xref: /netbsd-src/sys/netinet/ip_input.c (revision cda4f8f6ee55684e8d311b86c99ea59191e6b74f)
1 /*
2  * Copyright (c) 1982, 1986, 1988 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)ip_input.c	7.19 (Berkeley) 5/25/91
34  *	$Id: ip_input.c,v 1.3 1993/05/20 03:50:25 cgd Exp $
35  */
36 
37 #include "param.h"
38 #include "systm.h"
39 #include "malloc.h"
40 #include "mbuf.h"
41 #include "domain.h"
42 #include "protosw.h"
43 #include "socket.h"
44 #include "errno.h"
45 #include "time.h"
46 #include "kernel.h"
47 
48 #include "../net/if.h"
49 #include "../net/route.h"
50 
51 #include "in.h"
52 #include "in_systm.h"
53 #include "ip.h"
54 #include "in_pcb.h"
55 #include "in_var.h"
56 #include "ip_var.h"
57 #include "ip_icmp.h"
58 
59 #ifndef	IPFORWARDING
60 #ifdef GATEWAY
61 #define	IPFORWARDING	1	/* forward IP packets not for us */
62 #else /* GATEWAY */
63 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
64 #endif /* GATEWAY */
65 #endif /* IPFORWARDING */
66 #ifndef	IPSENDREDIRECTS
67 #define	IPSENDREDIRECTS	1
68 #endif
69 int	ipforwarding = IPFORWARDING;
70 int	ipsendredirects = IPSENDREDIRECTS;
71 #ifdef DIAGNOSTIC
72 int	ipprintfs = 0;
73 #endif
74 
75 extern	struct domain inetdomain;
76 extern	struct protosw inetsw[];
77 u_char	ip_protox[IPPROTO_MAX];
78 int	ipqmaxlen = IFQ_MAXLEN;
79 struct	in_ifaddr *in_ifaddr;			/* first inet address */
80 
81 /*
82  * We need to save the IP options in case a protocol wants to respond
83  * to an incoming packet over the same route if the packet got here
84  * using IP source routing.  This allows connection establishment and
85  * maintenance when the remote end is on a network that is not known
86  * to us.
87  */
88 int	ip_nhops = 0;
89 static	struct ip_srcrt {
90 	struct	in_addr dst;			/* final destination */
91 	char	nop;				/* one NOP to align */
92 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
93 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
94 } ip_srcrt;
95 
96 #ifdef GATEWAY
97 extern	int if_index;
98 u_long	*ip_ifmatrix;
99 #endif
100 
101 /*
102  * IP initialization: fill in IP protocol switch table.
103  * All protocols not implemented in kernel go to raw IP protocol handler.
104  */
105 ip_init()
106 {
107 	register struct protosw *pr;
108 	register int i;
109 
110 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
111 	if (pr == 0)
112 		panic("ip_init");
113 	for (i = 0; i < IPPROTO_MAX; i++)
114 		ip_protox[i] = pr - inetsw;
115 	for (pr = inetdomain.dom_protosw;
116 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
117 		if (pr->pr_domain->dom_family == PF_INET &&
118 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
119 			ip_protox[pr->pr_protocol] = pr - inetsw;
120 	ipq.next = ipq.prev = &ipq;
121 	ip_id = time.tv_sec & 0xffff;
122 	ipintrq.ifq_maxlen = ipqmaxlen;
123 #ifdef GATEWAY
124 	i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
125 	if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
126 		panic("no memory for ip_ifmatrix");
127 #endif
128 }
129 
130 struct	ip *ip_reass();
131 struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
132 struct	route ipforward_rt;
133 
134 /*
135  * Ip input routine.  Checksum and byte swap header.  If fragmented
136  * try to reassemble.  Process options.  Pass to next level.
137  */
138 ipintr()
139 {
140 	register struct ip *ip;
141 	register struct mbuf *m;
142 	register struct ipq *fp;
143 	register struct in_ifaddr *ia;
144 	int hlen, s;
145 #ifdef PARANOID
146 	static int busy = 0;
147 
148 	if (busy)
149 		panic("ipintr: called recursively\n");
150 	++busy;
151 #endif
152 next:
153 	/*
154 	 * Get next datagram off input queue and get IP header
155 	 * in first mbuf.
156 	 */
157 	s = splimp();
158 	IF_DEQUEUE(&ipintrq, m);
159 	splx(s);
160 	if (m == 0) {
161 #ifdef PARANOID
162 		--busy;
163 #endif
164 		return;
165 	}
166 #ifdef	DIAGNOSTIC
167 	if ((m->m_flags & M_PKTHDR) == 0)
168 		panic("ipintr no HDR");
169 #endif
170 	/*
171 	 * If no IP addresses have been set yet but the interfaces
172 	 * are receiving, can't do anything with incoming packets yet.
173 	 */
174 	if (in_ifaddr == NULL)
175 		goto bad;
176 	ipstat.ips_total++;
177 	if (m->m_len < sizeof (struct ip) &&
178 	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
179 		ipstat.ips_toosmall++;
180 		goto next;
181 	}
182 	ip = mtod(m, struct ip *);
183 	hlen = ip->ip_hl << 2;
184 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
185 		ipstat.ips_badhlen++;
186 		goto bad;
187 	}
188 	if (hlen > m->m_len) {
189 		if ((m = m_pullup(m, hlen)) == 0) {
190 			ipstat.ips_badhlen++;
191 			goto next;
192 		}
193 		ip = mtod(m, struct ip *);
194 	}
195 	if (ip->ip_sum = in_cksum(m, hlen)) {
196 		ipstat.ips_badsum++;
197 		goto bad;
198 	}
199 
200 	/*
201 	 * Convert fields to host representation.
202 	 */
203 	NTOHS(ip->ip_len);
204 	if (ip->ip_len < hlen) {
205 		ipstat.ips_badlen++;
206 		goto bad;
207 	}
208 	NTOHS(ip->ip_id);
209 	NTOHS(ip->ip_off);
210 
211 	/*
212 	 * Check that the amount of data in the buffers
213 	 * is as at least much as the IP header would have us expect.
214 	 * Trim mbufs if longer than we expect.
215 	 * Drop packet if shorter than we expect.
216 	 */
217 	if (m->m_pkthdr.len < ip->ip_len) {
218 		ipstat.ips_tooshort++;
219 		goto bad;
220 	}
221 	if (m->m_pkthdr.len > ip->ip_len) {
222 		if (m->m_len == m->m_pkthdr.len) {
223 			m->m_len = ip->ip_len;
224 			m->m_pkthdr.len = ip->ip_len;
225 		} else
226 			m_adj(m, ip->ip_len - m->m_pkthdr.len);
227 	}
228 
229 	/*
230 	 * Process options and, if not destined for us,
231 	 * ship it on.  ip_dooptions returns 1 when an
232 	 * error was detected (causing an icmp message
233 	 * to be sent and the original packet to be freed).
234 	 */
235 	ip_nhops = 0;		/* for source routed packets */
236 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
237 		goto next;
238 
239 	/*
240 	 * Check our list of addresses, to see if the packet is for us.
241 	 */
242 	for (ia = in_ifaddr; ia; ia = ia->ia_next) {
243 #define	satosin(sa)	((struct sockaddr_in *)(sa))
244 
245 		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
246 			goto ours;
247 		if (
248 #ifdef	DIRECTED_BROADCAST
249 		    ia->ia_ifp == m->m_pkthdr.rcvif &&
250 #endif
251 		    (ia->ia_ifp->if_flags & IFF_BROADCAST)) {
252 			u_long t;
253 
254 			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
255 			    ip->ip_dst.s_addr)
256 				goto ours;
257 			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
258 				goto ours;
259 			/*
260 			 * Look for all-0's host part (old broadcast addr),
261 			 * either for subnet or net.
262 			 */
263 			t = ntohl(ip->ip_dst.s_addr);
264 			if (t == ia->ia_subnet)
265 				goto ours;
266 			if (t == ia->ia_net)
267 				goto ours;
268 		}
269 	}
270 	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
271 		goto ours;
272 	if (ip->ip_dst.s_addr == INADDR_ANY)
273 		goto ours;
274 
275 	/*
276 	 * Not for us; forward if possible and desirable.
277 	 */
278 	if (ipforwarding == 0) {
279 		ipstat.ips_cantforward++;
280 		m_freem(m);
281 	} else
282 		ip_forward(m, 0);
283 	goto next;
284 
285 ours:
286 	/*
287 	 * If offset or IP_MF are set, must reassemble.
288 	 * Otherwise, nothing need be done.
289 	 * (We could look in the reassembly queue to see
290 	 * if the packet was previously fragmented,
291 	 * but it's not worth the time; just let them time out.)
292 	 */
293 	if (ip->ip_off &~ IP_DF) {
294 		if (m->m_flags & M_EXT) {		/* XXX */
295 			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
296 				ipstat.ips_toosmall++;
297 				goto next;
298 			}
299 			ip = mtod(m, struct ip *);
300 		}
301 		/*
302 		 * Look for queue of fragments
303 		 * of this datagram.
304 		 */
305 		for (fp = ipq.next; fp != &ipq; fp = fp->next)
306 			if (ip->ip_id == fp->ipq_id &&
307 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
308 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
309 			    ip->ip_p == fp->ipq_p)
310 				goto found;
311 		fp = 0;
312 found:
313 
314 		/*
315 		 * Adjust ip_len to not reflect header,
316 		 * set ip_mff if more fragments are expected,
317 		 * convert offset of this to bytes.
318 		 */
319 		ip->ip_len -= hlen;
320 		((struct ipasfrag *)ip)->ipf_mff = 0;
321 		if (ip->ip_off & IP_MF)
322 			((struct ipasfrag *)ip)->ipf_mff = 1;
323 		ip->ip_off <<= 3;
324 
325 		/*
326 		 * If datagram marked as having more fragments
327 		 * or if this is not the first fragment,
328 		 * attempt reassembly; if it succeeds, proceed.
329 		 */
330 		if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
331 			ipstat.ips_fragments++;
332 			ip = ip_reass((struct ipasfrag *)ip, fp);
333 			if (ip == 0)
334 				goto next;
335 			else
336 				ipstat.ips_reassembled++;
337 			m = dtom(ip);
338 		} else
339 			if (fp)
340 				ip_freef(fp);
341 	} else
342 		ip->ip_len -= hlen;
343 
344 	/*
345 	 * Switch out to protocol's input routine.
346 	 */
347 	ipstat.ips_delivered++;
348 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
349 	goto next;
350 bad:
351 	m_freem(m);
352 	goto next;
353 }
354 
355 /*
356  * Take incoming datagram fragment and try to
357  * reassemble it into whole datagram.  If a chain for
358  * reassembly of this datagram already exists, then it
359  * is given as fp; otherwise have to make a chain.
360  */
361 struct ip *
362 ip_reass(ip, fp)
363 	register struct ipasfrag *ip;
364 	register struct ipq *fp;
365 {
366 	register struct mbuf *m = dtom(ip);
367 	register struct ipasfrag *q;
368 	struct mbuf *t;
369 	int hlen = ip->ip_hl << 2;
370 	int i, next;
371 
372 	/*
373 	 * Presence of header sizes in mbufs
374 	 * would confuse code below.
375 	 */
376 	m->m_data += hlen;
377 	m->m_len -= hlen;
378 
379 	/*
380 	 * If first fragment to arrive, create a reassembly queue.
381 	 */
382 	if (fp == 0) {
383 		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
384 			goto dropfrag;
385 		fp = mtod(t, struct ipq *);
386 		insque(fp, &ipq);
387 		fp->ipq_ttl = IPFRAGTTL;
388 		fp->ipq_p = ip->ip_p;
389 		fp->ipq_id = ip->ip_id;
390 		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
391 		fp->ipq_src = ((struct ip *)ip)->ip_src;
392 		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
393 		q = (struct ipasfrag *)fp;
394 		goto insert;
395 	}
396 
397 	/*
398 	 * Find a segment which begins after this one does.
399 	 */
400 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
401 		if (q->ip_off > ip->ip_off)
402 			break;
403 
404 	/*
405 	 * If there is a preceding segment, it may provide some of
406 	 * our data already.  If so, drop the data from the incoming
407 	 * segment.  If it provides all of our data, drop us.
408 	 */
409 	if (q->ipf_prev != (struct ipasfrag *)fp) {
410 		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
411 		if (i > 0) {
412 			if (i >= ip->ip_len)
413 				goto dropfrag;
414 			m_adj(dtom(ip), i);
415 			ip->ip_off += i;
416 			ip->ip_len -= i;
417 		}
418 	}
419 
420 	/*
421 	 * While we overlap succeeding segments trim them or,
422 	 * if they are completely covered, dequeue them.
423 	 */
424 	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
425 		i = (ip->ip_off + ip->ip_len) - q->ip_off;
426 		if (i < q->ip_len) {
427 			q->ip_len -= i;
428 			q->ip_off += i;
429 			m_adj(dtom(q), i);
430 			break;
431 		}
432 		q = q->ipf_next;
433 		m_freem(dtom(q->ipf_prev));
434 		ip_deq(q->ipf_prev);
435 	}
436 
437 insert:
438 	/*
439 	 * Stick new segment in its place;
440 	 * check for complete reassembly.
441 	 */
442 	ip_enq(ip, q->ipf_prev);
443 	next = 0;
444 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
445 		if (q->ip_off != next)
446 			return (0);
447 		next += q->ip_len;
448 	}
449 	if (q->ipf_prev->ipf_mff)
450 		return (0);
451 
452 	/*
453 	 * Reassembly is complete; concatenate fragments.
454 	 */
455 	q = fp->ipq_next;
456 	m = dtom(q);
457 	t = m->m_next;
458 	m->m_next = 0;
459 	m_cat(m, t);
460 	q = q->ipf_next;
461 	while (q != (struct ipasfrag *)fp) {
462 		t = dtom(q);
463 		q = q->ipf_next;
464 		m_cat(m, t);
465 	}
466 
467 	/*
468 	 * Create header for new ip packet by
469 	 * modifying header of first packet;
470 	 * dequeue and discard fragment reassembly header.
471 	 * Make header visible.
472 	 */
473 	ip = fp->ipq_next;
474 	ip->ip_len = next;
475 	((struct ip *)ip)->ip_src = fp->ipq_src;
476 	((struct ip *)ip)->ip_dst = fp->ipq_dst;
477 	remque(fp);
478 	(void) m_free(dtom(fp));
479 	m = dtom(ip);
480 	m->m_len += (ip->ip_hl << 2);
481 	m->m_data -= (ip->ip_hl << 2);
482 	/* some debugging cruft by sklower, below, will go away soon */
483 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
484 		register int plen = 0;
485 		for (t = m; m; m = m->m_next)
486 			plen += m->m_len;
487 		t->m_pkthdr.len = plen;
488 	}
489 	return ((struct ip *)ip);
490 
491 dropfrag:
492 	ipstat.ips_fragdropped++;
493 	m_freem(m);
494 	return (0);
495 }
496 
497 /*
498  * Free a fragment reassembly header and all
499  * associated datagrams.
500  */
501 ip_freef(fp)
502 	struct ipq *fp;
503 {
504 	register struct ipasfrag *q, *p;
505 
506 	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
507 		p = q->ipf_next;
508 		ip_deq(q);
509 		m_freem(dtom(q));
510 	}
511 	remque(fp);
512 	(void) m_free(dtom(fp));
513 }
514 
515 /*
516  * Put an ip fragment on a reassembly chain.
517  * Like insque, but pointers in middle of structure.
518  */
519 ip_enq(p, prev)
520 	register struct ipasfrag *p, *prev;
521 {
522 
523 	p->ipf_prev = prev;
524 	p->ipf_next = prev->ipf_next;
525 	prev->ipf_next->ipf_prev = p;
526 	prev->ipf_next = p;
527 }
528 
529 /*
530  * To ip_enq as remque is to insque.
531  */
532 ip_deq(p)
533 	register struct ipasfrag *p;
534 {
535 
536 	p->ipf_prev->ipf_next = p->ipf_next;
537 	p->ipf_next->ipf_prev = p->ipf_prev;
538 }
539 
540 /*
541  * IP timer processing;
542  * if a timer expires on a reassembly
543  * queue, discard it.
544  */
545 ip_slowtimo()
546 {
547 	register struct ipq *fp;
548 	int s = splnet();
549 
550 	fp = ipq.next;
551 	if (fp == 0) {
552 		splx(s);
553 		return;
554 	}
555 	while (fp != &ipq) {
556 		--fp->ipq_ttl;
557 		fp = fp->next;
558 		if (fp->prev->ipq_ttl == 0) {
559 			ipstat.ips_fragtimeout++;
560 			ip_freef(fp->prev);
561 		}
562 	}
563 	splx(s);
564 }
565 
566 /*
567  * Drain off all datagram fragments.
568  */
569 ip_drain()
570 {
571 
572 	while (ipq.next != &ipq) {
573 		ipstat.ips_fragdropped++;
574 		ip_freef(ipq.next);
575 	}
576 }
577 
578 extern struct in_ifaddr *ifptoia();
579 struct in_ifaddr *ip_rtaddr();
580 
581 /*
582  * Do option processing on a datagram,
583  * possibly discarding it if bad options are encountered,
584  * or forwarding it if source-routed.
585  * Returns 1 if packet has been forwarded/freed,
586  * 0 if the packet should be processed further.
587  */
588 ip_dooptions(m)
589 	struct mbuf *m;
590 {
591 	register struct ip *ip = mtod(m, struct ip *);
592 	register u_char *cp;
593 	register struct ip_timestamp *ipt;
594 	register struct in_ifaddr *ia;
595 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
596 	struct in_addr *sin;
597 	n_time ntime;
598 
599 	cp = (u_char *)(ip + 1);
600 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
601 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
602 		opt = cp[IPOPT_OPTVAL];
603 		if (opt == IPOPT_EOL)
604 			break;
605 		if (opt == IPOPT_NOP)
606 			optlen = 1;
607 		else {
608 			optlen = cp[IPOPT_OLEN];
609 			if (optlen <= 0 || optlen > cnt) {
610 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
611 				goto bad;
612 			}
613 		}
614 		switch (opt) {
615 
616 		default:
617 			break;
618 
619 		/*
620 		 * Source routing with record.
621 		 * Find interface with current destination address.
622 		 * If none on this machine then drop if strictly routed,
623 		 * or do nothing if loosely routed.
624 		 * Record interface address and bring up next address
625 		 * component.  If strictly routed make sure next
626 		 * address is on directly accessible net.
627 		 */
628 		case IPOPT_LSRR:
629 		case IPOPT_SSRR:
630 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
631 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
632 				goto bad;
633 			}
634 			ipaddr.sin_addr = ip->ip_dst;
635 			ia = (struct in_ifaddr *)
636 				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
637 			if (ia == 0) {
638 				if (opt == IPOPT_SSRR) {
639 					type = ICMP_UNREACH;
640 					code = ICMP_UNREACH_SRCFAIL;
641 					goto bad;
642 				}
643 				/*
644 				 * Loose routing, and not at next destination
645 				 * yet; nothing to do except forward.
646 				 */
647 				break;
648 			}
649 			off--;			/* 0 origin */
650 			if (off > optlen - sizeof(struct in_addr)) {
651 				/*
652 				 * End of source route.  Should be for us.
653 				 */
654 				save_rte(cp, ip->ip_src);
655 				break;
656 			}
657 			/*
658 			 * locate outgoing interface
659 			 */
660 			bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
661 			    sizeof(ipaddr.sin_addr));
662 			if (opt == IPOPT_SSRR) {
663 #define	INA	struct in_ifaddr *
664 #define	SA	struct sockaddr *
665 			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
666 				ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
667 			} else
668 				ia = ip_rtaddr(ipaddr.sin_addr);
669 			if (ia == 0) {
670 				type = ICMP_UNREACH;
671 				code = ICMP_UNREACH_SRCFAIL;
672 				goto bad;
673 			}
674 			ip->ip_dst = ipaddr.sin_addr;
675 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
676 			    (caddr_t)(cp + off), sizeof(struct in_addr));
677 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
678 			forward = 1;
679 			break;
680 
681 		case IPOPT_RR:
682 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
683 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
684 				goto bad;
685 			}
686 			/*
687 			 * If no space remains, ignore.
688 			 */
689 			off--;			/* 0 origin */
690 			if (off > optlen - sizeof(struct in_addr))
691 				break;
692 			bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
693 			    sizeof(ipaddr.sin_addr));
694 			/*
695 			 * locate outgoing interface; if we're the destination,
696 			 * use the incoming interface (should be same).
697 			 */
698 			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
699 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
700 				type = ICMP_UNREACH;
701 				code = ICMP_UNREACH_HOST;
702 				goto bad;
703 			}
704 			bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
705 			    (caddr_t)(cp + off), sizeof(struct in_addr));
706 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
707 			break;
708 
709 		case IPOPT_TS:
710 			code = cp - (u_char *)ip;
711 			ipt = (struct ip_timestamp *)cp;
712 			if (ipt->ipt_len < 5)
713 				goto bad;
714 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
715 				if (++ipt->ipt_oflw == 0)
716 					goto bad;
717 				break;
718 			}
719 			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
720 			switch (ipt->ipt_flg) {
721 
722 			case IPOPT_TS_TSONLY:
723 				break;
724 
725 			case IPOPT_TS_TSANDADDR:
726 				if (ipt->ipt_ptr + sizeof(n_time) +
727 				    sizeof(struct in_addr) > ipt->ipt_len)
728 					goto bad;
729 				ia = ifptoia(m->m_pkthdr.rcvif);
730 				bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
731 				    (caddr_t)sin, sizeof(struct in_addr));
732 				ipt->ipt_ptr += sizeof(struct in_addr);
733 				break;
734 
735 			case IPOPT_TS_PRESPEC:
736 				if (ipt->ipt_ptr + sizeof(n_time) +
737 				    sizeof(struct in_addr) > ipt->ipt_len)
738 					goto bad;
739 				bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
740 				    sizeof(struct in_addr));
741 				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
742 					continue;
743 				ipt->ipt_ptr += sizeof(struct in_addr);
744 				break;
745 
746 			default:
747 				goto bad;
748 			}
749 			ntime = iptime();
750 			bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
751 			    sizeof(n_time));
752 			ipt->ipt_ptr += sizeof(n_time);
753 		}
754 	}
755 	if (forward) {
756 		ip_forward(m, 1);
757 		return (1);
758 	} else
759 		return (0);
760 bad:
761 	icmp_error(m, type, code);
762 	return (1);
763 }
764 
765 /*
766  * Given address of next destination (final or next hop),
767  * return internet address info of interface to be used to get there.
768  */
769 struct in_ifaddr *
770 ip_rtaddr(dst)
771 	 struct in_addr dst;
772 {
773 	register struct sockaddr_in *sin;
774 
775 	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
776 
777 	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
778 		if (ipforward_rt.ro_rt) {
779 			RTFREE(ipforward_rt.ro_rt);
780 			ipforward_rt.ro_rt = 0;
781 		}
782 		sin->sin_family = AF_INET;
783 		sin->sin_len = sizeof(*sin);
784 		sin->sin_addr = dst;
785 
786 		rtalloc(&ipforward_rt);
787 	}
788 	if (ipforward_rt.ro_rt == 0)
789 		return ((struct in_ifaddr *)0);
790 	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
791 }
792 
793 /*
794  * Save incoming source route for use in replies,
795  * to be picked up later by ip_srcroute if the receiver is interested.
796  */
797 save_rte(option, dst)
798 	u_char *option;
799 	struct in_addr dst;
800 {
801 	unsigned olen;
802 
803 	olen = option[IPOPT_OLEN];
804 #ifdef DIAGNOSTIC
805 	if (ipprintfs)
806 		printf("save_rte: olen %d\n", olen);
807 #endif
808 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
809 		return;
810 	bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
811 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
812 	ip_srcrt.dst = dst;
813 }
814 
815 /*
816  * Retrieve incoming source route for use in replies,
817  * in the same form used by setsockopt.
818  * The first hop is placed before the options, will be removed later.
819  */
820 struct mbuf *
821 ip_srcroute()
822 {
823 	register struct in_addr *p, *q;
824 	register struct mbuf *m;
825 
826 	if (ip_nhops == 0)
827 		return ((struct mbuf *)0);
828 	m = m_get(M_DONTWAIT, MT_SOOPTS);
829 	if (m == 0)
830 		return ((struct mbuf *)0);
831 
832 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
833 
834 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
835 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
836 	    OPTSIZ;
837 #ifdef DIAGNOSTIC
838 	if (ipprintfs)
839 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
840 #endif
841 
842 	/*
843 	 * First save first hop for return route
844 	 */
845 	p = &ip_srcrt.route[ip_nhops - 1];
846 	*(mtod(m, struct in_addr *)) = *p--;
847 #ifdef DIAGNOSTIC
848 	if (ipprintfs)
849 		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
850 #endif
851 
852 	/*
853 	 * Copy option fields and padding (nop) to mbuf.
854 	 */
855 	ip_srcrt.nop = IPOPT_NOP;
856 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
857 	bcopy((caddr_t)&ip_srcrt.nop,
858 	    mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
859 	q = (struct in_addr *)(mtod(m, caddr_t) +
860 	    sizeof(struct in_addr) + OPTSIZ);
861 #undef OPTSIZ
862 	/*
863 	 * Record return path as an IP source route,
864 	 * reversing the path (pointers are now aligned).
865 	 */
866 	while (p >= ip_srcrt.route) {
867 #ifdef DIAGNOSTIC
868 		if (ipprintfs)
869 			printf(" %lx", ntohl(q->s_addr));
870 #endif
871 		*q++ = *p--;
872 	}
873 	/*
874 	 * Last hop goes to final destination.
875 	 */
876 	*q = ip_srcrt.dst;
877 #ifdef DIAGNOSTIC
878 	if (ipprintfs)
879 		printf(" %lx\n", ntohl(q->s_addr));
880 #endif
881 	return (m);
882 }
883 
884 /*
885  * Strip out IP options, at higher
886  * level protocol in the kernel.
887  * Second argument is buffer to which options
888  * will be moved, and return value is their length.
889  * XXX should be deleted; last arg currently ignored.
890  */
891 ip_stripoptions(m, mopt)
892 	register struct mbuf *m;
893 	struct mbuf *mopt;
894 {
895 	register int i;
896 	struct ip *ip = mtod(m, struct ip *);
897 	register caddr_t opts;
898 	int olen;
899 
900 	olen = (ip->ip_hl<<2) - sizeof (struct ip);
901 	opts = (caddr_t)(ip + 1);
902 	i = m->m_len - (sizeof (struct ip) + olen);
903 	bcopy(opts  + olen, opts, (unsigned)i);
904 	m->m_len -= olen;
905 	if (m->m_flags & M_PKTHDR)
906 		m->m_pkthdr.len -= olen;
907 	ip->ip_hl = sizeof(struct ip) >> 2;
908 }
909 
910 u_char inetctlerrmap[PRC_NCMDS] = {
911 	0,		0,		0,		0,
912 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
913 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
914 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
915 	0,		0,		0,		0,
916 	ENOPROTOOPT
917 };
918 
919 /*
920  * Forward a packet.  If some error occurs return the sender
921  * an icmp packet.  Note we can't always generate a meaningful
922  * icmp message because icmp doesn't have a large enough repertoire
923  * of codes and types.
924  *
925  * If not forwarding, just drop the packet.  This could be confusing
926  * if ipforwarding was zero but some routing protocol was advancing
927  * us as a gateway to somewhere.  However, we must let the routing
928  * protocol deal with that.
929  *
930  * The srcrt parameter indicates whether the packet is being forwarded
931  * via a source route.
932  */
933 ip_forward(m, srcrt)
934 	struct mbuf *m;
935 	int srcrt;
936 {
937 	register struct ip *ip = mtod(m, struct ip *);
938 	register struct sockaddr_in *sin;
939 	register struct rtentry *rt;
940 	int error, type = 0, code;
941 	struct mbuf *mcopy;
942 	struct in_addr dest;
943 
944 	dest.s_addr = 0;
945 #ifdef DIAGNOSTIC
946 	if (ipprintfs)
947 		printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
948 			ip->ip_dst, ip->ip_ttl);
949 #endif
950 	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
951 		ipstat.ips_cantforward++;
952 		m_freem(m);
953 		return;
954 	}
955 	HTONS(ip->ip_id);
956 	if (ip->ip_ttl <= IPTTLDEC) {
957 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
958 		return;
959 	}
960 	ip->ip_ttl -= IPTTLDEC;
961 
962 	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
963 	if ((rt = ipforward_rt.ro_rt) == 0 ||
964 	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
965 		if (ipforward_rt.ro_rt) {
966 			RTFREE(ipforward_rt.ro_rt);
967 			ipforward_rt.ro_rt = 0;
968 		}
969 		sin->sin_family = AF_INET;
970 		sin->sin_len = sizeof(*sin);
971 		sin->sin_addr = ip->ip_dst;
972 
973 		rtalloc(&ipforward_rt);
974 		if (ipforward_rt.ro_rt == 0) {
975 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
976 			return;
977 		}
978 		rt = ipforward_rt.ro_rt;
979 	}
980 
981 	/*
982 	 * Save at most 64 bytes of the packet in case
983 	 * we need to generate an ICMP message to the src.
984 	 */
985 	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
986 
987 #ifdef GATEWAY
988 	ip_ifmatrix[rt->rt_ifp->if_index +
989 	     if_index * m->m_pkthdr.rcvif->if_index]++;
990 #endif
991 	/*
992 	 * If forwarding packet using same interface that it came in on,
993 	 * perhaps should send a redirect to sender to shortcut a hop.
994 	 * Only send redirect if source is sending directly to us,
995 	 * and if packet was not source routed (or has any options).
996 	 * Also, don't send redirect if forwarding using a default route
997 	 * or a route modified by a redirect.
998 	 */
999 #define	satosin(sa)	((struct sockaddr_in *)(sa))
1000 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1001 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1002 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1003 	    ipsendredirects && !srcrt) {
1004 		struct in_ifaddr *ia;
1005 		u_long src = ntohl(ip->ip_src.s_addr);
1006 		u_long dst = ntohl(ip->ip_dst.s_addr);
1007 
1008 		if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
1009 		   (src & ia->ia_subnetmask) == ia->ia_subnet) {
1010 		    if (rt->rt_flags & RTF_GATEWAY)
1011 			dest = satosin(rt->rt_gateway)->sin_addr;
1012 		    else
1013 			dest = ip->ip_dst;
1014 		    /*
1015 		     * If the destination is reached by a route to host,
1016 		     * is on a subnet of a local net, or is directly
1017 		     * on the attached net (!), use host redirect.
1018 		     * (We may be the correct first hop for other subnets.)
1019 		     */
1020 #define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1021 		    type = ICMP_REDIRECT;
1022 		    if ((rt->rt_flags & RTF_HOST) ||
1023 		        (rt->rt_flags & RTF_GATEWAY) == 0)
1024 			    code = ICMP_REDIRECT_HOST;
1025 		    else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
1026 		        (dst & RTA(rt)->ia_netmask) ==  RTA(rt)->ia_net)
1027 			    code = ICMP_REDIRECT_HOST;
1028 		    else
1029 			    code = ICMP_REDIRECT_NET;
1030 #ifdef DIAGNOSTIC
1031 		    if (ipprintfs)
1032 		        printf("redirect (%d) to %x\n", code, dest.s_addr);
1033 #endif
1034 		}
1035 	}
1036 
1037 	error = ip_output(m, (struct mbuf *)0, &ipforward_rt, IP_FORWARDING);
1038 	if (error)
1039 		ipstat.ips_cantforward++;
1040 	else {
1041 		ipstat.ips_forward++;
1042 		if (type)
1043 			ipstat.ips_redirectsent++;
1044 		else {
1045 			if (mcopy)
1046 				m_freem(mcopy);
1047 			return;
1048 		}
1049 	}
1050 	if (mcopy == NULL)
1051 		return;
1052 	switch (error) {
1053 
1054 	case 0:				/* forwarded, but need redirect */
1055 		/* type, code set above */
1056 		break;
1057 
1058 	case ENETUNREACH:		/* shouldn't happen, checked above */
1059 	case EHOSTUNREACH:
1060 	case ENETDOWN:
1061 	case EHOSTDOWN:
1062 	default:
1063 		type = ICMP_UNREACH;
1064 		code = ICMP_UNREACH_HOST;
1065 		break;
1066 
1067 	case EMSGSIZE:
1068 		type = ICMP_UNREACH;
1069 		code = ICMP_UNREACH_NEEDFRAG;
1070 		ipstat.ips_cantfrag++;
1071 		break;
1072 
1073 	case ENOBUFS:
1074 		type = ICMP_SOURCEQUENCH;
1075 		code = 0;
1076 		break;
1077 	}
1078 	icmp_error(mcopy, type, code, dest);
1079 }
1080