xref: /netbsd-src/sys/netinet/ip_input.c (revision 4b71a66d0f279143147d63ebfcfd8a59499a3684)
1 /*	$NetBSD: ip_input.c,v 1.272 2008/05/05 17:11:17 ad Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.272 2008/05/05 17:11:17 ad Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_gateway.h"
98 #include "opt_pfil_hooks.h"
99 #include "opt_ipsec.h"
100 #include "opt_mrouting.h"
101 #include "opt_mbuftrace.h"
102 #include "opt_inet_csum.h"
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/errno.h>
113 #include <sys/time.h>
114 #include <sys/kernel.h>
115 #include <sys/pool.h>
116 #include <sys/sysctl.h>
117 #include <sys/kauth.h>
118 
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123 
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/in_pcb.h>
128 #include <netinet/in_proto.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/ip_private.h>
132 #include <netinet/ip_icmp.h>
133 /* just for gif_ttl */
134 #include <netinet/in_gif.h>
135 #include "gif.h"
136 #include <net/if_gre.h>
137 #include "gre.h"
138 
139 #ifdef MROUTING
140 #include <netinet/ip_mroute.h>
141 #endif
142 
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec_private.h>
146 #include <netkey/key.h>
147 #endif
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #endif	/* FAST_IPSEC*/
152 
153 #ifndef	IPFORWARDING
154 #ifdef GATEWAY
155 #define	IPFORWARDING	1	/* forward IP packets not for us */
156 #else /* GATEWAY */
157 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
158 #endif /* GATEWAY */
159 #endif /* IPFORWARDING */
160 #ifndef	IPSENDREDIRECTS
161 #define	IPSENDREDIRECTS	1
162 #endif
163 #ifndef IPFORWSRCRT
164 #define	IPFORWSRCRT	1	/* forward source-routed packets */
165 #endif
166 #ifndef IPALLOWSRCRT
167 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
168 #endif
169 #ifndef IPMTUDISC
170 #define IPMTUDISC	1
171 #endif
172 #ifndef IPMTUDISCTIMEOUT
173 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
174 #endif
175 
176 /*
177  * Note: DIRECTED_BROADCAST is handled this way so that previous
178  * configuration using this option will Just Work.
179  */
180 #ifndef IPDIRECTEDBCAST
181 #ifdef DIRECTED_BROADCAST
182 #define IPDIRECTEDBCAST	1
183 #else
184 #define	IPDIRECTEDBCAST	0
185 #endif /* DIRECTED_BROADCAST */
186 #endif /* IPDIRECTEDBCAST */
187 int	ipforwarding = IPFORWARDING;
188 int	ipsendredirects = IPSENDREDIRECTS;
189 int	ip_defttl = IPDEFTTL;
190 int	ip_forwsrcrt = IPFORWSRCRT;
191 int	ip_directedbcast = IPDIRECTEDBCAST;
192 int	ip_allowsrcrt = IPALLOWSRCRT;
193 int	ip_mtudisc = IPMTUDISC;
194 int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
195 #ifdef DIAGNOSTIC
196 int	ipprintfs = 0;
197 #endif
198 
199 int	ip_do_randomid = 0;
200 
201 /*
202  * XXX - Setting ip_checkinterface mostly implements the receive side of
203  * the Strong ES model described in RFC 1122, but since the routing table
204  * and transmit implementation do not implement the Strong ES model,
205  * setting this to 1 results in an odd hybrid.
206  *
207  * XXX - ip_checkinterface currently must be disabled if you use ipnat
208  * to translate the destination address to another local interface.
209  *
210  * XXX - ip_checkinterface must be disabled if you add IP aliases
211  * to the loopback interface instead of the interface where the
212  * packets for those addresses are received.
213  */
214 int	ip_checkinterface = 0;
215 
216 
217 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
218 
219 int	ipqmaxlen = IFQ_MAXLEN;
220 u_long	in_ifaddrhash;				/* size of hash table - 1 */
221 int	in_ifaddrentries;			/* total number of addrs */
222 struct in_ifaddrhead in_ifaddrhead;
223 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
224 u_long	in_multihash;				/* size of hash table - 1 */
225 int	in_multientries;			/* total number of addrs */
226 struct	in_multihashhead *in_multihashtbl;
227 struct	ifqueue ipintrq;
228 uint16_t ip_id;
229 
230 percpu_t *ipstat_percpu;
231 
232 #ifdef PFIL_HOOKS
233 struct pfil_head inet_pfil_hook;
234 #endif
235 
236 /*
237  * Cached copy of nmbclusters. If nbclusters is different,
238  * recalculate IP parameters derived from nmbclusters.
239  */
240 static int	ip_nmbclusters;			/* copy of nmbclusters */
241 static void	ip_nmbclusters_changed(void);	/* recalc limits */
242 
243 #define CHECK_NMBCLUSTER_PARAMS()				\
244 do {								\
245 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
246 		ip_nmbclusters_changed();			\
247 } while (/*CONSTCOND*/0)
248 
249 /* IP datagram reassembly queues (hashed) */
250 #define IPREASS_NHASH_LOG2      6
251 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
252 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
253 #define IPREASS_HASH(x,y) \
254 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
255 struct ipqhead ipq[IPREASS_NHASH];
256 int	ipq_locked;
257 static int	ip_nfragpackets;	/* packets in reass queue */
258 static int	ip_nfrags;		/* total fragments in reass queues */
259 
260 int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
261 int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
262 
263 
264 /*
265  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
266  * IP reassembly queue buffer managment.
267  *
268  * We keep a count of total IP fragments (NB: not fragmented packets!)
269  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
270  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
271  * total fragments in  reassembly queues.This AIMD policy avoids
272  * repeatedly deleting single packets under heavy fragmentation load
273  * (e.g., from lossy NFS peers).
274  */
275 static u_int	ip_reass_ttl_decr(u_int ticks);
276 static void	ip_reass_drophalf(void);
277 
278 
279 static inline int ipq_lock_try(void);
280 static inline void ipq_unlock(void);
281 
282 static inline int
283 ipq_lock_try(void)
284 {
285 	int s;
286 
287 	/*
288 	 * Use splvm() -- we're blocking things that would cause
289 	 * mbuf allocation.
290 	 */
291 	s = splvm();
292 	if (ipq_locked) {
293 		splx(s);
294 		return (0);
295 	}
296 	ipq_locked = 1;
297 	splx(s);
298 	return (1);
299 }
300 
301 static inline void
302 ipq_unlock(void)
303 {
304 	int s;
305 
306 	s = splvm();
307 	ipq_locked = 0;
308 	splx(s);
309 }
310 
311 #ifdef DIAGNOSTIC
312 #define	IPQ_LOCK()							\
313 do {									\
314 	if (ipq_lock_try() == 0) {					\
315 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
316 		panic("ipq_lock");					\
317 	}								\
318 } while (/*CONSTCOND*/ 0)
319 #define	IPQ_LOCK_CHECK()						\
320 do {									\
321 	if (ipq_locked == 0) {						\
322 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
323 		panic("ipq lock check");				\
324 	}								\
325 } while (/*CONSTCOND*/ 0)
326 #else
327 #define	IPQ_LOCK()		(void) ipq_lock_try()
328 #define	IPQ_LOCK_CHECK()	/* nothing */
329 #endif
330 
331 #define	IPQ_UNLOCK()		ipq_unlock()
332 
333 POOL_INIT(inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL,
334     IPL_SOFTNET);
335 POOL_INIT(ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL,
336     IPL_VM);
337 
338 #ifdef INET_CSUM_COUNTERS
339 #include <sys/device.h>
340 
341 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342     NULL, "inet", "hwcsum bad");
343 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344     NULL, "inet", "hwcsum ok");
345 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346     NULL, "inet", "swcsum");
347 
348 #define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
349 
350 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
351 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
352 EVCNT_ATTACH_STATIC(ip_swcsum);
353 
354 #else
355 
356 #define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
357 
358 #endif /* INET_CSUM_COUNTERS */
359 
360 /*
361  * We need to save the IP options in case a protocol wants to respond
362  * to an incoming packet over the same route if the packet got here
363  * using IP source routing.  This allows connection establishment and
364  * maintenance when the remote end is on a network that is not known
365  * to us.
366  */
367 int	ip_nhops = 0;
368 static	struct ip_srcrt {
369 	struct	in_addr dst;			/* final destination */
370 	char	nop;				/* one NOP to align */
371 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
372 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
373 } ip_srcrt;
374 
375 static void save_rte(u_char *, struct in_addr);
376 
377 #ifdef MBUFTRACE
378 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
379 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
380 #endif
381 
382 /*
383  * Compute IP limits derived from the value of nmbclusters.
384  */
385 static void
386 ip_nmbclusters_changed(void)
387 {
388 	ip_maxfrags = nmbclusters / 4;
389 	ip_nmbclusters =  nmbclusters;
390 }
391 
392 /*
393  * IP initialization: fill in IP protocol switch table.
394  * All protocols not implemented in kernel go to raw IP protocol handler.
395  */
396 void
397 ip_init(void)
398 {
399 	const struct protosw *pr;
400 	int i;
401 
402 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
403 	if (pr == 0)
404 		panic("ip_init");
405 	for (i = 0; i < IPPROTO_MAX; i++)
406 		ip_protox[i] = pr - inetsw;
407 	for (pr = inetdomain.dom_protosw;
408 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
409 		if (pr->pr_domain->dom_family == PF_INET &&
410 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
411 			ip_protox[pr->pr_protocol] = pr - inetsw;
412 
413 	for (i = 0; i < IPREASS_NHASH; i++)
414 	    	LIST_INIT(&ipq[i]);
415 
416 	ip_initid();
417 	ip_id = time_second & 0xfffff;
418 
419 	ipintrq.ifq_maxlen = ipqmaxlen;
420 	ip_nmbclusters_changed();
421 
422 	TAILQ_INIT(&in_ifaddrhead);
423 	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
424 	    &in_ifaddrhash);
425 	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
426 	    &in_multihash);
427 	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
428 #ifdef GATEWAY
429 	ipflow_init(ip_hashsize);
430 #endif
431 
432 #ifdef PFIL_HOOKS
433 	/* Register our Packet Filter hook. */
434 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
435 	inet_pfil_hook.ph_af   = AF_INET;
436 	i = pfil_head_register(&inet_pfil_hook);
437 	if (i != 0)
438 		printf("ip_init: WARNING: unable to register pfil hook, "
439 		    "error %d\n", i);
440 #endif /* PFIL_HOOKS */
441 
442 #ifdef MBUFTRACE
443 	MOWNER_ATTACH(&ip_tx_mowner);
444 	MOWNER_ATTACH(&ip_rx_mowner);
445 #endif /* MBUFTRACE */
446 
447 	ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
448 }
449 
450 struct	sockaddr_in ipaddr = {
451 	.sin_len = sizeof(ipaddr),
452 	.sin_family = AF_INET,
453 };
454 struct	route ipforward_rt;
455 
456 /*
457  * IP software interrupt routine
458  */
459 void
460 ipintr(void)
461 {
462 	int s;
463 	struct mbuf *m;
464 
465 	mutex_enter(softnet_lock);
466 	KERNEL_LOCK(1, NULL);
467 	while (!IF_IS_EMPTY(&ipintrq)) {
468 		s = splnet();
469 		IF_DEQUEUE(&ipintrq, m);
470 		splx(s);
471 		if (m == NULL)
472 			break;
473 		ip_input(m);
474 	}
475 	KERNEL_UNLOCK_ONE(NULL);
476 	mutex_exit(softnet_lock);
477 }
478 
479 /*
480  * Ip input routine.  Checksum and byte swap header.  If fragmented
481  * try to reassemble.  Process options.  Pass to next level.
482  */
483 void
484 ip_input(struct mbuf *m)
485 {
486 	struct ip *ip = NULL;
487 	struct ipq *fp;
488 	struct in_ifaddr *ia;
489 	struct ifaddr *ifa;
490 	struct ipqent *ipqe;
491 	int hlen = 0, mff, len;
492 	int downmatch;
493 	int checkif;
494 	int srcrt = 0;
495 	int s;
496 	u_int hash;
497 #ifdef FAST_IPSEC
498 	struct m_tag *mtag;
499 	struct tdb_ident *tdbi;
500 	struct secpolicy *sp;
501 	int error;
502 #endif /* FAST_IPSEC */
503 
504 	MCLAIM(m, &ip_rx_mowner);
505 #ifdef	DIAGNOSTIC
506 	if ((m->m_flags & M_PKTHDR) == 0)
507 		panic("ipintr no HDR");
508 #endif
509 
510 	/*
511 	 * If no IP addresses have been set yet but the interfaces
512 	 * are receiving, can't do anything with incoming packets yet.
513 	 */
514 	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
515 		goto bad;
516 	IP_STATINC(IP_STAT_TOTAL);
517 	/*
518 	 * If the IP header is not aligned, slurp it up into a new
519 	 * mbuf with space for link headers, in the event we forward
520 	 * it.  Otherwise, if it is aligned, make sure the entire
521 	 * base IP header is in the first mbuf of the chain.
522 	 */
523 	if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
524 		if ((m = m_copyup(m, sizeof(struct ip),
525 				  (max_linkhdr + 3) & ~3)) == NULL) {
526 			/* XXXJRT new stat, please */
527 			IP_STATINC(IP_STAT_TOOSMALL);
528 			return;
529 		}
530 	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
531 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
532 			IP_STATINC(IP_STAT_TOOSMALL);
533 			return;
534 		}
535 	}
536 	ip = mtod(m, struct ip *);
537 	if (ip->ip_v != IPVERSION) {
538 		IP_STATINC(IP_STAT_BADVERS);
539 		goto bad;
540 	}
541 	hlen = ip->ip_hl << 2;
542 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
543 		IP_STATINC(IP_STAT_BADHLEN);
544 		goto bad;
545 	}
546 	if (hlen > m->m_len) {
547 		if ((m = m_pullup(m, hlen)) == 0) {
548 			IP_STATINC(IP_STAT_BADHLEN);
549 			return;
550 		}
551 		ip = mtod(m, struct ip *);
552 	}
553 
554 	/*
555 	 * RFC1122: packets with a multicast source address are
556 	 * not allowed.
557 	 */
558 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
559 		IP_STATINC(IP_STAT_BADADDR);
560 		goto bad;
561 	}
562 
563 	/* 127/8 must not appear on wire - RFC1122 */
564 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
565 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
566 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
567 			IP_STATINC(IP_STAT_BADADDR);
568 			goto bad;
569 		}
570 	}
571 
572 	switch (m->m_pkthdr.csum_flags &
573 		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
574 		 M_CSUM_IPv4_BAD)) {
575 	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
576 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
577 		goto badcsum;
578 
579 	case M_CSUM_IPv4:
580 		/* Checksum was okay. */
581 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
582 		break;
583 
584 	default:
585 		/*
586 		 * Must compute it ourselves.  Maybe skip checksum on
587 		 * loopback interfaces.
588 		 */
589 		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
590 				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
591 			INET_CSUM_COUNTER_INCR(&ip_swcsum);
592 			if (in_cksum(m, hlen) != 0)
593 				goto badcsum;
594 		}
595 		break;
596 	}
597 
598 	/* Retrieve the packet length. */
599 	len = ntohs(ip->ip_len);
600 
601 	/*
602 	 * Check for additional length bogosity
603 	 */
604 	if (len < hlen) {
605 		IP_STATINC(IP_STAT_BADLEN);
606 		goto bad;
607 	}
608 
609 	/*
610 	 * Check that the amount of data in the buffers
611 	 * is as at least much as the IP header would have us expect.
612 	 * Trim mbufs if longer than we expect.
613 	 * Drop packet if shorter than we expect.
614 	 */
615 	if (m->m_pkthdr.len < len) {
616 		IP_STATINC(IP_STAT_TOOSHORT);
617 		goto bad;
618 	}
619 	if (m->m_pkthdr.len > len) {
620 		if (m->m_len == m->m_pkthdr.len) {
621 			m->m_len = len;
622 			m->m_pkthdr.len = len;
623 		} else
624 			m_adj(m, len - m->m_pkthdr.len);
625 	}
626 
627 #if defined(IPSEC)
628 	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
629 	m->m_flags &= ~M_CANFASTFWD;
630 #else
631 	/*
632 	 * Assume that we can create a fast-forward IP flow entry
633 	 * based on this packet.
634 	 */
635 	m->m_flags |= M_CANFASTFWD;
636 #endif
637 
638 #ifdef PFIL_HOOKS
639 	/*
640 	 * Run through list of hooks for input packets.  If there are any
641 	 * filters which require that additional packets in the flow are
642 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
643 	 * Note that filters must _never_ set this flag, as another filter
644 	 * in the list may have previously cleared it.
645 	 */
646 	/*
647 	 * let ipfilter look at packet on the wire,
648 	 * not the decapsulated packet.
649 	 */
650 #ifdef IPSEC
651 	if (!ipsec_getnhist(m))
652 #elif defined(FAST_IPSEC)
653 	if (!ipsec_indone(m))
654 #else
655 	if (1)
656 #endif
657 	{
658 		struct in_addr odst;
659 
660 		odst = ip->ip_dst;
661 		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
662 		    PFIL_IN) != 0)
663 			return;
664 		if (m == NULL)
665 			return;
666 		ip = mtod(m, struct ip *);
667 		hlen = ip->ip_hl << 2;
668 		/*
669 		 * XXX The setting of "srcrt" here is to prevent ip_forward()
670 		 * from generating ICMP redirects for packets that have
671 		 * been redirected by a hook back out on to the same LAN that
672 		 * they came from and is not an indication that the packet
673 		 * is being inffluenced by source routing options.  This
674 		 * allows things like
675 		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
676 		 * where tlp0 is both on the 1.1.1.0/24 network and is the
677 		 * default route for hosts on 1.1.1.0/24.  Of course this
678 		 * also requires a "map tlp0 ..." to complete the story.
679 		 * One might argue whether or not this kind of network config.
680 		 * should be supported in this manner...
681 		 */
682 		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
683 	}
684 #endif /* PFIL_HOOKS */
685 
686 #ifdef ALTQ
687 	/* XXX Temporary until ALTQ is changed to use a pfil hook */
688 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
689 		/* packet dropped by traffic conditioner */
690 		return;
691 	}
692 #endif
693 
694 	/*
695 	 * Process options and, if not destined for us,
696 	 * ship it on.  ip_dooptions returns 1 when an
697 	 * error was detected (causing an icmp message
698 	 * to be sent and the original packet to be freed).
699 	 */
700 	ip_nhops = 0;		/* for source routed packets */
701 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
702 		return;
703 
704 	/*
705 	 * Enable a consistency check between the destination address
706 	 * and the arrival interface for a unicast packet (the RFC 1122
707 	 * strong ES model) if IP forwarding is disabled and the packet
708 	 * is not locally generated.
709 	 *
710 	 * XXX - Checking also should be disabled if the destination
711 	 * address is ipnat'ed to a different interface.
712 	 *
713 	 * XXX - Checking is incompatible with IP aliases added
714 	 * to the loopback interface instead of the interface where
715 	 * the packets are received.
716 	 *
717 	 * XXX - We need to add a per ifaddr flag for this so that
718 	 * we get finer grain control.
719 	 */
720 	checkif = ip_checkinterface && (ipforwarding == 0) &&
721 	    (m->m_pkthdr.rcvif != NULL) &&
722 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
723 
724 	/*
725 	 * Check our list of addresses, to see if the packet is for us.
726 	 *
727 	 * Traditional 4.4BSD did not consult IFF_UP at all.
728 	 * The behavior here is to treat addresses on !IFF_UP interface
729 	 * as not mine.
730 	 */
731 	downmatch = 0;
732 	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
733 		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
734 			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
735 				continue;
736 			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
737 				break;
738 			else
739 				downmatch++;
740 		}
741 	}
742 	if (ia != NULL)
743 		goto ours;
744 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
745 		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
746 			if (ifa->ifa_addr->sa_family != AF_INET)
747 				continue;
748 			ia = ifatoia(ifa);
749 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
750 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
751 			    /*
752 			     * Look for all-0's host part (old broadcast addr),
753 			     * either for subnet or net.
754 			     */
755 			    ip->ip_dst.s_addr == ia->ia_subnet ||
756 			    ip->ip_dst.s_addr == ia->ia_net)
757 				goto ours;
758 			/*
759 			 * An interface with IP address zero accepts
760 			 * all packets that arrive on that interface.
761 			 */
762 			if (in_nullhost(ia->ia_addr.sin_addr))
763 				goto ours;
764 		}
765 	}
766 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
767 		struct in_multi *inm;
768 #ifdef MROUTING
769 		extern struct socket *ip_mrouter;
770 
771 		if (ip_mrouter) {
772 			/*
773 			 * If we are acting as a multicast router, all
774 			 * incoming multicast packets are passed to the
775 			 * kernel-level multicast forwarding function.
776 			 * The packet is returned (relatively) intact; if
777 			 * ip_mforward() returns a non-zero value, the packet
778 			 * must be discarded, else it may be accepted below.
779 			 *
780 			 * (The IP ident field is put in the same byte order
781 			 * as expected when ip_mforward() is called from
782 			 * ip_output().)
783 			 */
784 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
785 				IP_STATINC(IP_STAT_CANTFORWARD);
786 				m_freem(m);
787 				return;
788 			}
789 
790 			/*
791 			 * The process-level routing demon needs to receive
792 			 * all multicast IGMP packets, whether or not this
793 			 * host belongs to their destination groups.
794 			 */
795 			if (ip->ip_p == IPPROTO_IGMP)
796 				goto ours;
797 			IP_STATINC(IP_STAT_CANTFORWARD);
798 		}
799 #endif
800 		/*
801 		 * See if we belong to the destination multicast group on the
802 		 * arrival interface.
803 		 */
804 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
805 		if (inm == NULL) {
806 			IP_STATINC(IP_STAT_CANTFORWARD);
807 			m_freem(m);
808 			return;
809 		}
810 		goto ours;
811 	}
812 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
813 	    in_nullhost(ip->ip_dst))
814 		goto ours;
815 
816 	/*
817 	 * Not for us; forward if possible and desirable.
818 	 */
819 	if (ipforwarding == 0) {
820 		IP_STATINC(IP_STAT_CANTFORWARD);
821 		m_freem(m);
822 	} else {
823 		/*
824 		 * If ip_dst matched any of my address on !IFF_UP interface,
825 		 * and there's no IFF_UP interface that matches ip_dst,
826 		 * send icmp unreach.  Forwarding it will result in in-kernel
827 		 * forwarding loop till TTL goes to 0.
828 		 */
829 		if (downmatch) {
830 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
831 			IP_STATINC(IP_STAT_CANTFORWARD);
832 			return;
833 		}
834 #ifdef IPSEC
835 		if (ipsec4_in_reject(m, NULL)) {
836 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
837 			goto bad;
838 		}
839 #endif
840 #ifdef FAST_IPSEC
841 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
842 		s = splsoftnet();
843 		if (mtag != NULL) {
844 			tdbi = (struct tdb_ident *)(mtag + 1);
845 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
846 		} else {
847 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
848 						   IP_FORWARDING, &error);
849 		}
850 		if (sp == NULL) {	/* NB: can happen if error */
851 			splx(s);
852 			/*XXX error stat???*/
853 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
854 			goto bad;
855 		}
856 
857 		/*
858 		 * Check security policy against packet attributes.
859 		 */
860 		error = ipsec_in_reject(sp, m);
861 		KEY_FREESP(&sp);
862 		splx(s);
863 		if (error) {
864 			IP_STATINC(IP_STAT_CANTFORWARD);
865 			goto bad;
866 		}
867 
868 		/*
869 		 * Peek at the outbound SP for this packet to determine if
870 		 * it's a Fast Forward candidate.
871 		 */
872 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
873 		if (mtag != NULL)
874 			m->m_flags &= ~M_CANFASTFWD;
875 		else {
876 			s = splsoftnet();
877 			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
878 			    (IP_FORWARDING |
879 			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
880 			    &error, NULL);
881 			if (sp != NULL) {
882 				m->m_flags &= ~M_CANFASTFWD;
883 				KEY_FREESP(&sp);
884 			}
885 			splx(s);
886 		}
887 #endif	/* FAST_IPSEC */
888 
889 		ip_forward(m, srcrt);
890 	}
891 	return;
892 
893 ours:
894 	/*
895 	 * If offset or IP_MF are set, must reassemble.
896 	 * Otherwise, nothing need be done.
897 	 * (We could look in the reassembly queue to see
898 	 * if the packet was previously fragmented,
899 	 * but it's not worth the time; just let them time out.)
900 	 */
901 	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
902 		uint16_t off;
903 		/*
904 		 * Prevent TCP blind data attacks by not allowing non-initial
905 		 * fragments to start at less than 68 bytes (minimal fragment
906 		 * size) and making sure the first fragment is at least 68
907 		 * bytes.
908 		 */
909 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
910 		if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
911 			IP_STATINC(IP_STAT_BADFRAGS);
912 			goto bad;
913 		}
914 		/*
915 		 * Look for queue of fragments
916 		 * of this datagram.
917 		 */
918 		IPQ_LOCK();
919 		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
920 		LIST_FOREACH(fp, &ipq[hash], ipq_q) {
921 			if (ip->ip_id == fp->ipq_id &&
922 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
923 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
924 			    ip->ip_p == fp->ipq_p) {
925 				/*
926 				 * Make sure the TOS is matches previous
927 				 * fragments.
928 				 */
929 				if (ip->ip_tos != fp->ipq_tos) {
930 					IP_STATINC(IP_STAT_BADFRAGS);
931 					goto bad;
932 				}
933 				goto found;
934 			}
935 		}
936 		fp = 0;
937 found:
938 
939 		/*
940 		 * Adjust ip_len to not reflect header,
941 		 * set ipqe_mff if more fragments are expected,
942 		 * convert offset of this to bytes.
943 		 */
944 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
945 		mff = (ip->ip_off & htons(IP_MF)) != 0;
946 		if (mff) {
947 		        /*
948 		         * Make sure that fragments have a data length
949 			 * that's a non-zero multiple of 8 bytes.
950 		         */
951 			if (ntohs(ip->ip_len) == 0 ||
952 			    (ntohs(ip->ip_len) & 0x7) != 0) {
953 				IP_STATINC(IP_STAT_BADFRAGS);
954 				IPQ_UNLOCK();
955 				goto bad;
956 			}
957 		}
958 		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
959 
960 		/*
961 		 * If datagram marked as having more fragments
962 		 * or if this is not the first fragment,
963 		 * attempt reassembly; if it succeeds, proceed.
964 		 */
965 		if (mff || ip->ip_off != htons(0)) {
966 			IP_STATINC(IP_STAT_FRAGMENTS);
967 			s = splvm();
968 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
969 			splx(s);
970 			if (ipqe == NULL) {
971 				IP_STATINC(IP_STAT_RCVMEMDROP);
972 				IPQ_UNLOCK();
973 				goto bad;
974 			}
975 			ipqe->ipqe_mff = mff;
976 			ipqe->ipqe_m = m;
977 			ipqe->ipqe_ip = ip;
978 			m = ip_reass(ipqe, fp, &ipq[hash]);
979 			if (m == 0) {
980 				IPQ_UNLOCK();
981 				return;
982 			}
983 			IP_STATINC(IP_STAT_REASSEMBLED);
984 			ip = mtod(m, struct ip *);
985 			hlen = ip->ip_hl << 2;
986 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
987 		} else
988 			if (fp)
989 				ip_freef(fp);
990 		IPQ_UNLOCK();
991 	}
992 
993 #if defined(IPSEC)
994 	/*
995 	 * enforce IPsec policy checking if we are seeing last header.
996 	 * note that we do not visit this with protocols with pcb layer
997 	 * code - like udp/tcp/raw ip.
998 	 */
999 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1000 	    ipsec4_in_reject(m, NULL)) {
1001 		IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1002 		goto bad;
1003 	}
1004 #endif
1005 #ifdef FAST_IPSEC
1006 	/*
1007 	 * enforce IPsec policy checking if we are seeing last header.
1008 	 * note that we do not visit this with protocols with pcb layer
1009 	 * code - like udp/tcp/raw ip.
1010 	 */
1011 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1012 		/*
1013 		 * Check if the packet has already had IPsec processing
1014 		 * done.  If so, then just pass it along.  This tag gets
1015 		 * set during AH, ESP, etc. input handling, before the
1016 		 * packet is returned to the ip input queue for delivery.
1017 		 */
1018 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1019 		s = splsoftnet();
1020 		if (mtag != NULL) {
1021 			tdbi = (struct tdb_ident *)(mtag + 1);
1022 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1023 		} else {
1024 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1025 						   IP_FORWARDING, &error);
1026 		}
1027 		if (sp != NULL) {
1028 			/*
1029 			 * Check security policy against packet attributes.
1030 			 */
1031 			error = ipsec_in_reject(sp, m);
1032 			KEY_FREESP(&sp);
1033 		} else {
1034 			/* XXX error stat??? */
1035 			error = EINVAL;
1036 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1037 		}
1038 		splx(s);
1039 		if (error)
1040 			goto bad;
1041 	}
1042 #endif /* FAST_IPSEC */
1043 
1044 	/*
1045 	 * Switch out to protocol's input routine.
1046 	 */
1047 #if IFA_STATS
1048 	if (ia && ip)
1049 		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1050 #endif
1051 	IP_STATINC(IP_STAT_DELIVERED);
1052     {
1053 	int off = hlen, nh = ip->ip_p;
1054 
1055 	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1056 	return;
1057     }
1058 bad:
1059 	m_freem(m);
1060 	return;
1061 
1062 badcsum:
1063 	IP_STATINC(IP_STAT_BADSUM);
1064 	m_freem(m);
1065 }
1066 
1067 /*
1068  * Take incoming datagram fragment and try to
1069  * reassemble it into whole datagram.  If a chain for
1070  * reassembly of this datagram already exists, then it
1071  * is given as fp; otherwise have to make a chain.
1072  */
1073 struct mbuf *
1074 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1075 {
1076 	struct mbuf *m = ipqe->ipqe_m;
1077 	struct ipqent *nq, *p, *q;
1078 	struct ip *ip;
1079 	struct mbuf *t;
1080 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1081 	int i, next, s;
1082 
1083 	IPQ_LOCK_CHECK();
1084 
1085 	/*
1086 	 * Presence of header sizes in mbufs
1087 	 * would confuse code below.
1088 	 */
1089 	m->m_data += hlen;
1090 	m->m_len -= hlen;
1091 
1092 #ifdef	notyet
1093 	/* make sure fragment limit is up-to-date */
1094 	CHECK_NMBCLUSTER_PARAMS();
1095 
1096 	/* If we have too many fragments, drop the older half. */
1097 	if (ip_nfrags >= ip_maxfrags)
1098 		ip_reass_drophalf(void);
1099 #endif
1100 
1101 	/*
1102 	 * We are about to add a fragment; increment frag count.
1103 	 */
1104 	ip_nfrags++;
1105 
1106 	/*
1107 	 * If first fragment to arrive, create a reassembly queue.
1108 	 */
1109 	if (fp == 0) {
1110 		/*
1111 		 * Enforce upper bound on number of fragmented packets
1112 		 * for which we attempt reassembly;
1113 		 * If maxfrag is 0, never accept fragments.
1114 		 * If maxfrag is -1, accept all fragments without limitation.
1115 		 */
1116 		if (ip_maxfragpackets < 0)
1117 			;
1118 		else if (ip_nfragpackets >= ip_maxfragpackets)
1119 			goto dropfrag;
1120 		ip_nfragpackets++;
1121 		MALLOC(fp, struct ipq *, sizeof (struct ipq),
1122 		    M_FTABLE, M_NOWAIT);
1123 		if (fp == NULL)
1124 			goto dropfrag;
1125 		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1126 		fp->ipq_nfrags = 1;
1127 		fp->ipq_ttl = IPFRAGTTL;
1128 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1129 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1130 		fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1131 		TAILQ_INIT(&fp->ipq_fragq);
1132 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1133 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1134 		p = NULL;
1135 		goto insert;
1136 	} else {
1137 		fp->ipq_nfrags++;
1138 	}
1139 
1140 	/*
1141 	 * Find a segment which begins after this one does.
1142 	 */
1143 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1144 	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1145 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1146 			break;
1147 
1148 	/*
1149 	 * If there is a preceding segment, it may provide some of
1150 	 * our data already.  If so, drop the data from the incoming
1151 	 * segment.  If it provides all of our data, drop us.
1152 	 */
1153 	if (p != NULL) {
1154 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1155 		    ntohs(ipqe->ipqe_ip->ip_off);
1156 		if (i > 0) {
1157 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1158 				goto dropfrag;
1159 			m_adj(ipqe->ipqe_m, i);
1160 			ipqe->ipqe_ip->ip_off =
1161 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1162 			ipqe->ipqe_ip->ip_len =
1163 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * While we overlap succeeding segments trim them or,
1169 	 * if they are completely covered, dequeue them.
1170 	 */
1171 	for (; q != NULL &&
1172 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1173 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1174 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1175 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1176 		if (i < ntohs(q->ipqe_ip->ip_len)) {
1177 			q->ipqe_ip->ip_len =
1178 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1179 			q->ipqe_ip->ip_off =
1180 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1181 			m_adj(q->ipqe_m, i);
1182 			break;
1183 		}
1184 		nq = TAILQ_NEXT(q, ipqe_q);
1185 		m_freem(q->ipqe_m);
1186 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1187 		s = splvm();
1188 		pool_put(&ipqent_pool, q);
1189 		splx(s);
1190 		fp->ipq_nfrags--;
1191 		ip_nfrags--;
1192 	}
1193 
1194 insert:
1195 	/*
1196 	 * Stick new segment in its place;
1197 	 * check for complete reassembly.
1198 	 */
1199 	if (p == NULL) {
1200 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1201 	} else {
1202 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1203 	}
1204 	next = 0;
1205 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1206 	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1207 		if (ntohs(q->ipqe_ip->ip_off) != next)
1208 			return (0);
1209 		next += ntohs(q->ipqe_ip->ip_len);
1210 	}
1211 	if (p->ipqe_mff)
1212 		return (0);
1213 
1214 	/*
1215 	 * Reassembly is complete.  Check for a bogus message size and
1216 	 * concatenate fragments.
1217 	 */
1218 	q = TAILQ_FIRST(&fp->ipq_fragq);
1219 	ip = q->ipqe_ip;
1220 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1221 		IP_STATINC(IP_STAT_TOOLONG);
1222 		ip_freef(fp);
1223 		return (0);
1224 	}
1225 	m = q->ipqe_m;
1226 	t = m->m_next;
1227 	m->m_next = 0;
1228 	m_cat(m, t);
1229 	nq = TAILQ_NEXT(q, ipqe_q);
1230 	s = splvm();
1231 	pool_put(&ipqent_pool, q);
1232 	splx(s);
1233 	for (q = nq; q != NULL; q = nq) {
1234 		t = q->ipqe_m;
1235 		nq = TAILQ_NEXT(q, ipqe_q);
1236 		s = splvm();
1237 		pool_put(&ipqent_pool, q);
1238 		splx(s);
1239 		m_cat(m, t);
1240 	}
1241 	ip_nfrags -= fp->ipq_nfrags;
1242 
1243 	/*
1244 	 * Create header for new ip packet by
1245 	 * modifying header of first packet;
1246 	 * dequeue and discard fragment reassembly header.
1247 	 * Make header visible.
1248 	 */
1249 	ip->ip_len = htons(next);
1250 	ip->ip_src = fp->ipq_src;
1251 	ip->ip_dst = fp->ipq_dst;
1252 	LIST_REMOVE(fp, ipq_q);
1253 	FREE(fp, M_FTABLE);
1254 	ip_nfragpackets--;
1255 	m->m_len += (ip->ip_hl << 2);
1256 	m->m_data -= (ip->ip_hl << 2);
1257 	/* some debugging cruft by sklower, below, will go away soon */
1258 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1259 		int plen = 0;
1260 		for (t = m; t; t = t->m_next)
1261 			plen += t->m_len;
1262 		m->m_pkthdr.len = plen;
1263 		m->m_pkthdr.csum_flags = 0;
1264 	}
1265 	return (m);
1266 
1267 dropfrag:
1268 	if (fp != 0)
1269 		fp->ipq_nfrags--;
1270 	ip_nfrags--;
1271 	IP_STATINC(IP_STAT_FRAGDROPPED);
1272 	m_freem(m);
1273 	s = splvm();
1274 	pool_put(&ipqent_pool, ipqe);
1275 	splx(s);
1276 	return (0);
1277 }
1278 
1279 /*
1280  * Free a fragment reassembly header and all
1281  * associated datagrams.
1282  */
1283 void
1284 ip_freef(struct ipq *fp)
1285 {
1286 	struct ipqent *q, *p;
1287 	u_int nfrags = 0;
1288 	int s;
1289 
1290 	IPQ_LOCK_CHECK();
1291 
1292 	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1293 		p = TAILQ_NEXT(q, ipqe_q);
1294 		m_freem(q->ipqe_m);
1295 		nfrags++;
1296 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1297 		s = splvm();
1298 		pool_put(&ipqent_pool, q);
1299 		splx(s);
1300 	}
1301 
1302 	if (nfrags != fp->ipq_nfrags)
1303 	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1304 	ip_nfrags -= nfrags;
1305 	LIST_REMOVE(fp, ipq_q);
1306 	FREE(fp, M_FTABLE);
1307 	ip_nfragpackets--;
1308 }
1309 
1310 /*
1311  * IP reassembly TTL machinery for  multiplicative drop.
1312  */
1313 static u_int	fragttl_histo[(IPFRAGTTL+1)];
1314 
1315 
1316 /*
1317  * Decrement TTL of all reasembly queue entries by `ticks'.
1318  * Count number of distinct fragments (as opposed to partial, fragmented
1319  * datagrams) in the reassembly queue.  While we  traverse the entire
1320  * reassembly queue, compute and return the median TTL over all fragments.
1321  */
1322 static u_int
1323 ip_reass_ttl_decr(u_int ticks)
1324 {
1325 	u_int nfrags, median, dropfraction, keepfraction;
1326 	struct ipq *fp, *nfp;
1327 	int i;
1328 
1329 	nfrags = 0;
1330 	memset(fragttl_histo, 0, sizeof fragttl_histo);
1331 
1332 	for (i = 0; i < IPREASS_NHASH; i++) {
1333 		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1334 			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1335 				       0 : fp->ipq_ttl - ticks);
1336 			nfp = LIST_NEXT(fp, ipq_q);
1337 			if (fp->ipq_ttl == 0) {
1338 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
1339 				ip_freef(fp);
1340 			} else {
1341 				nfrags += fp->ipq_nfrags;
1342 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1343 			}
1344 		}
1345 	}
1346 
1347 	KASSERT(ip_nfrags == nfrags);
1348 
1349 	/* Find median (or other drop fraction) in histogram. */
1350 	dropfraction = (ip_nfrags / 2);
1351 	keepfraction = ip_nfrags - dropfraction;
1352 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1353 		median +=  fragttl_histo[i];
1354 		if (median >= keepfraction)
1355 			break;
1356 	}
1357 
1358 	/* Return TTL of median (or other fraction). */
1359 	return (u_int)i;
1360 }
1361 
1362 void
1363 ip_reass_drophalf(void)
1364 {
1365 
1366 	u_int median_ticks;
1367 	/*
1368 	 * Compute median TTL of all fragments, and count frags
1369 	 * with that TTL or lower (roughly half of all fragments).
1370 	 */
1371 	median_ticks = ip_reass_ttl_decr(0);
1372 
1373 	/* Drop half. */
1374 	median_ticks = ip_reass_ttl_decr(median_ticks);
1375 
1376 }
1377 
1378 /*
1379  * IP timer processing;
1380  * if a timer expires on a reassembly
1381  * queue, discard it.
1382  */
1383 void
1384 ip_slowtimo(void)
1385 {
1386 	static u_int dropscanidx = 0;
1387 	u_int i;
1388 	u_int median_ttl;
1389 
1390 	mutex_enter(softnet_lock);
1391 	KERNEL_LOCK(1, NULL);
1392 
1393 	IPQ_LOCK();
1394 
1395 	/* Age TTL of all fragments by 1 tick .*/
1396 	median_ttl = ip_reass_ttl_decr(1);
1397 
1398 	/* make sure fragment limit is up-to-date */
1399 	CHECK_NMBCLUSTER_PARAMS();
1400 
1401 	/* If we have too many fragments, drop the older half. */
1402 	if (ip_nfrags > ip_maxfrags)
1403 		ip_reass_ttl_decr(median_ttl);
1404 
1405 	/*
1406 	 * If we are over the maximum number of fragmented packets
1407 	 * (due to the limit being lowered), drain off
1408 	 * enough to get down to the new limit. Start draining
1409 	 * from the reassembly hashqueue most recently drained.
1410 	 */
1411 	if (ip_maxfragpackets < 0)
1412 		;
1413 	else {
1414 		int wrapped = 0;
1415 
1416 		i = dropscanidx;
1417 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1418 			while (LIST_FIRST(&ipq[i]) != NULL)
1419 				ip_freef(LIST_FIRST(&ipq[i]));
1420 			if (++i >= IPREASS_NHASH) {
1421 				i = 0;
1422 			}
1423 			/*
1424 			 * Dont scan forever even if fragment counters are
1425 			 * wrong: stop after scanning entire reassembly queue.
1426 			 */
1427 			if (i == dropscanidx)
1428 			    wrapped = 1;
1429 		}
1430 		dropscanidx = i;
1431 	}
1432 	IPQ_UNLOCK();
1433 
1434 	KERNEL_UNLOCK_ONE(NULL);
1435 	mutex_exit(softnet_lock);
1436 }
1437 
1438 /*
1439  * Drain off all datagram fragments.  Don't acquire softnet_lock as
1440  * can be called from hardware interrupt context.
1441  */
1442 void
1443 ip_drain(void)
1444 {
1445 
1446 	KERNEL_LOCK(1, NULL);
1447 
1448 	/*
1449 	 * We may be called from a device's interrupt context.  If
1450 	 * the ipq is already busy, just bail out now.
1451 	 */
1452 	if (ipq_lock_try() != 0) {
1453 		/*
1454 		 * Drop half the total fragments now. If more mbufs are
1455 		 * needed, we will be called again soon.
1456 		 */
1457 		ip_reass_drophalf();
1458 		IPQ_UNLOCK();
1459 	}
1460 
1461 	KERNEL_UNLOCK_ONE(NULL);
1462 }
1463 
1464 /*
1465  * Do option processing on a datagram,
1466  * possibly discarding it if bad options are encountered,
1467  * or forwarding it if source-routed.
1468  * Returns 1 if packet has been forwarded/freed,
1469  * 0 if the packet should be processed further.
1470  */
1471 int
1472 ip_dooptions(struct mbuf *m)
1473 {
1474 	struct ip *ip = mtod(m, struct ip *);
1475 	u_char *cp, *cp0;
1476 	struct ip_timestamp *ipt;
1477 	struct in_ifaddr *ia;
1478 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1479 	struct in_addr dst;
1480 	n_time ntime;
1481 
1482 	dst = ip->ip_dst;
1483 	cp = (u_char *)(ip + 1);
1484 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1485 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1486 		opt = cp[IPOPT_OPTVAL];
1487 		if (opt == IPOPT_EOL)
1488 			break;
1489 		if (opt == IPOPT_NOP)
1490 			optlen = 1;
1491 		else {
1492 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1493 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1494 				goto bad;
1495 			}
1496 			optlen = cp[IPOPT_OLEN];
1497 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1498 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1499 				goto bad;
1500 			}
1501 		}
1502 		switch (opt) {
1503 
1504 		default:
1505 			break;
1506 
1507 		/*
1508 		 * Source routing with record.
1509 		 * Find interface with current destination address.
1510 		 * If none on this machine then drop if strictly routed,
1511 		 * or do nothing if loosely routed.
1512 		 * Record interface address and bring up next address
1513 		 * component.  If strictly routed make sure next
1514 		 * address is on directly accessible net.
1515 		 */
1516 		case IPOPT_LSRR:
1517 		case IPOPT_SSRR:
1518 			if (ip_allowsrcrt == 0) {
1519 				type = ICMP_UNREACH;
1520 				code = ICMP_UNREACH_NET_PROHIB;
1521 				goto bad;
1522 			}
1523 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1524 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1525 				goto bad;
1526 			}
1527 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1528 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1529 				goto bad;
1530 			}
1531 			ipaddr.sin_addr = ip->ip_dst;
1532 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1533 			if (ia == 0) {
1534 				if (opt == IPOPT_SSRR) {
1535 					type = ICMP_UNREACH;
1536 					code = ICMP_UNREACH_SRCFAIL;
1537 					goto bad;
1538 				}
1539 				/*
1540 				 * Loose routing, and not at next destination
1541 				 * yet; nothing to do except forward.
1542 				 */
1543 				break;
1544 			}
1545 			off--;			/* 0 origin */
1546 			if ((off + sizeof(struct in_addr)) > optlen) {
1547 				/*
1548 				 * End of source route.  Should be for us.
1549 				 */
1550 				save_rte(cp, ip->ip_src);
1551 				break;
1552 			}
1553 			/*
1554 			 * locate outgoing interface
1555 			 */
1556 			bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1557 			    sizeof(ipaddr.sin_addr));
1558 			if (opt == IPOPT_SSRR)
1559 				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1560 			else
1561 				ia = ip_rtaddr(ipaddr.sin_addr);
1562 			if (ia == 0) {
1563 				type = ICMP_UNREACH;
1564 				code = ICMP_UNREACH_SRCFAIL;
1565 				goto bad;
1566 			}
1567 			ip->ip_dst = ipaddr.sin_addr;
1568 			bcopy((void *)&ia->ia_addr.sin_addr,
1569 			    (void *)(cp + off), sizeof(struct in_addr));
1570 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1571 			/*
1572 			 * Let ip_intr's mcast routing check handle mcast pkts
1573 			 */
1574 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1575 			break;
1576 
1577 		case IPOPT_RR:
1578 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1579 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1580 				goto bad;
1581 			}
1582 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1583 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1584 				goto bad;
1585 			}
1586 			/*
1587 			 * If no space remains, ignore.
1588 			 */
1589 			off--;			/* 0 origin */
1590 			if ((off + sizeof(struct in_addr)) > optlen)
1591 				break;
1592 			bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1593 			    sizeof(ipaddr.sin_addr));
1594 			/*
1595 			 * locate outgoing interface; if we're the destination,
1596 			 * use the incoming interface (should be same).
1597 			 */
1598 			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1599 			    == NULL &&
1600 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1601 				type = ICMP_UNREACH;
1602 				code = ICMP_UNREACH_HOST;
1603 				goto bad;
1604 			}
1605 			bcopy((void *)&ia->ia_addr.sin_addr,
1606 			    (void *)(cp + off), sizeof(struct in_addr));
1607 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1608 			break;
1609 
1610 		case IPOPT_TS:
1611 			code = cp - (u_char *)ip;
1612 			ipt = (struct ip_timestamp *)cp;
1613 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1614 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1615 				goto bad;
1616 			}
1617 			if (ipt->ipt_ptr < 5) {
1618 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1619 				goto bad;
1620 			}
1621 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1622 				if (++ipt->ipt_oflw == 0) {
1623 					code = (u_char *)&ipt->ipt_ptr -
1624 					    (u_char *)ip;
1625 					goto bad;
1626 				}
1627 				break;
1628 			}
1629 			cp0 = (cp + ipt->ipt_ptr - 1);
1630 			switch (ipt->ipt_flg) {
1631 
1632 			case IPOPT_TS_TSONLY:
1633 				break;
1634 
1635 			case IPOPT_TS_TSANDADDR:
1636 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1637 				    sizeof(struct in_addr) > ipt->ipt_len) {
1638 					code = (u_char *)&ipt->ipt_ptr -
1639 					    (u_char *)ip;
1640 					goto bad;
1641 				}
1642 				ipaddr.sin_addr = dst;
1643 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1644 				    m->m_pkthdr.rcvif));
1645 				if (ia == 0)
1646 					continue;
1647 				bcopy(&ia->ia_addr.sin_addr,
1648 				    cp0, sizeof(struct in_addr));
1649 				ipt->ipt_ptr += sizeof(struct in_addr);
1650 				break;
1651 
1652 			case IPOPT_TS_PRESPEC:
1653 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1654 				    sizeof(struct in_addr) > ipt->ipt_len) {
1655 					code = (u_char *)&ipt->ipt_ptr -
1656 					    (u_char *)ip;
1657 					goto bad;
1658 				}
1659 				bcopy(cp0, &ipaddr.sin_addr,
1660 				    sizeof(struct in_addr));
1661 				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1662 				    == NULL)
1663 					continue;
1664 				ipt->ipt_ptr += sizeof(struct in_addr);
1665 				break;
1666 
1667 			default:
1668 				/* XXX can't take &ipt->ipt_flg */
1669 				code = (u_char *)&ipt->ipt_ptr -
1670 				    (u_char *)ip + 1;
1671 				goto bad;
1672 			}
1673 			ntime = iptime();
1674 			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1675 			memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1676 			    sizeof(n_time));
1677 			ipt->ipt_ptr += sizeof(n_time);
1678 		}
1679 	}
1680 	if (forward) {
1681 		if (ip_forwsrcrt == 0) {
1682 			type = ICMP_UNREACH;
1683 			code = ICMP_UNREACH_SRCFAIL;
1684 			goto bad;
1685 		}
1686 		ip_forward(m, 1);
1687 		return (1);
1688 	}
1689 	return (0);
1690 bad:
1691 	icmp_error(m, type, code, 0, 0);
1692 	IP_STATINC(IP_STAT_BADOPTIONS);
1693 	return (1);
1694 }
1695 
1696 /*
1697  * Given address of next destination (final or next hop),
1698  * return internet address info of interface to be used to get there.
1699  */
1700 struct in_ifaddr *
1701 ip_rtaddr(struct in_addr dst)
1702 {
1703 	struct rtentry *rt;
1704 	union {
1705 		struct sockaddr		dst;
1706 		struct sockaddr_in	dst4;
1707 	} u;
1708 
1709 	sockaddr_in_init(&u.dst4, &dst, 0);
1710 
1711 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1712 		return NULL;
1713 
1714 	return ifatoia(rt->rt_ifa);
1715 }
1716 
1717 /*
1718  * Save incoming source route for use in replies,
1719  * to be picked up later by ip_srcroute if the receiver is interested.
1720  */
1721 void
1722 save_rte(u_char *option, struct in_addr dst)
1723 {
1724 	unsigned olen;
1725 
1726 	olen = option[IPOPT_OLEN];
1727 #ifdef DIAGNOSTIC
1728 	if (ipprintfs)
1729 		printf("save_rte: olen %d\n", olen);
1730 #endif /* 0 */
1731 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1732 		return;
1733 	bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1734 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1735 	ip_srcrt.dst = dst;
1736 }
1737 
1738 /*
1739  * Retrieve incoming source route for use in replies,
1740  * in the same form used by setsockopt.
1741  * The first hop is placed before the options, will be removed later.
1742  */
1743 struct mbuf *
1744 ip_srcroute(void)
1745 {
1746 	struct in_addr *p, *q;
1747 	struct mbuf *m;
1748 
1749 	if (ip_nhops == 0)
1750 		return NULL;
1751 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1752 	if (m == 0)
1753 		return NULL;
1754 
1755 	MCLAIM(m, &inetdomain.dom_mowner);
1756 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1757 
1758 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1759 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1760 	    OPTSIZ;
1761 #ifdef DIAGNOSTIC
1762 	if (ipprintfs)
1763 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1764 #endif
1765 
1766 	/*
1767 	 * First save first hop for return route
1768 	 */
1769 	p = &ip_srcrt.route[ip_nhops - 1];
1770 	*(mtod(m, struct in_addr *)) = *p--;
1771 #ifdef DIAGNOSTIC
1772 	if (ipprintfs)
1773 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1774 #endif
1775 
1776 	/*
1777 	 * Copy option fields and padding (nop) to mbuf.
1778 	 */
1779 	ip_srcrt.nop = IPOPT_NOP;
1780 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1781 	memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1782 	    OPTSIZ);
1783 	q = (struct in_addr *)(mtod(m, char *) +
1784 	    sizeof(struct in_addr) + OPTSIZ);
1785 #undef OPTSIZ
1786 	/*
1787 	 * Record return path as an IP source route,
1788 	 * reversing the path (pointers are now aligned).
1789 	 */
1790 	while (p >= ip_srcrt.route) {
1791 #ifdef DIAGNOSTIC
1792 		if (ipprintfs)
1793 			printf(" %x", ntohl(q->s_addr));
1794 #endif
1795 		*q++ = *p--;
1796 	}
1797 	/*
1798 	 * Last hop goes to final destination.
1799 	 */
1800 	*q = ip_srcrt.dst;
1801 #ifdef DIAGNOSTIC
1802 	if (ipprintfs)
1803 		printf(" %x\n", ntohl(q->s_addr));
1804 #endif
1805 	return (m);
1806 }
1807 
1808 const int inetctlerrmap[PRC_NCMDS] = {
1809 	[PRC_MSGSIZE] = EMSGSIZE,
1810 	[PRC_HOSTDEAD] = EHOSTDOWN,
1811 	[PRC_HOSTUNREACH] = EHOSTUNREACH,
1812 	[PRC_UNREACH_NET] = EHOSTUNREACH,
1813 	[PRC_UNREACH_HOST] = EHOSTUNREACH,
1814 	[PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1815 	[PRC_UNREACH_PORT] = ECONNREFUSED,
1816 	[PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1817 	[PRC_PARAMPROB] = ENOPROTOOPT,
1818 };
1819 
1820 /*
1821  * Forward a packet.  If some error occurs return the sender
1822  * an icmp packet.  Note we can't always generate a meaningful
1823  * icmp message because icmp doesn't have a large enough repertoire
1824  * of codes and types.
1825  *
1826  * If not forwarding, just drop the packet.  This could be confusing
1827  * if ipforwarding was zero but some routing protocol was advancing
1828  * us as a gateway to somewhere.  However, we must let the routing
1829  * protocol deal with that.
1830  *
1831  * The srcrt parameter indicates whether the packet is being forwarded
1832  * via a source route.
1833  */
1834 void
1835 ip_forward(struct mbuf *m, int srcrt)
1836 {
1837 	struct ip *ip = mtod(m, struct ip *);
1838 	struct rtentry *rt;
1839 	int error, type = 0, code = 0, destmtu = 0;
1840 	struct mbuf *mcopy;
1841 	n_long dest;
1842 	union {
1843 		struct sockaddr		dst;
1844 		struct sockaddr_in	dst4;
1845 	} u;
1846 
1847 	/*
1848 	 * We are now in the output path.
1849 	 */
1850 	MCLAIM(m, &ip_tx_mowner);
1851 
1852 	/*
1853 	 * Clear any in-bound checksum flags for this packet.
1854 	 */
1855 	m->m_pkthdr.csum_flags = 0;
1856 
1857 	dest = 0;
1858 #ifdef DIAGNOSTIC
1859 	if (ipprintfs) {
1860 		printf("forward: src %s ", inet_ntoa(ip->ip_src));
1861 		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1862 	}
1863 #endif
1864 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1865 		IP_STATINC(IP_STAT_CANTFORWARD);
1866 		m_freem(m);
1867 		return;
1868 	}
1869 	if (ip->ip_ttl <= IPTTLDEC) {
1870 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1871 		return;
1872 	}
1873 
1874 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1875 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1876 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1877 		return;
1878 	}
1879 
1880 	/*
1881 	 * Save at most 68 bytes of the packet in case
1882 	 * we need to generate an ICMP message to the src.
1883 	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1884 	 */
1885 	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1886 	if (mcopy)
1887 		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1888 
1889 	ip->ip_ttl -= IPTTLDEC;
1890 
1891 	/*
1892 	 * If forwarding packet using same interface that it came in on,
1893 	 * perhaps should send a redirect to sender to shortcut a hop.
1894 	 * Only send redirect if source is sending directly to us,
1895 	 * and if packet was not source routed (or has any options).
1896 	 * Also, don't send redirect if forwarding using a default route
1897 	 * or a route modified by a redirect.
1898 	 */
1899 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1900 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1901 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1902 	    ipsendredirects && !srcrt) {
1903 		if (rt->rt_ifa &&
1904 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1905 		    ifatoia(rt->rt_ifa)->ia_subnet) {
1906 			if (rt->rt_flags & RTF_GATEWAY)
1907 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1908 			else
1909 				dest = ip->ip_dst.s_addr;
1910 			/*
1911 			 * Router requirements says to only send host
1912 			 * redirects.
1913 			 */
1914 			type = ICMP_REDIRECT;
1915 			code = ICMP_REDIRECT_HOST;
1916 #ifdef DIAGNOSTIC
1917 			if (ipprintfs)
1918 				printf("redirect (%d) to %x\n", code,
1919 				    (u_int32_t)dest);
1920 #endif
1921 		}
1922 	}
1923 
1924 	error = ip_output(m, NULL, &ipforward_rt,
1925 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1926 	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1927 
1928 	if (error)
1929 		IP_STATINC(IP_STAT_CANTFORWARD);
1930 	else {
1931 		uint64_t *ips = IP_STAT_GETREF();
1932 		ips[IP_STAT_FORWARD]++;
1933 		if (type) {
1934 			ips[IP_STAT_REDIRECTSENT]++;
1935 			IP_STAT_PUTREF();
1936 		} else {
1937 			IP_STAT_PUTREF();
1938 			if (mcopy) {
1939 #ifdef GATEWAY
1940 				if (mcopy->m_flags & M_CANFASTFWD)
1941 					ipflow_create(&ipforward_rt, mcopy);
1942 #endif
1943 				m_freem(mcopy);
1944 			}
1945 			return;
1946 		}
1947 	}
1948 	if (mcopy == NULL)
1949 		return;
1950 
1951 	switch (error) {
1952 
1953 	case 0:				/* forwarded, but need redirect */
1954 		/* type, code set above */
1955 		break;
1956 
1957 	case ENETUNREACH:		/* shouldn't happen, checked above */
1958 	case EHOSTUNREACH:
1959 	case ENETDOWN:
1960 	case EHOSTDOWN:
1961 	default:
1962 		type = ICMP_UNREACH;
1963 		code = ICMP_UNREACH_HOST;
1964 		break;
1965 
1966 	case EMSGSIZE:
1967 		type = ICMP_UNREACH;
1968 		code = ICMP_UNREACH_NEEDFRAG;
1969 
1970 		if ((rt = rtcache_validate(&ipforward_rt)) != NULL) {
1971 
1972 #if defined(IPSEC) || defined(FAST_IPSEC)
1973 			/*
1974 			 * If the packet is routed over IPsec tunnel, tell the
1975 			 * originator the tunnel MTU.
1976 			 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1977 			 * XXX quickhack!!!
1978 			 */
1979 
1980 			struct secpolicy *sp;
1981 			int ipsecerror;
1982 			size_t ipsechdr;
1983 			struct route *ro;
1984 
1985 			sp = ipsec4_getpolicybyaddr(mcopy,
1986 			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1987 			    &ipsecerror);
1988 #endif
1989 
1990 			destmtu = rt->rt_ifp->if_mtu;
1991 #if defined(IPSEC) || defined(FAST_IPSEC)
1992 			if (sp != NULL) {
1993 				/* count IPsec header size */
1994 				ipsechdr = ipsec4_hdrsiz(mcopy,
1995 				    IPSEC_DIR_OUTBOUND, NULL);
1996 
1997 				/*
1998 				 * find the correct route for outer IPv4
1999 				 * header, compute tunnel MTU.
2000 				 */
2001 
2002 				if (sp->req != NULL
2003 				 && sp->req->sav != NULL
2004 				 && sp->req->sav->sah != NULL) {
2005 					ro = &sp->req->sav->sah->sa_route;
2006 					if (rt && rt->rt_ifp) {
2007 						destmtu =
2008 						    rt->rt_rmx.rmx_mtu ?
2009 						    rt->rt_rmx.rmx_mtu :
2010 						    rt->rt_ifp->if_mtu;
2011 						destmtu -= ipsechdr;
2012 					}
2013 				}
2014 
2015 #ifdef	IPSEC
2016 				key_freesp(sp);
2017 #else
2018 				KEY_FREESP(&sp);
2019 #endif
2020 			}
2021 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2022 		}
2023 		IP_STATINC(IP_STAT_CANTFRAG);
2024 		break;
2025 
2026 	case ENOBUFS:
2027 #if 1
2028 		/*
2029 		 * a router should not generate ICMP_SOURCEQUENCH as
2030 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2031 		 * source quench could be a big problem under DoS attacks,
2032 		 * or if the underlying interface is rate-limited.
2033 		 */
2034 		if (mcopy)
2035 			m_freem(mcopy);
2036 		return;
2037 #else
2038 		type = ICMP_SOURCEQUENCH;
2039 		code = 0;
2040 		break;
2041 #endif
2042 	}
2043 	icmp_error(mcopy, type, code, dest, destmtu);
2044 }
2045 
2046 void
2047 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2048     struct mbuf *m)
2049 {
2050 
2051 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2052 		struct timeval tv;
2053 
2054 		microtime(&tv);
2055 		*mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2056 		    SCM_TIMESTAMP, SOL_SOCKET);
2057 		if (*mp)
2058 			mp = &(*mp)->m_next;
2059 	}
2060 	if (inp->inp_flags & INP_RECVDSTADDR) {
2061 		*mp = sbcreatecontrol((void *) &ip->ip_dst,
2062 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2063 		if (*mp)
2064 			mp = &(*mp)->m_next;
2065 	}
2066 #ifdef notyet
2067 	/*
2068 	 * XXX
2069 	 * Moving these out of udp_input() made them even more broken
2070 	 * than they already were.
2071 	 *	- fenner@parc.xerox.com
2072 	 */
2073 	/* options were tossed already */
2074 	if (inp->inp_flags & INP_RECVOPTS) {
2075 		*mp = sbcreatecontrol((void *) opts_deleted_above,
2076 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2077 		if (*mp)
2078 			mp = &(*mp)->m_next;
2079 	}
2080 	/* ip_srcroute doesn't do what we want here, need to fix */
2081 	if (inp->inp_flags & INP_RECVRETOPTS) {
2082 		*mp = sbcreatecontrol((void *) ip_srcroute(),
2083 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2084 		if (*mp)
2085 			mp = &(*mp)->m_next;
2086 	}
2087 #endif
2088 	if (inp->inp_flags & INP_RECVIF) {
2089 		struct sockaddr_dl sdl;
2090 
2091 		sockaddr_dl_init(&sdl, sizeof(sdl),
2092 		    (m->m_pkthdr.rcvif != NULL)
2093 		        ?  m->m_pkthdr.rcvif->if_index
2094 			: 0,
2095 			0, NULL, 0, NULL, 0);
2096 		*mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2097 		if (*mp)
2098 			mp = &(*mp)->m_next;
2099 	}
2100 }
2101 
2102 /*
2103  * sysctl helper routine for net.inet.ip.forwsrcrt.
2104  */
2105 static int
2106 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2107 {
2108 	int error, tmp;
2109 	struct sysctlnode node;
2110 
2111 	node = *rnode;
2112 	tmp = ip_forwsrcrt;
2113 	node.sysctl_data = &tmp;
2114 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2115 	if (error || newp == NULL)
2116 		return (error);
2117 
2118 	if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2119 	    0, NULL, NULL, NULL))
2120 		return (EPERM);
2121 
2122 	ip_forwsrcrt = tmp;
2123 
2124 	return (0);
2125 }
2126 
2127 /*
2128  * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2129  * range of the new value and tweaks timers if it changes.
2130  */
2131 static int
2132 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2133 {
2134 	int error, tmp;
2135 	struct sysctlnode node;
2136 
2137 	node = *rnode;
2138 	tmp = ip_mtudisc_timeout;
2139 	node.sysctl_data = &tmp;
2140 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2141 	if (error || newp == NULL)
2142 		return (error);
2143 	if (tmp < 0)
2144 		return (EINVAL);
2145 
2146 	ip_mtudisc_timeout = tmp;
2147 	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2148 
2149 	return (0);
2150 }
2151 
2152 #ifdef GATEWAY
2153 /*
2154  * sysctl helper routine for net.inet.ip.maxflows.
2155  */
2156 static int
2157 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2158 {
2159 	int s;
2160 
2161 	s = sysctl_lookup(SYSCTLFN_CALL(rnode));
2162 	if (s || newp == NULL)
2163 		return (s);
2164 
2165 	s = splsoftnet();
2166 	ipflow_prune();
2167 	splx(s);
2168 
2169 	return (0);
2170 }
2171 
2172 static int
2173 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2174 {
2175 	int error, tmp;
2176 	struct sysctlnode node;
2177 
2178 	node = *rnode;
2179 	tmp = ip_hashsize;
2180 	node.sysctl_data = &tmp;
2181 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2182 	if (error || newp == NULL)
2183 		return (error);
2184 
2185 	if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2186 		/*
2187 		 * Can only fail due to malloc()
2188 		 */
2189 		if (ipflow_invalidate_all(tmp))
2190 			return ENOMEM;
2191 	} else {
2192 		/*
2193 		 * EINVAL if not a power of 2
2194 	         */
2195 		return EINVAL;
2196 	}
2197 
2198 	return (0);
2199 }
2200 #endif /* GATEWAY */
2201 
2202 static int
2203 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2204 {
2205 
2206 	return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2207 }
2208 
2209 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2210 {
2211 	extern int subnetsarelocal, hostzeroisbroadcast;
2212 
2213 	sysctl_createv(clog, 0, NULL, NULL,
2214 		       CTLFLAG_PERMANENT,
2215 		       CTLTYPE_NODE, "net", NULL,
2216 		       NULL, 0, NULL, 0,
2217 		       CTL_NET, CTL_EOL);
2218 	sysctl_createv(clog, 0, NULL, NULL,
2219 		       CTLFLAG_PERMANENT,
2220 		       CTLTYPE_NODE, "inet",
2221 		       SYSCTL_DESCR("PF_INET related settings"),
2222 		       NULL, 0, NULL, 0,
2223 		       CTL_NET, PF_INET, CTL_EOL);
2224 	sysctl_createv(clog, 0, NULL, NULL,
2225 		       CTLFLAG_PERMANENT,
2226 		       CTLTYPE_NODE, "ip",
2227 		       SYSCTL_DESCR("IPv4 related settings"),
2228 		       NULL, 0, NULL, 0,
2229 		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2230 
2231 	sysctl_createv(clog, 0, NULL, NULL,
2232 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2233 		       CTLTYPE_INT, "forwarding",
2234 		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2235 		       NULL, 0, &ipforwarding, 0,
2236 		       CTL_NET, PF_INET, IPPROTO_IP,
2237 		       IPCTL_FORWARDING, CTL_EOL);
2238 	sysctl_createv(clog, 0, NULL, NULL,
2239 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2240 		       CTLTYPE_INT, "redirect",
2241 		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2242 		       NULL, 0, &ipsendredirects, 0,
2243 		       CTL_NET, PF_INET, IPPROTO_IP,
2244 		       IPCTL_SENDREDIRECTS, CTL_EOL);
2245 	sysctl_createv(clog, 0, NULL, NULL,
2246 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2247 		       CTLTYPE_INT, "ttl",
2248 		       SYSCTL_DESCR("Default TTL for an INET datagram"),
2249 		       NULL, 0, &ip_defttl, 0,
2250 		       CTL_NET, PF_INET, IPPROTO_IP,
2251 		       IPCTL_DEFTTL, CTL_EOL);
2252 #ifdef IPCTL_DEFMTU
2253 	sysctl_createv(clog, 0, NULL, NULL,
2254 		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2255 		       CTLTYPE_INT, "mtu",
2256 		       SYSCTL_DESCR("Default MTA for an INET route"),
2257 		       NULL, 0, &ip_mtu, 0,
2258 		       CTL_NET, PF_INET, IPPROTO_IP,
2259 		       IPCTL_DEFMTU, CTL_EOL);
2260 #endif /* IPCTL_DEFMTU */
2261 	sysctl_createv(clog, 0, NULL, NULL,
2262 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2263 		       CTLTYPE_INT, "forwsrcrt",
2264 		       SYSCTL_DESCR("Enable forwarding of source-routed "
2265 				    "datagrams"),
2266 		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2267 		       CTL_NET, PF_INET, IPPROTO_IP,
2268 		       IPCTL_FORWSRCRT, CTL_EOL);
2269 	sysctl_createv(clog, 0, NULL, NULL,
2270 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2271 		       CTLTYPE_INT, "directed-broadcast",
2272 		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2273 		       NULL, 0, &ip_directedbcast, 0,
2274 		       CTL_NET, PF_INET, IPPROTO_IP,
2275 		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2276 	sysctl_createv(clog, 0, NULL, NULL,
2277 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2278 		       CTLTYPE_INT, "allowsrcrt",
2279 		       SYSCTL_DESCR("Accept source-routed datagrams"),
2280 		       NULL, 0, &ip_allowsrcrt, 0,
2281 		       CTL_NET, PF_INET, IPPROTO_IP,
2282 		       IPCTL_ALLOWSRCRT, CTL_EOL);
2283 	sysctl_createv(clog, 0, NULL, NULL,
2284 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2285 		       CTLTYPE_INT, "subnetsarelocal",
2286 		       SYSCTL_DESCR("Whether logical subnets are considered "
2287 				    "local"),
2288 		       NULL, 0, &subnetsarelocal, 0,
2289 		       CTL_NET, PF_INET, IPPROTO_IP,
2290 		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2291 	sysctl_createv(clog, 0, NULL, NULL,
2292 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2293 		       CTLTYPE_INT, "mtudisc",
2294 		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2295 		       NULL, 0, &ip_mtudisc, 0,
2296 		       CTL_NET, PF_INET, IPPROTO_IP,
2297 		       IPCTL_MTUDISC, CTL_EOL);
2298 	sysctl_createv(clog, 0, NULL, NULL,
2299 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2300 		       CTLTYPE_INT, "anonportmin",
2301 		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2302 		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2303 		       CTL_NET, PF_INET, IPPROTO_IP,
2304 		       IPCTL_ANONPORTMIN, CTL_EOL);
2305 	sysctl_createv(clog, 0, NULL, NULL,
2306 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2307 		       CTLTYPE_INT, "anonportmax",
2308 		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
2309 		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2310 		       CTL_NET, PF_INET, IPPROTO_IP,
2311 		       IPCTL_ANONPORTMAX, CTL_EOL);
2312 	sysctl_createv(clog, 0, NULL, NULL,
2313 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2314 		       CTLTYPE_INT, "mtudisctimeout",
2315 		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2316 		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2317 		       CTL_NET, PF_INET, IPPROTO_IP,
2318 		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2319 #ifdef GATEWAY
2320 	sysctl_createv(clog, 0, NULL, NULL,
2321 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2322 		       CTLTYPE_INT, "maxflows",
2323 		       SYSCTL_DESCR("Number of flows for fast forwarding"),
2324 		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2325 		       CTL_NET, PF_INET, IPPROTO_IP,
2326 		       IPCTL_MAXFLOWS, CTL_EOL);
2327 	sysctl_createv(clog, 0, NULL, NULL,
2328 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2329 			CTLTYPE_INT, "hashsize",
2330 			SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2331 			sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2332 			CTL_NET, PF_INET, IPPROTO_IP,
2333 			CTL_CREATE, CTL_EOL);
2334 #endif /* GATEWAY */
2335 	sysctl_createv(clog, 0, NULL, NULL,
2336 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2337 		       CTLTYPE_INT, "hostzerobroadcast",
2338 		       SYSCTL_DESCR("All zeroes address is broadcast address"),
2339 		       NULL, 0, &hostzeroisbroadcast, 0,
2340 		       CTL_NET, PF_INET, IPPROTO_IP,
2341 		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2342 #if NGIF > 0
2343 	sysctl_createv(clog, 0, NULL, NULL,
2344 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2345 		       CTLTYPE_INT, "gifttl",
2346 		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2347 		       NULL, 0, &ip_gif_ttl, 0,
2348 		       CTL_NET, PF_INET, IPPROTO_IP,
2349 		       IPCTL_GIF_TTL, CTL_EOL);
2350 #endif /* NGIF */
2351 #ifndef IPNOPRIVPORTS
2352 	sysctl_createv(clog, 0, NULL, NULL,
2353 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2354 		       CTLTYPE_INT, "lowportmin",
2355 		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
2356 				    "to assign"),
2357 		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2358 		       CTL_NET, PF_INET, IPPROTO_IP,
2359 		       IPCTL_LOWPORTMIN, CTL_EOL);
2360 	sysctl_createv(clog, 0, NULL, NULL,
2361 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2362 		       CTLTYPE_INT, "lowportmax",
2363 		       SYSCTL_DESCR("Highest privileged ephemeral port number "
2364 				    "to assign"),
2365 		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2366 		       CTL_NET, PF_INET, IPPROTO_IP,
2367 		       IPCTL_LOWPORTMAX, CTL_EOL);
2368 #endif /* IPNOPRIVPORTS */
2369 	sysctl_createv(clog, 0, NULL, NULL,
2370 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2371 		       CTLTYPE_INT, "maxfragpackets",
2372 		       SYSCTL_DESCR("Maximum number of fragments to retain for "
2373 				    "possible reassembly"),
2374 		       NULL, 0, &ip_maxfragpackets, 0,
2375 		       CTL_NET, PF_INET, IPPROTO_IP,
2376 		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2377 #if NGRE > 0
2378 	sysctl_createv(clog, 0, NULL, NULL,
2379 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2380 		       CTLTYPE_INT, "grettl",
2381 		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2382 		       NULL, 0, &ip_gre_ttl, 0,
2383 		       CTL_NET, PF_INET, IPPROTO_IP,
2384 		       IPCTL_GRE_TTL, CTL_EOL);
2385 #endif /* NGRE */
2386 	sysctl_createv(clog, 0, NULL, NULL,
2387 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2388 		       CTLTYPE_INT, "checkinterface",
2389 		       SYSCTL_DESCR("Enable receive side of Strong ES model "
2390 				    "from RFC1122"),
2391 		       NULL, 0, &ip_checkinterface, 0,
2392 		       CTL_NET, PF_INET, IPPROTO_IP,
2393 		       IPCTL_CHECKINTERFACE, CTL_EOL);
2394 	sysctl_createv(clog, 0, NULL, NULL,
2395 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2396 		       CTLTYPE_INT, "random_id",
2397 		       SYSCTL_DESCR("Assign random ip_id values"),
2398 		       NULL, 0, &ip_do_randomid, 0,
2399 		       CTL_NET, PF_INET, IPPROTO_IP,
2400 		       IPCTL_RANDOMID, CTL_EOL);
2401 	sysctl_createv(clog, 0, NULL, NULL,
2402 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2403 		       CTLTYPE_INT, "do_loopback_cksum",
2404 		       SYSCTL_DESCR("Perform IP checksum on loopback"),
2405 		       NULL, 0, &ip_do_loopback_cksum, 0,
2406 		       CTL_NET, PF_INET, IPPROTO_IP,
2407 		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
2408 	sysctl_createv(clog, 0, NULL, NULL,
2409 		       CTLFLAG_PERMANENT,
2410 		       CTLTYPE_STRUCT, "stats",
2411 		       SYSCTL_DESCR("IP statistics"),
2412 		       sysctl_net_inet_ip_stats, 0, NULL, 0,
2413 		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2414 		       CTL_EOL);
2415 }
2416 
2417 void
2418 ip_statinc(u_int stat)
2419 {
2420 
2421 	KASSERT(stat < IP_NSTATS);
2422 	IP_STATINC(stat);
2423 }
2424