xref: /netbsd-src/sys/netinet/ip_input.c (revision d9158b13b5dfe46201430699a3f7a235ecf28df3)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)ip_input.c	8.2 (Berkeley) 1/4/94
34  *	$Id: ip_input.c,v 1.13 1994/05/13 06:06:21 mycroft Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/domain.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 
48 #include <net/if.h>
49 #include <net/route.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip_var.h>
57 #include <netinet/ip_icmp.h>
58 
59 #ifndef	IPFORWARDING
60 #ifdef GATEWAY
61 #define	IPFORWARDING	1	/* forward IP packets not for us */
62 #else /* GATEWAY */
63 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
64 #endif /* GATEWAY */
65 #endif /* IPFORWARDING */
66 #ifndef	IPSENDREDIRECTS
67 #define	IPSENDREDIRECTS	1
68 #endif
69 int	ipforwarding = IPFORWARDING;
70 int	ipsendredirects = IPSENDREDIRECTS;
71 int	ip_defttl = IPDEFTTL;
72 #ifdef DIAGNOSTIC
73 int	ipprintfs = 0;
74 #endif
75 
76 extern	struct domain inetdomain;
77 extern	struct protosw inetsw[];
78 u_char	ip_protox[IPPROTO_MAX];
79 int	ipqmaxlen = IFQ_MAXLEN;
80 struct	in_ifaddr *in_ifaddr;			/* first inet address */
81 struct	ifqueue ipintrq;
82 
83 /*
84  * We need to save the IP options in case a protocol wants to respond
85  * to an incoming packet over the same route if the packet got here
86  * using IP source routing.  This allows connection establishment and
87  * maintenance when the remote end is on a network that is not known
88  * to us.
89  */
90 int	ip_nhops = 0;
91 static	struct ip_srcrt {
92 	struct	in_addr dst;			/* final destination */
93 	char	nop;				/* one NOP to align */
94 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
95 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
96 } ip_srcrt;
97 
98 #ifdef GATEWAY
99 extern	int if_index;
100 u_long	*ip_ifmatrix;
101 #endif
102 
103 static void save_rte __P((u_char *, struct in_addr));
104 /*
105  * IP initialization: fill in IP protocol switch table.
106  * All protocols not implemented in kernel go to raw IP protocol handler.
107  */
108 void
109 ip_init()
110 {
111 	register struct protosw *pr;
112 	register int i;
113 
114 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
115 	if (pr == 0)
116 		panic("ip_init");
117 	for (i = 0; i < IPPROTO_MAX; i++)
118 		ip_protox[i] = pr - inetsw;
119 	for (pr = inetdomain.dom_protosw;
120 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
121 		if (pr->pr_domain->dom_family == PF_INET &&
122 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
123 			ip_protox[pr->pr_protocol] = pr - inetsw;
124 	ipq.next = ipq.prev = &ipq;
125 	ip_id = time.tv_sec & 0xffff;
126 	ipintrq.ifq_maxlen = ipqmaxlen;
127 #ifdef GATEWAY
128 	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
129 	ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK);
130 	bzero((char *)ip_ifmatrix, i);
131 #endif
132 }
133 
134 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
135 struct	route ipforward_rt;
136 
137 /*
138  * Ip input routine.  Checksum and byte swap header.  If fragmented
139  * try to reassemble.  Process options.  Pass to next level.
140  */
141 void
142 ipintr()
143 {
144 	register struct ip *ip;
145 	register struct mbuf *m;
146 	register struct ipq *fp;
147 	register struct in_ifaddr *ia;
148 	int hlen, s;
149 
150 next:
151 	/*
152 	 * Get next datagram off input queue and get IP header
153 	 * in first mbuf.
154 	 */
155 	s = splimp();
156 	IF_DEQUEUE(&ipintrq, m);
157 	splx(s);
158 	if (m == 0)
159 		return;
160 #ifdef	DIAGNOSTIC
161 	if ((m->m_flags & M_PKTHDR) == 0)
162 		panic("ipintr no HDR");
163 #endif
164 	/*
165 	 * If no IP addresses have been set yet but the interfaces
166 	 * are receiving, can't do anything with incoming packets yet.
167 	 */
168 	if (in_ifaddr == NULL)
169 		goto bad;
170 	ipstat.ips_total++;
171 	if (m->m_len < sizeof (struct ip) &&
172 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
173 		ipstat.ips_toosmall++;
174 		goto next;
175 	}
176 	ip = mtod(m, struct ip *);
177 	if (ip->ip_v != IPVERSION) {
178 		ipstat.ips_badvers++;
179 		goto bad;
180 	}
181 	hlen = ip->ip_hl << 2;
182 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
183 		ipstat.ips_badhlen++;
184 		goto bad;
185 	}
186 	if (hlen > m->m_len) {
187 		if ((m = m_pullup(m, hlen)) == 0) {
188 			ipstat.ips_badhlen++;
189 			goto next;
190 		}
191 		ip = mtod(m, struct ip *);
192 	}
193 	if (ip->ip_sum = in_cksum(m, hlen)) {
194 		ipstat.ips_badsum++;
195 		goto bad;
196 	}
197 
198 	/*
199 	 * Convert fields to host representation.
200 	 */
201 	NTOHS(ip->ip_len);
202 	if (ip->ip_len < hlen) {
203 		ipstat.ips_badlen++;
204 		goto bad;
205 	}
206 	NTOHS(ip->ip_id);
207 	NTOHS(ip->ip_off);
208 
209 	/*
210 	 * Check that the amount of data in the buffers
211 	 * is as at least much as the IP header would have us expect.
212 	 * Trim mbufs if longer than we expect.
213 	 * Drop packet if shorter than we expect.
214 	 */
215 	if (m->m_pkthdr.len < ip->ip_len) {
216 		ipstat.ips_tooshort++;
217 		goto bad;
218 	}
219 	if (m->m_pkthdr.len > ip->ip_len) {
220 		if (m->m_len == m->m_pkthdr.len) {
221 			m->m_len = ip->ip_len;
222 			m->m_pkthdr.len = ip->ip_len;
223 		} else
224 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
225 	}
226 
227 	/*
228 	 * Process options and, if not destined for us,
229 	 * ship it on.  ip_dooptions returns 1 when an
230 	 * error was detected (causing an icmp message
231 	 * to be sent and the original packet to be freed).
232 	 */
233 	ip_nhops = 0;		/* for source routed packets */
234 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
235 		goto next;
236 
237 	/*
238 	 * Check our list of addresses, to see if the packet is for us.
239 	 */
240 	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
241 #define	satosin(sa)	((struct sockaddr_in *)(sa))
242 
243 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
244 			goto ours;
245 		if (
246 #ifdef	DIRECTED_BROADCAST
247 		    ia->ia_ifp == m->m_pkthdr.rcvif &&
248 #endif
249 		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
250 			u_long t;
251 
252 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
253 			    ip->ip_dst.s_addr)
254 				goto ours;
255 			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
256 				goto ours;
257 			/*
258 			 * Look for all-0's host part (old broadcast addr),
259 			 * either for subnet or net.
260 			 */
261 			t = ntohl(ip->ip_dst.s_addr);
262 			if (t == ia->ia_subnet)
263 				goto ours;
264 			if (t == ia->ia_net)
265 				goto ours;
266 		}
267 	}
268 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
269 		struct in_multi *inm;
270 #ifdef MROUTING
271 		extern struct socket *ip_mrouter;
272 
273 		if (m->m_flags & M_EXT) {
274 			if ((m = m_pullup(m, hlen)) == 0) {
275 				ipstat.ips_toosmall++;
276 				goto next;
277 			}
278 			ip = mtod(m, struct ip *);
279 		}
280 
281 		if (ip_mrouter) {
282 			/*
283 			 * If we are acting as a multicast router, all
284 			 * incoming multicast packets are passed to the
285 			 * kernel-level multicast forwarding function.
286 			 * The packet is returned (relatively) intact; if
287 			 * ip_mforward() returns a non-zero value, the packet
288 			 * must be discarded, else it may be accepted below.
289 			 *
290 			 * (The IP ident field is put in the same byte order
291 			 * as expected when ip_mforward() is called from
292 			 * ip_output().)
293 			 */
294 			ip->ip_id = htons(ip->ip_id);
295 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
296 				ipstat.ips_cantforward++;
297 				m_freem(m);
298 				goto next;
299 			}
300 			ip->ip_id = ntohs(ip->ip_id);
301 
302 			/*
303 			 * The process-level routing demon needs to receive
304 			 * all multicast IGMP packets, whether or not this
305 			 * host belongs to their destination groups.
306 			 */
307 			if (ip->ip_p == IPPROTO_IGMP)
308 				goto ours;
309 			ipstat.ips_forward++;
310 		}
311 #endif
312 		/*
313 		 * See if we belong to the destination multicast group on the
314 		 * arrival interface.
315 		 */
316 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
317 		if (inm == NULL) {
318 			ipstat.ips_cantforward++;
319 			m_freem(m);
320 			goto next;
321 		}
322 		goto ours;
323 	}
324 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
325 		goto ours;
326 	if (ip->ip_dst.s_addr == INADDR_ANY)
327 		goto ours;
328 
329 	/*
330 	 * Not for us; forward if possible and desirable.
331 	 */
332 	if (ipforwarding == 0) {
333 		ipstat.ips_cantforward++;
334 		m_freem(m);
335 	} else
336 		ip_forward(m, 0);
337 	goto next;
338 
339 ours:
340 	/*
341 	 * If offset or IP_MF are set, must reassemble.
342 	 * Otherwise, nothing need be done.
343 	 * (We could look in the reassembly queue to see
344 	 * if the packet was previously fragmented,
345 	 * but it's not worth the time; just let them time out.)
346 	 */
347 	if (ip->ip_off &~ IP_DF) {
348 		if (m->m_flags & M_EXT) {		/* XXX */
349 			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
350 				ipstat.ips_toosmall++;
351 				goto next;
352 			}
353 			ip = mtod(m, struct ip *);
354 		}
355 		/*
356 		 * Look for queue of fragments
357 		 * of this datagram.
358 		 */
359 		for (fp = ipq.next; fp != &ipq; fp = fp->next)
360 			if (ip->ip_id == fp->ipq_id &&
361 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
362 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
363 			    ip->ip_p == fp->ipq_p)
364 				goto found;
365 		fp = 0;
366 found:
367 
368 		/*
369 		 * Adjust ip_len to not reflect header,
370 		 * set ip_mff if more fragments are expected,
371 		 * convert offset of this to bytes.
372 		 */
373 		ip->ip_len -= hlen;
374 		((struct ipasfrag *)ip)->ipf_mff &= ~1;
375 		if (ip->ip_off & IP_MF)
376 			((struct ipasfrag *)ip)->ipf_mff |= 1;
377 		ip->ip_off <<= 3;
378 
379 		/*
380 		 * If datagram marked as having more fragments
381 		 * or if this is not the first fragment,
382 		 * attempt reassembly; if it succeeds, proceed.
383 		 */
384 		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
385 			ipstat.ips_fragments++;
386 			ip = ip_reass((struct ipasfrag *)ip, fp);
387 			if (ip == 0)
388 				goto next;
389 			ipstat.ips_reassembled++;
390 			m = dtom(ip);
391 		} else
392 			if (fp)
393 				ip_freef(fp);
394 	} else
395 		ip->ip_len -= hlen;
396 
397 	/*
398 	 * Switch out to protocol's input routine.
399 	 */
400 	ipstat.ips_delivered++;
401 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
402 	goto next;
403 bad:
404 	m_freem(m);
405 	goto next;
406 }
407 
408 /*
409  * Take incoming datagram fragment and try to
410  * reassemble it into whole datagram.  If a chain for
411  * reassembly of this datagram already exists, then it
412  * is given as fp; otherwise have to make a chain.
413  */
414 struct ip *
415 ip_reass(ip, fp)
416 	register struct ipasfrag *ip;
417 	register struct ipq *fp;
418 {
419 	register struct mbuf *m = dtom(ip);
420 	register struct ipasfrag *q;
421 	struct mbuf *t;
422 	int hlen = ip->ip_hl << 2;
423 	int i, next;
424 
425 	/*
426 	 * Presence of header sizes in mbufs
427 	 * would confuse code below.
428 	 */
429 	m->m_data += hlen;
430 	m->m_len -= hlen;
431 
432 	/*
433 	 * If first fragment to arrive, create a reassembly queue.
434 	 */
435 	if (fp == 0) {
436 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
437 			goto dropfrag;
438 		fp = mtod(t, struct ipq *);
439 		insque(fp, &ipq);
440 		fp->ipq_ttl = IPFRAGTTL;
441 		fp->ipq_p = ip->ip_p;
442 		fp->ipq_id = ip->ip_id;
443 		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
444 		fp->ipq_src = ((struct ip *)ip)->ip_src;
445 		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
446 		q = (struct ipasfrag *)fp;
447 		goto insert;
448 	}
449 
450 	/*
451 	 * Find a segment which begins after this one does.
452 	 */
453 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
454 		if (q->ip_off > ip->ip_off)
455 			break;
456 
457 	/*
458 	 * If there is a preceding segment, it may provide some of
459 	 * our data already.  If so, drop the data from the incoming
460 	 * segment.  If it provides all of our data, drop us.
461 	 */
462 	if (q->ipf_prev != (struct ipasfrag *)fp) {
463 		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
464 		if (i > 0) {
465 			if (i >= ip->ip_len)
466 				goto dropfrag;
467 			m_adj(dtom(ip), i);
468 			ip->ip_off += i;
469 			ip->ip_len -= i;
470 		}
471 	}
472 
473 	/*
474 	 * While we overlap succeeding segments trim them or,
475 	 * if they are completely covered, dequeue them.
476 	 */
477 	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
478 		i = (ip->ip_off + ip->ip_len) - q->ip_off;
479 		if (i < q->ip_len) {
480 			q->ip_len -= i;
481 			q->ip_off += i;
482 			m_adj(dtom(q), i);
483 			break;
484 		}
485 		q = q->ipf_next;
486 		m_freem(dtom(q->ipf_prev));
487 		ip_deq(q->ipf_prev);
488 	}
489 
490 insert:
491 	/*
492 	 * Stick new segment in its place;
493 	 * check for complete reassembly.
494 	 */
495 	ip_enq(ip, q->ipf_prev);
496 	next = 0;
497 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
498 		if (q->ip_off != next)
499 			return (0);
500 		next += q->ip_len;
501 	}
502 	if (q->ipf_prev->ipf_mff & 1)
503 		return (0);
504 
505 	/*
506 	 * Reassembly is complete; concatenate fragments.
507 	 */
508 	q = fp->ipq_next;
509 	m = dtom(q);
510 	t = m->m_next;
511 	m->m_next = 0;
512 	m_cat(m, t);
513 	q = q->ipf_next;
514 	while (q != (struct ipasfrag *)fp) {
515 		t = dtom(q);
516 		q = q->ipf_next;
517 		m_cat(m, t);
518 	}
519 
520 	/*
521 	 * Create header for new ip packet by
522 	 * modifying header of first packet;
523 	 * dequeue and discard fragment reassembly header.
524 	 * Make header visible.
525 	 */
526 	ip = fp->ipq_next;
527 	ip->ip_len = next;
528 	ip->ipf_mff &= ~1;
529 	((struct ip *)ip)->ip_src = fp->ipq_src;
530 	((struct ip *)ip)->ip_dst = fp->ipq_dst;
531 	remque(fp);
532 	(void) m_free(dtom(fp));
533 	m = dtom(ip);
534 	m->m_len += (ip->ip_hl << 2);
535 	m->m_data -= (ip->ip_hl << 2);
536 	/* some debugging cruft by sklower, below, will go away soon */
537 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
538 		register int plen = 0;
539 		for (t = m; m; m = m->m_next)
540 			plen += m->m_len;
541 		t->m_pkthdr.len = plen;
542 	}
543 	return ((struct ip *)ip);
544 
545 dropfrag:
546 	ipstat.ips_fragdropped++;
547 	m_freem(m);
548 	return (0);
549 }
550 
551 /*
552  * Free a fragment reassembly header and all
553  * associated datagrams.
554  */
555 void
556 ip_freef(fp)
557 	struct ipq *fp;
558 {
559 	register struct ipasfrag *q, *p;
560 
561 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
562 		p = q->ipf_next;
563 		ip_deq(q);
564 		m_freem(dtom(q));
565 	}
566 	remque(fp);
567 	(void) m_free(dtom(fp));
568 }
569 
570 /*
571  * Put an ip fragment on a reassembly chain.
572  * Like insque, but pointers in middle of structure.
573  */
574 void
575 ip_enq(p, prev)
576 	register struct ipasfrag *p, *prev;
577 {
578 
579 	p->ipf_prev = prev;
580 	p->ipf_next = prev->ipf_next;
581 	prev->ipf_next->ipf_prev = p;
582 	prev->ipf_next = p;
583 }
584 
585 /*
586  * To ip_enq as remque is to insque.
587  */
588 void
589 ip_deq(p)
590 	register struct ipasfrag *p;
591 {
592 
593 	p->ipf_prev->ipf_next = p->ipf_next;
594 	p->ipf_next->ipf_prev = p->ipf_prev;
595 }
596 
597 /*
598  * IP timer processing;
599  * if a timer expires on a reassembly
600  * queue, discard it.
601  */
602 void
603 ip_slowtimo()
604 {
605 	register struct ipq *fp;
606 	int s = splnet();
607 
608 	fp = ipq.next;
609 	if (fp == 0) {
610 		splx(s);
611 		return;
612 	}
613 	while (fp != &ipq) {
614 		--fp->ipq_ttl;
615 		fp = fp->next;
616 		if (fp->prev->ipq_ttl == 0) {
617 			ipstat.ips_fragtimeout++;
618 			ip_freef(fp->prev);
619 		}
620 	}
621 	splx(s);
622 }
623 
624 /*
625  * Drain off all datagram fragments.
626  */
627 void
628 ip_drain()
629 {
630 
631 	while (ipq.next != &ipq) {
632 		ipstat.ips_fragdropped++;
633 		ip_freef(ipq.next);
634 	}
635 }
636 
637 /*
638  * Do option processing on a datagram,
639  * possibly discarding it if bad options are encountered,
640  * or forwarding it if source-routed.
641  * Returns 1 if packet has been forwarded/freed,
642  * 0 if the packet should be processed further.
643  */
644 int
645 ip_dooptions(m)
646 	struct mbuf *m;
647 {
648 	register struct ip *ip = mtod(m, struct ip *);
649 	register u_char *cp;
650 	register struct ip_timestamp *ipt;
651 	register struct in_ifaddr *ia;
652 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
653 	struct in_addr *sin, dst;
654 	n_time ntime;
655 
656 	dst = ip->ip_dst;
657 	cp = (u_char *)(ip + 1);
658 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
659 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
660 		opt = cp[IPOPT_OPTVAL];
661 		if (opt == IPOPT_EOL)
662 			break;
663 		if (opt == IPOPT_NOP)
664 			optlen = 1;
665 		else {
666 			optlen = cp[IPOPT_OLEN];
667 			if (optlen <= 0 || optlen > cnt) {
668 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
669 				goto bad;
670 			}
671 		}
672 		switch (opt) {
673 
674 		default:
675 			break;
676 
677 		/*
678 		 * Source routing with record.
679 		 * Find interface with current destination address.
680 		 * If none on this machine then drop if strictly routed,
681 		 * or do nothing if loosely routed.
682 		 * Record interface address and bring up next address
683 		 * component.  If strictly routed make sure next
684 		 * address is on directly accessible net.
685 		 */
686 		case IPOPT_LSRR:
687 		case IPOPT_SSRR:
688 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
689 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
690 				goto bad;
691 			}
692 			ipaddr.sin_addr = ip->ip_dst;
693 			ia = (struct in_ifaddr *)
694 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
695 			if (ia == 0) {
696 				if (opt == IPOPT_SSRR) {
697 					type = ICMP_UNREACH;
698 					code = ICMP_UNREACH_SRCFAIL;
699 					goto bad;
700 				}
701 				/*
702 				 * Loose routing, and not at next destination
703 				 * yet; nothing to do except forward.
704 				 */
705 				break;
706 			}
707 			off--;			/* 0 origin */
708 			if (off > optlen - sizeof(struct in_addr)) {
709 				/*
710 				 * End of source route.  Should be for us.
711 				 */
712 				save_rte(cp, ip->ip_src);
713 				break;
714 			}
715 			/*
716 			 * locate outgoing interface
717 			 */
718 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
719 			    sizeof(ipaddr.sin_addr));
720 			if (opt == IPOPT_SSRR) {
721 #define	INA	struct in_ifaddr *
722 #define	SA	struct sockaddr *
723 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
724 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
725 			} else
726 				ia = ip_rtaddr(ipaddr.sin_addr);
727 			if (ia == 0) {
728 				type = ICMP_UNREACH;
729 				code = ICMP_UNREACH_SRCFAIL;
730 				goto bad;
731 			}
732 			ip->ip_dst = ipaddr.sin_addr;
733 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
734 			    (caddr_t)(cp + off), sizeof(struct in_addr));
735 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
736 			/*
737 			 * Let ip_intr's mcast routing check handle mcast pkts
738 			 */
739 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
740 			break;
741 
742 		case IPOPT_RR:
743 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
744 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
745 				goto bad;
746 			}
747 			/*
748 			 * If no space remains, ignore.
749 			 */
750 			off--;			/* 0 origin */
751 			if (off > optlen - sizeof(struct in_addr))
752 				break;
753 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
754 			    sizeof(ipaddr.sin_addr));
755 			/*
756 			 * locate outgoing interface; if we're the destination,
757 			 * use the incoming interface (should be same).
758 			 */
759 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
760 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
761 				type = ICMP_UNREACH;
762 				code = ICMP_UNREACH_HOST;
763 				goto bad;
764 			}
765 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
766 			    (caddr_t)(cp + off), sizeof(struct in_addr));
767 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
768 			break;
769 
770 		case IPOPT_TS:
771 			code = cp - (u_char *)ip;
772 			ipt = (struct ip_timestamp *)cp;
773 			if (ipt->ipt_len < 5)
774 				goto bad;
775 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
776 				if (++ipt->ipt_oflw == 0)
777 					goto bad;
778 				break;
779 			}
780 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
781 			switch (ipt->ipt_flg) {
782 
783 			case IPOPT_TS_TSONLY:
784 				break;
785 
786 			case IPOPT_TS_TSANDADDR:
787 				if (ipt->ipt_ptr + sizeof(n_time) +
788 				    sizeof(struct in_addr) > ipt->ipt_len)
789 					goto bad;
790 				ipaddr.sin_addr = dst;
791 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
792 							    m->m_pkthdr.rcvif);
793 				if (ia == 0)
794 					continue;
795 				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
796 				    (caddr_t)sin, sizeof(struct in_addr));
797 				ipt->ipt_ptr += sizeof(struct in_addr);
798 				break;
799 
800 			case IPOPT_TS_PRESPEC:
801 				if (ipt->ipt_ptr + sizeof(n_time) +
802 				    sizeof(struct in_addr) > ipt->ipt_len)
803 					goto bad;
804 				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
805 				    sizeof(struct in_addr));
806 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
807 					continue;
808 				ipt->ipt_ptr += sizeof(struct in_addr);
809 				break;
810 
811 			default:
812 				goto bad;
813 			}
814 			ntime = iptime();
815 			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
816 			    sizeof(n_time));
817 			ipt->ipt_ptr += sizeof(n_time);
818 		}
819 	}
820 	if (forward) {
821 		ip_forward(m, 1);
822 		return (1);
823 	}
824 	return (0);
825 bad:
826 	ip->ip_len -= ip->ip_hl << 2;   /* XXX icmp_error adds in hdr length */
827 	icmp_error(m, type, code, 0, 0);
828 	ipstat.ips_badoptions++;
829 	return (1);
830 }
831 
832 /*
833  * Given address of next destination (final or next hop),
834  * return internet address info of interface to be used to get there.
835  */
836 struct in_ifaddr *
837 ip_rtaddr(dst)
838 	 struct in_addr dst;
839 {
840 	register struct sockaddr_in *sin;
841 
842 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
843 
844 	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
845 		if (ipforward_rt.ro_rt) {
846 			RTFREE(ipforward_rt.ro_rt);
847 			ipforward_rt.ro_rt = 0;
848 		}
849 		sin->sin_family = AF_INET;
850 		sin->sin_len = sizeof(*sin);
851 		sin->sin_addr = dst;
852 
853 		rtalloc(&ipforward_rt);
854 	}
855 	if (ipforward_rt.ro_rt == 0)
856 		return ((struct in_ifaddr *)0);
857 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
858 }
859 
860 /*
861  * Save incoming source route for use in replies,
862  * to be picked up later by ip_srcroute if the receiver is interested.
863  */
864 void
865 save_rte(option, dst)
866 	u_char *option;
867 	struct in_addr dst;
868 {
869 	unsigned olen;
870 
871 	olen = option[IPOPT_OLEN];
872 #ifdef DIAGNOSTIC
873 	if (ipprintfs)
874 		printf("save_rte: olen %d\n", olen);
875 #endif
876 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
877 		return;
878 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
879 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
880 	ip_srcrt.dst = dst;
881 }
882 
883 /*
884  * Retrieve incoming source route for use in replies,
885  * in the same form used by setsockopt.
886  * The first hop is placed before the options, will be removed later.
887  */
888 struct mbuf *
889 ip_srcroute()
890 {
891 	register struct in_addr *p, *q;
892 	register struct mbuf *m;
893 
894 	if (ip_nhops == 0)
895 		return ((struct mbuf *)0);
896 	m = m_get(M_DONTWAIT, MT_SOOPTS);
897 	if (m == 0)
898 		return ((struct mbuf *)0);
899 
900 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
901 
902 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
903 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
904 	    OPTSIZ;
905 #ifdef DIAGNOSTIC
906 	if (ipprintfs)
907 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
908 #endif
909 
910 	/*
911 	 * First save first hop for return route
912 	 */
913 	p = &ip_srcrt.route[ip_nhops - 1];
914 	*(mtod(m, struct in_addr *)) = *p--;
915 #ifdef DIAGNOSTIC
916 	if (ipprintfs)
917 		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
918 #endif
919 
920 	/*
921 	 * Copy option fields and padding (nop) to mbuf.
922 	 */
923 	ip_srcrt.nop = IPOPT_NOP;
924 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
925 	bcopy((caddr_t)&ip_srcrt.nop,
926 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
927 	q = (struct in_addr *)(mtod(m, caddr_t) +
928 	    sizeof(struct in_addr) + OPTSIZ);
929 #undef OPTSIZ
930 	/*
931 	 * Record return path as an IP source route,
932 	 * reversing the path (pointers are now aligned).
933 	 */
934 	while (p >= ip_srcrt.route) {
935 #ifdef DIAGNOSTIC
936 		if (ipprintfs)
937 			printf(" %lx", ntohl(q->s_addr));
938 #endif
939 		*q++ = *p--;
940 	}
941 	/*
942 	 * Last hop goes to final destination.
943 	 */
944 	*q = ip_srcrt.dst;
945 #ifdef DIAGNOSTIC
946 	if (ipprintfs)
947 		printf(" %lx\n", ntohl(q->s_addr));
948 #endif
949 	return (m);
950 }
951 
952 /*
953  * Strip out IP options, at higher
954  * level protocol in the kernel.
955  * Second argument is buffer to which options
956  * will be moved, and return value is their length.
957  * XXX should be deleted; last arg currently ignored.
958  */
959 void
960 ip_stripoptions(m, mopt)
961 	register struct mbuf *m;
962 	struct mbuf *mopt;
963 {
964 	register int i;
965 	struct ip *ip = mtod(m, struct ip *);
966 	register caddr_t opts;
967 	int olen;
968 
969 	olen = (ip->ip_hl<<2) - sizeof (struct ip);
970 	opts = (caddr_t)(ip + 1);
971 	i = m->m_len - (sizeof (struct ip) + olen);
972 	bcopy(opts  + olen, opts, (unsigned)i);
973 	m->m_len -= olen;
974 	if (m->m_flags & M_PKTHDR)
975 		m->m_pkthdr.len -= olen;
976 	ip->ip_hl = sizeof(struct ip) >> 2;
977 }
978 
979 u_char inetctlerrmap[PRC_NCMDS] = {
980 	0,		0,		0,		0,
981 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
982 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
983 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
984 	0,		0,		0,		0,
985 	ENOPROTOOPT
986 };
987 
988 /*
989  * Forward a packet.  If some error occurs return the sender
990  * an icmp packet.  Note we can't always generate a meaningful
991  * icmp message because icmp doesn't have a large enough repertoire
992  * of codes and types.
993  *
994  * If not forwarding, just drop the packet.  This could be confusing
995  * if ipforwarding was zero but some routing protocol was advancing
996  * us as a gateway to somewhere.  However, we must let the routing
997  * protocol deal with that.
998  *
999  * The srcrt parameter indicates whether the packet is being forwarded
1000  * via a source route.
1001  */
1002 void
1003 ip_forward(m, srcrt)
1004 	struct mbuf *m;
1005 	int srcrt;
1006 {
1007 	register struct ip *ip = mtod(m, struct ip *);
1008 	register struct sockaddr_in *sin;
1009 	register struct rtentry *rt;
1010 	int error, type = 0, code;
1011 	struct mbuf *mcopy;
1012 	n_long dest;
1013 	struct ifnet *destifp;
1014 
1015 	dest = 0;
1016 #ifdef DIAGNOSTIC
1017 	if (ipprintfs)
1018 		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1019 			ip->ip_dst, ip->ip_ttl);
1020 #endif
1021 	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1022 		ipstat.ips_cantforward++;
1023 		m_freem(m);
1024 		return;
1025 	}
1026 	HTONS(ip->ip_id);
1027 	if (ip->ip_ttl <= IPTTLDEC) {
1028 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1029 		return;
1030 	}
1031 	ip->ip_ttl -= IPTTLDEC;
1032 
1033 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1034 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1035 	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1036 		if (ipforward_rt.ro_rt) {
1037 			RTFREE(ipforward_rt.ro_rt);
1038 			ipforward_rt.ro_rt = 0;
1039 		}
1040 		sin->sin_family = AF_INET;
1041 		sin->sin_len = sizeof(*sin);
1042 		sin->sin_addr = ip->ip_dst;
1043 
1044 		rtalloc(&ipforward_rt);
1045 		if (ipforward_rt.ro_rt == 0) {
1046 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1047 			return;
1048 		}
1049 		rt = ipforward_rt.ro_rt;
1050 	}
1051 
1052 	/*
1053 	 * Save at most 64 bytes of the packet in case
1054 	 * we need to generate an ICMP message to the src.
1055 	 */
1056 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1057 
1058 #ifdef GATEWAY
1059 	ip_ifmatrix[rt->rt_ifp->if_index +
1060 	     if_index * m->m_pkthdr.rcvif->if_index]++;
1061 #endif
1062 	/*
1063 	 * If forwarding packet using same interface that it came in on,
1064 	 * perhaps should send a redirect to sender to shortcut a hop.
1065 	 * Only send redirect if source is sending directly to us,
1066 	 * and if packet was not source routed (or has any options).
1067 	 * Also, don't send redirect if forwarding using a default route
1068 	 * or a route modified by a redirect.
1069 	 */
1070 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1071 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1072 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1073 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1074 	    ipsendredirects && !srcrt) {
1075 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1076 		u_long src = ntohl(ip->ip_src.s_addr);
1077 
1078 		if (RTA(rt) &&
1079 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1080 		    if (rt->rt_flags & RTF_GATEWAY)
1081 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1082 		    else
1083 			dest = ip->ip_dst.s_addr;
1084 		    /* Router requirements says to only send host redirects */
1085 		    type = ICMP_REDIRECT;
1086 		    code = ICMP_REDIRECT_HOST;
1087 #ifdef DIAGNOSTIC
1088 		    if (ipprintfs)
1089 		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1090 #endif
1091 		}
1092 	}
1093 
1094 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1095 #ifdef DIRECTED_BROADCAST
1096 			    | IP_ALLOWBROADCAST
1097 #endif
1098 						, 0);
1099 	if (error)
1100 		ipstat.ips_cantforward++;
1101 	else {
1102 		ipstat.ips_forward++;
1103 		if (type)
1104 			ipstat.ips_redirectsent++;
1105 		else {
1106 			if (mcopy)
1107 				m_freem(mcopy);
1108 			return;
1109 		}
1110 	}
1111 	if (mcopy == NULL)
1112 		return;
1113 	destifp = NULL;
1114 
1115 	switch (error) {
1116 
1117 	case 0:				/* forwarded, but need redirect */
1118 		/* type, code set above */
1119 		break;
1120 
1121 	case ENETUNREACH:		/* shouldn't happen, checked above */
1122 	case EHOSTUNREACH:
1123 	case ENETDOWN:
1124 	case EHOSTDOWN:
1125 	default:
1126 		type = ICMP_UNREACH;
1127 		code = ICMP_UNREACH_HOST;
1128 		break;
1129 
1130 	case EMSGSIZE:
1131 		type = ICMP_UNREACH;
1132 		code = ICMP_UNREACH_NEEDFRAG;
1133 		if (ipforward_rt.ro_rt)
1134 			destifp = ipforward_rt.ro_rt->rt_ifp;
1135 		ipstat.ips_cantfrag++;
1136 		break;
1137 
1138 	case ENOBUFS:
1139 		type = ICMP_SOURCEQUENCH;
1140 		code = 0;
1141 		break;
1142 	}
1143 	icmp_error(mcopy, type, code, dest, destifp);
1144 }
1145 
1146 int
1147 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1148 	int *name;
1149 	u_int namelen;
1150 	void *oldp;
1151 	size_t *oldlenp;
1152 	void *newp;
1153 	size_t newlen;
1154 {
1155 	/* All sysctl names at this level are terminal. */
1156 	if (namelen != 1)
1157 		return (ENOTDIR);
1158 
1159 	switch (name[0]) {
1160 	case IPCTL_FORWARDING:
1161 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1162 	case IPCTL_SENDREDIRECTS:
1163 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1164 			&ipsendredirects));
1165 	case IPCTL_DEFTTL:
1166 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1167 #ifdef notyet
1168 	case IPCTL_DEFMTU:
1169 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1170 #endif
1171 	default:
1172 		return (EOPNOTSUPP);
1173 	}
1174 	/* NOTREACHED */
1175 }
1176