_meter); 1169 1170 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { 1171 nrte = rte->next; 1172 m_freem(rte->m); 1173 free(rte, M_MRTABLE); 1174 } 1175 1176 LIST_REMOVE(rt, mfc_hash); 1177 free(rt, M_MRTABLE); 1178 } 1179 1180 /* 1181 * Add an mfc entry 1182 */ 1183 static int 1184 add_mfc(m) 1185 struct mbuf *m; 1186 { 1187 struct mfcctl2 mfcctl2; 1188 struct mfcctl2 *mfccp; 1189 struct mfc *rt; 1190 u_int32_t hash = 0; 1191 struct rtdetq *rte, *nrte; 1192 u_short nstl; 1193 int s; 1194 int mfcctl_size = sizeof(struct mfcctl); 1195 1196 if (mrt_api_config & MRT_API_FLAGS_ALL) 1197 mfcctl_size = sizeof(struct mfcctl2); 1198 1199 if (m == NULL || m->m_len < mfcctl_size) 1200 return (EINVAL); 1201 1202 /* 1203 * select data size depending on API version. 1204 */ 1205 if (mrt_api_config & MRT_API_FLAGS_ALL) { 1206 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *); 1207 bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2)); 1208 } else { 1209 struct mfcctl *mp = mtod(m, struct mfcctl *); 1210 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp)); 1211 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl), 1212 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1213 } 1214 mfccp = &mfcctl2; 1215 1216 s = splsoftnet(); 1217 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1218 1219 /* If an entry already exists, just update the fields */ 1220 if (rt) { 1221 if (mrtdebug & DEBUG_MFC) 1222 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", 1223 ntohl(mfccp->mfcc_origin.s_addr), 1224 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1225 mfccp->mfcc_parent); 1226 1227 update_mfc_params(rt, mfccp); 1228 1229 splx(s); 1230 return (0); 1231 } 1232 1233 /* 1234 * Find the entry for which the upcall was made and update 1235 */ 1236 nstl = 0; 1237 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); 1238 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1239 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1240 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && 1241 rt->mfc_stall != NULL) { 1242 if (nstl++) 1243 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", 1244 "multiple kernel entries", 1245 ntohl(mfccp->mfcc_origin.s_addr), 1246 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1247 mfccp->mfcc_parent, rt->mfc_stall); 1248 1249 if (mrtdebug & DEBUG_MFC) 1250 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", 1251 ntohl(mfccp->mfcc_origin.s_addr), 1252 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1253 mfccp->mfcc_parent, rt->mfc_stall); 1254 1255 rte = rt->mfc_stall; 1256 init_mfc_params(rt, mfccp); 1257 rt->mfc_stall = NULL; 1258 1259 rt->mfc_expire = 0; /* Don't clean this guy up */ 1260 nexpire[hash]--; 1261 1262 /* free packets Qed at the end of this entry */ 1263 for (; rte != NULL; rte = nrte) { 1264 nrte = rte->next; 1265 if (rte->ifp) { 1266 #ifdef RSVP_ISI 1267 ip_mdq(rte->m, rte->ifp, rt, -1); 1268 #else 1269 ip_mdq(rte->m, rte->ifp, rt); 1270 #endif /* RSVP_ISI */ 1271 } 1272 m_freem(rte->m); 1273 #ifdef UPCALL_TIMING 1274 collate(&rte->t); 1275 #endif /* UPCALL_TIMING */ 1276 free(rte, M_MRTABLE); 1277 } 1278 } 1279 } 1280 1281 /* 1282 * It is possible that an entry is being inserted without an upcall 1283 */ 1284 if (nstl == 0) { 1285 /* 1286 * No mfc; make a new one 1287 */ 1288 if (mrtdebug & DEBUG_MFC) 1289 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", 1290 ntohl(mfccp->mfcc_origin.s_addr), 1291 ntohl(mfccp->mfcc_mcastgrp.s_addr), 1292 mfccp->mfcc_parent); 1293 1294 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1295 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && 1296 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { 1297 init_mfc_params(rt, mfccp); 1298 if (rt->mfc_expire) 1299 nexpire[hash]--; 1300 rt->mfc_expire = 0; 1301 break; /* XXX */ 1302 } 1303 } 1304 if (rt == NULL) { /* no upcall, so make a new entry */ 1305 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1306 M_NOWAIT); 1307 if (rt == NULL) { 1308 splx(s); 1309 return (ENOBUFS); 1310 } 1311 1312 init_mfc_params(rt, mfccp); 1313 rt->mfc_expire = 0; 1314 rt->mfc_stall = NULL; 1315 rt->mfc_bw_meter = NULL; 1316 1317 /* insert new entry at head of hash chain */ 1318 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1319 } 1320 } 1321 1322 splx(s); 1323 return (0); 1324 } 1325 1326 #ifdef UPCALL_TIMING 1327 /* 1328 * collect delay statistics on the upcalls 1329 */ 1330 static void 1331 collate(t) 1332 struct timeval *t; 1333 { 1334 u_int32_t d; 1335 struct timeval tp; 1336 u_int32_t delta; 1337 1338 microtime(&tp); 1339 1340 if (timercmp(t, &tp, <)) { 1341 TV_DELTA(tp, *t, delta); 1342 1343 d = delta >> 10; 1344 if (d > 50) 1345 d = 50; 1346 1347 ++upcall_data[d]; 1348 } 1349 } 1350 #endif /* UPCALL_TIMING */ 1351 1352 /* 1353 * Delete an mfc entry 1354 */ 1355 static int 1356 del_mfc(m) 1357 struct mbuf *m; 1358 { 1359 struct mfcctl2 mfcctl2; 1360 struct mfcctl2 *mfccp; 1361 struct mfc *rt; 1362 int s; 1363 int mfcctl_size = sizeof(struct mfcctl); 1364 struct mfcctl *mp = mtod(m, struct mfcctl *); 1365 1366 /* 1367 * XXX: for deleting MFC entries the information in entries 1368 * of size "struct mfcctl" is sufficient. 1369 */ 1370 1371 if (m == NULL || m->m_len < mfcctl_size) 1372 return (EINVAL); 1373 1374 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp)); 1375 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl), 1376 sizeof(mfcctl2) - sizeof(struct mfcctl)); 1377 1378 mfccp = &mfcctl2; 1379 1380 if (mrtdebug & DEBUG_MFC) 1381 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", 1382 ntohl(mfccp->mfcc_origin.s_addr), 1383 ntohl(mfccp->mfcc_mcastgrp.s_addr)); 1384 1385 s = splsoftnet(); 1386 1387 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); 1388 if (rt == NULL) { 1389 splx(s); 1390 return (EADDRNOTAVAIL); 1391 } 1392 1393 /* 1394 * free the bw_meter entries 1395 */ 1396 free_bw_list(rt->mfc_bw_meter); 1397 rt->mfc_bw_meter = NULL; 1398 1399 LIST_REMOVE(rt, mfc_hash); 1400 free(rt, M_MRTABLE); 1401 1402 splx(s); 1403 return (0); 1404 } 1405 1406 static int 1407 socket_send(s, mm, src) 1408 struct socket *s; 1409 struct mbuf *mm; 1410 struct sockaddr_in *src; 1411 { 1412 if (s) { 1413 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, 1414 (struct mbuf *)NULL) != 0) { 1415 sorwakeup(s); 1416 return (0); 1417 } 1418 } 1419 m_freem(mm); 1420 return (-1); 1421 } 1422 1423 /* 1424 * IP multicast forwarding function. This function assumes that the packet 1425 * pointed to by "ip" has arrived on (or is about to be sent to) the interface 1426 * pointed to by "ifp", and the packet is to be relayed to other networks 1427 * that have members of the packet's destination IP multicast group. 1428 * 1429 * The packet is returned unscathed to the caller, unless it is 1430 * erroneous, in which case a non-zero return value tells the caller to 1431 * discard it. 1432 */ 1433 1434 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ 1435 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ 1436 1437 int 1438 #ifdef RSVP_ISI 1439 ip_mforward(m, ifp, imo) 1440 #else 1441 ip_mforward(m, ifp) 1442 #endif /* RSVP_ISI */ 1443 struct mbuf *m; 1444 struct ifnet *ifp; 1445 #ifdef RSVP_ISI 1446 struct ip_moptions *imo; 1447 #endif /* RSVP_ISI */ 1448 { 1449 struct ip *ip = mtod(m, struct ip *); 1450 struct mfc *rt; 1451 static int srctun = 0; 1452 struct mbuf *mm; 1453 int s; 1454 vifi_t vifi; 1455 1456 if (mrtdebug & DEBUG_FORWARD) 1457 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", 1458 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); 1459 1460 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || 1461 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { 1462 /* 1463 * Packet arrived via a physical interface or 1464 * an encapsulated tunnel or a register_vif. 1465 */ 1466 } else { 1467 /* 1468 * Packet arrived through a source-route tunnel. 1469 * Source-route tunnels are no longer supported. 1470 */ 1471 if ((srctun++ % 1000) == 0) 1472 log(LOG_ERR, 1473 "ip_mforward: received source-routed packet from %x\n", 1474 ntohl(ip->ip_src.s_addr)); 1475 1476 return (1); 1477 } 1478 1479 #ifdef RSVP_ISI 1480 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { 1481 if (ip->ip_ttl < 255) 1482 ip->ip_ttl++; /* compensate for -1 in *_send routines */ 1483 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1484 struct vif *vifp = viftable + vifi; 1485 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", 1486 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, 1487 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", 1488 vifp->v_ifp->if_xname); 1489 } 1490 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi)); 1491 } 1492 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { 1493 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", 1494 ntohl(ip->ip_src), ntohl(ip->ip_dst)); 1495 } 1496 #endif /* RSVP_ISI */ 1497 1498 /* 1499 * Don't forward a packet with time-to-live of zero or one, 1500 * or a packet destined to a local-only group. 1501 */ 1502 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) 1503 return (0); 1504 1505 /* 1506 * Determine forwarding vifs from the forwarding cache table 1507 */ 1508 s = splsoftnet(); 1509 ++mrtstat.mrts_mfc_lookups; 1510 rt = mfc_find(&ip->ip_src, &ip->ip_dst); 1511 1512 /* Entry exists, so forward if necessary */ 1513 if (rt != NULL) { 1514 splx(s); 1515 #ifdef RSVP_ISI 1516 return (ip_mdq(m, ifp, rt, -1)); 1517 #else 1518 return (ip_mdq(m, ifp, rt)); 1519 #endif /* RSVP_ISI */ 1520 } else { 1521 /* 1522 * If we don't have a route for packet's origin, 1523 * Make a copy of the packet & send message to routing daemon 1524 */ 1525 1526 struct mbuf *mb0; 1527 struct rtdetq *rte; 1528 u_int32_t hash; 1529 int hlen = ip->ip_hl << 2; 1530 #ifdef UPCALL_TIMING 1531 struct timeval tp; 1532 1533 microtime(&tp); 1534 #endif /* UPCALL_TIMING */ 1535 1536 ++mrtstat.mrts_mfc_misses; 1537 1538 mrtstat.mrts_no_route++; 1539 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) 1540 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", 1541 ntohl(ip->ip_src.s_addr), 1542 ntohl(ip->ip_dst.s_addr)); 1543 1544 /* 1545 * Allocate mbufs early so that we don't do extra work if we are 1546 * just going to fail anyway. Make sure to pullup the header so 1547 * that other people can't step on it. 1548 */ 1549 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, 1550 M_NOWAIT); 1551 if (rte == NULL) { 1552 splx(s); 1553 return (ENOBUFS); 1554 } 1555 mb0 = m_copy(m, 0, M_COPYALL); 1556 M_PULLUP(mb0, hlen); 1557 if (mb0 == NULL) { 1558 free(rte, M_MRTABLE); 1559 splx(s); 1560 return (ENOBUFS); 1561 } 1562 1563 /* is there an upcall waiting for this flow? */ 1564 hash = MFCHASH(ip->ip_src, ip->ip_dst); 1565 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { 1566 if (in_hosteq(ip->ip_src, rt->mfc_origin) && 1567 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && 1568 rt->mfc_stall != NULL) 1569 break; 1570 } 1571 1572 if (rt == NULL) { 1573 int i; 1574 struct igmpmsg *im; 1575 1576 /* 1577 * Locate the vifi for the incoming interface for 1578 * this packet. 1579 * If none found, drop packet. 1580 */ 1581 for (vifi = 0; vifi < numvifs && 1582 viftable[vifi].v_ifp != ifp; vifi++) 1583 ; 1584 if (vifi >= numvifs) /* vif not found, drop packet */ 1585 goto non_fatal; 1586 1587 /* no upcall, so make a new entry */ 1588 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, 1589 M_NOWAIT); 1590 if (rt == NULL) 1591 goto fail; 1592 1593 /* 1594 * Make a copy of the header to send to the user level 1595 * process 1596 */ 1597 mm = m_copy(m, 0, hlen); 1598 M_PULLUP(mm, hlen); 1599 if (mm == NULL) 1600 goto fail1; 1601 1602 /* 1603 * Send message to routing daemon to install 1604 * a route into the kernel table 1605 */ 1606 1607 im = mtod(mm, struct igmpmsg *); 1608 im->im_msgtype = IGMPMSG_NOCACHE; 1609 im->im_mbz = 0; 1610 im->im_vif = vifi; 1611 1612 mrtstat.mrts_upcalls++; 1613 1614 sin.sin_addr = ip->ip_src; 1615 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1616 log(LOG_WARNING, 1617 "ip_mforward: ip_mrouter socket queue full\n"); 1618 ++mrtstat.mrts_upq_sockfull; 1619 fail1: 1620 free(rt, M_MRTABLE); 1621 fail: 1622 free(rte, M_MRTABLE); 1623 m_freem(mb0); 1624 splx(s); 1625 return (ENOBUFS); 1626 } 1627 1628 /* insert new entry at head of hash chain */ 1629 rt->mfc_origin = ip->ip_src; 1630 rt->mfc_mcastgrp = ip->ip_dst; 1631 rt->mfc_pkt_cnt = 0; 1632 rt->mfc_byte_cnt = 0; 1633 rt->mfc_wrong_if = 0; 1634 rt->mfc_expire = UPCALL_EXPIRE; 1635 nexpire[hash]++; 1636 for (i = 0; i < numvifs; i++) { 1637 rt->mfc_ttls[i] = 0; 1638 rt->mfc_flags[i] = 0; 1639 } 1640 rt->mfc_parent = -1; 1641 1642 /* clear the RP address */ 1643 rt->mfc_rp = zeroin_addr; 1644 1645 rt->mfc_bw_meter = NULL; 1646 1647 /* link into table */ 1648 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); 1649 /* Add this entry to the end of the queue */ 1650 rt->mfc_stall = rte; 1651 } else { 1652 /* determine if q has overflowed */ 1653 struct rtdetq **p; 1654 int npkts = 0; 1655 1656 /* 1657 * XXX ouch! we need to append to the list, but we 1658 * only have a pointer to the front, so we have to 1659 * scan the entire list every time. 1660 */ 1661 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) 1662 if (++npkts > MAX_UPQ) { 1663 mrtstat.mrts_upq_ovflw++; 1664 non_fatal: 1665 free(rte, M_MRTABLE); 1666 m_freem(mb0); 1667 splx(s); 1668 return (0); 1669 } 1670 1671 /* Add this entry to the end of the queue */ 1672 *p = rte; 1673 } 1674 1675 rte->next = NULL; 1676 rte->m = mb0; 1677 rte->ifp = ifp; 1678 #ifdef UPCALL_TIMING 1679 rte->t = tp; 1680 #endif /* UPCALL_TIMING */ 1681 1682 splx(s); 1683 1684 return (0); 1685 } 1686 } 1687 1688 1689 /*ARGSUSED*/ 1690 static void 1691 expire_upcalls(v) 1692 void *v; 1693 { 1694 int i; 1695 int s; 1696 1697 s = splsoftnet(); 1698 1699 for (i = 0; i < MFCTBLSIZ; i++) { 1700 struct mfc *rt, *nrt; 1701 1702 if (nexpire[i] == 0) 1703 continue; 1704 1705 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { 1706 nrt = LIST_NEXT(rt, mfc_hash); 1707 1708 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) 1709 continue; 1710 nexpire[i]--; 1711 1712 /* 1713 * free the bw_meter entries 1714 */ 1715 while (rt->mfc_bw_meter != NULL) { 1716 struct bw_meter *x = rt->mfc_bw_meter; 1717 1718 rt->mfc_bw_meter = x->bm_mfc_next; 1719 free(x, M_BWMETER); 1720 } 1721 1722 ++mrtstat.mrts_cache_cleanups; 1723 if (mrtdebug & DEBUG_EXPIRE) 1724 log(LOG_DEBUG, 1725 "expire_upcalls: expiring (%x %x)\n", 1726 ntohl(rt->mfc_origin.s_addr), 1727 ntohl(rt->mfc_mcastgrp.s_addr)); 1728 1729 expire_mfc(rt); 1730 } 1731 } 1732 1733 splx(s); 1734 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, 1735 expire_upcalls, NULL); 1736 } 1737 1738 /* 1739 * Packet forwarding routine once entry in the cache is made 1740 */ 1741 static int 1742 #ifdef RSVP_ISI 1743 ip_mdq(m, ifp, rt, xmt_vif) 1744 #else 1745 ip_mdq(m, ifp, rt) 1746 #endif /* RSVP_ISI */ 1747 struct mbuf *m; 1748 struct ifnet *ifp; 1749 struct mfc *rt; 1750 #ifdef RSVP_ISI 1751 vifi_t xmt_vif; 1752 #endif /* RSVP_ISI */ 1753 { 1754 struct ip *ip = mtod(m, struct ip *); 1755 vifi_t vifi; 1756 struct vif *vifp; 1757 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); 1758 1759 /* 1760 * Macro to send packet on vif. Since RSVP packets don't get counted on 1761 * input, they shouldn't get counted on output, so statistics keeping is 1762 * separate. 1763 */ 1764 #define MC_SEND(ip, vifp, m) do { \ 1765 if ((vifp)->v_flags & VIFF_TUNNEL) \ 1766 encap_send((ip), (vifp), (m)); \ 1767 else \ 1768 phyint_send((ip), (vifp), (m)); \ 1769 } while (/*CONSTCOND*/ 0) 1770 1771 #ifdef RSVP_ISI 1772 /* 1773 * If xmt_vif is not -1, send on only the requested vif. 1774 * 1775 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. 1776 */ 1777 if (xmt_vif < numvifs) { 1778 #ifdef PIM 1779 if (viftable[xmt_vif].v_flags & VIFF_REGISTER) 1780 pim_register_send(ip, viftable + xmt_vif, m, rt); 1781 else 1782 #endif 1783 MC_SEND(ip, viftable + xmt_vif, m); 1784 return (1); 1785 } 1786 #endif /* RSVP_ISI */ 1787 1788 /* 1789 * Don't forward if it didn't arrive from the parent vif for its origin. 1790 */ 1791 vifi = rt->mfc_parent; 1792 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { 1793 /* came in the wrong interface */ 1794 if (mrtdebug & DEBUG_FORWARD) 1795 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", 1796 ifp, vifi, 1797 vifi >= numvifs ? 0 : viftable[vifi].v_ifp); 1798 ++mrtstat.mrts_wrong_if; 1799 ++rt->mfc_wrong_if; 1800 /* 1801 * If we are doing PIM assert processing, send a message 1802 * to the routing daemon. 1803 * 1804 * XXX: A PIM-SM router needs the WRONGVIF detection so it 1805 * can complete the SPT switch, regardless of the type 1806 * of the iif (broadcast media, GRE tunnel, etc). 1807 */ 1808 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { 1809 struct timeval now; 1810 u_int32_t delta; 1811 1812 #ifdef PIM 1813 if (ifp == &multicast_register_if) 1814 pimstat.pims_rcv_registers_wrongiif++; 1815 #endif 1816 1817 /* Get vifi for the incoming packet */ 1818 for (vifi = 0; 1819 vifi < numvifs && viftable[vifi].v_ifp != ifp; 1820 vifi++) 1821 ; 1822 if (vifi >= numvifs) { 1823 /* The iif is not found: ignore the packet. */ 1824 return (0); 1825 } 1826 1827 if (rt->mfc_flags[vifi] & 1828 MRT_MFC_FLAGS_DISABLE_WRONGVIF) { 1829 /* WRONGVIF disabled: ignore the packet */ 1830 return (0); 1831 } 1832 1833 microtime(&now); 1834 1835 TV_DELTA(rt->mfc_last_assert, now, delta); 1836 1837 if (delta > ASSERT_MSG_TIME) { 1838 struct igmpmsg *im; 1839 int hlen = ip->ip_hl << 2; 1840 struct mbuf *mm = m_copy(m, 0, hlen); 1841 1842 M_PULLUP(mm, hlen); 1843 if (mm == NULL) 1844 return (ENOBUFS); 1845 1846 rt->mfc_last_assert = now; 1847 1848 im = mtod(mm, struct igmpmsg *); 1849 im->im_msgtype = IGMPMSG_WRONGVIF; 1850 im->im_mbz = 0; 1851 im->im_vif = vifi; 1852 1853 mrtstat.mrts_upcalls++; 1854 1855 sin.sin_addr = im->im_src; 1856 if (socket_send(ip_mrouter, mm, &sin) < 0) { 1857 log(LOG_WARNING, 1858 "ip_mforward: ip_mrouter socket queue full\n"); 1859 ++mrtstat.mrts_upq_sockfull; 1860 return (ENOBUFS); 1861 } 1862 } 1863 } 1864 return (0); 1865 } 1866 1867 /* If I sourced this packet, it counts as output, else it was input. */ 1868 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { 1869 viftable[vifi].v_pkt_out++; 1870 viftable[vifi].v_bytes_out += plen; 1871 } else { 1872 viftable[vifi].v_pkt_in++; 1873 viftable[vifi].v_bytes_in += plen; 1874 } 1875 rt->mfc_pkt_cnt++; 1876 rt->mfc_byte_cnt += plen; 1877 1878 /* 1879 * For each vif, decide if a copy of the packet should be forwarded. 1880 * Forward if: 1881 * - the ttl exceeds the vif's threshold 1882 * - there are group members downstream on interface 1883 */ 1884 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) 1885 if ((rt->mfc_ttls[vifi] > 0) && 1886 (ip->ip_ttl > rt->mfc_ttls[vifi])) { 1887 vifp->v_pkt_out++; 1888 vifp->v_bytes_out += plen; 1889 #ifdef PIM 1890 if (vifp->v_flags & VIFF_REGISTER) 1891 pim_register_send(ip, vifp, m, rt); 1892 else 1893 #endif 1894 MC_SEND(ip, vifp, m); 1895 } 1896 1897 /* 1898 * Perform upcall-related bw measuring. 1899 */ 1900 if (rt->mfc_bw_meter != NULL) { 1901 struct bw_meter *x; 1902 struct timeval now; 1903 1904 microtime(&now); 1905 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) 1906 bw_meter_receive_packet(x, plen, &now); 1907 } 1908 1909 return (0); 1910 } 1911 1912 #ifdef RSVP_ISI 1913 /* 1914 * check if a vif number is legal/ok. This is used by ip_output. 1915 */ 1916 int 1917 legal_vif_num(vif) 1918 int vif; 1919 { 1920 if (vif >= 0 && vif < numvifs) 1921 return (1); 1922 else 1923 return (0); 1924 } 1925 #endif /* RSVP_ISI */ 1926 1927 static void 1928 phyint_send(ip, vifp, m) 1929 struct ip *ip; 1930 struct vif *vifp; 1931 struct mbuf *m; 1932 { 1933 struct mbuf *mb_copy; 1934 int hlen = ip->ip_hl << 2; 1935 1936 /* 1937 * Make a new reference to the packet; make sure that 1938 * the IP header is actually copied, not just referenced, 1939 * so that ip_output() only scribbles on the copy. 1940 */ 1941 mb_copy = m_copy(m, 0, M_COPYALL); 1942 M_PULLUP(mb_copy, hlen); 1943 if (mb_copy == NULL) 1944 return; 1945 1946 if (vifp->v_rate_limit <= 0) 1947 tbf_send_packet(vifp, mb_copy); 1948 else 1949 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), 1950 ntohs(ip->ip_len)); 1951 } 1952 1953 static void 1954 encap_send(ip, vifp, m) 1955 struct ip *ip; 1956 struct vif *vifp; 1957 struct mbuf *m; 1958 { 1959 struct mbuf *mb_copy; 1960 struct ip *ip_copy; 1961 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); 1962 1963 /* Take care of delayed checksums */ 1964 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 1965 in_delayed_cksum(m); 1966 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 1967 } 1968 1969 /* 1970 * copy the old packet & pullup it's IP header into the 1971 * new mbuf so we can modify it. Try to fill the new 1972 * mbuf since if we don't the ethernet driver will. 1973 */ 1974 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); 1975 if (mb_copy == NULL) 1976 return; 1977 mb_copy->m_data += max_linkhdr; 1978 mb_copy->m_pkthdr.len = len; 1979 mb_copy->m_len = sizeof(multicast_encap_iphdr); 1980 1981 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) { 1982 m_freem(mb_copy); 1983 return; 1984 } 1985 i = MHLEN - max_linkhdr; 1986 if (i > len) 1987 i = len; 1988 mb_copy = m_pullup(mb_copy, i); 1989 if (mb_copy == NULL) 1990 return; 1991 1992 /* 1993 * fill in the encapsulating IP header. 1994 */ 1995 ip_copy = mtod(mb_copy, struct ip *); 1996 *ip_copy = multicast_encap_iphdr; 1997 ip_copy->ip_id = ip_newid(); 1998 ip_copy->ip_len = htons(len); 1999 ip_copy->ip_src = vifp->v_lcl_addr; 2000 ip_copy->ip_dst = vifp->v_rmt_addr; 2001 2002 /* 2003 * turn the encapsulated IP header back into a valid one. 2004 */ 2005 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); 2006 --ip->ip_ttl; 2007 ip->ip_sum = 0; 2008 mb_copy->m_data += sizeof(multicast_encap_iphdr); 2009 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 2010 mb_copy->m_data -= sizeof(multicast_encap_iphdr); 2011 2012 if (vifp->v_rate_limit <= 0) 2013 tbf_send_packet(vifp, mb_copy); 2014 else 2015 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); 2016 } 2017 2018 /* 2019 * De-encapsulate a packet and feed it back through ip input. 2020 */ 2021 static void 2022 vif_input(struct mbuf *m, ...) 2023 { 2024 int off, proto; 2025 va_list ap; 2026 struct vif *vifp; 2027 int s; 2028 struct ifqueue *ifq; 2029 2030 va_start(ap, m); 2031 off = va_arg(ap, int); 2032 proto = va_arg(ap, int); 2033 va_end(ap); 2034 2035 vifp = (struct vif *)encap_getarg(m); 2036 if (!vifp || proto != AF_INET) { 2037 m_freem(m); 2038 mrtstat.mrts_bad_tunnel++; 2039 return; 2040 } 2041 2042 m_adj(m, off); 2043 m->m_pkthdr.rcvif = vifp->v_ifp; 2044 ifq = &ipintrq; 2045 s = splnet(); 2046 if (IF_QFULL(ifq)) { 2047 IF_DROP(ifq); 2048 m_freem(m); 2049 } else { 2050 IF_ENQUEUE(ifq, m); 2051 /* 2052 * normally we would need a "schednetisr(NETISR_IP)" 2053 * here but we were called by ip_input and it is going 2054 * to loop back & try to dequeue the packet we just 2055 * queued as soon as we return so we avoid the 2056 * unnecessary software interrrupt. 2057 */ 2058 } 2059 splx(s); 2060 } 2061 2062 /* 2063 * Check if the packet should be grabbed by us. 2064 */ 2065 static int 2066 vif_encapcheck(m, off, proto, arg) 2067 const struct mbuf *m; 2068 int off; 2069 int proto; 2070 void *arg; 2071 { 2072 struct vif *vifp; 2073 struct ip ip; 2074 2075 #ifdef DIAGNOSTIC 2076 if (!arg || proto != IPPROTO_IPV4) 2077 panic("unexpected arg in vif_encapcheck"); 2078 #endif 2079 2080 /* 2081 * do not grab the packet if it's not to a multicast destination or if 2082 * we don't have an encapsulating tunnel with the source. 2083 * Note: This code assumes that the remote site IP address 2084 * uniquely identifies the tunnel (i.e., that this site has 2085 * at most one tunnel with the remote site). 2086 */ 2087 2088 /* LINTED const cast */ 2089 m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip); 2090 if (!IN_MULTICAST(ip.ip_dst.s_addr)) 2091 return 0; 2092 2093 /* LINTED const cast */ 2094 m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip); 2095 if (!in_hosteq(ip.ip_src, last_encap_src)) { 2096 vifp = (struct vif *)arg; 2097 if (vifp->v_flags & VIFF_TUNNEL && 2098 in_hosteq(vifp->v_rmt_addr, ip.ip_src)) 2099 ; 2100 else 2101 return 0; 2102 last_encap_vif = vifp; 2103 last_encap_src = ip.ip_src; 2104 } else 2105 vifp = last_encap_vif; 2106 2107 /* 32bit match, since we have checked ip_src only */ 2108 return 32; 2109 } 2110 2111 /* 2112 * Token bucket filter module 2113 */ 2114 static void 2115 tbf_control(vifp, m, ip, len) 2116 struct vif *vifp; 2117 struct mbuf *m; 2118 struct ip *ip; 2119 u_int32_t len; 2120 { 2121 2122 if (len > MAX_BKT_SIZE) { 2123 /* drop if packet is too large */ 2124 mrtstat.mrts_pkt2large++; 2125 m_freem(m); 2126 return; 2127 } 2128 2129 tbf_update_tokens(vifp); 2130 2131 /* 2132 * If there are enough tokens, and the queue is empty, send this packet 2133 * out immediately. Otherwise, try to insert it on this vif's queue. 2134 */ 2135 if (vifp->tbf_q_len == 0) { 2136 if (len <= vifp->tbf_n_tok) { 2137 vifp->tbf_n_tok -= len; 2138 tbf_send_packet(vifp, m); 2139 } else { 2140 /* queue packet and timeout till later */ 2141 tbf_queue(vifp, m); 2142 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2143 tbf_reprocess_q, vifp); 2144 } 2145 } else { 2146 if (vifp->tbf_q_len >= vifp->tbf_max_q_len && 2147 !tbf_dq_sel(vifp, ip)) { 2148 /* queue full, and couldn't make room */ 2149 mrtstat.mrts_q_overflow++; 2150 m_freem(m); 2151 } else { 2152 /* queue length low enough, or made room */ 2153 tbf_queue(vifp, m); 2154 tbf_process_q(vifp); 2155 } 2156 } 2157 } 2158 2159 /* 2160 * adds a packet to the queue at the interface 2161 */ 2162 static void 2163 tbf_queue(vifp, m) 2164 struct vif *vifp; 2165 struct mbuf *m; 2166 { 2167 int s = splsoftnet(); 2168 2169 /* insert at tail */ 2170 *vifp->tbf_t = m; 2171 vifp->tbf_t = &m->m_nextpkt; 2172 vifp->tbf_q_len++; 2173 2174 splx(s); 2175 } 2176 2177 2178 /* 2179 * processes the queue at the interface 2180 */ 2181 static void 2182 tbf_process_q(vifp) 2183 struct vif *vifp; 2184 { 2185 struct mbuf *m; 2186 int len; 2187 int s = splsoftnet(); 2188 2189 /* 2190 * Loop through the queue at the interface and send as many packets 2191 * as possible. 2192 */ 2193 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { 2194 len = ntohs(mtod(m, struct ip *)->ip_len); 2195 2196 /* determine if the packet can be sent */ 2197 if (len <= vifp->tbf_n_tok) { 2198 /* if so, 2199 * reduce no of tokens, dequeue the packet, 2200 * send the packet. 2201 */ 2202 if ((vifp->tbf_q = m->m_nextpkt) == NULL) 2203 vifp->tbf_t = &vifp->tbf_q; 2204 --vifp->tbf_q_len; 2205 2206 m->m_nextpkt = NULL; 2207 vifp->tbf_n_tok -= len; 2208 tbf_send_packet(vifp, m); 2209 } else 2210 break; 2211 } 2212 splx(s); 2213 } 2214 2215 static void 2216 tbf_reprocess_q(arg) 2217 void *arg; 2218 { 2219 struct vif *vifp = arg; 2220 2221 if (ip_mrouter == NULL) 2222 return; 2223 2224 tbf_update_tokens(vifp); 2225 tbf_process_q(vifp); 2226 2227 if (vifp->tbf_q_len != 0) 2228 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, 2229 tbf_reprocess_q, vifp); 2230 } 2231 2232 /* function that will selectively discard a member of the queue 2233 * based on the precedence value and the priority 2234 */ 2235 static int 2236 tbf_dq_sel(vifp, ip) 2237 struct vif *vifp; 2238 struct ip *ip; 2239 { 2240 u_int p; 2241 struct mbuf **mp, *m; 2242 int s = splsoftnet(); 2243 2244 p = priority(vifp, ip); 2245 2246 for (mp = &vifp->tbf_q, m = *mp; 2247 m != NULL; 2248 mp = &m->m_nextpkt, m = *mp) { 2249 if (p > priority(vifp, mtod(m, struct ip *))) { 2250 if ((*mp = m->m_nextpkt) == NULL) 2251 vifp->tbf_t = mp; 2252 --vifp->tbf_q_len; 2253 2254 m_freem(m); 2255 mrtstat.mrts_drop_sel++; 2256 splx(s); 2257 return (1); 2258 } 2259 } 2260 splx(s); 2261 return (0); 2262 } 2263 2264 static void 2265 tbf_send_packet(vifp, m) 2266 struct vif *vifp; 2267 struct mbuf *m; 2268 { 2269 int error; 2270 int s = splsoftnet(); 2271 2272 if (vifp->v_flags & VIFF_TUNNEL) { 2273 /* If tunnel options */ 2274 ip_output(m, (struct mbuf *)NULL, &vifp->v_route, 2275 IP_FORWARDING, (struct ip_moptions *)NULL, 2276 (struct socket *)NULL); 2277 } else { 2278 /* if physical interface option, extract the options and then send */ 2279 struct ip_moptions imo; 2280 2281 imo.imo_multicast_ifp = vifp->v_ifp; 2282 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; 2283 imo.imo_multicast_loop = 1; 2284 #ifdef RSVP_ISI 2285 imo.imo_multicast_vif = -1; 2286 #endif 2287 2288 error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL, 2289 IP_FORWARDING|IP_MULTICASTOPTS, &imo, 2290 (struct socket *)NULL); 2291 2292 if (mrtdebug & DEBUG_XMIT) 2293 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", 2294 (long)(vifp - viftable), error); 2295 } 2296 splx(s); 2297 } 2298 2299 /* determine the current time and then 2300 * the elapsed time (between the last time and time now) 2301 * in milliseconds & update the no. of tokens in the bucket 2302 */ 2303 static void 2304 tbf_update_tokens(vifp) 2305 struct vif *vifp; 2306 { 2307 struct timeval tp; 2308 u_int32_t tm; 2309 int s = splsoftnet(); 2310 2311 microtime(&tp); 2312 2313 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); 2314 2315 /* 2316 * This formula is actually 2317 * "time in seconds" * "bytes/second". 2318 * 2319 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) 2320 * 2321 * The (1000/1024) was introduced in add_vif to optimize 2322 * this divide into a shift. 2323 */ 2324 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; 2325 vifp->tbf_last_pkt_t = tp; 2326 2327 if (vifp->tbf_n_tok > MAX_BKT_SIZE) 2328 vifp->tbf_n_tok = MAX_BKT_SIZE; 2329 2330 splx(s); 2331 } 2332 2333 static int 2334 priority(vifp, ip) 2335 struct vif *vifp; 2336 struct ip *ip; 2337 { 2338 int prio = 50; /* the lowest priority -- default case */ 2339 2340 /* temporary hack; may add general packet classifier some day */ 2341 2342 /* 2343 * The UDP port space is divided up into four priority ranges: 2344 * [0, 16384) : unclassified - lowest priority 2345 * [16384, 32768) : audio - highest priority 2346 * [32768, 49152) : whiteboard - medium priority 2347 * [49152, 65536) : video - low priority 2348 */ 2349 if (ip->ip_p == IPPROTO_UDP) { 2350 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); 2351 2352 switch (ntohs(udp->uh_dport) & 0xc000) { 2353 case 0x4000: 2354 prio = 70; 2355 break; 2356 case 0x8000: 2357 prio = 60; 2358 break; 2359 case 0xc000: 2360 prio = 55; 2361 break; 2362 } 2363 2364 if (tbfdebug > 1) 2365 log(LOG_DEBUG, "port %x prio %d\n", 2366 ntohs(udp->uh_dport), prio); 2367 } 2368 2369 return (prio); 2370 } 2371 2372 /* 2373 * End of token bucket filter modifications 2374 */ 2375 #ifdef RSVP_ISI 2376 int 2377 ip_rsvp_vif_init(so, m) 2378 struct socket *so; 2379 struct mbuf *m; 2380 { 2381 int vifi, s; 2382 2383 if (rsvpdebug) 2384 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", 2385 so->so_type, so->so_proto->pr_protocol); 2386 2387 if (so->so_type != SOCK_RAW || 2388 so->so_proto->pr_protocol != IPPROTO_RSVP) 2389 return (EOPNOTSUPP); 2390 2391 /* Check mbuf. */ 2392 if (m == NULL || m->m_len != sizeof(int)) { 2393 return (EINVAL); 2394 } 2395 vifi = *(mtod(m, int *)); 2396 2397 if (rsvpdebug) 2398 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", 2399 vifi, rsvp_on); 2400 2401 s = splsoftnet(); 2402 2403 /* Check vif. */ 2404 if (!legal_vif_num(vifi)) { 2405 splx(s); 2406 return (EADDRNOTAVAIL); 2407 } 2408 2409 /* Check if socket is available. */ 2410 if (viftable[vifi].v_rsvpd != NULL) { 2411 splx(s); 2412 return (EADDRINUSE); 2413 } 2414 2415 viftable[vifi].v_rsvpd = so; 2416 /* 2417 * This may seem silly, but we need to be sure we don't over-increment 2418 * the RSVP counter, in case something slips up. 2419 */ 2420 if (!viftable[vifi].v_rsvp_on) { 2421 viftable[vifi].v_rsvp_on = 1; 2422 rsvp_on++; 2423 } 2424 2425 splx(s); 2426 return (0); 2427 } 2428 2429 int 2430 ip_rsvp_vif_done(so, m) 2431 struct socket *so; 2432 struct mbuf *m; 2433 { 2434 int vifi, s; 2435 2436 if (rsvpdebug) 2437 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", 2438 so->so_type, so->so_proto->pr_protocol); 2439 2440 if (so->so_type != SOCK_RAW || 2441 so->so_proto->pr_protocol != IPPROTO_RSVP) 2442 return (EOPNOTSUPP); 2443 2444 /* Check mbuf. */ 2445 if (m == NULL || m->m_len != sizeof(int)) { 2446 return (EINVAL); 2447 } 2448 vifi = *(mtod(m, int *)); 2449 2450 s = splsoftnet(); 2451 2452 /* Check vif. */ 2453 if (!legal_vif_num(vifi)) { 2454 splx(s); 2455 return (EADDRNOTAVAIL); 2456 } 2457 2458 if (rsvpdebug) 2459 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", 2460 viftable[vifi].v_rsvpd, so); 2461 2462 viftable[vifi].v_rsvpd = NULL; 2463 /* 2464 * This may seem silly, but we need to be sure we don't over-decrement 2465 * the RSVP counter, in case something slips up. 2466 */ 2467 if (viftable[vifi].v_rsvp_on) { 2468 viftable[vifi].v_rsvp_on = 0; 2469 rsvp_on--; 2470 } 2471 2472 splx(s); 2473 return (0); 2474 } 2475 2476 void 2477 ip_rsvp_force_done(so) 2478 struct socket *so; 2479 { 2480 int vifi, s; 2481 2482 /* Don't bother if it is not the right type of socket. */ 2483 if (so->so_type != SOCK_RAW || 2484 so->so_proto->pr_protocol != IPPROTO_RSVP) 2485 return; 2486 2487 s = splsoftnet(); 2488 2489 /* 2490 * The socket may be attached to more than one vif...this 2491 * is perfectly legal. 2492 */ 2493 for (vifi = 0; vifi < numvifs; vifi++) { 2494 if (viftable[vifi].v_rsvpd == so) { 2495 viftable[vifi].v_rsvpd = NULL; 2496 /* 2497 * This may seem silly, but we need to be sure we don't 2498 * over-decrement the RSVP counter, in case something 2499 * slips up. 2500 */ 2501 if (viftable[vifi].v_rsvp_on) { 2502 viftable[vifi].v_rsvp_on = 0; 2503 rsvp_on--; 2504 } 2505 } 2506 } 2507 2508 splx(s); 2509 return; 2510 } 2511 2512 void 2513 rsvp_input(m, ifp) 2514 struct mbuf *m; 2515 struct ifnet *ifp; 2516 { 2517 int vifi, s; 2518 struct ip *ip = mtod(m, struct ip *); 2519 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET }; 2520 2521 if (rsvpdebug) 2522 printf("rsvp_input: rsvp_on %d\n", rsvp_on); 2523 2524 /* 2525 * Can still get packets with rsvp_on = 0 if there is a local member 2526 * of the group to which the RSVP packet is addressed. But in this 2527 * case we want to throw the packet away. 2528 */ 2529 if (!rsvp_on) { 2530 m_freem(m); 2531 return; 2532 } 2533 2534 /* 2535 * If the old-style non-vif-associated socket is set, then use 2536 * it and ignore the new ones. 2537 */ 2538 if (ip_rsvpd != NULL) { 2539 if (rsvpdebug) 2540 printf("rsvp_input: " 2541 "Sending packet up old-style socket\n"); 2542 rip_input(m); /*XXX*/ 2543 return; 2544 } 2545 2546 s = splsoftnet(); 2547 2548 if (rsvpdebug) 2549 printf("rsvp_input: check vifs\n"); 2550 2551 /* Find which vif the packet arrived on. */ 2552 for (vifi = 0; vifi < numvifs; vifi++) { 2553 if (viftable[vifi].v_ifp == ifp) 2554 break; 2555 } 2556 2557 if (vifi == numvifs) { 2558 /* Can't find vif packet arrived on. Drop packet. */ 2559 if (rsvpdebug) 2560 printf("rsvp_input: " 2561 "Can't find vif for packet...dropping it.\n"); 2562 m_freem(m); 2563 splx(s); 2564 return; 2565 } 2566 2567 if (rsvpdebug) 2568 printf("rsvp_input: check socket\n"); 2569 2570 if (viftable[vifi].v_rsvpd == NULL) { 2571 /* 2572 * drop packet, since there is no specific socket for this 2573 * interface 2574 */ 2575 if (rsvpdebug) 2576 printf("rsvp_input: No socket defined for vif %d\n", 2577 vifi); 2578 m_freem(m); 2579 splx(s); 2580 return; 2581 } 2582 2583 rsvp_src.sin_addr = ip->ip_src; 2584 2585 if (rsvpdebug && m) 2586 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", 2587 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); 2588 2589 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) 2590 if (rsvpdebug) 2591 printf("rsvp_input: Failed to append to socket\n"); 2592 else 2593 if (rsvpdebug) 2594 printf("rsvp_input: send packet up\n"); 2595 2596 splx(s); 2597 } 2598 #endif /* RSVP_ISI */ 2599 2600 /* 2601 * Code for bandwidth monitors 2602 */ 2603 2604 /* 2605 * Define common interface for timeval-related methods 2606 */ 2607 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) 2608 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) 2609 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) 2610 2611 static uint32_t 2612 compute_bw_meter_flags(struct bw_upcall *req) 2613 { 2614 uint32_t flags = 0; 2615 2616 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) 2617 flags |= BW_METER_UNIT_PACKETS; 2618 if (req->bu_flags & BW_UPCALL_UNIT_BYTES) 2619 flags |= BW_METER_UNIT_BYTES; 2620 if (req->bu_flags & BW_UPCALL_GEQ) 2621 flags |= BW_METER_GEQ; 2622 if (req->bu_flags & BW_UPCALL_LEQ) 2623 flags |= BW_METER_LEQ; 2624 2625 return flags; 2626 } 2627 2628 /* 2629 * Add a bw_meter entry 2630 */ 2631 static int 2632 add_bw_upcall(struct mbuf *m) 2633 { 2634 int s; 2635 struct mfc *mfc; 2636 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, 2637 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; 2638 struct timeval now; 2639 struct bw_meter *x; 2640 uint32_t flags; 2641 struct bw_upcall *req; 2642 2643 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2644 return EINVAL; 2645 2646 req = mtod(m, struct bw_upcall *); 2647 2648 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2649 return EOPNOTSUPP; 2650 2651 /* Test if the flags are valid */ 2652 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) 2653 return EINVAL; 2654 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) 2655 return EINVAL; 2656 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2657 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) 2658 return EINVAL; 2659 2660 /* Test if the threshold time interval is valid */ 2661 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) 2662 return EINVAL; 2663 2664 flags = compute_bw_meter_flags(req); 2665 2666 /* 2667 * Find if we have already same bw_meter entry 2668 */ 2669 s = splsoftnet(); 2670 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2671 if (mfc == NULL) { 2672 splx(s); 2673 return EADDRNOTAVAIL; 2674 } 2675 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { 2676 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2677 &req->bu_threshold.b_time, ==)) && 2678 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2679 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2680 (x->bm_flags & BW_METER_USER_FLAGS) == flags) { 2681 splx(s); 2682 return 0; /* XXX Already installed */ 2683 } 2684 } 2685 2686 /* Allocate the new bw_meter entry */ 2687 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); 2688 if (x == NULL) { 2689 splx(s); 2690 return ENOBUFS; 2691 } 2692 2693 /* Set the new bw_meter entry */ 2694 x->bm_threshold.b_time = req->bu_threshold.b_time; 2695 microtime(&now); 2696 x->bm_start_time = now; 2697 x->bm_threshold.b_packets = req->bu_threshold.b_packets; 2698 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; 2699 x->bm_measured.b_packets = 0; 2700 x->bm_measured.b_bytes = 0; 2701 x->bm_flags = flags; 2702 x->bm_time_next = NULL; 2703 x->bm_time_hash = BW_METER_BUCKETS; 2704 2705 /* Add the new bw_meter entry to the front of entries for this MFC */ 2706 x->bm_mfc = mfc; 2707 x->bm_mfc_next = mfc->mfc_bw_meter; 2708 mfc->mfc_bw_meter = x; 2709 schedule_bw_meter(x, &now); 2710 splx(s); 2711 2712 return 0; 2713 } 2714 2715 static void 2716 free_bw_list(struct bw_meter *list) 2717 { 2718 while (list != NULL) { 2719 struct bw_meter *x = list; 2720 2721 list = list->bm_mfc_next; 2722 unschedule_bw_meter(x); 2723 free(x, M_BWMETER); 2724 } 2725 } 2726 2727 /* 2728 * Delete one or multiple bw_meter entries 2729 */ 2730 static int 2731 del_bw_upcall(struct mbuf *m) 2732 { 2733 int s; 2734 struct mfc *mfc; 2735 struct bw_meter *x; 2736 struct bw_upcall *req; 2737 2738 if (m == NULL || m->m_len < sizeof(struct bw_upcall)) 2739 return EINVAL; 2740 2741 req = mtod(m, struct bw_upcall *); 2742 2743 if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) 2744 return EOPNOTSUPP; 2745 2746 s = splsoftnet(); 2747 /* Find the corresponding MFC entry */ 2748 mfc = mfc_find(&req->bu_src, &req->bu_dst); 2749 if (mfc == NULL) { 2750 splx(s); 2751 return EADDRNOTAVAIL; 2752 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { 2753 /* 2754 * Delete all bw_meter entries for this mfc 2755 */ 2756 struct bw_meter *list; 2757 2758 list = mfc->mfc_bw_meter; 2759 mfc->mfc_bw_meter = NULL; 2760 free_bw_list(list); 2761 splx(s); 2762 return 0; 2763 } else { /* Delete a single bw_meter entry */ 2764 struct bw_meter *prev; 2765 uint32_t flags = 0; 2766 2767 flags = compute_bw_meter_flags(req); 2768 2769 /* Find the bw_meter entry to delete */ 2770 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; 2771 prev = x, x = x->bm_mfc_next) { 2772 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, 2773 &req->bu_threshold.b_time, ==)) && 2774 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && 2775 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && 2776 (x->bm_flags & BW_METER_USER_FLAGS) == flags) 2777 break; 2778 } 2779 if (x != NULL) { /* Delete entry from the list for this MFC */ 2780 if (prev != NULL) 2781 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ 2782 else 2783 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ 2784 2785 unschedule_bw_meter(x); 2786 splx(s); 2787 /* Free the bw_meter entry */ 2788 free(x, M_BWMETER); 2789 return 0; 2790 } else { 2791 splx(s); 2792 return EINVAL; 2793 } 2794 } 2795 /* NOTREACHED */ 2796 } 2797 2798 /* 2799 * Perform bandwidth measurement processing that may result in an upcall 2800 */ 2801 static void 2802 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) 2803 { 2804 struct timeval delta; 2805 2806 delta = *nowp; 2807 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2808 2809 if (x->bm_flags & BW_METER_GEQ) { 2810 /* 2811 * Processing for ">=" type of bw_meter entry 2812 */ 2813 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2814 /* Reset the bw_meter entry */ 2815 x->bm_start_time = *nowp; 2816 x->bm_measured.b_packets = 0; 2817 x->bm_measured.b_bytes = 0; 2818 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2819 } 2820 2821 /* Record that a packet is received */ 2822 x->bm_measured.b_packets++; 2823 x->bm_measured.b_bytes += plen; 2824 2825 /* 2826 * Test if we should deliver an upcall 2827 */ 2828 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { 2829 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2830 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || 2831 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2832 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { 2833 /* Prepare an upcall for delivery */ 2834 bw_meter_prepare_upcall(x, nowp); 2835 x->bm_flags |= BW_METER_UPCALL_DELIVERED; 2836 } 2837 } 2838 } else if (x->bm_flags & BW_METER_LEQ) { 2839 /* 2840 * Processing for "<=" type of bw_meter entry 2841 */ 2842 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { 2843 /* 2844 * We are behind time with the multicast forwarding table 2845 * scanning for "<=" type of bw_meter entries, so test now 2846 * if we should deliver an upcall. 2847 */ 2848 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 2849 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 2850 ((x->bm_flags & BW_METER_UNIT_BYTES) && 2851 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 2852 /* Prepare an upcall for delivery */ 2853 bw_meter_prepare_upcall(x, nowp); 2854 } 2855 /* Reschedule the bw_meter entry */ 2856 unschedule_bw_meter(x); 2857 schedule_bw_meter(x, nowp); 2858 } 2859 2860 /* Record that a packet is received */ 2861 x->bm_measured.b_packets++; 2862 x->bm_measured.b_bytes += plen; 2863 2864 /* 2865 * Test if we should restart the measuring interval 2866 */ 2867 if ((x->bm_flags & BW_METER_UNIT_PACKETS && 2868 x->bm_measured.b_packets <= x->bm_threshold.b_packets) || 2869 (x->bm_flags & BW_METER_UNIT_BYTES && 2870 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { 2871 /* Don't restart the measuring interval */ 2872 } else { 2873 /* Do restart the measuring interval */ 2874 /* 2875 * XXX: note that we don't unschedule and schedule, because this 2876 * might be too much overhead per packet. Instead, when we process 2877 * all entries for a given timer hash bin, we check whether it is 2878 * really a timeout. If not, we reschedule at that time. 2879 */ 2880 x->bm_start_time = *nowp; 2881 x->bm_measured.b_packets = 0; 2882 x->bm_measured.b_bytes = 0; 2883 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 2884 } 2885 } 2886 } 2887 2888 /* 2889 * Prepare a bandwidth-related upcall 2890 */ 2891 static void 2892 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) 2893 { 2894 struct timeval delta; 2895 struct bw_upcall *u; 2896 2897 /* 2898 * Compute the measured time interval 2899 */ 2900 delta = *nowp; 2901 BW_TIMEVALDECR(&delta, &x->bm_start_time); 2902 2903 /* 2904 * If there are too many pending upcalls, deliver them now 2905 */ 2906 if (bw_upcalls_n >= BW_UPCALLS_MAX) 2907 bw_upcalls_send(); 2908 2909 /* 2910 * Set the bw_upcall entry 2911 */ 2912 u = &bw_upcalls[bw_upcalls_n++]; 2913 u->bu_src = x->bm_mfc->mfc_origin; 2914 u->bu_dst = x->bm_mfc->mfc_mcastgrp; 2915 u->bu_threshold.b_time = x->bm_threshold.b_time; 2916 u->bu_threshold.b_packets = x->bm_threshold.b_packets; 2917 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; 2918 u->bu_measured.b_time = delta; 2919 u->bu_measured.b_packets = x->bm_measured.b_packets; 2920 u->bu_measured.b_bytes = x->bm_measured.b_bytes; 2921 u->bu_flags = 0; 2922 if (x->bm_flags & BW_METER_UNIT_PACKETS) 2923 u->bu_flags |= BW_UPCALL_UNIT_PACKETS; 2924 if (x->bm_flags & BW_METER_UNIT_BYTES) 2925 u->bu_flags |= BW_UPCALL_UNIT_BYTES; 2926 if (x->bm_flags & BW_METER_GEQ) 2927 u->bu_flags |= BW_UPCALL_GEQ; 2928 if (x->bm_flags & BW_METER_LEQ) 2929 u->bu_flags |= BW_UPCALL_LEQ; 2930 } 2931 2932 /* 2933 * Send the pending bandwidth-related upcalls 2934 */ 2935 static void 2936 bw_upcalls_send(void) 2937 { 2938 struct mbuf *m; 2939 int len = bw_upcalls_n * sizeof(bw_upcalls[0]); 2940 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 2941 static struct igmpmsg igmpmsg = { 0, /* unused1 */ 2942 0, /* unused2 */ 2943 IGMPMSG_BW_UPCALL,/* im_msgtype */ 2944 0, /* im_mbz */ 2945 0, /* im_vif */ 2946 0, /* unused3 */ 2947 { 0 }, /* im_src */ 2948 { 0 } }; /* im_dst */ 2949 2950 if (bw_upcalls_n == 0) 2951 return; /* No pending upcalls */ 2952 2953 bw_upcalls_n = 0; 2954 2955 /* 2956 * Allocate a new mbuf, initialize it with the header and 2957 * the payload for the pending calls. 2958 */ 2959 MGETHDR(m, M_DONTWAIT, MT_HEADER); 2960 if (m == NULL) { 2961 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); 2962 return; 2963 } 2964 2965 m->m_len = m->m_pkthdr.len = 0; 2966 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); 2967 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); 2968 2969 /* 2970 * Send the upcalls 2971 * XXX do we need to set the address in k_igmpsrc ? 2972 */ 2973 mrtstat.mrts_upcalls++; 2974 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { 2975 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); 2976 ++mrtstat.mrts_upq_sockfull; 2977 } 2978 } 2979 2980 /* 2981 * Compute the timeout hash value for the bw_meter entries 2982 */ 2983 #define BW_METER_TIMEHASH(bw_meter, hash) \ 2984 do { \ 2985 struct timeval next_timeval = (bw_meter)->bm_start_time; \ 2986 \ 2987 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ 2988 (hash) = next_timeval.tv_sec; \ 2989 if (next_timeval.tv_usec) \ 2990 (hash)++; /* XXX: make sure we don't timeout early */ \ 2991 (hash) %= BW_METER_BUCKETS; \ 2992 } while (/*CONSTCOND*/ 0) 2993 2994 /* 2995 * Schedule a timer to process periodically bw_meter entry of type "<=" 2996 * by linking the entry in the proper hash bucket. 2997 */ 2998 static void 2999 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) 3000 { 3001 int time_hash; 3002 3003 if (!(x->bm_flags & BW_METER_LEQ)) 3004 return; /* XXX: we schedule timers only for "<=" entries */ 3005 3006 /* 3007 * Reset the bw_meter entry 3008 */ 3009 x->bm_start_time = *nowp; 3010 x->bm_measured.b_packets = 0; 3011 x->bm_measured.b_bytes = 0; 3012 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; 3013 3014 /* 3015 * Compute the timeout hash value and insert the entry 3016 */ 3017 BW_METER_TIMEHASH(x, time_hash); 3018 x->bm_time_next = bw_meter_timers[time_hash]; 3019 bw_meter_timers[time_hash] = x; 3020 x->bm_time_hash = time_hash; 3021 } 3022 3023 /* 3024 * Unschedule the periodic timer that processes bw_meter entry of type "<=" 3025 * by removing the entry from the proper hash bucket. 3026 */ 3027 static void 3028 unschedule_bw_meter(struct bw_meter *x) 3029 { 3030 int time_hash; 3031 struct bw_meter *prev, *tmp; 3032 3033 if (!(x->bm_flags & BW_METER_LEQ)) 3034 return; /* XXX: we schedule timers only for "<=" entries */ 3035 3036 /* 3037 * Compute the timeout hash value and delete the entry 3038 */ 3039 time_hash = x->bm_time_hash; 3040 if (time_hash >= BW_METER_BUCKETS) 3041 return; /* Entry was not scheduled */ 3042 3043 for (prev = NULL, tmp = bw_meter_timers[time_hash]; 3044 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) 3045 if (tmp == x) 3046 break; 3047 3048 if (tmp == NULL) 3049 panic("unschedule_bw_meter: bw_meter entry not found"); 3050 3051 if (prev != NULL) 3052 prev->bm_time_next = x->bm_time_next; 3053 else 3054 bw_meter_timers[time_hash] = x->bm_time_next; 3055 3056 x->bm_time_next = NULL; 3057 x->bm_time_hash = BW_METER_BUCKETS; 3058 } 3059 3060 /* 3061 * Process all "<=" type of bw_meter that should be processed now, 3062 * and for each entry prepare an upcall if necessary. Each processed 3063 * entry is rescheduled again for the (periodic) processing. 3064 * 3065 * This is run periodically (once per second normally). On each round, 3066 * all the potentially matching entries are in the hash slot that we are 3067 * looking at. 3068 */ 3069 static void 3070 bw_meter_process() 3071 { 3072 int s; 3073 static uint32_t last_tv_sec; /* last time we processed this */ 3074 3075 uint32_t loops; 3076 int i; 3077 struct timeval now, process_endtime; 3078 3079 microtime(&now); 3080 if (last_tv_sec == now.tv_sec) 3081 return; /* nothing to do */ 3082 3083 loops = now.tv_sec - last_tv_sec; 3084 last_tv_sec = now.tv_sec; 3085 if (loops > BW_METER_BUCKETS) 3086 loops = BW_METER_BUCKETS; 3087 3088 s = splsoftnet(); 3089 /* 3090 * Process all bins of bw_meter entries from the one after the last 3091 * processed to the current one. On entry, i points to the last bucket 3092 * visited, so we need to increment i at the beginning of the loop. 3093 */ 3094 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { 3095 struct bw_meter *x, *tmp_list; 3096 3097 if (++i >= BW_METER_BUCKETS) 3098 i = 0; 3099 3100 /* Disconnect the list of bw_meter entries from the bin */ 3101 tmp_list = bw_meter_timers[i]; 3102 bw_meter_timers[i] = NULL; 3103 3104 /* Process the list of bw_meter entries */ 3105 while (tmp_list != NULL) { 3106 x = tmp_list; 3107 tmp_list = tmp_list->bm_time_next; 3108 3109 /* Test if the time interval is over */ 3110 process_endtime = x->bm_start_time; 3111 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); 3112 if (BW_TIMEVALCMP(&process_endtime, &now, >)) { 3113 /* Not yet: reschedule, but don't reset */ 3114 int time_hash; 3115 3116 BW_METER_TIMEHASH(x, time_hash); 3117 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { 3118 /* 3119 * XXX: somehow the bin processing is a bit ahead of time. 3120 * Put the entry in the next bin. 3121 */ 3122 if (++time_hash >= BW_METER_BUCKETS) 3123 time_hash = 0; 3124 } 3125 x->bm_time_next = bw_meter_timers[time_hash]; 3126 bw_meter_timers[time_hash] = x; 3127 x->bm_time_hash = time_hash; 3128 3129 continue; 3130 } 3131 3132 /* 3133 * Test if we should deliver an upcall 3134 */ 3135 if (((x->bm_flags & BW_METER_UNIT_PACKETS) && 3136 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || 3137 ((x->bm_flags & BW_METER_UNIT_BYTES) && 3138 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { 3139 /* Prepare an upcall for delivery */ 3140 bw_meter_prepare_upcall(x, &now); 3141 } 3142 3143 /* 3144 * Reschedule for next processing 3145 */ 3146 schedule_bw_meter(x, &now); 3147 } 3148 } 3149 3150 /* Send all upcalls that are pending delivery */ 3151 bw_upcalls_send(); 3152 3153 splx(s); 3154 } 3155 3156 /* 3157 * A periodic function for sending all upcalls that are pending delivery 3158 */ 3159 static void 3160 expire_bw_upcalls_send(void *unused) 3161 { 3162 int s; 3163 3164 s = splsoftnet(); 3165 bw_upcalls_send(); 3166 splx(s); 3167 3168 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, 3169 expire_bw_upcalls_send, NULL); 3170 } 3171 3172 /* 3173 * A periodic function for periodic scanning of the multicast forwarding 3174 * table for processing all "<=" bw_meter entries. 3175 */ 3176 static void 3177 expire_bw_meter_process(void *unused) 3178 { 3179 if (mrt_api_config & MRT_MFC_BW_UPCALL) 3180 bw_meter_process(); 3181 3182 callout_reset(&bw_meter_ch, BW_METER_PERIOD, 3183 expire_bw_meter_process, NULL); 3184 } 3185 3186 /* 3187 * End of bandwidth monitoring code 3188 */ 3189 3190 #ifdef PIM 3191 /* 3192 * Send the packet up to the user daemon, or eventually do kernel encapsulation 3193 */ 3194 static int 3195 pim_register_send(struct ip *ip, struct vif *vifp, 3196 struct mbuf *m, struct mfc *rt) 3197 { 3198 struct mbuf *mb_copy, *mm; 3199 3200 if (mrtdebug & DEBUG_PIM) 3201 log(LOG_DEBUG, "pim_register_send: "); 3202 3203 mb_copy = pim_register_prepare(ip, m); 3204 if (mb_copy == NULL) 3205 return ENOBUFS; 3206 3207 /* 3208 * Send all the fragments. Note that the mbuf for each fragment 3209 * is freed by the sending machinery. 3210 */ 3211 for (mm = mb_copy; mm; mm = mb_copy) { 3212 mb_copy = mm->m_nextpkt; 3213 mm->m_nextpkt = NULL; 3214 mm = m_pullup(mm, sizeof(struct ip)); 3215 if (mm != NULL) { 3216 ip = mtod(mm, struct ip *); 3217 if ((mrt_api_config & MRT_MFC_RP) && 3218 !in_nullhost(rt->mfc_rp)) { 3219 pim_register_send_rp(ip, vifp, mm, rt); 3220 } else { 3221 pim_register_send_upcall(ip, vifp, mm, rt); 3222 } 3223 } 3224 } 3225 3226 return 0; 3227 } 3228 3229 /* 3230 * Return a copy of the data packet that is ready for PIM Register 3231 * encapsulation. 3232 * XXX: Note that in the returned copy the IP header is a valid one. 3233 */ 3234 static struct mbuf * 3235 pim_register_prepare(struct ip *ip, struct mbuf *m) 3236 { 3237 struct mbuf *mb_copy = NULL; 3238 int mtu; 3239 3240 /* Take care of delayed checksums */ 3241 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 3242 in_delayed_cksum(m); 3243 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 3244 } 3245 3246 /* 3247 * Copy the old packet & pullup its IP header into the 3248 * new mbuf so we can modify it. 3249 */ 3250 mb_copy = m_copy(m, 0, M_COPYALL); 3251 if (mb_copy == NULL) 3252 return NULL; 3253 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); 3254 if (mb_copy == NULL) 3255 return NULL; 3256 3257 /* take care of the TTL */ 3258 ip = mtod(mb_copy, struct ip *); 3259 --ip->ip_ttl; 3260 3261 /* Compute the MTU after the PIM Register encapsulation */ 3262 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); 3263 3264 if (ntohs(ip->ip_len) <= mtu) { 3265 /* Turn the IP header into a valid one */ 3266 ip->ip_sum = 0; 3267 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); 3268 } else { 3269 /* Fragment the packet */ 3270 if (ip_fragment(mb_copy, NULL, mtu) != 0) { 3271 /* XXX: mb_copy was freed by ip_fragment() */ 3272 return NULL; 3273 } 3274 } 3275 return mb_copy; 3276 } 3277 3278 /* 3279 * Send an upcall with the data packet to the user-level process. 3280 */ 3281 static int 3282 pim_register_send_upcall(struct ip *ip, struct vif *vifp, 3283 struct mbuf *mb_copy, struct mfc *rt) 3284 { 3285 struct mbuf *mb_first; 3286 int len = ntohs(ip->ip_len); 3287 struct igmpmsg *im; 3288 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; 3289 3290 /* 3291 * Add a new mbuf with an upcall header 3292 */ 3293 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3294 if (mb_first == NULL) { 3295 m_freem(mb_copy); 3296 return ENOBUFS; 3297 } 3298 mb_first->m_data += max_linkhdr; 3299 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); 3300 mb_first->m_len = sizeof(struct igmpmsg); 3301 mb_first->m_next = mb_copy; 3302 3303 /* Send message to routing daemon */ 3304 im = mtod(mb_first, struct igmpmsg *); 3305 im->im_msgtype = IGMPMSG_WHOLEPKT; 3306 im->im_mbz = 0; 3307 im->im_vif = vifp - viftable; 3308 im->im_src = ip->ip_src; 3309 im->im_dst = ip->ip_dst; 3310 3311 k_igmpsrc.sin_addr = ip->ip_src; 3312 3313 mrtstat.mrts_upcalls++; 3314 3315 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { 3316 if (mrtdebug & DEBUG_PIM) 3317 log(LOG_WARNING, 3318 "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); 3319 ++mrtstat.mrts_upq_sockfull; 3320 return ENOBUFS; 3321 } 3322 3323 /* Keep statistics */ 3324 pimstat.pims_snd_registers_msgs++; 3325 pimstat.pims_snd_registers_bytes += len; 3326 3327 return 0; 3328 } 3329 3330 /* 3331 * Encapsulate the data packet in PIM Register message and send it to the RP. 3332 */ 3333 static int 3334 pim_register_send_rp(struct ip *ip, struct vif *vifp, 3335 struct mbuf *mb_copy, struct mfc *rt) 3336 { 3337 struct mbuf *mb_first; 3338 struct ip *ip_outer; 3339 struct pim_encap_pimhdr *pimhdr; 3340 int len = ntohs(ip->ip_len); 3341 vifi_t vifi = rt->mfc_parent; 3342 3343 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { 3344 m_freem(mb_copy); 3345 return EADDRNOTAVAIL; /* The iif vif is invalid */ 3346 } 3347 3348 /* 3349 * Add a new mbuf with the encapsulating header 3350 */ 3351 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); 3352 if (mb_first == NULL) { 3353 m_freem(mb_copy); 3354 return ENOBUFS; 3355 } 3356 mb_first->m_data += max_linkhdr; 3357 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); 3358 mb_first->m_next = mb_copy; 3359 3360 mb_first->m_pkthdr.len = len + mb_first->m_len; 3361 3362 /* 3363 * Fill in the encapsulating IP and PIM header 3364 */ 3365 ip_outer = mtod(mb_first, struct ip *); 3366 *ip_outer = pim_encap_iphdr; 3367 ip_outer->ip_id = ip_newid(); 3368 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + 3369 sizeof(pim_encap_pimhdr)); 3370 ip_outer->ip_src = viftable[vifi].v_lcl_addr; 3371 ip_outer->ip_dst = rt->mfc_rp; 3372 /* 3373 * Copy the inner header TOS to the outer header, and take care of the 3374 * IP_DF bit. 3375 */ 3376 ip_outer->ip_tos = ip->ip_tos; 3377 if (ntohs(ip->ip_off) & IP_DF) 3378 ip_outer->ip_off |= IP_DF; 3379 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer 3380 + sizeof(pim_encap_iphdr)); 3381 *pimhdr = pim_encap_pimhdr; 3382 /* If the iif crosses a border, set the Border-bit */ 3383 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) 3384 pimhdr->flags |= htonl(PIM_BORDER_REGISTER); 3385 3386 mb_first->m_data += sizeof(pim_encap_iphdr); 3387 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); 3388 mb_first->m_data -= sizeof(pim_encap_iphdr); 3389 3390 if (vifp->v_rate_limit == 0) 3391 tbf_send_packet(vifp, mb_first); 3392 else 3393 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); 3394 3395 /* Keep statistics */ 3396 pimstat.pims_snd_registers_msgs++; 3397 pimstat.pims_snd_registers_bytes += len; 3398 3399 return 0; 3400 } 3401 3402 /* 3403 * PIM-SMv2 and PIM-DM messages processing. 3404 * Receives and verifies the PIM control messages, and passes them 3405 * up to the listening socket, using rip_input(). 3406 * The only message with special processing is the PIM_REGISTER message 3407 * (used by PIM-SM): the PIM header is stripped off, and the inner packet 3408 * is passed to if_simloop(). 3409 */ 3410 void 3411 pim_input(struct mbuf *m, ...) 3412 { 3413 struct ip *ip = mtod(m, struct ip *); 3414 struct pim *pim; 3415 int minlen; 3416 int datalen; 3417 int ip_tos; 3418 int proto; 3419 int iphlen; 3420 va_list ap; 3421 3422 va_start(ap, m); 3423 iphlen = va_arg(ap, int); 3424 proto = va_arg(ap, int); 3425 va_end(ap); 3426 3427 datalen = ntohs(ip->ip_len) - iphlen; 3428 3429 /* Keep statistics */ 3430 pimstat.pims_rcv_total_msgs++; 3431 pimstat.pims_rcv_total_bytes += datalen; 3432 3433 /* 3434 * Validate lengths 3435 */ 3436 if (datalen < PIM_MINLEN) { 3437 pimstat.pims_rcv_tooshort++; 3438 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", 3439 datalen, (u_long)ip->ip_src.s_addr); 3440 m_freem(m); 3441 return; 3442 } 3443 3444 /* 3445 * If the packet is at least as big as a REGISTER, go agead 3446 * and grab the PIM REGISTER header size, to avoid another 3447 * possible m_pullup() later. 3448 * 3449 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 3450 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 3451 */ 3452 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); 3453 /* 3454 * Get the IP and PIM headers in contiguous memory, and 3455 * possibly the PIM REGISTER header. 3456 */ 3457 if ((m->m_flags & M_EXT || m->m_len < minlen) && 3458 (m = m_pullup(m, minlen)) == NULL) { 3459 log(LOG_ERR, "pim_input: m_pullup failure\n"); 3460 return; 3461 } 3462 /* m_pullup() may have given us a new mbuf so reset ip. */ 3463 ip = mtod(m, struct ip *); 3464 ip_tos = ip->ip_tos; 3465 3466 /* adjust mbuf to point to the PIM header */ 3467 m->m_data += iphlen; 3468 m->m_len -= iphlen; 3469 pim = mtod(m, struct pim *); 3470 3471 /* 3472 * Validate checksum. If PIM REGISTER, exclude the data packet. 3473 * 3474 * XXX: some older PIMv2 implementations don't make this distinction, 3475 * so for compatibility reason perform the checksum over part of the 3476 * message, and if error, then over the whole message. 3477 */ 3478 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { 3479 /* do nothing, checksum okay */ 3480 } else if (in_cksum(m, datalen)) { 3481 pimstat.pims_rcv_badsum++; 3482 if (mrtdebug & DEBUG_PIM) 3483 log(LOG_DEBUG, "pim_input: invalid checksum"); 3484 m_freem(m); 3485 return; 3486 } 3487 3488 /* PIM version check */ 3489 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { 3490 pimstat.pims_rcv_badversion++; 3491 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", 3492 PIM_VT_V(pim->pim_vt), PIM_VERSION); 3493 m_freem(m); 3494 return; 3495 } 3496 3497 /* restore mbuf back to the outer IP */ 3498 m->m_data -= iphlen; 3499 m->m_len += iphlen; 3500 3501 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { 3502 /* 3503 * Since this is a REGISTER, we'll make a copy of the register 3504 * headers ip + pim + u_int32 + encap_ip, to be passed up to the 3505 * routing daemon. 3506 */ 3507 int s; 3508 struct sockaddr_in dst = { sizeof(dst), AF_INET }; 3509 struct mbuf *mcp; 3510 struct ip *encap_ip; 3511 u_int32_t *reghdr; 3512 struct ifnet *vifp; 3513 3514 s = splsoftnet(); 3515 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { 3516 splx(s); 3517 if (mrtdebug & DEBUG_PIM) 3518 log(LOG_DEBUG, 3519 "pim_input: register vif not set: %d\n", reg_vif_num); 3520 m_freem(m); 3521 return; 3522 } 3523 /* XXX need refcnt? */ 3524 vifp = viftable[reg_vif_num].v_ifp; 3525 splx(s); 3526 3527 /* 3528 * Validate length 3529 */ 3530 if (datalen < PIM_REG_MINLEN) { 3531 pimstat.pims_rcv_tooshort++; 3532 pimstat.pims_rcv_badregisters++; 3533 log(LOG_ERR, 3534 "pim_input: register packet size too small %d from %lx\n", 3535 datalen, (u_long)ip->ip_src.s_addr); 3536 m_freem(m); 3537 return; 3538 } 3539 3540 reghdr = (u_int32_t *)(pim + 1); 3541 encap_ip = (struct ip *)(reghdr + 1); 3542 3543 if (mrtdebug & DEBUG_PIM) { 3544 log(LOG_DEBUG, 3545 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", 3546 (u_long)ntohl(encap_ip->ip_src.s_addr), 3547 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3548 ntohs(encap_ip->ip_len)); 3549 } 3550 3551 /* verify the version number of the inner packet */ 3552 if (encap_ip->ip_v != IPVERSION) { 3553 pimstat.pims_rcv_badregisters++; 3554 if (mrtdebug & DEBUG_PIM) { 3555 log(LOG_DEBUG, "pim_input: invalid IP version (%d) " 3556 "of the inner packet\n", encap_ip->ip_v); 3557 } 3558 m_freem(m); 3559 return; 3560 } 3561 3562 /* verify the inner packet is destined to a mcast group */ 3563 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { 3564 pimstat.pims_rcv_badregisters++; 3565 if (mrtdebug & DEBUG_PIM) 3566 log(LOG_DEBUG, 3567 "pim_input: inner packet of register is not " 3568 "multicast %lx\n", 3569 (u_long)ntohl(encap_ip->ip_dst.s_addr)); 3570 m_freem(m); 3571 return; 3572 } 3573 3574 /* If a NULL_REGISTER, pass it to the daemon */ 3575 if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) 3576 goto pim_input_to_daemon; 3577 3578 /* 3579 * Copy the TOS from the outer IP header to the inner IP header. 3580 */ 3581 if (encap_ip->ip_tos != ip_tos) { 3582 /* Outer TOS -> inner TOS */ 3583 encap_ip->ip_tos = ip_tos; 3584 /* Recompute the inner header checksum. Sigh... */ 3585 3586 /* adjust mbuf to point to the inner IP header */ 3587 m->m_data += (iphlen + PIM_MINLEN); 3588 m->m_len -= (iphlen + PIM_MINLEN); 3589 3590 encap_ip->ip_sum = 0; 3591 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); 3592 3593 /* restore mbuf to point back to the outer IP header */ 3594 m->m_data -= (iphlen + PIM_MINLEN); 3595 m->m_len += (iphlen + PIM_MINLEN); 3596 } 3597 3598 /* 3599 * Decapsulate the inner IP packet and loopback to forward it 3600 * as a normal multicast packet. Also, make a copy of the 3601 * outer_iphdr + pimhdr + reghdr + encap_iphdr 3602 * to pass to the daemon later, so it can take the appropriate 3603 * actions (e.g., send back PIM_REGISTER_STOP). 3604 * XXX: here m->m_data points to the outer IP header. 3605 */ 3606 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); 3607 if (mcp == NULL) { 3608 log(LOG_ERR, 3609 "pim_input: pim register: could not copy register head\n"); 3610 m_freem(m); 3611 return; 3612 } 3613 3614 /* Keep statistics */ 3615 /* XXX: registers_bytes include only the encap. mcast pkt */ 3616 pimstat.pims_rcv_registers_msgs++; 3617 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); 3618 3619 /* 3620 * forward the inner ip packet; point m_data at the inner ip. 3621 */ 3622 m_adj(m, iphlen + PIM_MINLEN); 3623 3624 if (mrtdebug & DEBUG_PIM) { 3625 log(LOG_DEBUG, 3626 "pim_input: forwarding decapsulated register: " 3627 "src %lx, dst %lx, vif %d\n", 3628 (u_long)ntohl(encap_ip->ip_src.s_addr), 3629 (u_long)ntohl(encap_ip->ip_dst.s_addr), 3630 reg_vif_num); 3631 } 3632 /* NB: vifp was collected above; can it change on us? */ 3633 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL); 3634 3635 /* prepare the register head to send to the mrouting daemon */ 3636 m = mcp; 3637 } 3638 3639 pim_input_to_daemon: 3640 /* 3641 * Pass the PIM message up to the daemon; if it is a Register message, 3642 * pass the 'head' only up to the daemon. This includes the 3643 * outer IP header, PIM header, PIM-Register header and the 3644 * inner IP header. 3645 * XXX: the outer IP header pkt size of a Register is not adjust to 3646 * reflect the fact that the inner multicast data is truncated. 3647 */ 3648 rip_input(m, iphlen, proto); 3649 3650 return; 3651 } 3652 #endif /* PIM */ 3653