xref: /netbsd-src/sys/netinet/ip_input.c (revision ce0bb6e8d2e560ecacbe865a848624f94498063b)
1 /*	$NetBSD: ip_input.c,v 1.15 1995/04/13 06:33:21 cgd Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 
49 #include <net/if.h>
50 #include <net/route.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 #include <netinet/in_pcb.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip_var.h>
58 #include <netinet/ip_icmp.h>
59 
60 #ifndef	IPFORWARDING
61 #ifdef GATEWAY
62 #define	IPFORWARDING	1	/* forward IP packets not for us */
63 #else /* GATEWAY */
64 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
65 #endif /* GATEWAY */
66 #endif /* IPFORWARDING */
67 #ifndef	IPSENDREDIRECTS
68 #define	IPSENDREDIRECTS	1
69 #endif
70 int	ipforwarding = IPFORWARDING;
71 int	ipsendredirects = IPSENDREDIRECTS;
72 int	ip_defttl = IPDEFTTL;
73 #ifdef DIAGNOSTIC
74 int	ipprintfs = 0;
75 #endif
76 
77 extern	struct domain inetdomain;
78 extern	struct protosw inetsw[];
79 u_char	ip_protox[IPPROTO_MAX];
80 int	ipqmaxlen = IFQ_MAXLEN;
81 struct	in_ifaddr *in_ifaddr;			/* first inet address */
82 struct	ifqueue ipintrq;
83 
84 /*
85  * We need to save the IP options in case a protocol wants to respond
86  * to an incoming packet over the same route if the packet got here
87  * using IP source routing.  This allows connection establishment and
88  * maintenance when the remote end is on a network that is not known
89  * to us.
90  */
91 int	ip_nhops = 0;
92 static	struct ip_srcrt {
93 	struct	in_addr dst;			/* final destination */
94 	char	nop;				/* one NOP to align */
95 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
96 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
97 } ip_srcrt;
98 
99 #ifdef GATEWAY
100 extern	int if_index;
101 u_int32_t *ip_ifmatrix;
102 #endif
103 
104 static void save_rte __P((u_char *, struct in_addr));
105 /*
106  * IP initialization: fill in IP protocol switch table.
107  * All protocols not implemented in kernel go to raw IP protocol handler.
108  */
109 void
110 ip_init()
111 {
112 	register struct protosw *pr;
113 	register int i;
114 
115 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
116 	if (pr == 0)
117 		panic("ip_init");
118 	for (i = 0; i < IPPROTO_MAX; i++)
119 		ip_protox[i] = pr - inetsw;
120 	for (pr = inetdomain.dom_protosw;
121 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
122 		if (pr->pr_domain->dom_family == PF_INET &&
123 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
124 			ip_protox[pr->pr_protocol] = pr - inetsw;
125 	ipq.next = ipq.prev = &ipq;
126 	ip_id = time.tv_sec & 0xffff;
127 	ipintrq.ifq_maxlen = ipqmaxlen;
128 #ifdef GATEWAY
129 	i = (if_index + 1) * (if_index + 1) * sizeof (u_int32_t);
130 	ip_ifmatrix = (u_int32_t *) malloc(i, M_RTABLE, M_WAITOK);
131 	bzero((char *)ip_ifmatrix, i);
132 #endif
133 }
134 
135 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
136 struct	route ipforward_rt;
137 
138 /*
139  * Ip input routine.  Checksum and byte swap header.  If fragmented
140  * try to reassemble.  Process options.  Pass to next level.
141  */
142 void
143 ipintr()
144 {
145 	register struct ip *ip;
146 	register struct mbuf *m;
147 	register struct ipq *fp;
148 	register struct in_ifaddr *ia;
149 	int hlen, s;
150 
151 next:
152 	/*
153 	 * Get next datagram off input queue and get IP header
154 	 * in first mbuf.
155 	 */
156 	s = splimp();
157 	IF_DEQUEUE(&ipintrq, m);
158 	splx(s);
159 	if (m == 0)
160 		return;
161 #ifdef	DIAGNOSTIC
162 	if ((m->m_flags & M_PKTHDR) == 0)
163 		panic("ipintr no HDR");
164 #endif
165 	/*
166 	 * If no IP addresses have been set yet but the interfaces
167 	 * are receiving, can't do anything with incoming packets yet.
168 	 */
169 	if (in_ifaddr == NULL)
170 		goto bad;
171 	ipstat.ips_total++;
172 	if (m->m_len < sizeof (struct ip) &&
173 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
174 		ipstat.ips_toosmall++;
175 		goto next;
176 	}
177 	ip = mtod(m, struct ip *);
178 	if (ip->ip_v != IPVERSION) {
179 		ipstat.ips_badvers++;
180 		goto bad;
181 	}
182 	hlen = ip->ip_hl << 2;
183 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
184 		ipstat.ips_badhlen++;
185 		goto bad;
186 	}
187 	if (hlen > m->m_len) {
188 		if ((m = m_pullup(m, hlen)) == 0) {
189 			ipstat.ips_badhlen++;
190 			goto next;
191 		}
192 		ip = mtod(m, struct ip *);
193 	}
194 	if (ip->ip_sum = in_cksum(m, hlen)) {
195 		ipstat.ips_badsum++;
196 		goto bad;
197 	}
198 
199 	/*
200 	 * Convert fields to host representation.
201 	 */
202 	NTOHS(ip->ip_len);
203 	if (ip->ip_len < hlen) {
204 		ipstat.ips_badlen++;
205 		goto bad;
206 	}
207 	NTOHS(ip->ip_id);
208 	NTOHS(ip->ip_off);
209 
210 	/*
211 	 * Check that the amount of data in the buffers
212 	 * is as at least much as the IP header would have us expect.
213 	 * Trim mbufs if longer than we expect.
214 	 * Drop packet if shorter than we expect.
215 	 */
216 	if (m->m_pkthdr.len < ip->ip_len) {
217 		ipstat.ips_tooshort++;
218 		goto bad;
219 	}
220 	if (m->m_pkthdr.len > ip->ip_len) {
221 		if (m->m_len == m->m_pkthdr.len) {
222 			m->m_len = ip->ip_len;
223 			m->m_pkthdr.len = ip->ip_len;
224 		} else
225 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
226 	}
227 
228 	/*
229 	 * Process options and, if not destined for us,
230 	 * ship it on.  ip_dooptions returns 1 when an
231 	 * error was detected (causing an icmp message
232 	 * to be sent and the original packet to be freed).
233 	 */
234 	ip_nhops = 0;		/* for source routed packets */
235 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
236 		goto next;
237 
238 	/*
239 	 * Check our list of addresses, to see if the packet is for us.
240 	 */
241 	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
242 #define	satosin(sa)	((struct sockaddr_in *)(sa))
243 
244 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
245 			goto ours;
246 		if (
247 #ifdef	DIRECTED_BROADCAST
248 		    ia->ia_ifp == m->m_pkthdr.rcvif &&
249 #endif
250 		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
251 			u_int32_t t;
252 
253 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
254 			    ip->ip_dst.s_addr)
255 				goto ours;
256 			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
257 				goto ours;
258 			/*
259 			 * Look for all-0's host part (old broadcast addr),
260 			 * either for subnet or net.
261 			 */
262 			t = ntohl(ip->ip_dst.s_addr);
263 			if (t == ia->ia_subnet)
264 				goto ours;
265 			if (t == ia->ia_net)
266 				goto ours;
267 		}
268 	}
269 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
270 		struct in_multi *inm;
271 #ifdef MROUTING
272 		extern struct socket *ip_mrouter;
273 
274 		if (m->m_flags & M_EXT) {
275 			if ((m = m_pullup(m, hlen)) == 0) {
276 				ipstat.ips_toosmall++;
277 				goto next;
278 			}
279 			ip = mtod(m, struct ip *);
280 		}
281 
282 		if (ip_mrouter) {
283 			/*
284 			 * If we are acting as a multicast router, all
285 			 * incoming multicast packets are passed to the
286 			 * kernel-level multicast forwarding function.
287 			 * The packet is returned (relatively) intact; if
288 			 * ip_mforward() returns a non-zero value, the packet
289 			 * must be discarded, else it may be accepted below.
290 			 *
291 			 * (The IP ident field is put in the same byte order
292 			 * as expected when ip_mforward() is called from
293 			 * ip_output().)
294 			 */
295 			ip->ip_id = htons(ip->ip_id);
296 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
297 				ipstat.ips_cantforward++;
298 				m_freem(m);
299 				goto next;
300 			}
301 			ip->ip_id = ntohs(ip->ip_id);
302 
303 			/*
304 			 * The process-level routing demon needs to receive
305 			 * all multicast IGMP packets, whether or not this
306 			 * host belongs to their destination groups.
307 			 */
308 			if (ip->ip_p == IPPROTO_IGMP)
309 				goto ours;
310 			ipstat.ips_forward++;
311 		}
312 #endif
313 		/*
314 		 * See if we belong to the destination multicast group on the
315 		 * arrival interface.
316 		 */
317 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
318 		if (inm == NULL) {
319 			ipstat.ips_cantforward++;
320 			m_freem(m);
321 			goto next;
322 		}
323 		goto ours;
324 	}
325 	if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST)
326 		goto ours;
327 	if (ip->ip_dst.s_addr == INADDR_ANY)
328 		goto ours;
329 
330 	/*
331 	 * Not for us; forward if possible and desirable.
332 	 */
333 	if (ipforwarding == 0) {
334 		ipstat.ips_cantforward++;
335 		m_freem(m);
336 	} else
337 		ip_forward(m, 0);
338 	goto next;
339 
340 ours:
341 	/*
342 	 * If offset or IP_MF are set, must reassemble.
343 	 * Otherwise, nothing need be done.
344 	 * (We could look in the reassembly queue to see
345 	 * if the packet was previously fragmented,
346 	 * but it's not worth the time; just let them time out.)
347 	 */
348 	if (ip->ip_off &~ IP_DF) {
349 		if (m->m_flags & M_EXT) {		/* XXX */
350 			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
351 				ipstat.ips_toosmall++;
352 				goto next;
353 			}
354 			ip = mtod(m, struct ip *);
355 		}
356 		/*
357 		 * Look for queue of fragments
358 		 * of this datagram.
359 		 */
360 		for (fp = ipq.next; fp != &ipq; fp = fp->next)
361 			if (ip->ip_id == fp->ipq_id &&
362 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
363 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
364 			    ip->ip_p == fp->ipq_p)
365 				goto found;
366 		fp = 0;
367 found:
368 
369 		/*
370 		 * Adjust ip_len to not reflect header,
371 		 * set ip_mff if more fragments are expected,
372 		 * convert offset of this to bytes.
373 		 */
374 		ip->ip_len -= hlen;
375 		((struct ipasfrag *)ip)->ipf_mff &= ~1;
376 		if (ip->ip_off & IP_MF)
377 			((struct ipasfrag *)ip)->ipf_mff |= 1;
378 		ip->ip_off <<= 3;
379 
380 		/*
381 		 * If datagram marked as having more fragments
382 		 * or if this is not the first fragment,
383 		 * attempt reassembly; if it succeeds, proceed.
384 		 */
385 		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
386 			ipstat.ips_fragments++;
387 			ip = ip_reass((struct ipasfrag *)ip, fp);
388 			if (ip == 0)
389 				goto next;
390 			ipstat.ips_reassembled++;
391 			m = dtom(ip);
392 		} else
393 			if (fp)
394 				ip_freef(fp);
395 	} else
396 		ip->ip_len -= hlen;
397 
398 	/*
399 	 * Switch out to protocol's input routine.
400 	 */
401 	ipstat.ips_delivered++;
402 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
403 	goto next;
404 bad:
405 	m_freem(m);
406 	goto next;
407 }
408 
409 /*
410  * Take incoming datagram fragment and try to
411  * reassemble it into whole datagram.  If a chain for
412  * reassembly of this datagram already exists, then it
413  * is given as fp; otherwise have to make a chain.
414  */
415 struct ip *
416 ip_reass(ip, fp)
417 	register struct ipasfrag *ip;
418 	register struct ipq *fp;
419 {
420 	register struct mbuf *m = dtom(ip);
421 	register struct ipasfrag *q;
422 	struct mbuf *t;
423 	int hlen = ip->ip_hl << 2;
424 	int i, next;
425 
426 	/*
427 	 * Presence of header sizes in mbufs
428 	 * would confuse code below.
429 	 */
430 	m->m_data += hlen;
431 	m->m_len -= hlen;
432 
433 	/*
434 	 * If first fragment to arrive, create a reassembly queue.
435 	 */
436 	if (fp == 0) {
437 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
438 			goto dropfrag;
439 		fp = mtod(t, struct ipq *);
440 		insque(fp, &ipq);
441 		fp->ipq_ttl = IPFRAGTTL;
442 		fp->ipq_p = ip->ip_p;
443 		fp->ipq_id = ip->ip_id;
444 		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
445 		fp->ipq_src = ((struct ip *)ip)->ip_src;
446 		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
447 		q = (struct ipasfrag *)fp;
448 		goto insert;
449 	}
450 
451 	/*
452 	 * Find a segment which begins after this one does.
453 	 */
454 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
455 		if (q->ip_off > ip->ip_off)
456 			break;
457 
458 	/*
459 	 * If there is a preceding segment, it may provide some of
460 	 * our data already.  If so, drop the data from the incoming
461 	 * segment.  If it provides all of our data, drop us.
462 	 */
463 	if (q->ipf_prev != (struct ipasfrag *)fp) {
464 		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
465 		if (i > 0) {
466 			if (i >= ip->ip_len)
467 				goto dropfrag;
468 			m_adj(dtom(ip), i);
469 			ip->ip_off += i;
470 			ip->ip_len -= i;
471 		}
472 	}
473 
474 	/*
475 	 * While we overlap succeeding segments trim them or,
476 	 * if they are completely covered, dequeue them.
477 	 */
478 	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
479 		i = (ip->ip_off + ip->ip_len) - q->ip_off;
480 		if (i < q->ip_len) {
481 			q->ip_len -= i;
482 			q->ip_off += i;
483 			m_adj(dtom(q), i);
484 			break;
485 		}
486 		q = q->ipf_next;
487 		m_freem(dtom(q->ipf_prev));
488 		ip_deq(q->ipf_prev);
489 	}
490 
491 insert:
492 	/*
493 	 * Stick new segment in its place;
494 	 * check for complete reassembly.
495 	 */
496 	ip_enq(ip, q->ipf_prev);
497 	next = 0;
498 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
499 		if (q->ip_off != next)
500 			return (0);
501 		next += q->ip_len;
502 	}
503 	if (q->ipf_prev->ipf_mff & 1)
504 		return (0);
505 
506 	/*
507 	 * Reassembly is complete; concatenate fragments.
508 	 */
509 	q = fp->ipq_next;
510 	m = dtom(q);
511 	t = m->m_next;
512 	m->m_next = 0;
513 	m_cat(m, t);
514 	q = q->ipf_next;
515 	while (q != (struct ipasfrag *)fp) {
516 		t = dtom(q);
517 		q = q->ipf_next;
518 		m_cat(m, t);
519 	}
520 
521 	/*
522 	 * Create header for new ip packet by
523 	 * modifying header of first packet;
524 	 * dequeue and discard fragment reassembly header.
525 	 * Make header visible.
526 	 */
527 	ip = fp->ipq_next;
528 	ip->ip_len = next;
529 	ip->ipf_mff &= ~1;
530 	((struct ip *)ip)->ip_src = fp->ipq_src;
531 	((struct ip *)ip)->ip_dst = fp->ipq_dst;
532 	remque(fp);
533 	(void) m_free(dtom(fp));
534 	m = dtom(ip);
535 	m->m_len += (ip->ip_hl << 2);
536 	m->m_data -= (ip->ip_hl << 2);
537 	/* some debugging cruft by sklower, below, will go away soon */
538 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
539 		register int plen = 0;
540 		for (t = m; m; m = m->m_next)
541 			plen += m->m_len;
542 		t->m_pkthdr.len = plen;
543 	}
544 	return ((struct ip *)ip);
545 
546 dropfrag:
547 	ipstat.ips_fragdropped++;
548 	m_freem(m);
549 	return (0);
550 }
551 
552 /*
553  * Free a fragment reassembly header and all
554  * associated datagrams.
555  */
556 void
557 ip_freef(fp)
558 	struct ipq *fp;
559 {
560 	register struct ipasfrag *q, *p;
561 
562 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
563 		p = q->ipf_next;
564 		ip_deq(q);
565 		m_freem(dtom(q));
566 	}
567 	remque(fp);
568 	(void) m_free(dtom(fp));
569 }
570 
571 /*
572  * Put an ip fragment on a reassembly chain.
573  * Like insque, but pointers in middle of structure.
574  */
575 void
576 ip_enq(p, prev)
577 	register struct ipasfrag *p, *prev;
578 {
579 
580 	p->ipf_prev = prev;
581 	p->ipf_next = prev->ipf_next;
582 	prev->ipf_next->ipf_prev = p;
583 	prev->ipf_next = p;
584 }
585 
586 /*
587  * To ip_enq as remque is to insque.
588  */
589 void
590 ip_deq(p)
591 	register struct ipasfrag *p;
592 {
593 
594 	p->ipf_prev->ipf_next = p->ipf_next;
595 	p->ipf_next->ipf_prev = p->ipf_prev;
596 }
597 
598 /*
599  * IP timer processing;
600  * if a timer expires on a reassembly
601  * queue, discard it.
602  */
603 void
604 ip_slowtimo()
605 {
606 	register struct ipq *fp;
607 	int s = splnet();
608 
609 	fp = ipq.next;
610 	if (fp == 0) {
611 		splx(s);
612 		return;
613 	}
614 	while (fp != &ipq) {
615 		--fp->ipq_ttl;
616 		fp = fp->next;
617 		if (fp->prev->ipq_ttl == 0) {
618 			ipstat.ips_fragtimeout++;
619 			ip_freef(fp->prev);
620 		}
621 	}
622 	splx(s);
623 }
624 
625 /*
626  * Drain off all datagram fragments.
627  */
628 void
629 ip_drain()
630 {
631 
632 	while (ipq.next != &ipq) {
633 		ipstat.ips_fragdropped++;
634 		ip_freef(ipq.next);
635 	}
636 }
637 
638 /*
639  * Do option processing on a datagram,
640  * possibly discarding it if bad options are encountered,
641  * or forwarding it if source-routed.
642  * Returns 1 if packet has been forwarded/freed,
643  * 0 if the packet should be processed further.
644  */
645 int
646 ip_dooptions(m)
647 	struct mbuf *m;
648 {
649 	register struct ip *ip = mtod(m, struct ip *);
650 	register u_char *cp;
651 	register struct ip_timestamp *ipt;
652 	register struct in_ifaddr *ia;
653 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
654 	struct in_addr *sin, dst;
655 	n_time ntime;
656 
657 	dst = ip->ip_dst;
658 	cp = (u_char *)(ip + 1);
659 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
660 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
661 		opt = cp[IPOPT_OPTVAL];
662 		if (opt == IPOPT_EOL)
663 			break;
664 		if (opt == IPOPT_NOP)
665 			optlen = 1;
666 		else {
667 			optlen = cp[IPOPT_OLEN];
668 			if (optlen <= 0 || optlen > cnt) {
669 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
670 				goto bad;
671 			}
672 		}
673 		switch (opt) {
674 
675 		default:
676 			break;
677 
678 		/*
679 		 * Source routing with record.
680 		 * Find interface with current destination address.
681 		 * If none on this machine then drop if strictly routed,
682 		 * or do nothing if loosely routed.
683 		 * Record interface address and bring up next address
684 		 * component.  If strictly routed make sure next
685 		 * address is on directly accessible net.
686 		 */
687 		case IPOPT_LSRR:
688 		case IPOPT_SSRR:
689 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
690 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
691 				goto bad;
692 			}
693 			ipaddr.sin_addr = ip->ip_dst;
694 			ia = (struct in_ifaddr *)
695 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
696 			if (ia == 0) {
697 				if (opt == IPOPT_SSRR) {
698 					type = ICMP_UNREACH;
699 					code = ICMP_UNREACH_SRCFAIL;
700 					goto bad;
701 				}
702 				/*
703 				 * Loose routing, and not at next destination
704 				 * yet; nothing to do except forward.
705 				 */
706 				break;
707 			}
708 			off--;			/* 0 origin */
709 			if (off > optlen - sizeof(struct in_addr)) {
710 				/*
711 				 * End of source route.  Should be for us.
712 				 */
713 				save_rte(cp, ip->ip_src);
714 				break;
715 			}
716 			/*
717 			 * locate outgoing interface
718 			 */
719 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
720 			    sizeof(ipaddr.sin_addr));
721 			if (opt == IPOPT_SSRR) {
722 #define	INA	struct in_ifaddr *
723 #define	SA	struct sockaddr *
724 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
725 				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
726 			} else
727 				ia = ip_rtaddr(ipaddr.sin_addr);
728 			if (ia == 0) {
729 				type = ICMP_UNREACH;
730 				code = ICMP_UNREACH_SRCFAIL;
731 				goto bad;
732 			}
733 			ip->ip_dst = ipaddr.sin_addr;
734 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
735 			    (caddr_t)(cp + off), sizeof(struct in_addr));
736 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
737 			/*
738 			 * Let ip_intr's mcast routing check handle mcast pkts
739 			 */
740 			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
741 			break;
742 
743 		case IPOPT_RR:
744 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
745 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
746 				goto bad;
747 			}
748 			/*
749 			 * If no space remains, ignore.
750 			 */
751 			off--;			/* 0 origin */
752 			if (off > optlen - sizeof(struct in_addr))
753 				break;
754 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
755 			    sizeof(ipaddr.sin_addr));
756 			/*
757 			 * locate outgoing interface; if we're the destination,
758 			 * use the incoming interface (should be same).
759 			 */
760 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
761 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
762 				type = ICMP_UNREACH;
763 				code = ICMP_UNREACH_HOST;
764 				goto bad;
765 			}
766 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
767 			    (caddr_t)(cp + off), sizeof(struct in_addr));
768 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
769 			break;
770 
771 		case IPOPT_TS:
772 			code = cp - (u_char *)ip;
773 			ipt = (struct ip_timestamp *)cp;
774 			if (ipt->ipt_len < 5)
775 				goto bad;
776 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
777 				if (++ipt->ipt_oflw == 0)
778 					goto bad;
779 				break;
780 			}
781 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
782 			switch (ipt->ipt_flg) {
783 
784 			case IPOPT_TS_TSONLY:
785 				break;
786 
787 			case IPOPT_TS_TSANDADDR:
788 				if (ipt->ipt_ptr + sizeof(n_time) +
789 				    sizeof(struct in_addr) > ipt->ipt_len)
790 					goto bad;
791 				ipaddr.sin_addr = dst;
792 				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
793 							    m->m_pkthdr.rcvif);
794 				if (ia == 0)
795 					continue;
796 				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
797 				    (caddr_t)sin, sizeof(struct in_addr));
798 				ipt->ipt_ptr += sizeof(struct in_addr);
799 				break;
800 
801 			case IPOPT_TS_PRESPEC:
802 				if (ipt->ipt_ptr + sizeof(n_time) +
803 				    sizeof(struct in_addr) > ipt->ipt_len)
804 					goto bad;
805 				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
806 				    sizeof(struct in_addr));
807 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
808 					continue;
809 				ipt->ipt_ptr += sizeof(struct in_addr);
810 				break;
811 
812 			default:
813 				goto bad;
814 			}
815 			ntime = iptime();
816 			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
817 			    sizeof(n_time));
818 			ipt->ipt_ptr += sizeof(n_time);
819 		}
820 	}
821 	if (forward) {
822 		ip_forward(m, 1);
823 		return (1);
824 	}
825 	return (0);
826 bad:
827 	ip->ip_len -= ip->ip_hl << 2;   /* XXX icmp_error adds in hdr length */
828 	icmp_error(m, type, code, 0, 0);
829 	ipstat.ips_badoptions++;
830 	return (1);
831 }
832 
833 /*
834  * Given address of next destination (final or next hop),
835  * return internet address info of interface to be used to get there.
836  */
837 struct in_ifaddr *
838 ip_rtaddr(dst)
839 	 struct in_addr dst;
840 {
841 	register struct sockaddr_in *sin;
842 
843 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
844 
845 	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
846 		if (ipforward_rt.ro_rt) {
847 			RTFREE(ipforward_rt.ro_rt);
848 			ipforward_rt.ro_rt = 0;
849 		}
850 		sin->sin_family = AF_INET;
851 		sin->sin_len = sizeof(*sin);
852 		sin->sin_addr = dst;
853 
854 		rtalloc(&ipforward_rt);
855 	}
856 	if (ipforward_rt.ro_rt == 0)
857 		return ((struct in_ifaddr *)0);
858 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
859 }
860 
861 /*
862  * Save incoming source route for use in replies,
863  * to be picked up later by ip_srcroute if the receiver is interested.
864  */
865 void
866 save_rte(option, dst)
867 	u_char *option;
868 	struct in_addr dst;
869 {
870 	unsigned olen;
871 
872 	olen = option[IPOPT_OLEN];
873 #ifdef DIAGNOSTIC
874 	if (ipprintfs)
875 		printf("save_rte: olen %d\n", olen);
876 #endif
877 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
878 		return;
879 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
880 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
881 	ip_srcrt.dst = dst;
882 }
883 
884 /*
885  * Retrieve incoming source route for use in replies,
886  * in the same form used by setsockopt.
887  * The first hop is placed before the options, will be removed later.
888  */
889 struct mbuf *
890 ip_srcroute()
891 {
892 	register struct in_addr *p, *q;
893 	register struct mbuf *m;
894 
895 	if (ip_nhops == 0)
896 		return ((struct mbuf *)0);
897 	m = m_get(M_DONTWAIT, MT_SOOPTS);
898 	if (m == 0)
899 		return ((struct mbuf *)0);
900 
901 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
902 
903 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
904 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
905 	    OPTSIZ;
906 #ifdef DIAGNOSTIC
907 	if (ipprintfs)
908 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
909 #endif
910 
911 	/*
912 	 * First save first hop for return route
913 	 */
914 	p = &ip_srcrt.route[ip_nhops - 1];
915 	*(mtod(m, struct in_addr *)) = *p--;
916 #ifdef DIAGNOSTIC
917 	if (ipprintfs)
918 		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
919 #endif
920 
921 	/*
922 	 * Copy option fields and padding (nop) to mbuf.
923 	 */
924 	ip_srcrt.nop = IPOPT_NOP;
925 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
926 	bcopy((caddr_t)&ip_srcrt.nop,
927 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
928 	q = (struct in_addr *)(mtod(m, caddr_t) +
929 	    sizeof(struct in_addr) + OPTSIZ);
930 #undef OPTSIZ
931 	/*
932 	 * Record return path as an IP source route,
933 	 * reversing the path (pointers are now aligned).
934 	 */
935 	while (p >= ip_srcrt.route) {
936 #ifdef DIAGNOSTIC
937 		if (ipprintfs)
938 			printf(" %lx", ntohl(q->s_addr));
939 #endif
940 		*q++ = *p--;
941 	}
942 	/*
943 	 * Last hop goes to final destination.
944 	 */
945 	*q = ip_srcrt.dst;
946 #ifdef DIAGNOSTIC
947 	if (ipprintfs)
948 		printf(" %lx\n", ntohl(q->s_addr));
949 #endif
950 	return (m);
951 }
952 
953 /*
954  * Strip out IP options, at higher
955  * level protocol in the kernel.
956  * Second argument is buffer to which options
957  * will be moved, and return value is their length.
958  * XXX should be deleted; last arg currently ignored.
959  */
960 void
961 ip_stripoptions(m, mopt)
962 	register struct mbuf *m;
963 	struct mbuf *mopt;
964 {
965 	register int i;
966 	struct ip *ip = mtod(m, struct ip *);
967 	register caddr_t opts;
968 	int olen;
969 
970 	olen = (ip->ip_hl<<2) - sizeof (struct ip);
971 	opts = (caddr_t)(ip + 1);
972 	i = m->m_len - (sizeof (struct ip) + olen);
973 	bcopy(opts  + olen, opts, (unsigned)i);
974 	m->m_len -= olen;
975 	if (m->m_flags & M_PKTHDR)
976 		m->m_pkthdr.len -= olen;
977 	ip->ip_hl = sizeof(struct ip) >> 2;
978 }
979 
980 u_char inetctlerrmap[PRC_NCMDS] = {
981 	0,		0,		0,		0,
982 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
983 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
984 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
985 	0,		0,		0,		0,
986 	ENOPROTOOPT
987 };
988 
989 /*
990  * Forward a packet.  If some error occurs return the sender
991  * an icmp packet.  Note we can't always generate a meaningful
992  * icmp message because icmp doesn't have a large enough repertoire
993  * of codes and types.
994  *
995  * If not forwarding, just drop the packet.  This could be confusing
996  * if ipforwarding was zero but some routing protocol was advancing
997  * us as a gateway to somewhere.  However, we must let the routing
998  * protocol deal with that.
999  *
1000  * The srcrt parameter indicates whether the packet is being forwarded
1001  * via a source route.
1002  */
1003 void
1004 ip_forward(m, srcrt)
1005 	struct mbuf *m;
1006 	int srcrt;
1007 {
1008 	register struct ip *ip = mtod(m, struct ip *);
1009 	register struct sockaddr_in *sin;
1010 	register struct rtentry *rt;
1011 	int error, type = 0, code;
1012 	struct mbuf *mcopy;
1013 	n_long dest;
1014 	struct ifnet *destifp;
1015 
1016 	dest = 0;
1017 #ifdef DIAGNOSTIC
1018 	if (ipprintfs)
1019 		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
1020 			ip->ip_dst, ip->ip_ttl);
1021 #endif
1022 	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1023 		ipstat.ips_cantforward++;
1024 		m_freem(m);
1025 		return;
1026 	}
1027 	HTONS(ip->ip_id);
1028 	if (ip->ip_ttl <= IPTTLDEC) {
1029 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1030 		return;
1031 	}
1032 	ip->ip_ttl -= IPTTLDEC;
1033 
1034 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1035 	if ((rt = ipforward_rt.ro_rt) == 0 ||
1036 	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1037 		if (ipforward_rt.ro_rt) {
1038 			RTFREE(ipforward_rt.ro_rt);
1039 			ipforward_rt.ro_rt = 0;
1040 		}
1041 		sin->sin_family = AF_INET;
1042 		sin->sin_len = sizeof(*sin);
1043 		sin->sin_addr = ip->ip_dst;
1044 
1045 		rtalloc(&ipforward_rt);
1046 		if (ipforward_rt.ro_rt == 0) {
1047 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1048 			return;
1049 		}
1050 		rt = ipforward_rt.ro_rt;
1051 	}
1052 
1053 	/*
1054 	 * Save at most 64 bytes of the packet in case
1055 	 * we need to generate an ICMP message to the src.
1056 	 */
1057 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1058 
1059 #ifdef GATEWAY
1060 	ip_ifmatrix[rt->rt_ifp->if_index +
1061 	     if_index * m->m_pkthdr.rcvif->if_index]++;
1062 #endif
1063 	/*
1064 	 * If forwarding packet using same interface that it came in on,
1065 	 * perhaps should send a redirect to sender to shortcut a hop.
1066 	 * Only send redirect if source is sending directly to us,
1067 	 * and if packet was not source routed (or has any options).
1068 	 * Also, don't send redirect if forwarding using a default route
1069 	 * or a route modified by a redirect.
1070 	 */
1071 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1072 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1073 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1074 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1075 	    ipsendredirects && !srcrt) {
1076 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1077 		u_int32_t src = ntohl(ip->ip_src.s_addr);
1078 
1079 		if (RTA(rt) &&
1080 		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1081 		    if (rt->rt_flags & RTF_GATEWAY)
1082 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1083 		    else
1084 			dest = ip->ip_dst.s_addr;
1085 		    /* Router requirements says to only send host redirects */
1086 		    type = ICMP_REDIRECT;
1087 		    code = ICMP_REDIRECT_HOST;
1088 #ifdef DIAGNOSTIC
1089 		    if (ipprintfs)
1090 		        printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
1091 #endif
1092 		}
1093 	}
1094 
1095 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING
1096 #ifdef DIRECTED_BROADCAST
1097 			    | IP_ALLOWBROADCAST
1098 #endif
1099 						, 0);
1100 	if (error)
1101 		ipstat.ips_cantforward++;
1102 	else {
1103 		ipstat.ips_forward++;
1104 		if (type)
1105 			ipstat.ips_redirectsent++;
1106 		else {
1107 			if (mcopy)
1108 				m_freem(mcopy);
1109 			return;
1110 		}
1111 	}
1112 	if (mcopy == NULL)
1113 		return;
1114 	destifp = NULL;
1115 
1116 	switch (error) {
1117 
1118 	case 0:				/* forwarded, but need redirect */
1119 		/* type, code set above */
1120 		break;
1121 
1122 	case ENETUNREACH:		/* shouldn't happen, checked above */
1123 	case EHOSTUNREACH:
1124 	case ENETDOWN:
1125 	case EHOSTDOWN:
1126 	default:
1127 		type = ICMP_UNREACH;
1128 		code = ICMP_UNREACH_HOST;
1129 		break;
1130 
1131 	case EMSGSIZE:
1132 		type = ICMP_UNREACH;
1133 		code = ICMP_UNREACH_NEEDFRAG;
1134 		if (ipforward_rt.ro_rt)
1135 			destifp = ipforward_rt.ro_rt->rt_ifp;
1136 		ipstat.ips_cantfrag++;
1137 		break;
1138 
1139 	case ENOBUFS:
1140 		type = ICMP_SOURCEQUENCH;
1141 		code = 0;
1142 		break;
1143 	}
1144 	icmp_error(mcopy, type, code, dest, destifp);
1145 }
1146 
1147 int
1148 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1149 	int *name;
1150 	u_int namelen;
1151 	void *oldp;
1152 	size_t *oldlenp;
1153 	void *newp;
1154 	size_t newlen;
1155 {
1156 	/* All sysctl names at this level are terminal. */
1157 	if (namelen != 1)
1158 		return (ENOTDIR);
1159 
1160 	switch (name[0]) {
1161 	case IPCTL_FORWARDING:
1162 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1163 	case IPCTL_SENDREDIRECTS:
1164 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1165 			&ipsendredirects));
1166 	case IPCTL_DEFTTL:
1167 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1168 #ifdef notyet
1169 	case IPCTL_DEFMTU:
1170 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1171 #endif
1172 	default:
1173 		return (EOPNOTSUPP);
1174 	}
1175 	/* NOTREACHED */
1176 }
1177