xref: /netbsd-src/sys/netinet/ip_input.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: ip_input.c,v 1.279 2009/03/18 17:06:52 cegger Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.279 2009/03/18 17:06:52 cegger Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_compat_netbsd.h"
98 #include "opt_gateway.h"
99 #include "opt_pfil_hooks.h"
100 #include "opt_ipsec.h"
101 #include "opt_mrouting.h"
102 #include "opt_mbuftrace.h"
103 #include "opt_inet_csum.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/pool.h>
117 #include <sys/sysctl.h>
118 #include <sys/kauth.h>
119 
120 #include <net/if.h>
121 #include <net/if_dl.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124 
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_proto.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_private.h>
133 #include <netinet/ip_icmp.h>
134 /* just for gif_ttl */
135 #include <netinet/in_gif.h>
136 #include "gif.h"
137 #include <net/if_gre.h>
138 #include "gre.h"
139 
140 #ifdef MROUTING
141 #include <netinet/ip_mroute.h>
142 #endif
143 
144 #ifdef IPSEC
145 #include <netinet6/ipsec.h>
146 #include <netinet6/ipsec_private.h>
147 #include <netkey/key.h>
148 #endif
149 #ifdef FAST_IPSEC
150 #include <netipsec/ipsec.h>
151 #include <netipsec/key.h>
152 #endif	/* FAST_IPSEC*/
153 
154 #ifndef	IPFORWARDING
155 #ifdef GATEWAY
156 #define	IPFORWARDING	1	/* forward IP packets not for us */
157 #else /* GATEWAY */
158 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
159 #endif /* GATEWAY */
160 #endif /* IPFORWARDING */
161 #ifndef	IPSENDREDIRECTS
162 #define	IPSENDREDIRECTS	1
163 #endif
164 #ifndef IPFORWSRCRT
165 #define	IPFORWSRCRT	1	/* forward source-routed packets */
166 #endif
167 #ifndef IPALLOWSRCRT
168 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
169 #endif
170 #ifndef IPMTUDISC
171 #define IPMTUDISC	1
172 #endif
173 #ifndef IPMTUDISCTIMEOUT
174 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
175 #endif
176 
177 #ifdef COMPAT_50
178 #include <compat/sys/time.h>
179 #include <compat/sys/socket.h>
180 #endif
181 
182 /*
183  * Note: DIRECTED_BROADCAST is handled this way so that previous
184  * configuration using this option will Just Work.
185  */
186 #ifndef IPDIRECTEDBCAST
187 #ifdef DIRECTED_BROADCAST
188 #define IPDIRECTEDBCAST	1
189 #else
190 #define	IPDIRECTEDBCAST	0
191 #endif /* DIRECTED_BROADCAST */
192 #endif /* IPDIRECTEDBCAST */
193 int	ipforwarding = IPFORWARDING;
194 int	ipsendredirects = IPSENDREDIRECTS;
195 int	ip_defttl = IPDEFTTL;
196 int	ip_forwsrcrt = IPFORWSRCRT;
197 int	ip_directedbcast = IPDIRECTEDBCAST;
198 int	ip_allowsrcrt = IPALLOWSRCRT;
199 int	ip_mtudisc = IPMTUDISC;
200 int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
201 #ifdef DIAGNOSTIC
202 int	ipprintfs = 0;
203 #endif
204 
205 int	ip_do_randomid = 0;
206 
207 /*
208  * XXX - Setting ip_checkinterface mostly implements the receive side of
209  * the Strong ES model described in RFC 1122, but since the routing table
210  * and transmit implementation do not implement the Strong ES model,
211  * setting this to 1 results in an odd hybrid.
212  *
213  * XXX - ip_checkinterface currently must be disabled if you use ipnat
214  * to translate the destination address to another local interface.
215  *
216  * XXX - ip_checkinterface must be disabled if you add IP aliases
217  * to the loopback interface instead of the interface where the
218  * packets for those addresses are received.
219  */
220 int	ip_checkinterface = 0;
221 
222 
223 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
224 
225 int	ipqmaxlen = IFQ_MAXLEN;
226 u_long	in_ifaddrhash;				/* size of hash table - 1 */
227 int	in_ifaddrentries;			/* total number of addrs */
228 struct in_ifaddrhead in_ifaddrhead;
229 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
230 u_long	in_multihash;				/* size of hash table - 1 */
231 int	in_multientries;			/* total number of addrs */
232 struct	in_multihashhead *in_multihashtbl;
233 struct	ifqueue ipintrq;
234 uint16_t ip_id;
235 
236 percpu_t *ipstat_percpu;
237 
238 #ifdef PFIL_HOOKS
239 struct pfil_head inet_pfil_hook;
240 #endif
241 
242 /*
243  * Cached copy of nmbclusters. If nbclusters is different,
244  * recalculate IP parameters derived from nmbclusters.
245  */
246 static int	ip_nmbclusters;			/* copy of nmbclusters */
247 static void	ip_nmbclusters_changed(void);	/* recalc limits */
248 
249 #define CHECK_NMBCLUSTER_PARAMS()				\
250 do {								\
251 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
252 		ip_nmbclusters_changed();			\
253 } while (/*CONSTCOND*/0)
254 
255 /* IP datagram reassembly queues (hashed) */
256 #define IPREASS_NHASH_LOG2      6
257 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
258 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
259 #define IPREASS_HASH(x,y) \
260 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
261 struct ipqhead ipq[IPREASS_NHASH];
262 int	ipq_locked;
263 static int	ip_nfragpackets;	/* packets in reass queue */
264 static int	ip_nfrags;		/* total fragments in reass queues */
265 
266 int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
267 int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
268 
269 
270 /*
271  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
272  * IP reassembly queue buffer managment.
273  *
274  * We keep a count of total IP fragments (NB: not fragmented packets!)
275  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
276  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
277  * total fragments in  reassembly queues.This AIMD policy avoids
278  * repeatedly deleting single packets under heavy fragmentation load
279  * (e.g., from lossy NFS peers).
280  */
281 static u_int	ip_reass_ttl_decr(u_int ticks);
282 static void	ip_reass_drophalf(void);
283 
284 
285 static inline int ipq_lock_try(void);
286 static inline void ipq_unlock(void);
287 
288 static inline int
289 ipq_lock_try(void)
290 {
291 	int s;
292 
293 	/*
294 	 * Use splvm() -- we're blocking things that would cause
295 	 * mbuf allocation.
296 	 */
297 	s = splvm();
298 	if (ipq_locked) {
299 		splx(s);
300 		return (0);
301 	}
302 	ipq_locked = 1;
303 	splx(s);
304 	return (1);
305 }
306 
307 static inline void
308 ipq_unlock(void)
309 {
310 	int s;
311 
312 	s = splvm();
313 	ipq_locked = 0;
314 	splx(s);
315 }
316 
317 #ifdef DIAGNOSTIC
318 #define	IPQ_LOCK()							\
319 do {									\
320 	if (ipq_lock_try() == 0) {					\
321 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
322 		panic("ipq_lock");					\
323 	}								\
324 } while (/*CONSTCOND*/ 0)
325 #define	IPQ_LOCK_CHECK()						\
326 do {									\
327 	if (ipq_locked == 0) {						\
328 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
329 		panic("ipq lock check");				\
330 	}								\
331 } while (/*CONSTCOND*/ 0)
332 #else
333 #define	IPQ_LOCK()		(void) ipq_lock_try()
334 #define	IPQ_LOCK_CHECK()	/* nothing */
335 #endif
336 
337 #define	IPQ_UNLOCK()		ipq_unlock()
338 
339 struct pool inmulti_pool;
340 struct pool ipqent_pool;
341 
342 #ifdef INET_CSUM_COUNTERS
343 #include <sys/device.h>
344 
345 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346     NULL, "inet", "hwcsum bad");
347 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348     NULL, "inet", "hwcsum ok");
349 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350     NULL, "inet", "swcsum");
351 
352 #define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
353 
354 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356 EVCNT_ATTACH_STATIC(ip_swcsum);
357 
358 #else
359 
360 #define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
361 
362 #endif /* INET_CSUM_COUNTERS */
363 
364 /*
365  * We need to save the IP options in case a protocol wants to respond
366  * to an incoming packet over the same route if the packet got here
367  * using IP source routing.  This allows connection establishment and
368  * maintenance when the remote end is on a network that is not known
369  * to us.
370  */
371 int	ip_nhops = 0;
372 static	struct ip_srcrt {
373 	struct	in_addr dst;			/* final destination */
374 	char	nop;				/* one NOP to align */
375 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
376 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377 } ip_srcrt;
378 
379 static void save_rte(u_char *, struct in_addr);
380 
381 #ifdef MBUFTRACE
382 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384 #endif
385 
386 /*
387  * Compute IP limits derived from the value of nmbclusters.
388  */
389 static void
390 ip_nmbclusters_changed(void)
391 {
392 	ip_maxfrags = nmbclusters / 4;
393 	ip_nmbclusters =  nmbclusters;
394 }
395 
396 /*
397  * IP initialization: fill in IP protocol switch table.
398  * All protocols not implemented in kernel go to raw IP protocol handler.
399  */
400 void
401 ip_init(void)
402 {
403 	const struct protosw *pr;
404 	int i;
405 
406 	pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
407 	    NULL, IPL_SOFTNET);
408 	pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
409 	    NULL, IPL_VM);
410 
411 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
412 	if (pr == 0)
413 		panic("ip_init");
414 	for (i = 0; i < IPPROTO_MAX; i++)
415 		ip_protox[i] = pr - inetsw;
416 	for (pr = inetdomain.dom_protosw;
417 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
418 		if (pr->pr_domain->dom_family == PF_INET &&
419 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
420 			ip_protox[pr->pr_protocol] = pr - inetsw;
421 
422 	for (i = 0; i < IPREASS_NHASH; i++)
423 	    	LIST_INIT(&ipq[i]);
424 
425 	ip_initid();
426 	ip_id = time_second & 0xfffff;
427 
428 	ipintrq.ifq_maxlen = ipqmaxlen;
429 	ip_nmbclusters_changed();
430 
431 	TAILQ_INIT(&in_ifaddrhead);
432 	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
433 	    &in_ifaddrhash);
434 	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
435 	    &in_multihash);
436 	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
437 #ifdef GATEWAY
438 	ipflow_init(ip_hashsize);
439 #endif
440 
441 #ifdef PFIL_HOOKS
442 	/* Register our Packet Filter hook. */
443 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
444 	inet_pfil_hook.ph_af   = AF_INET;
445 	i = pfil_head_register(&inet_pfil_hook);
446 	if (i != 0)
447 		printf("ip_init: WARNING: unable to register pfil hook, "
448 		    "error %d\n", i);
449 #endif /* PFIL_HOOKS */
450 
451 #ifdef MBUFTRACE
452 	MOWNER_ATTACH(&ip_tx_mowner);
453 	MOWNER_ATTACH(&ip_rx_mowner);
454 #endif /* MBUFTRACE */
455 
456 	ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
457 }
458 
459 struct	sockaddr_in ipaddr = {
460 	.sin_len = sizeof(ipaddr),
461 	.sin_family = AF_INET,
462 };
463 struct	route ipforward_rt;
464 
465 /*
466  * IP software interrupt routine
467  */
468 void
469 ipintr(void)
470 {
471 	int s;
472 	struct mbuf *m;
473 
474 	mutex_enter(softnet_lock);
475 	KERNEL_LOCK(1, NULL);
476 	while (!IF_IS_EMPTY(&ipintrq)) {
477 		s = splnet();
478 		IF_DEQUEUE(&ipintrq, m);
479 		splx(s);
480 		if (m == NULL)
481 			break;
482 		ip_input(m);
483 	}
484 	KERNEL_UNLOCK_ONE(NULL);
485 	mutex_exit(softnet_lock);
486 }
487 
488 /*
489  * Ip input routine.  Checksum and byte swap header.  If fragmented
490  * try to reassemble.  Process options.  Pass to next level.
491  */
492 void
493 ip_input(struct mbuf *m)
494 {
495 	struct ip *ip = NULL;
496 	struct ipq *fp;
497 	struct in_ifaddr *ia;
498 	struct ifaddr *ifa;
499 	struct ipqent *ipqe;
500 	int hlen = 0, mff, len;
501 	int downmatch;
502 	int checkif;
503 	int srcrt = 0;
504 	int s;
505 	u_int hash;
506 #ifdef FAST_IPSEC
507 	struct m_tag *mtag;
508 	struct tdb_ident *tdbi;
509 	struct secpolicy *sp;
510 	int error;
511 #endif /* FAST_IPSEC */
512 
513 	MCLAIM(m, &ip_rx_mowner);
514 #ifdef	DIAGNOSTIC
515 	if ((m->m_flags & M_PKTHDR) == 0)
516 		panic("ipintr no HDR");
517 #endif
518 
519 	/*
520 	 * If no IP addresses have been set yet but the interfaces
521 	 * are receiving, can't do anything with incoming packets yet.
522 	 */
523 	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
524 		goto bad;
525 	IP_STATINC(IP_STAT_TOTAL);
526 	/*
527 	 * If the IP header is not aligned, slurp it up into a new
528 	 * mbuf with space for link headers, in the event we forward
529 	 * it.  Otherwise, if it is aligned, make sure the entire
530 	 * base IP header is in the first mbuf of the chain.
531 	 */
532 	if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
533 		if ((m = m_copyup(m, sizeof(struct ip),
534 				  (max_linkhdr + 3) & ~3)) == NULL) {
535 			/* XXXJRT new stat, please */
536 			IP_STATINC(IP_STAT_TOOSMALL);
537 			return;
538 		}
539 	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
540 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
541 			IP_STATINC(IP_STAT_TOOSMALL);
542 			return;
543 		}
544 	}
545 	ip = mtod(m, struct ip *);
546 	if (ip->ip_v != IPVERSION) {
547 		IP_STATINC(IP_STAT_BADVERS);
548 		goto bad;
549 	}
550 	hlen = ip->ip_hl << 2;
551 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
552 		IP_STATINC(IP_STAT_BADHLEN);
553 		goto bad;
554 	}
555 	if (hlen > m->m_len) {
556 		if ((m = m_pullup(m, hlen)) == 0) {
557 			IP_STATINC(IP_STAT_BADHLEN);
558 			return;
559 		}
560 		ip = mtod(m, struct ip *);
561 	}
562 
563 	/*
564 	 * RFC1122: packets with a multicast source address are
565 	 * not allowed.
566 	 */
567 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
568 		IP_STATINC(IP_STAT_BADADDR);
569 		goto bad;
570 	}
571 
572 	/* 127/8 must not appear on wire - RFC1122 */
573 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
574 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
575 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
576 			IP_STATINC(IP_STAT_BADADDR);
577 			goto bad;
578 		}
579 	}
580 
581 	switch (m->m_pkthdr.csum_flags &
582 		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
583 		 M_CSUM_IPv4_BAD)) {
584 	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
585 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
586 		goto badcsum;
587 
588 	case M_CSUM_IPv4:
589 		/* Checksum was okay. */
590 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
591 		break;
592 
593 	default:
594 		/*
595 		 * Must compute it ourselves.  Maybe skip checksum on
596 		 * loopback interfaces.
597 		 */
598 		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
599 				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
600 			INET_CSUM_COUNTER_INCR(&ip_swcsum);
601 			if (in_cksum(m, hlen) != 0)
602 				goto badcsum;
603 		}
604 		break;
605 	}
606 
607 	/* Retrieve the packet length. */
608 	len = ntohs(ip->ip_len);
609 
610 	/*
611 	 * Check for additional length bogosity
612 	 */
613 	if (len < hlen) {
614 		IP_STATINC(IP_STAT_BADLEN);
615 		goto bad;
616 	}
617 
618 	/*
619 	 * Check that the amount of data in the buffers
620 	 * is as at least much as the IP header would have us expect.
621 	 * Trim mbufs if longer than we expect.
622 	 * Drop packet if shorter than we expect.
623 	 */
624 	if (m->m_pkthdr.len < len) {
625 		IP_STATINC(IP_STAT_TOOSHORT);
626 		goto bad;
627 	}
628 	if (m->m_pkthdr.len > len) {
629 		if (m->m_len == m->m_pkthdr.len) {
630 			m->m_len = len;
631 			m->m_pkthdr.len = len;
632 		} else
633 			m_adj(m, len - m->m_pkthdr.len);
634 	}
635 
636 #if defined(IPSEC)
637 	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
638 	m->m_flags &= ~M_CANFASTFWD;
639 #else
640 	/*
641 	 * Assume that we can create a fast-forward IP flow entry
642 	 * based on this packet.
643 	 */
644 	m->m_flags |= M_CANFASTFWD;
645 #endif
646 
647 #ifdef PFIL_HOOKS
648 	/*
649 	 * Run through list of hooks for input packets.  If there are any
650 	 * filters which require that additional packets in the flow are
651 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
652 	 * Note that filters must _never_ set this flag, as another filter
653 	 * in the list may have previously cleared it.
654 	 */
655 	/*
656 	 * let ipfilter look at packet on the wire,
657 	 * not the decapsulated packet.
658 	 */
659 #ifdef IPSEC
660 	if (!ipsec_getnhist(m))
661 #elif defined(FAST_IPSEC)
662 	if (!ipsec_indone(m))
663 #else
664 	if (1)
665 #endif
666 	{
667 		struct in_addr odst;
668 
669 		odst = ip->ip_dst;
670 		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
671 		    PFIL_IN) != 0)
672 			return;
673 		if (m == NULL)
674 			return;
675 		ip = mtod(m, struct ip *);
676 		hlen = ip->ip_hl << 2;
677 		/*
678 		 * XXX The setting of "srcrt" here is to prevent ip_forward()
679 		 * from generating ICMP redirects for packets that have
680 		 * been redirected by a hook back out on to the same LAN that
681 		 * they came from and is not an indication that the packet
682 		 * is being inffluenced by source routing options.  This
683 		 * allows things like
684 		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
685 		 * where tlp0 is both on the 1.1.1.0/24 network and is the
686 		 * default route for hosts on 1.1.1.0/24.  Of course this
687 		 * also requires a "map tlp0 ..." to complete the story.
688 		 * One might argue whether or not this kind of network config.
689 		 * should be supported in this manner...
690 		 */
691 		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
692 	}
693 #endif /* PFIL_HOOKS */
694 
695 #ifdef ALTQ
696 	/* XXX Temporary until ALTQ is changed to use a pfil hook */
697 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
698 		/* packet dropped by traffic conditioner */
699 		return;
700 	}
701 #endif
702 
703 	/*
704 	 * Process options and, if not destined for us,
705 	 * ship it on.  ip_dooptions returns 1 when an
706 	 * error was detected (causing an icmp message
707 	 * to be sent and the original packet to be freed).
708 	 */
709 	ip_nhops = 0;		/* for source routed packets */
710 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
711 		return;
712 
713 	/*
714 	 * Enable a consistency check between the destination address
715 	 * and the arrival interface for a unicast packet (the RFC 1122
716 	 * strong ES model) if IP forwarding is disabled and the packet
717 	 * is not locally generated.
718 	 *
719 	 * XXX - Checking also should be disabled if the destination
720 	 * address is ipnat'ed to a different interface.
721 	 *
722 	 * XXX - Checking is incompatible with IP aliases added
723 	 * to the loopback interface instead of the interface where
724 	 * the packets are received.
725 	 *
726 	 * XXX - We need to add a per ifaddr flag for this so that
727 	 * we get finer grain control.
728 	 */
729 	checkif = ip_checkinterface && (ipforwarding == 0) &&
730 	    (m->m_pkthdr.rcvif != NULL) &&
731 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
732 
733 	/*
734 	 * Check our list of addresses, to see if the packet is for us.
735 	 *
736 	 * Traditional 4.4BSD did not consult IFF_UP at all.
737 	 * The behavior here is to treat addresses on !IFF_UP interface
738 	 * as not mine.
739 	 */
740 	downmatch = 0;
741 	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
742 		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
743 			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
744 				continue;
745 			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
746 				break;
747 			else
748 				downmatch++;
749 		}
750 	}
751 	if (ia != NULL)
752 		goto ours;
753 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
754 		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
755 			if (ifa->ifa_addr->sa_family != AF_INET)
756 				continue;
757 			ia = ifatoia(ifa);
758 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
759 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
760 			    /*
761 			     * Look for all-0's host part (old broadcast addr),
762 			     * either for subnet or net.
763 			     */
764 			    ip->ip_dst.s_addr == ia->ia_subnet ||
765 			    ip->ip_dst.s_addr == ia->ia_net)
766 				goto ours;
767 			/*
768 			 * An interface with IP address zero accepts
769 			 * all packets that arrive on that interface.
770 			 */
771 			if (in_nullhost(ia->ia_addr.sin_addr))
772 				goto ours;
773 		}
774 	}
775 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
776 		struct in_multi *inm;
777 #ifdef MROUTING
778 		extern struct socket *ip_mrouter;
779 
780 		if (ip_mrouter) {
781 			/*
782 			 * If we are acting as a multicast router, all
783 			 * incoming multicast packets are passed to the
784 			 * kernel-level multicast forwarding function.
785 			 * The packet is returned (relatively) intact; if
786 			 * ip_mforward() returns a non-zero value, the packet
787 			 * must be discarded, else it may be accepted below.
788 			 *
789 			 * (The IP ident field is put in the same byte order
790 			 * as expected when ip_mforward() is called from
791 			 * ip_output().)
792 			 */
793 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
794 				IP_STATINC(IP_STAT_CANTFORWARD);
795 				m_freem(m);
796 				return;
797 			}
798 
799 			/*
800 			 * The process-level routing demon needs to receive
801 			 * all multicast IGMP packets, whether or not this
802 			 * host belongs to their destination groups.
803 			 */
804 			if (ip->ip_p == IPPROTO_IGMP)
805 				goto ours;
806 			IP_STATINC(IP_STAT_CANTFORWARD);
807 		}
808 #endif
809 		/*
810 		 * See if we belong to the destination multicast group on the
811 		 * arrival interface.
812 		 */
813 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
814 		if (inm == NULL) {
815 			IP_STATINC(IP_STAT_CANTFORWARD);
816 			m_freem(m);
817 			return;
818 		}
819 		goto ours;
820 	}
821 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
822 	    in_nullhost(ip->ip_dst))
823 		goto ours;
824 
825 	/*
826 	 * Not for us; forward if possible and desirable.
827 	 */
828 	if (ipforwarding == 0) {
829 		IP_STATINC(IP_STAT_CANTFORWARD);
830 		m_freem(m);
831 	} else {
832 		/*
833 		 * If ip_dst matched any of my address on !IFF_UP interface,
834 		 * and there's no IFF_UP interface that matches ip_dst,
835 		 * send icmp unreach.  Forwarding it will result in in-kernel
836 		 * forwarding loop till TTL goes to 0.
837 		 */
838 		if (downmatch) {
839 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
840 			IP_STATINC(IP_STAT_CANTFORWARD);
841 			return;
842 		}
843 #ifdef IPSEC
844 		if (ipsec4_in_reject(m, NULL)) {
845 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
846 			goto bad;
847 		}
848 #endif
849 #ifdef FAST_IPSEC
850 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
851 		s = splsoftnet();
852 		if (mtag != NULL) {
853 			tdbi = (struct tdb_ident *)(mtag + 1);
854 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
855 		} else {
856 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
857 						   IP_FORWARDING, &error);
858 		}
859 		if (sp == NULL) {	/* NB: can happen if error */
860 			splx(s);
861 			/*XXX error stat???*/
862 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
863 			goto bad;
864 		}
865 
866 		/*
867 		 * Check security policy against packet attributes.
868 		 */
869 		error = ipsec_in_reject(sp, m);
870 		KEY_FREESP(&sp);
871 		splx(s);
872 		if (error) {
873 			IP_STATINC(IP_STAT_CANTFORWARD);
874 			goto bad;
875 		}
876 
877 		/*
878 		 * Peek at the outbound SP for this packet to determine if
879 		 * it's a Fast Forward candidate.
880 		 */
881 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
882 		if (mtag != NULL)
883 			m->m_flags &= ~M_CANFASTFWD;
884 		else {
885 			s = splsoftnet();
886 			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
887 			    (IP_FORWARDING |
888 			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
889 			    &error, NULL);
890 			if (sp != NULL) {
891 				m->m_flags &= ~M_CANFASTFWD;
892 				KEY_FREESP(&sp);
893 			}
894 			splx(s);
895 		}
896 #endif	/* FAST_IPSEC */
897 
898 		ip_forward(m, srcrt);
899 	}
900 	return;
901 
902 ours:
903 	/*
904 	 * If offset or IP_MF are set, must reassemble.
905 	 * Otherwise, nothing need be done.
906 	 * (We could look in the reassembly queue to see
907 	 * if the packet was previously fragmented,
908 	 * but it's not worth the time; just let them time out.)
909 	 */
910 	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
911 		uint16_t off;
912 		/*
913 		 * Prevent TCP blind data attacks by not allowing non-initial
914 		 * fragments to start at less than 68 bytes (minimal fragment
915 		 * size) and making sure the first fragment is at least 68
916 		 * bytes.
917 		 */
918 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
919 		if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
920 			IP_STATINC(IP_STAT_BADFRAGS);
921 			goto bad;
922 		}
923 		/*
924 		 * Look for queue of fragments
925 		 * of this datagram.
926 		 */
927 		IPQ_LOCK();
928 		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
929 		LIST_FOREACH(fp, &ipq[hash], ipq_q) {
930 			if (ip->ip_id == fp->ipq_id &&
931 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
932 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
933 			    ip->ip_p == fp->ipq_p) {
934 				/*
935 				 * Make sure the TOS is matches previous
936 				 * fragments.
937 				 */
938 				if (ip->ip_tos != fp->ipq_tos) {
939 					IP_STATINC(IP_STAT_BADFRAGS);
940 					IPQ_UNLOCK();
941 					goto bad;
942 				}
943 				goto found;
944 			}
945 		}
946 		fp = 0;
947 found:
948 
949 		/*
950 		 * Adjust ip_len to not reflect header,
951 		 * set ipqe_mff if more fragments are expected,
952 		 * convert offset of this to bytes.
953 		 */
954 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
955 		mff = (ip->ip_off & htons(IP_MF)) != 0;
956 		if (mff) {
957 		        /*
958 		         * Make sure that fragments have a data length
959 			 * that's a non-zero multiple of 8 bytes.
960 		         */
961 			if (ntohs(ip->ip_len) == 0 ||
962 			    (ntohs(ip->ip_len) & 0x7) != 0) {
963 				IP_STATINC(IP_STAT_BADFRAGS);
964 				IPQ_UNLOCK();
965 				goto bad;
966 			}
967 		}
968 		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
969 
970 		/*
971 		 * If datagram marked as having more fragments
972 		 * or if this is not the first fragment,
973 		 * attempt reassembly; if it succeeds, proceed.
974 		 */
975 		if (mff || ip->ip_off != htons(0)) {
976 			IP_STATINC(IP_STAT_FRAGMENTS);
977 			s = splvm();
978 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
979 			splx(s);
980 			if (ipqe == NULL) {
981 				IP_STATINC(IP_STAT_RCVMEMDROP);
982 				IPQ_UNLOCK();
983 				goto bad;
984 			}
985 			ipqe->ipqe_mff = mff;
986 			ipqe->ipqe_m = m;
987 			ipqe->ipqe_ip = ip;
988 			m = ip_reass(ipqe, fp, &ipq[hash]);
989 			if (m == 0) {
990 				IPQ_UNLOCK();
991 				return;
992 			}
993 			IP_STATINC(IP_STAT_REASSEMBLED);
994 			ip = mtod(m, struct ip *);
995 			hlen = ip->ip_hl << 2;
996 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
997 		} else
998 			if (fp)
999 				ip_freef(fp);
1000 		IPQ_UNLOCK();
1001 	}
1002 
1003 #if defined(IPSEC)
1004 	/*
1005 	 * enforce IPsec policy checking if we are seeing last header.
1006 	 * note that we do not visit this with protocols with pcb layer
1007 	 * code - like udp/tcp/raw ip.
1008 	 */
1009 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1010 	    ipsec4_in_reject(m, NULL)) {
1011 		IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1012 		goto bad;
1013 	}
1014 #endif
1015 #ifdef FAST_IPSEC
1016 	/*
1017 	 * enforce IPsec policy checking if we are seeing last header.
1018 	 * note that we do not visit this with protocols with pcb layer
1019 	 * code - like udp/tcp/raw ip.
1020 	 */
1021 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1022 		/*
1023 		 * Check if the packet has already had IPsec processing
1024 		 * done.  If so, then just pass it along.  This tag gets
1025 		 * set during AH, ESP, etc. input handling, before the
1026 		 * packet is returned to the ip input queue for delivery.
1027 		 */
1028 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1029 		s = splsoftnet();
1030 		if (mtag != NULL) {
1031 			tdbi = (struct tdb_ident *)(mtag + 1);
1032 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1033 		} else {
1034 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1035 						   IP_FORWARDING, &error);
1036 		}
1037 		if (sp != NULL) {
1038 			/*
1039 			 * Check security policy against packet attributes.
1040 			 */
1041 			error = ipsec_in_reject(sp, m);
1042 			KEY_FREESP(&sp);
1043 		} else {
1044 			/* XXX error stat??? */
1045 			error = EINVAL;
1046 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1047 		}
1048 		splx(s);
1049 		if (error)
1050 			goto bad;
1051 	}
1052 #endif /* FAST_IPSEC */
1053 
1054 	/*
1055 	 * Switch out to protocol's input routine.
1056 	 */
1057 #if IFA_STATS
1058 	if (ia && ip)
1059 		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1060 #endif
1061 	IP_STATINC(IP_STAT_DELIVERED);
1062     {
1063 	int off = hlen, nh = ip->ip_p;
1064 
1065 	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1066 	return;
1067     }
1068 bad:
1069 	m_freem(m);
1070 	return;
1071 
1072 badcsum:
1073 	IP_STATINC(IP_STAT_BADSUM);
1074 	m_freem(m);
1075 }
1076 
1077 /*
1078  * Take incoming datagram fragment and try to
1079  * reassemble it into whole datagram.  If a chain for
1080  * reassembly of this datagram already exists, then it
1081  * is given as fp; otherwise have to make a chain.
1082  */
1083 struct mbuf *
1084 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1085 {
1086 	struct mbuf *m = ipqe->ipqe_m;
1087 	struct ipqent *nq, *p, *q;
1088 	struct ip *ip;
1089 	struct mbuf *t;
1090 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1091 	int i, next, s;
1092 
1093 	IPQ_LOCK_CHECK();
1094 
1095 	/*
1096 	 * Presence of header sizes in mbufs
1097 	 * would confuse code below.
1098 	 */
1099 	m->m_data += hlen;
1100 	m->m_len -= hlen;
1101 
1102 #ifdef	notyet
1103 	/* make sure fragment limit is up-to-date */
1104 	CHECK_NMBCLUSTER_PARAMS();
1105 
1106 	/* If we have too many fragments, drop the older half. */
1107 	if (ip_nfrags >= ip_maxfrags)
1108 		ip_reass_drophalf(void);
1109 #endif
1110 
1111 	/*
1112 	 * We are about to add a fragment; increment frag count.
1113 	 */
1114 	ip_nfrags++;
1115 
1116 	/*
1117 	 * If first fragment to arrive, create a reassembly queue.
1118 	 */
1119 	if (fp == 0) {
1120 		/*
1121 		 * Enforce upper bound on number of fragmented packets
1122 		 * for which we attempt reassembly;
1123 		 * If maxfrag is 0, never accept fragments.
1124 		 * If maxfrag is -1, accept all fragments without limitation.
1125 		 */
1126 		if (ip_maxfragpackets < 0)
1127 			;
1128 		else if (ip_nfragpackets >= ip_maxfragpackets)
1129 			goto dropfrag;
1130 		ip_nfragpackets++;
1131 		fp = malloc(sizeof (struct ipq), M_FTABLE, M_NOWAIT);
1132 		if (fp == NULL)
1133 			goto dropfrag;
1134 		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1135 		fp->ipq_nfrags = 1;
1136 		fp->ipq_ttl = IPFRAGTTL;
1137 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1138 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1139 		fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1140 		TAILQ_INIT(&fp->ipq_fragq);
1141 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1142 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1143 		p = NULL;
1144 		goto insert;
1145 	} else {
1146 		fp->ipq_nfrags++;
1147 	}
1148 
1149 	/*
1150 	 * Find a segment which begins after this one does.
1151 	 */
1152 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1153 	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1154 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1155 			break;
1156 
1157 	/*
1158 	 * If there is a preceding segment, it may provide some of
1159 	 * our data already.  If so, drop the data from the incoming
1160 	 * segment.  If it provides all of our data, drop us.
1161 	 */
1162 	if (p != NULL) {
1163 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1164 		    ntohs(ipqe->ipqe_ip->ip_off);
1165 		if (i > 0) {
1166 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1167 				goto dropfrag;
1168 			m_adj(ipqe->ipqe_m, i);
1169 			ipqe->ipqe_ip->ip_off =
1170 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1171 			ipqe->ipqe_ip->ip_len =
1172 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1173 		}
1174 	}
1175 
1176 	/*
1177 	 * While we overlap succeeding segments trim them or,
1178 	 * if they are completely covered, dequeue them.
1179 	 */
1180 	for (; q != NULL &&
1181 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1182 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1183 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1184 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1185 		if (i < ntohs(q->ipqe_ip->ip_len)) {
1186 			q->ipqe_ip->ip_len =
1187 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1188 			q->ipqe_ip->ip_off =
1189 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1190 			m_adj(q->ipqe_m, i);
1191 			break;
1192 		}
1193 		nq = TAILQ_NEXT(q, ipqe_q);
1194 		m_freem(q->ipqe_m);
1195 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1196 		s = splvm();
1197 		pool_put(&ipqent_pool, q);
1198 		splx(s);
1199 		fp->ipq_nfrags--;
1200 		ip_nfrags--;
1201 	}
1202 
1203 insert:
1204 	/*
1205 	 * Stick new segment in its place;
1206 	 * check for complete reassembly.
1207 	 */
1208 	if (p == NULL) {
1209 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1210 	} else {
1211 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1212 	}
1213 	next = 0;
1214 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1215 	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1216 		if (ntohs(q->ipqe_ip->ip_off) != next)
1217 			return (0);
1218 		next += ntohs(q->ipqe_ip->ip_len);
1219 	}
1220 	if (p->ipqe_mff)
1221 		return (0);
1222 
1223 	/*
1224 	 * Reassembly is complete.  Check for a bogus message size and
1225 	 * concatenate fragments.
1226 	 */
1227 	q = TAILQ_FIRST(&fp->ipq_fragq);
1228 	ip = q->ipqe_ip;
1229 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1230 		IP_STATINC(IP_STAT_TOOLONG);
1231 		ip_freef(fp);
1232 		return (0);
1233 	}
1234 	m = q->ipqe_m;
1235 	t = m->m_next;
1236 	m->m_next = 0;
1237 	m_cat(m, t);
1238 	nq = TAILQ_NEXT(q, ipqe_q);
1239 	s = splvm();
1240 	pool_put(&ipqent_pool, q);
1241 	splx(s);
1242 	for (q = nq; q != NULL; q = nq) {
1243 		t = q->ipqe_m;
1244 		nq = TAILQ_NEXT(q, ipqe_q);
1245 		s = splvm();
1246 		pool_put(&ipqent_pool, q);
1247 		splx(s);
1248 		m_cat(m, t);
1249 	}
1250 	ip_nfrags -= fp->ipq_nfrags;
1251 
1252 	/*
1253 	 * Create header for new ip packet by
1254 	 * modifying header of first packet;
1255 	 * dequeue and discard fragment reassembly header.
1256 	 * Make header visible.
1257 	 */
1258 	ip->ip_len = htons(next);
1259 	ip->ip_src = fp->ipq_src;
1260 	ip->ip_dst = fp->ipq_dst;
1261 	LIST_REMOVE(fp, ipq_q);
1262 	free(fp, M_FTABLE);
1263 	ip_nfragpackets--;
1264 	m->m_len += (ip->ip_hl << 2);
1265 	m->m_data -= (ip->ip_hl << 2);
1266 	/* some debugging cruft by sklower, below, will go away soon */
1267 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1268 		int plen = 0;
1269 		for (t = m; t; t = t->m_next)
1270 			plen += t->m_len;
1271 		m->m_pkthdr.len = plen;
1272 		m->m_pkthdr.csum_flags = 0;
1273 	}
1274 	return (m);
1275 
1276 dropfrag:
1277 	if (fp != 0)
1278 		fp->ipq_nfrags--;
1279 	ip_nfrags--;
1280 	IP_STATINC(IP_STAT_FRAGDROPPED);
1281 	m_freem(m);
1282 	s = splvm();
1283 	pool_put(&ipqent_pool, ipqe);
1284 	splx(s);
1285 	return (0);
1286 }
1287 
1288 /*
1289  * Free a fragment reassembly header and all
1290  * associated datagrams.
1291  */
1292 void
1293 ip_freef(struct ipq *fp)
1294 {
1295 	struct ipqent *q, *p;
1296 	u_int nfrags = 0;
1297 	int s;
1298 
1299 	IPQ_LOCK_CHECK();
1300 
1301 	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1302 		p = TAILQ_NEXT(q, ipqe_q);
1303 		m_freem(q->ipqe_m);
1304 		nfrags++;
1305 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1306 		s = splvm();
1307 		pool_put(&ipqent_pool, q);
1308 		splx(s);
1309 	}
1310 
1311 	if (nfrags != fp->ipq_nfrags)
1312 	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1313 	ip_nfrags -= nfrags;
1314 	LIST_REMOVE(fp, ipq_q);
1315 	free(fp, M_FTABLE);
1316 	ip_nfragpackets--;
1317 }
1318 
1319 /*
1320  * IP reassembly TTL machinery for  multiplicative drop.
1321  */
1322 static u_int	fragttl_histo[(IPFRAGTTL+1)];
1323 
1324 
1325 /*
1326  * Decrement TTL of all reasembly queue entries by `ticks'.
1327  * Count number of distinct fragments (as opposed to partial, fragmented
1328  * datagrams) in the reassembly queue.  While we  traverse the entire
1329  * reassembly queue, compute and return the median TTL over all fragments.
1330  */
1331 static u_int
1332 ip_reass_ttl_decr(u_int ticks)
1333 {
1334 	u_int nfrags, median, dropfraction, keepfraction;
1335 	struct ipq *fp, *nfp;
1336 	int i;
1337 
1338 	nfrags = 0;
1339 	memset(fragttl_histo, 0, sizeof fragttl_histo);
1340 
1341 	for (i = 0; i < IPREASS_NHASH; i++) {
1342 		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1343 			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1344 				       0 : fp->ipq_ttl - ticks);
1345 			nfp = LIST_NEXT(fp, ipq_q);
1346 			if (fp->ipq_ttl == 0) {
1347 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
1348 				ip_freef(fp);
1349 			} else {
1350 				nfrags += fp->ipq_nfrags;
1351 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1352 			}
1353 		}
1354 	}
1355 
1356 	KASSERT(ip_nfrags == nfrags);
1357 
1358 	/* Find median (or other drop fraction) in histogram. */
1359 	dropfraction = (ip_nfrags / 2);
1360 	keepfraction = ip_nfrags - dropfraction;
1361 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1362 		median +=  fragttl_histo[i];
1363 		if (median >= keepfraction)
1364 			break;
1365 	}
1366 
1367 	/* Return TTL of median (or other fraction). */
1368 	return (u_int)i;
1369 }
1370 
1371 void
1372 ip_reass_drophalf(void)
1373 {
1374 
1375 	u_int median_ticks;
1376 	/*
1377 	 * Compute median TTL of all fragments, and count frags
1378 	 * with that TTL or lower (roughly half of all fragments).
1379 	 */
1380 	median_ticks = ip_reass_ttl_decr(0);
1381 
1382 	/* Drop half. */
1383 	median_ticks = ip_reass_ttl_decr(median_ticks);
1384 
1385 }
1386 
1387 /*
1388  * IP timer processing;
1389  * if a timer expires on a reassembly
1390  * queue, discard it.
1391  */
1392 void
1393 ip_slowtimo(void)
1394 {
1395 	static u_int dropscanidx = 0;
1396 	u_int i;
1397 	u_int median_ttl;
1398 
1399 	mutex_enter(softnet_lock);
1400 	KERNEL_LOCK(1, NULL);
1401 
1402 	IPQ_LOCK();
1403 
1404 	/* Age TTL of all fragments by 1 tick .*/
1405 	median_ttl = ip_reass_ttl_decr(1);
1406 
1407 	/* make sure fragment limit is up-to-date */
1408 	CHECK_NMBCLUSTER_PARAMS();
1409 
1410 	/* If we have too many fragments, drop the older half. */
1411 	if (ip_nfrags > ip_maxfrags)
1412 		ip_reass_ttl_decr(median_ttl);
1413 
1414 	/*
1415 	 * If we are over the maximum number of fragmented packets
1416 	 * (due to the limit being lowered), drain off
1417 	 * enough to get down to the new limit. Start draining
1418 	 * from the reassembly hashqueue most recently drained.
1419 	 */
1420 	if (ip_maxfragpackets < 0)
1421 		;
1422 	else {
1423 		int wrapped = 0;
1424 
1425 		i = dropscanidx;
1426 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1427 			while (LIST_FIRST(&ipq[i]) != NULL)
1428 				ip_freef(LIST_FIRST(&ipq[i]));
1429 			if (++i >= IPREASS_NHASH) {
1430 				i = 0;
1431 			}
1432 			/*
1433 			 * Dont scan forever even if fragment counters are
1434 			 * wrong: stop after scanning entire reassembly queue.
1435 			 */
1436 			if (i == dropscanidx)
1437 			    wrapped = 1;
1438 		}
1439 		dropscanidx = i;
1440 	}
1441 	IPQ_UNLOCK();
1442 
1443 	KERNEL_UNLOCK_ONE(NULL);
1444 	mutex_exit(softnet_lock);
1445 }
1446 
1447 /*
1448  * Drain off all datagram fragments.  Don't acquire softnet_lock as
1449  * can be called from hardware interrupt context.
1450  */
1451 void
1452 ip_drain(void)
1453 {
1454 
1455 	KERNEL_LOCK(1, NULL);
1456 
1457 	/*
1458 	 * We may be called from a device's interrupt context.  If
1459 	 * the ipq is already busy, just bail out now.
1460 	 */
1461 	if (ipq_lock_try() != 0) {
1462 		/*
1463 		 * Drop half the total fragments now. If more mbufs are
1464 		 * needed, we will be called again soon.
1465 		 */
1466 		ip_reass_drophalf();
1467 		IPQ_UNLOCK();
1468 	}
1469 
1470 	KERNEL_UNLOCK_ONE(NULL);
1471 }
1472 
1473 /*
1474  * Do option processing on a datagram,
1475  * possibly discarding it if bad options are encountered,
1476  * or forwarding it if source-routed.
1477  * Returns 1 if packet has been forwarded/freed,
1478  * 0 if the packet should be processed further.
1479  */
1480 int
1481 ip_dooptions(struct mbuf *m)
1482 {
1483 	struct ip *ip = mtod(m, struct ip *);
1484 	u_char *cp, *cp0;
1485 	struct ip_timestamp *ipt;
1486 	struct in_ifaddr *ia;
1487 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1488 	struct in_addr dst;
1489 	n_time ntime;
1490 
1491 	dst = ip->ip_dst;
1492 	cp = (u_char *)(ip + 1);
1493 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1494 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1495 		opt = cp[IPOPT_OPTVAL];
1496 		if (opt == IPOPT_EOL)
1497 			break;
1498 		if (opt == IPOPT_NOP)
1499 			optlen = 1;
1500 		else {
1501 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1502 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1503 				goto bad;
1504 			}
1505 			optlen = cp[IPOPT_OLEN];
1506 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1507 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1508 				goto bad;
1509 			}
1510 		}
1511 		switch (opt) {
1512 
1513 		default:
1514 			break;
1515 
1516 		/*
1517 		 * Source routing with record.
1518 		 * Find interface with current destination address.
1519 		 * If none on this machine then drop if strictly routed,
1520 		 * or do nothing if loosely routed.
1521 		 * Record interface address and bring up next address
1522 		 * component.  If strictly routed make sure next
1523 		 * address is on directly accessible net.
1524 		 */
1525 		case IPOPT_LSRR:
1526 		case IPOPT_SSRR:
1527 			if (ip_allowsrcrt == 0) {
1528 				type = ICMP_UNREACH;
1529 				code = ICMP_UNREACH_NET_PROHIB;
1530 				goto bad;
1531 			}
1532 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1533 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1534 				goto bad;
1535 			}
1536 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1537 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1538 				goto bad;
1539 			}
1540 			ipaddr.sin_addr = ip->ip_dst;
1541 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1542 			if (ia == 0) {
1543 				if (opt == IPOPT_SSRR) {
1544 					type = ICMP_UNREACH;
1545 					code = ICMP_UNREACH_SRCFAIL;
1546 					goto bad;
1547 				}
1548 				/*
1549 				 * Loose routing, and not at next destination
1550 				 * yet; nothing to do except forward.
1551 				 */
1552 				break;
1553 			}
1554 			off--;			/* 0 origin */
1555 			if ((off + sizeof(struct in_addr)) > optlen) {
1556 				/*
1557 				 * End of source route.  Should be for us.
1558 				 */
1559 				save_rte(cp, ip->ip_src);
1560 				break;
1561 			}
1562 			/*
1563 			 * locate outgoing interface
1564 			 */
1565 			memcpy( (void *)&ipaddr.sin_addr, (void *)(cp + off),
1566 			    sizeof(ipaddr.sin_addr));
1567 			if (opt == IPOPT_SSRR)
1568 				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1569 			else
1570 				ia = ip_rtaddr(ipaddr.sin_addr);
1571 			if (ia == 0) {
1572 				type = ICMP_UNREACH;
1573 				code = ICMP_UNREACH_SRCFAIL;
1574 				goto bad;
1575 			}
1576 			ip->ip_dst = ipaddr.sin_addr;
1577 			bcopy((void *)&ia->ia_addr.sin_addr,
1578 			    (void *)(cp + off), sizeof(struct in_addr));
1579 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1580 			/*
1581 			 * Let ip_intr's mcast routing check handle mcast pkts
1582 			 */
1583 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1584 			break;
1585 
1586 		case IPOPT_RR:
1587 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1588 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1589 				goto bad;
1590 			}
1591 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1592 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1593 				goto bad;
1594 			}
1595 			/*
1596 			 * If no space remains, ignore.
1597 			 */
1598 			off--;			/* 0 origin */
1599 			if ((off + sizeof(struct in_addr)) > optlen)
1600 				break;
1601 			memcpy( (void *)&ipaddr.sin_addr, (void *)(&ip->ip_dst),
1602 			    sizeof(ipaddr.sin_addr));
1603 			/*
1604 			 * locate outgoing interface; if we're the destination,
1605 			 * use the incoming interface (should be same).
1606 			 */
1607 			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1608 			    == NULL &&
1609 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1610 				type = ICMP_UNREACH;
1611 				code = ICMP_UNREACH_HOST;
1612 				goto bad;
1613 			}
1614 			bcopy((void *)&ia->ia_addr.sin_addr,
1615 			    (void *)(cp + off), sizeof(struct in_addr));
1616 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1617 			break;
1618 
1619 		case IPOPT_TS:
1620 			code = cp - (u_char *)ip;
1621 			ipt = (struct ip_timestamp *)cp;
1622 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1623 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1624 				goto bad;
1625 			}
1626 			if (ipt->ipt_ptr < 5) {
1627 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1628 				goto bad;
1629 			}
1630 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1631 				if (++ipt->ipt_oflw == 0) {
1632 					code = (u_char *)&ipt->ipt_ptr -
1633 					    (u_char *)ip;
1634 					goto bad;
1635 				}
1636 				break;
1637 			}
1638 			cp0 = (cp + ipt->ipt_ptr - 1);
1639 			switch (ipt->ipt_flg) {
1640 
1641 			case IPOPT_TS_TSONLY:
1642 				break;
1643 
1644 			case IPOPT_TS_TSANDADDR:
1645 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1646 				    sizeof(struct in_addr) > ipt->ipt_len) {
1647 					code = (u_char *)&ipt->ipt_ptr -
1648 					    (u_char *)ip;
1649 					goto bad;
1650 				}
1651 				ipaddr.sin_addr = dst;
1652 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1653 				    m->m_pkthdr.rcvif));
1654 				if (ia == 0)
1655 					continue;
1656 				bcopy(&ia->ia_addr.sin_addr,
1657 				    cp0, sizeof(struct in_addr));
1658 				ipt->ipt_ptr += sizeof(struct in_addr);
1659 				break;
1660 
1661 			case IPOPT_TS_PRESPEC:
1662 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1663 				    sizeof(struct in_addr) > ipt->ipt_len) {
1664 					code = (u_char *)&ipt->ipt_ptr -
1665 					    (u_char *)ip;
1666 					goto bad;
1667 				}
1668 				memcpy( &ipaddr.sin_addr, cp0,
1669 				    sizeof(struct in_addr));
1670 				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1671 				    == NULL)
1672 					continue;
1673 				ipt->ipt_ptr += sizeof(struct in_addr);
1674 				break;
1675 
1676 			default:
1677 				/* XXX can't take &ipt->ipt_flg */
1678 				code = (u_char *)&ipt->ipt_ptr -
1679 				    (u_char *)ip + 1;
1680 				goto bad;
1681 			}
1682 			ntime = iptime();
1683 			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1684 			memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1685 			    sizeof(n_time));
1686 			ipt->ipt_ptr += sizeof(n_time);
1687 		}
1688 	}
1689 	if (forward) {
1690 		if (ip_forwsrcrt == 0) {
1691 			type = ICMP_UNREACH;
1692 			code = ICMP_UNREACH_SRCFAIL;
1693 			goto bad;
1694 		}
1695 		ip_forward(m, 1);
1696 		return (1);
1697 	}
1698 	return (0);
1699 bad:
1700 	icmp_error(m, type, code, 0, 0);
1701 	IP_STATINC(IP_STAT_BADOPTIONS);
1702 	return (1);
1703 }
1704 
1705 /*
1706  * Given address of next destination (final or next hop),
1707  * return internet address info of interface to be used to get there.
1708  */
1709 struct in_ifaddr *
1710 ip_rtaddr(struct in_addr dst)
1711 {
1712 	struct rtentry *rt;
1713 	union {
1714 		struct sockaddr		dst;
1715 		struct sockaddr_in	dst4;
1716 	} u;
1717 
1718 	sockaddr_in_init(&u.dst4, &dst, 0);
1719 
1720 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1721 		return NULL;
1722 
1723 	return ifatoia(rt->rt_ifa);
1724 }
1725 
1726 /*
1727  * Save incoming source route for use in replies,
1728  * to be picked up later by ip_srcroute if the receiver is interested.
1729  */
1730 void
1731 save_rte(u_char *option, struct in_addr dst)
1732 {
1733 	unsigned olen;
1734 
1735 	olen = option[IPOPT_OLEN];
1736 #ifdef DIAGNOSTIC
1737 	if (ipprintfs)
1738 		printf("save_rte: olen %d\n", olen);
1739 #endif /* 0 */
1740 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1741 		return;
1742 	memcpy( (void *)ip_srcrt.srcopt, (void *)option, olen);
1743 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1744 	ip_srcrt.dst = dst;
1745 }
1746 
1747 /*
1748  * Retrieve incoming source route for use in replies,
1749  * in the same form used by setsockopt.
1750  * The first hop is placed before the options, will be removed later.
1751  */
1752 struct mbuf *
1753 ip_srcroute(void)
1754 {
1755 	struct in_addr *p, *q;
1756 	struct mbuf *m;
1757 
1758 	if (ip_nhops == 0)
1759 		return NULL;
1760 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1761 	if (m == 0)
1762 		return NULL;
1763 
1764 	MCLAIM(m, &inetdomain.dom_mowner);
1765 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1766 
1767 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1768 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1769 	    OPTSIZ;
1770 #ifdef DIAGNOSTIC
1771 	if (ipprintfs)
1772 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1773 #endif
1774 
1775 	/*
1776 	 * First save first hop for return route
1777 	 */
1778 	p = &ip_srcrt.route[ip_nhops - 1];
1779 	*(mtod(m, struct in_addr *)) = *p--;
1780 #ifdef DIAGNOSTIC
1781 	if (ipprintfs)
1782 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1783 #endif
1784 
1785 	/*
1786 	 * Copy option fields and padding (nop) to mbuf.
1787 	 */
1788 	ip_srcrt.nop = IPOPT_NOP;
1789 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1790 	memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1791 	    OPTSIZ);
1792 	q = (struct in_addr *)(mtod(m, char *) +
1793 	    sizeof(struct in_addr) + OPTSIZ);
1794 #undef OPTSIZ
1795 	/*
1796 	 * Record return path as an IP source route,
1797 	 * reversing the path (pointers are now aligned).
1798 	 */
1799 	while (p >= ip_srcrt.route) {
1800 #ifdef DIAGNOSTIC
1801 		if (ipprintfs)
1802 			printf(" %x", ntohl(q->s_addr));
1803 #endif
1804 		*q++ = *p--;
1805 	}
1806 	/*
1807 	 * Last hop goes to final destination.
1808 	 */
1809 	*q = ip_srcrt.dst;
1810 #ifdef DIAGNOSTIC
1811 	if (ipprintfs)
1812 		printf(" %x\n", ntohl(q->s_addr));
1813 #endif
1814 	return (m);
1815 }
1816 
1817 const int inetctlerrmap[PRC_NCMDS] = {
1818 	[PRC_MSGSIZE] = EMSGSIZE,
1819 	[PRC_HOSTDEAD] = EHOSTDOWN,
1820 	[PRC_HOSTUNREACH] = EHOSTUNREACH,
1821 	[PRC_UNREACH_NET] = EHOSTUNREACH,
1822 	[PRC_UNREACH_HOST] = EHOSTUNREACH,
1823 	[PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1824 	[PRC_UNREACH_PORT] = ECONNREFUSED,
1825 	[PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1826 	[PRC_PARAMPROB] = ENOPROTOOPT,
1827 };
1828 
1829 /*
1830  * Forward a packet.  If some error occurs return the sender
1831  * an icmp packet.  Note we can't always generate a meaningful
1832  * icmp message because icmp doesn't have a large enough repertoire
1833  * of codes and types.
1834  *
1835  * If not forwarding, just drop the packet.  This could be confusing
1836  * if ipforwarding was zero but some routing protocol was advancing
1837  * us as a gateway to somewhere.  However, we must let the routing
1838  * protocol deal with that.
1839  *
1840  * The srcrt parameter indicates whether the packet is being forwarded
1841  * via a source route.
1842  */
1843 void
1844 ip_forward(struct mbuf *m, int srcrt)
1845 {
1846 	struct ip *ip = mtod(m, struct ip *);
1847 	struct rtentry *rt;
1848 	int error, type = 0, code = 0, destmtu = 0;
1849 	struct mbuf *mcopy;
1850 	n_long dest;
1851 	union {
1852 		struct sockaddr		dst;
1853 		struct sockaddr_in	dst4;
1854 	} u;
1855 
1856 	/*
1857 	 * We are now in the output path.
1858 	 */
1859 	MCLAIM(m, &ip_tx_mowner);
1860 
1861 	/*
1862 	 * Clear any in-bound checksum flags for this packet.
1863 	 */
1864 	m->m_pkthdr.csum_flags = 0;
1865 
1866 	dest = 0;
1867 #ifdef DIAGNOSTIC
1868 	if (ipprintfs) {
1869 		printf("forward: src %s ", inet_ntoa(ip->ip_src));
1870 		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1871 	}
1872 #endif
1873 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1874 		IP_STATINC(IP_STAT_CANTFORWARD);
1875 		m_freem(m);
1876 		return;
1877 	}
1878 	if (ip->ip_ttl <= IPTTLDEC) {
1879 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1880 		return;
1881 	}
1882 
1883 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1884 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1885 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1886 		return;
1887 	}
1888 
1889 	/*
1890 	 * Save at most 68 bytes of the packet in case
1891 	 * we need to generate an ICMP message to the src.
1892 	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1893 	 */
1894 	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1895 	if (mcopy)
1896 		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1897 
1898 	ip->ip_ttl -= IPTTLDEC;
1899 
1900 	/*
1901 	 * If forwarding packet using same interface that it came in on,
1902 	 * perhaps should send a redirect to sender to shortcut a hop.
1903 	 * Only send redirect if source is sending directly to us,
1904 	 * and if packet was not source routed (or has any options).
1905 	 * Also, don't send redirect if forwarding using a default route
1906 	 * or a route modified by a redirect.
1907 	 */
1908 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1909 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1910 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1911 	    ipsendredirects && !srcrt) {
1912 		if (rt->rt_ifa &&
1913 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1914 		    ifatoia(rt->rt_ifa)->ia_subnet) {
1915 			if (rt->rt_flags & RTF_GATEWAY)
1916 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1917 			else
1918 				dest = ip->ip_dst.s_addr;
1919 			/*
1920 			 * Router requirements says to only send host
1921 			 * redirects.
1922 			 */
1923 			type = ICMP_REDIRECT;
1924 			code = ICMP_REDIRECT_HOST;
1925 #ifdef DIAGNOSTIC
1926 			if (ipprintfs)
1927 				printf("redirect (%d) to %x\n", code,
1928 				    (u_int32_t)dest);
1929 #endif
1930 		}
1931 	}
1932 
1933 	error = ip_output(m, NULL, &ipforward_rt,
1934 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1935 	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1936 
1937 	if (error)
1938 		IP_STATINC(IP_STAT_CANTFORWARD);
1939 	else {
1940 		uint64_t *ips = IP_STAT_GETREF();
1941 		ips[IP_STAT_FORWARD]++;
1942 		if (type) {
1943 			ips[IP_STAT_REDIRECTSENT]++;
1944 			IP_STAT_PUTREF();
1945 		} else {
1946 			IP_STAT_PUTREF();
1947 			if (mcopy) {
1948 #ifdef GATEWAY
1949 				if (mcopy->m_flags & M_CANFASTFWD)
1950 					ipflow_create(&ipforward_rt, mcopy);
1951 #endif
1952 				m_freem(mcopy);
1953 			}
1954 			return;
1955 		}
1956 	}
1957 	if (mcopy == NULL)
1958 		return;
1959 
1960 	switch (error) {
1961 
1962 	case 0:				/* forwarded, but need redirect */
1963 		/* type, code set above */
1964 		break;
1965 
1966 	case ENETUNREACH:		/* shouldn't happen, checked above */
1967 	case EHOSTUNREACH:
1968 	case ENETDOWN:
1969 	case EHOSTDOWN:
1970 	default:
1971 		type = ICMP_UNREACH;
1972 		code = ICMP_UNREACH_HOST;
1973 		break;
1974 
1975 	case EMSGSIZE:
1976 		type = ICMP_UNREACH;
1977 		code = ICMP_UNREACH_NEEDFRAG;
1978 
1979 		if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1980 			destmtu = rt->rt_ifp->if_mtu;
1981 
1982 #if defined(IPSEC) || defined(FAST_IPSEC)
1983 		{
1984 			/*
1985 			 * If the packet is routed over IPsec tunnel, tell the
1986 			 * originator the tunnel MTU.
1987 			 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1988 			 * XXX quickhack!!!
1989 			 */
1990 
1991 			struct secpolicy *sp;
1992 			int ipsecerror;
1993 			size_t ipsechdr;
1994 			struct route *ro;
1995 
1996 			sp = ipsec4_getpolicybyaddr(mcopy,
1997 			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1998 			    &ipsecerror);
1999 
2000 			if (sp != NULL) {
2001 				/* count IPsec header size */
2002 				ipsechdr = ipsec4_hdrsiz(mcopy,
2003 				    IPSEC_DIR_OUTBOUND, NULL);
2004 
2005 				/*
2006 				 * find the correct route for outer IPv4
2007 				 * header, compute tunnel MTU.
2008 				 */
2009 
2010 				if (sp->req != NULL
2011 				 && sp->req->sav != NULL
2012 				 && sp->req->sav->sah != NULL) {
2013 					ro = &sp->req->sav->sah->sa_route;
2014 					rt = rtcache_validate(ro);
2015 					if (rt && rt->rt_ifp) {
2016 						destmtu =
2017 						    rt->rt_rmx.rmx_mtu ?
2018 						    rt->rt_rmx.rmx_mtu :
2019 						    rt->rt_ifp->if_mtu;
2020 						destmtu -= ipsechdr;
2021 					}
2022 				}
2023 
2024 #ifdef	IPSEC
2025 				key_freesp(sp);
2026 #else
2027 				KEY_FREESP(&sp);
2028 #endif
2029 			}
2030 		}
2031 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2032 		IP_STATINC(IP_STAT_CANTFRAG);
2033 		break;
2034 
2035 	case ENOBUFS:
2036 #if 1
2037 		/*
2038 		 * a router should not generate ICMP_SOURCEQUENCH as
2039 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2040 		 * source quench could be a big problem under DoS attacks,
2041 		 * or if the underlying interface is rate-limited.
2042 		 */
2043 		if (mcopy)
2044 			m_freem(mcopy);
2045 		return;
2046 #else
2047 		type = ICMP_SOURCEQUENCH;
2048 		code = 0;
2049 		break;
2050 #endif
2051 	}
2052 	icmp_error(mcopy, type, code, dest, destmtu);
2053 }
2054 
2055 void
2056 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2057     struct mbuf *m)
2058 {
2059 
2060 	if (inp->inp_socket->so_options & SO_TIMESTAMP
2061 #ifdef SO_OTIMESTAMP
2062 	    || inp->inp_socket->so_options & SO_OTIMESTAMP
2063 #endif
2064 	    ) {
2065 		struct timeval tv;
2066 
2067 		microtime(&tv);
2068 #ifdef SO_OTIMESTAMP
2069 		if (inp->inp_socket->so_options & SO_OTIMESTAMP) {
2070 			struct timeval50 tv50;
2071 			timeval_to_timeval50(&tv, &tv50);
2072 			*mp = sbcreatecontrol((void *) &tv50, sizeof(tv50),
2073 			    SCM_OTIMESTAMP, SOL_SOCKET);
2074 		} else
2075 #endif
2076 		*mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2077 		    SCM_TIMESTAMP, SOL_SOCKET);
2078 		if (*mp)
2079 			mp = &(*mp)->m_next;
2080 	}
2081 	if (inp->inp_flags & INP_RECVDSTADDR) {
2082 		*mp = sbcreatecontrol((void *) &ip->ip_dst,
2083 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2084 		if (*mp)
2085 			mp = &(*mp)->m_next;
2086 	}
2087 #ifdef notyet
2088 	/*
2089 	 * XXX
2090 	 * Moving these out of udp_input() made them even more broken
2091 	 * than they already were.
2092 	 *	- fenner@parc.xerox.com
2093 	 */
2094 	/* options were tossed already */
2095 	if (inp->inp_flags & INP_RECVOPTS) {
2096 		*mp = sbcreatecontrol((void *) opts_deleted_above,
2097 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2098 		if (*mp)
2099 			mp = &(*mp)->m_next;
2100 	}
2101 	/* ip_srcroute doesn't do what we want here, need to fix */
2102 	if (inp->inp_flags & INP_RECVRETOPTS) {
2103 		*mp = sbcreatecontrol((void *) ip_srcroute(),
2104 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2105 		if (*mp)
2106 			mp = &(*mp)->m_next;
2107 	}
2108 #endif
2109 	if (inp->inp_flags & INP_RECVIF) {
2110 		struct sockaddr_dl sdl;
2111 
2112 		sockaddr_dl_init(&sdl, sizeof(sdl),
2113 		    (m->m_pkthdr.rcvif != NULL)
2114 		        ?  m->m_pkthdr.rcvif->if_index
2115 			: 0,
2116 			0, NULL, 0, NULL, 0);
2117 		*mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2118 		if (*mp)
2119 			mp = &(*mp)->m_next;
2120 	}
2121 }
2122 
2123 /*
2124  * sysctl helper routine for net.inet.ip.forwsrcrt.
2125  */
2126 static int
2127 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2128 {
2129 	int error, tmp;
2130 	struct sysctlnode node;
2131 
2132 	node = *rnode;
2133 	tmp = ip_forwsrcrt;
2134 	node.sysctl_data = &tmp;
2135 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2136 	if (error || newp == NULL)
2137 		return (error);
2138 
2139 	if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2140 	    0, NULL, NULL, NULL))
2141 		return (EPERM);
2142 
2143 	ip_forwsrcrt = tmp;
2144 
2145 	return (0);
2146 }
2147 
2148 /*
2149  * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2150  * range of the new value and tweaks timers if it changes.
2151  */
2152 static int
2153 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2154 {
2155 	int error, tmp;
2156 	struct sysctlnode node;
2157 
2158 	node = *rnode;
2159 	tmp = ip_mtudisc_timeout;
2160 	node.sysctl_data = &tmp;
2161 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2162 	if (error || newp == NULL)
2163 		return (error);
2164 	if (tmp < 0)
2165 		return (EINVAL);
2166 
2167 	mutex_enter(softnet_lock);
2168 
2169 	ip_mtudisc_timeout = tmp;
2170 	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2171 
2172 	mutex_exit(softnet_lock);
2173 
2174 	return (0);
2175 }
2176 
2177 #ifdef GATEWAY
2178 /*
2179  * sysctl helper routine for net.inet.ip.maxflows.
2180  */
2181 static int
2182 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2183 {
2184 	int error;
2185 
2186 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
2187 	if (error || newp == NULL)
2188 		return (error);
2189 
2190 	mutex_enter(softnet_lock);
2191 	KERNEL_LOCK(1, NULL);
2192 
2193 	ipflow_prune();
2194 
2195 	KERNEL_UNLOCK_ONE(NULL);
2196 	mutex_exit(softnet_lock);
2197 
2198 	return (0);
2199 }
2200 
2201 static int
2202 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2203 {
2204 	int error, tmp;
2205 	struct sysctlnode node;
2206 
2207 	node = *rnode;
2208 	tmp = ip_hashsize;
2209 	node.sysctl_data = &tmp;
2210 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2211 	if (error || newp == NULL)
2212 		return (error);
2213 
2214 	if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2215 		/*
2216 		 * Can only fail due to malloc()
2217 		 */
2218 		mutex_enter(softnet_lock);
2219 		KERNEL_LOCK(1, NULL);
2220 
2221 		error = ipflow_invalidate_all(tmp);
2222 
2223 		KERNEL_UNLOCK_ONE(NULL);
2224 		mutex_exit(softnet_lock);
2225 
2226 	} else {
2227 		/*
2228 		 * EINVAL if not a power of 2
2229 	         */
2230 		error = EINVAL;
2231 	}
2232 
2233 	return error;
2234 }
2235 #endif /* GATEWAY */
2236 
2237 static int
2238 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2239 {
2240 
2241 	return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2242 }
2243 
2244 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2245 {
2246 	extern int subnetsarelocal, hostzeroisbroadcast;
2247 
2248 	sysctl_createv(clog, 0, NULL, NULL,
2249 		       CTLFLAG_PERMANENT,
2250 		       CTLTYPE_NODE, "net", NULL,
2251 		       NULL, 0, NULL, 0,
2252 		       CTL_NET, CTL_EOL);
2253 	sysctl_createv(clog, 0, NULL, NULL,
2254 		       CTLFLAG_PERMANENT,
2255 		       CTLTYPE_NODE, "inet",
2256 		       SYSCTL_DESCR("PF_INET related settings"),
2257 		       NULL, 0, NULL, 0,
2258 		       CTL_NET, PF_INET, CTL_EOL);
2259 	sysctl_createv(clog, 0, NULL, NULL,
2260 		       CTLFLAG_PERMANENT,
2261 		       CTLTYPE_NODE, "ip",
2262 		       SYSCTL_DESCR("IPv4 related settings"),
2263 		       NULL, 0, NULL, 0,
2264 		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2265 
2266 	sysctl_createv(clog, 0, NULL, NULL,
2267 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2268 		       CTLTYPE_INT, "forwarding",
2269 		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2270 		       NULL, 0, &ipforwarding, 0,
2271 		       CTL_NET, PF_INET, IPPROTO_IP,
2272 		       IPCTL_FORWARDING, CTL_EOL);
2273 	sysctl_createv(clog, 0, NULL, NULL,
2274 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2275 		       CTLTYPE_INT, "redirect",
2276 		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2277 		       NULL, 0, &ipsendredirects, 0,
2278 		       CTL_NET, PF_INET, IPPROTO_IP,
2279 		       IPCTL_SENDREDIRECTS, CTL_EOL);
2280 	sysctl_createv(clog, 0, NULL, NULL,
2281 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2282 		       CTLTYPE_INT, "ttl",
2283 		       SYSCTL_DESCR("Default TTL for an INET datagram"),
2284 		       NULL, 0, &ip_defttl, 0,
2285 		       CTL_NET, PF_INET, IPPROTO_IP,
2286 		       IPCTL_DEFTTL, CTL_EOL);
2287 #ifdef IPCTL_DEFMTU
2288 	sysctl_createv(clog, 0, NULL, NULL,
2289 		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2290 		       CTLTYPE_INT, "mtu",
2291 		       SYSCTL_DESCR("Default MTA for an INET route"),
2292 		       NULL, 0, &ip_mtu, 0,
2293 		       CTL_NET, PF_INET, IPPROTO_IP,
2294 		       IPCTL_DEFMTU, CTL_EOL);
2295 #endif /* IPCTL_DEFMTU */
2296 	sysctl_createv(clog, 0, NULL, NULL,
2297 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2298 		       CTLTYPE_INT, "forwsrcrt",
2299 		       SYSCTL_DESCR("Enable forwarding of source-routed "
2300 				    "datagrams"),
2301 		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2302 		       CTL_NET, PF_INET, IPPROTO_IP,
2303 		       IPCTL_FORWSRCRT, CTL_EOL);
2304 	sysctl_createv(clog, 0, NULL, NULL,
2305 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2306 		       CTLTYPE_INT, "directed-broadcast",
2307 		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2308 		       NULL, 0, &ip_directedbcast, 0,
2309 		       CTL_NET, PF_INET, IPPROTO_IP,
2310 		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2311 	sysctl_createv(clog, 0, NULL, NULL,
2312 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2313 		       CTLTYPE_INT, "allowsrcrt",
2314 		       SYSCTL_DESCR("Accept source-routed datagrams"),
2315 		       NULL, 0, &ip_allowsrcrt, 0,
2316 		       CTL_NET, PF_INET, IPPROTO_IP,
2317 		       IPCTL_ALLOWSRCRT, CTL_EOL);
2318 	sysctl_createv(clog, 0, NULL, NULL,
2319 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2320 		       CTLTYPE_INT, "subnetsarelocal",
2321 		       SYSCTL_DESCR("Whether logical subnets are considered "
2322 				    "local"),
2323 		       NULL, 0, &subnetsarelocal, 0,
2324 		       CTL_NET, PF_INET, IPPROTO_IP,
2325 		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2326 	sysctl_createv(clog, 0, NULL, NULL,
2327 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2328 		       CTLTYPE_INT, "mtudisc",
2329 		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2330 		       NULL, 0, &ip_mtudisc, 0,
2331 		       CTL_NET, PF_INET, IPPROTO_IP,
2332 		       IPCTL_MTUDISC, CTL_EOL);
2333 	sysctl_createv(clog, 0, NULL, NULL,
2334 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2335 		       CTLTYPE_INT, "anonportmin",
2336 		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2337 		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2338 		       CTL_NET, PF_INET, IPPROTO_IP,
2339 		       IPCTL_ANONPORTMIN, CTL_EOL);
2340 	sysctl_createv(clog, 0, NULL, NULL,
2341 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2342 		       CTLTYPE_INT, "anonportmax",
2343 		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
2344 		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2345 		       CTL_NET, PF_INET, IPPROTO_IP,
2346 		       IPCTL_ANONPORTMAX, CTL_EOL);
2347 	sysctl_createv(clog, 0, NULL, NULL,
2348 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2349 		       CTLTYPE_INT, "mtudisctimeout",
2350 		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2351 		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2352 		       CTL_NET, PF_INET, IPPROTO_IP,
2353 		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2354 #ifdef GATEWAY
2355 	sysctl_createv(clog, 0, NULL, NULL,
2356 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2357 		       CTLTYPE_INT, "maxflows",
2358 		       SYSCTL_DESCR("Number of flows for fast forwarding"),
2359 		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2360 		       CTL_NET, PF_INET, IPPROTO_IP,
2361 		       IPCTL_MAXFLOWS, CTL_EOL);
2362 	sysctl_createv(clog, 0, NULL, NULL,
2363 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2364 			CTLTYPE_INT, "hashsize",
2365 			SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2366 			sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2367 			CTL_NET, PF_INET, IPPROTO_IP,
2368 			CTL_CREATE, CTL_EOL);
2369 #endif /* GATEWAY */
2370 	sysctl_createv(clog, 0, NULL, NULL,
2371 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2372 		       CTLTYPE_INT, "hostzerobroadcast",
2373 		       SYSCTL_DESCR("All zeroes address is broadcast address"),
2374 		       NULL, 0, &hostzeroisbroadcast, 0,
2375 		       CTL_NET, PF_INET, IPPROTO_IP,
2376 		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2377 #if NGIF > 0
2378 	sysctl_createv(clog, 0, NULL, NULL,
2379 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2380 		       CTLTYPE_INT, "gifttl",
2381 		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2382 		       NULL, 0, &ip_gif_ttl, 0,
2383 		       CTL_NET, PF_INET, IPPROTO_IP,
2384 		       IPCTL_GIF_TTL, CTL_EOL);
2385 #endif /* NGIF */
2386 #ifndef IPNOPRIVPORTS
2387 	sysctl_createv(clog, 0, NULL, NULL,
2388 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2389 		       CTLTYPE_INT, "lowportmin",
2390 		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
2391 				    "to assign"),
2392 		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2393 		       CTL_NET, PF_INET, IPPROTO_IP,
2394 		       IPCTL_LOWPORTMIN, CTL_EOL);
2395 	sysctl_createv(clog, 0, NULL, NULL,
2396 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2397 		       CTLTYPE_INT, "lowportmax",
2398 		       SYSCTL_DESCR("Highest privileged ephemeral port number "
2399 				    "to assign"),
2400 		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2401 		       CTL_NET, PF_INET, IPPROTO_IP,
2402 		       IPCTL_LOWPORTMAX, CTL_EOL);
2403 #endif /* IPNOPRIVPORTS */
2404 	sysctl_createv(clog, 0, NULL, NULL,
2405 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2406 		       CTLTYPE_INT, "maxfragpackets",
2407 		       SYSCTL_DESCR("Maximum number of fragments to retain for "
2408 				    "possible reassembly"),
2409 		       NULL, 0, &ip_maxfragpackets, 0,
2410 		       CTL_NET, PF_INET, IPPROTO_IP,
2411 		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2412 #if NGRE > 0
2413 	sysctl_createv(clog, 0, NULL, NULL,
2414 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2415 		       CTLTYPE_INT, "grettl",
2416 		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2417 		       NULL, 0, &ip_gre_ttl, 0,
2418 		       CTL_NET, PF_INET, IPPROTO_IP,
2419 		       IPCTL_GRE_TTL, CTL_EOL);
2420 #endif /* NGRE */
2421 	sysctl_createv(clog, 0, NULL, NULL,
2422 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2423 		       CTLTYPE_INT, "checkinterface",
2424 		       SYSCTL_DESCR("Enable receive side of Strong ES model "
2425 				    "from RFC1122"),
2426 		       NULL, 0, &ip_checkinterface, 0,
2427 		       CTL_NET, PF_INET, IPPROTO_IP,
2428 		       IPCTL_CHECKINTERFACE, CTL_EOL);
2429 	sysctl_createv(clog, 0, NULL, NULL,
2430 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2431 		       CTLTYPE_INT, "random_id",
2432 		       SYSCTL_DESCR("Assign random ip_id values"),
2433 		       NULL, 0, &ip_do_randomid, 0,
2434 		       CTL_NET, PF_INET, IPPROTO_IP,
2435 		       IPCTL_RANDOMID, CTL_EOL);
2436 	sysctl_createv(clog, 0, NULL, NULL,
2437 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2438 		       CTLTYPE_INT, "do_loopback_cksum",
2439 		       SYSCTL_DESCR("Perform IP checksum on loopback"),
2440 		       NULL, 0, &ip_do_loopback_cksum, 0,
2441 		       CTL_NET, PF_INET, IPPROTO_IP,
2442 		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
2443 	sysctl_createv(clog, 0, NULL, NULL,
2444 		       CTLFLAG_PERMANENT,
2445 		       CTLTYPE_STRUCT, "stats",
2446 		       SYSCTL_DESCR("IP statistics"),
2447 		       sysctl_net_inet_ip_stats, 0, NULL, 0,
2448 		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2449 		       CTL_EOL);
2450 }
2451 
2452 void
2453 ip_statinc(u_int stat)
2454 {
2455 
2456 	KASSERT(stat < IP_NSTATS);
2457 	IP_STATINC(stat);
2458 }
2459