xref: /netbsd-src/sys/netinet/ip_input.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: ip_input.c,v 1.277 2008/12/17 20:51:37 cegger Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.277 2008/12/17 20:51:37 cegger Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_gateway.h"
98 #include "opt_pfil_hooks.h"
99 #include "opt_ipsec.h"
100 #include "opt_mrouting.h"
101 #include "opt_mbuftrace.h"
102 #include "opt_inet_csum.h"
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/errno.h>
113 #include <sys/time.h>
114 #include <sys/kernel.h>
115 #include <sys/pool.h>
116 #include <sys/sysctl.h>
117 #include <sys/kauth.h>
118 
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123 
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/in_pcb.h>
128 #include <netinet/in_proto.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/ip_private.h>
132 #include <netinet/ip_icmp.h>
133 /* just for gif_ttl */
134 #include <netinet/in_gif.h>
135 #include "gif.h"
136 #include <net/if_gre.h>
137 #include "gre.h"
138 
139 #ifdef MROUTING
140 #include <netinet/ip_mroute.h>
141 #endif
142 
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec_private.h>
146 #include <netkey/key.h>
147 #endif
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #endif	/* FAST_IPSEC*/
152 
153 #ifndef	IPFORWARDING
154 #ifdef GATEWAY
155 #define	IPFORWARDING	1	/* forward IP packets not for us */
156 #else /* GATEWAY */
157 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
158 #endif /* GATEWAY */
159 #endif /* IPFORWARDING */
160 #ifndef	IPSENDREDIRECTS
161 #define	IPSENDREDIRECTS	1
162 #endif
163 #ifndef IPFORWSRCRT
164 #define	IPFORWSRCRT	1	/* forward source-routed packets */
165 #endif
166 #ifndef IPALLOWSRCRT
167 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
168 #endif
169 #ifndef IPMTUDISC
170 #define IPMTUDISC	1
171 #endif
172 #ifndef IPMTUDISCTIMEOUT
173 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
174 #endif
175 
176 /*
177  * Note: DIRECTED_BROADCAST is handled this way so that previous
178  * configuration using this option will Just Work.
179  */
180 #ifndef IPDIRECTEDBCAST
181 #ifdef DIRECTED_BROADCAST
182 #define IPDIRECTEDBCAST	1
183 #else
184 #define	IPDIRECTEDBCAST	0
185 #endif /* DIRECTED_BROADCAST */
186 #endif /* IPDIRECTEDBCAST */
187 int	ipforwarding = IPFORWARDING;
188 int	ipsendredirects = IPSENDREDIRECTS;
189 int	ip_defttl = IPDEFTTL;
190 int	ip_forwsrcrt = IPFORWSRCRT;
191 int	ip_directedbcast = IPDIRECTEDBCAST;
192 int	ip_allowsrcrt = IPALLOWSRCRT;
193 int	ip_mtudisc = IPMTUDISC;
194 int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
195 #ifdef DIAGNOSTIC
196 int	ipprintfs = 0;
197 #endif
198 
199 int	ip_do_randomid = 0;
200 
201 /*
202  * XXX - Setting ip_checkinterface mostly implements the receive side of
203  * the Strong ES model described in RFC 1122, but since the routing table
204  * and transmit implementation do not implement the Strong ES model,
205  * setting this to 1 results in an odd hybrid.
206  *
207  * XXX - ip_checkinterface currently must be disabled if you use ipnat
208  * to translate the destination address to another local interface.
209  *
210  * XXX - ip_checkinterface must be disabled if you add IP aliases
211  * to the loopback interface instead of the interface where the
212  * packets for those addresses are received.
213  */
214 int	ip_checkinterface = 0;
215 
216 
217 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
218 
219 int	ipqmaxlen = IFQ_MAXLEN;
220 u_long	in_ifaddrhash;				/* size of hash table - 1 */
221 int	in_ifaddrentries;			/* total number of addrs */
222 struct in_ifaddrhead in_ifaddrhead;
223 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
224 u_long	in_multihash;				/* size of hash table - 1 */
225 int	in_multientries;			/* total number of addrs */
226 struct	in_multihashhead *in_multihashtbl;
227 struct	ifqueue ipintrq;
228 uint16_t ip_id;
229 
230 percpu_t *ipstat_percpu;
231 
232 #ifdef PFIL_HOOKS
233 struct pfil_head inet_pfil_hook;
234 #endif
235 
236 /*
237  * Cached copy of nmbclusters. If nbclusters is different,
238  * recalculate IP parameters derived from nmbclusters.
239  */
240 static int	ip_nmbclusters;			/* copy of nmbclusters */
241 static void	ip_nmbclusters_changed(void);	/* recalc limits */
242 
243 #define CHECK_NMBCLUSTER_PARAMS()				\
244 do {								\
245 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
246 		ip_nmbclusters_changed();			\
247 } while (/*CONSTCOND*/0)
248 
249 /* IP datagram reassembly queues (hashed) */
250 #define IPREASS_NHASH_LOG2      6
251 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
252 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
253 #define IPREASS_HASH(x,y) \
254 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
255 struct ipqhead ipq[IPREASS_NHASH];
256 int	ipq_locked;
257 static int	ip_nfragpackets;	/* packets in reass queue */
258 static int	ip_nfrags;		/* total fragments in reass queues */
259 
260 int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
261 int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
262 
263 
264 /*
265  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
266  * IP reassembly queue buffer managment.
267  *
268  * We keep a count of total IP fragments (NB: not fragmented packets!)
269  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
270  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
271  * total fragments in  reassembly queues.This AIMD policy avoids
272  * repeatedly deleting single packets under heavy fragmentation load
273  * (e.g., from lossy NFS peers).
274  */
275 static u_int	ip_reass_ttl_decr(u_int ticks);
276 static void	ip_reass_drophalf(void);
277 
278 
279 static inline int ipq_lock_try(void);
280 static inline void ipq_unlock(void);
281 
282 static inline int
283 ipq_lock_try(void)
284 {
285 	int s;
286 
287 	/*
288 	 * Use splvm() -- we're blocking things that would cause
289 	 * mbuf allocation.
290 	 */
291 	s = splvm();
292 	if (ipq_locked) {
293 		splx(s);
294 		return (0);
295 	}
296 	ipq_locked = 1;
297 	splx(s);
298 	return (1);
299 }
300 
301 static inline void
302 ipq_unlock(void)
303 {
304 	int s;
305 
306 	s = splvm();
307 	ipq_locked = 0;
308 	splx(s);
309 }
310 
311 #ifdef DIAGNOSTIC
312 #define	IPQ_LOCK()							\
313 do {									\
314 	if (ipq_lock_try() == 0) {					\
315 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
316 		panic("ipq_lock");					\
317 	}								\
318 } while (/*CONSTCOND*/ 0)
319 #define	IPQ_LOCK_CHECK()						\
320 do {									\
321 	if (ipq_locked == 0) {						\
322 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
323 		panic("ipq lock check");				\
324 	}								\
325 } while (/*CONSTCOND*/ 0)
326 #else
327 #define	IPQ_LOCK()		(void) ipq_lock_try()
328 #define	IPQ_LOCK_CHECK()	/* nothing */
329 #endif
330 
331 #define	IPQ_UNLOCK()		ipq_unlock()
332 
333 struct pool inmulti_pool;
334 struct pool ipqent_pool;
335 
336 #ifdef INET_CSUM_COUNTERS
337 #include <sys/device.h>
338 
339 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340     NULL, "inet", "hwcsum bad");
341 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342     NULL, "inet", "hwcsum ok");
343 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344     NULL, "inet", "swcsum");
345 
346 #define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
347 
348 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
349 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
350 EVCNT_ATTACH_STATIC(ip_swcsum);
351 
352 #else
353 
354 #define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
355 
356 #endif /* INET_CSUM_COUNTERS */
357 
358 /*
359  * We need to save the IP options in case a protocol wants to respond
360  * to an incoming packet over the same route if the packet got here
361  * using IP source routing.  This allows connection establishment and
362  * maintenance when the remote end is on a network that is not known
363  * to us.
364  */
365 int	ip_nhops = 0;
366 static	struct ip_srcrt {
367 	struct	in_addr dst;			/* final destination */
368 	char	nop;				/* one NOP to align */
369 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
370 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
371 } ip_srcrt;
372 
373 static void save_rte(u_char *, struct in_addr);
374 
375 #ifdef MBUFTRACE
376 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
377 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
378 #endif
379 
380 /*
381  * Compute IP limits derived from the value of nmbclusters.
382  */
383 static void
384 ip_nmbclusters_changed(void)
385 {
386 	ip_maxfrags = nmbclusters / 4;
387 	ip_nmbclusters =  nmbclusters;
388 }
389 
390 /*
391  * IP initialization: fill in IP protocol switch table.
392  * All protocols not implemented in kernel go to raw IP protocol handler.
393  */
394 void
395 ip_init(void)
396 {
397 	const struct protosw *pr;
398 	int i;
399 
400 	pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
401 	    NULL, IPL_SOFTNET);
402 	pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
403 	    NULL, IPL_VM);
404 
405 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
406 	if (pr == 0)
407 		panic("ip_init");
408 	for (i = 0; i < IPPROTO_MAX; i++)
409 		ip_protox[i] = pr - inetsw;
410 	for (pr = inetdomain.dom_protosw;
411 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
412 		if (pr->pr_domain->dom_family == PF_INET &&
413 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
414 			ip_protox[pr->pr_protocol] = pr - inetsw;
415 
416 	for (i = 0; i < IPREASS_NHASH; i++)
417 	    	LIST_INIT(&ipq[i]);
418 
419 	ip_initid();
420 	ip_id = time_second & 0xfffff;
421 
422 	ipintrq.ifq_maxlen = ipqmaxlen;
423 	ip_nmbclusters_changed();
424 
425 	TAILQ_INIT(&in_ifaddrhead);
426 	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
427 	    &in_ifaddrhash);
428 	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
429 	    &in_multihash);
430 	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
431 #ifdef GATEWAY
432 	ipflow_init(ip_hashsize);
433 #endif
434 
435 #ifdef PFIL_HOOKS
436 	/* Register our Packet Filter hook. */
437 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
438 	inet_pfil_hook.ph_af   = AF_INET;
439 	i = pfil_head_register(&inet_pfil_hook);
440 	if (i != 0)
441 		printf("ip_init: WARNING: unable to register pfil hook, "
442 		    "error %d\n", i);
443 #endif /* PFIL_HOOKS */
444 
445 #ifdef MBUFTRACE
446 	MOWNER_ATTACH(&ip_tx_mowner);
447 	MOWNER_ATTACH(&ip_rx_mowner);
448 #endif /* MBUFTRACE */
449 
450 	ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
451 }
452 
453 struct	sockaddr_in ipaddr = {
454 	.sin_len = sizeof(ipaddr),
455 	.sin_family = AF_INET,
456 };
457 struct	route ipforward_rt;
458 
459 /*
460  * IP software interrupt routine
461  */
462 void
463 ipintr(void)
464 {
465 	int s;
466 	struct mbuf *m;
467 
468 	mutex_enter(softnet_lock);
469 	KERNEL_LOCK(1, NULL);
470 	while (!IF_IS_EMPTY(&ipintrq)) {
471 		s = splnet();
472 		IF_DEQUEUE(&ipintrq, m);
473 		splx(s);
474 		if (m == NULL)
475 			break;
476 		ip_input(m);
477 	}
478 	KERNEL_UNLOCK_ONE(NULL);
479 	mutex_exit(softnet_lock);
480 }
481 
482 /*
483  * Ip input routine.  Checksum and byte swap header.  If fragmented
484  * try to reassemble.  Process options.  Pass to next level.
485  */
486 void
487 ip_input(struct mbuf *m)
488 {
489 	struct ip *ip = NULL;
490 	struct ipq *fp;
491 	struct in_ifaddr *ia;
492 	struct ifaddr *ifa;
493 	struct ipqent *ipqe;
494 	int hlen = 0, mff, len;
495 	int downmatch;
496 	int checkif;
497 	int srcrt = 0;
498 	int s;
499 	u_int hash;
500 #ifdef FAST_IPSEC
501 	struct m_tag *mtag;
502 	struct tdb_ident *tdbi;
503 	struct secpolicy *sp;
504 	int error;
505 #endif /* FAST_IPSEC */
506 
507 	MCLAIM(m, &ip_rx_mowner);
508 #ifdef	DIAGNOSTIC
509 	if ((m->m_flags & M_PKTHDR) == 0)
510 		panic("ipintr no HDR");
511 #endif
512 
513 	/*
514 	 * If no IP addresses have been set yet but the interfaces
515 	 * are receiving, can't do anything with incoming packets yet.
516 	 */
517 	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
518 		goto bad;
519 	IP_STATINC(IP_STAT_TOTAL);
520 	/*
521 	 * If the IP header is not aligned, slurp it up into a new
522 	 * mbuf with space for link headers, in the event we forward
523 	 * it.  Otherwise, if it is aligned, make sure the entire
524 	 * base IP header is in the first mbuf of the chain.
525 	 */
526 	if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
527 		if ((m = m_copyup(m, sizeof(struct ip),
528 				  (max_linkhdr + 3) & ~3)) == NULL) {
529 			/* XXXJRT new stat, please */
530 			IP_STATINC(IP_STAT_TOOSMALL);
531 			return;
532 		}
533 	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
534 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
535 			IP_STATINC(IP_STAT_TOOSMALL);
536 			return;
537 		}
538 	}
539 	ip = mtod(m, struct ip *);
540 	if (ip->ip_v != IPVERSION) {
541 		IP_STATINC(IP_STAT_BADVERS);
542 		goto bad;
543 	}
544 	hlen = ip->ip_hl << 2;
545 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
546 		IP_STATINC(IP_STAT_BADHLEN);
547 		goto bad;
548 	}
549 	if (hlen > m->m_len) {
550 		if ((m = m_pullup(m, hlen)) == 0) {
551 			IP_STATINC(IP_STAT_BADHLEN);
552 			return;
553 		}
554 		ip = mtod(m, struct ip *);
555 	}
556 
557 	/*
558 	 * RFC1122: packets with a multicast source address are
559 	 * not allowed.
560 	 */
561 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
562 		IP_STATINC(IP_STAT_BADADDR);
563 		goto bad;
564 	}
565 
566 	/* 127/8 must not appear on wire - RFC1122 */
567 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
568 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
569 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
570 			IP_STATINC(IP_STAT_BADADDR);
571 			goto bad;
572 		}
573 	}
574 
575 	switch (m->m_pkthdr.csum_flags &
576 		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
577 		 M_CSUM_IPv4_BAD)) {
578 	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
579 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
580 		goto badcsum;
581 
582 	case M_CSUM_IPv4:
583 		/* Checksum was okay. */
584 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
585 		break;
586 
587 	default:
588 		/*
589 		 * Must compute it ourselves.  Maybe skip checksum on
590 		 * loopback interfaces.
591 		 */
592 		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
593 				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
594 			INET_CSUM_COUNTER_INCR(&ip_swcsum);
595 			if (in_cksum(m, hlen) != 0)
596 				goto badcsum;
597 		}
598 		break;
599 	}
600 
601 	/* Retrieve the packet length. */
602 	len = ntohs(ip->ip_len);
603 
604 	/*
605 	 * Check for additional length bogosity
606 	 */
607 	if (len < hlen) {
608 		IP_STATINC(IP_STAT_BADLEN);
609 		goto bad;
610 	}
611 
612 	/*
613 	 * Check that the amount of data in the buffers
614 	 * is as at least much as the IP header would have us expect.
615 	 * Trim mbufs if longer than we expect.
616 	 * Drop packet if shorter than we expect.
617 	 */
618 	if (m->m_pkthdr.len < len) {
619 		IP_STATINC(IP_STAT_TOOSHORT);
620 		goto bad;
621 	}
622 	if (m->m_pkthdr.len > len) {
623 		if (m->m_len == m->m_pkthdr.len) {
624 			m->m_len = len;
625 			m->m_pkthdr.len = len;
626 		} else
627 			m_adj(m, len - m->m_pkthdr.len);
628 	}
629 
630 #if defined(IPSEC)
631 	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
632 	m->m_flags &= ~M_CANFASTFWD;
633 #else
634 	/*
635 	 * Assume that we can create a fast-forward IP flow entry
636 	 * based on this packet.
637 	 */
638 	m->m_flags |= M_CANFASTFWD;
639 #endif
640 
641 #ifdef PFIL_HOOKS
642 	/*
643 	 * Run through list of hooks for input packets.  If there are any
644 	 * filters which require that additional packets in the flow are
645 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
646 	 * Note that filters must _never_ set this flag, as another filter
647 	 * in the list may have previously cleared it.
648 	 */
649 	/*
650 	 * let ipfilter look at packet on the wire,
651 	 * not the decapsulated packet.
652 	 */
653 #ifdef IPSEC
654 	if (!ipsec_getnhist(m))
655 #elif defined(FAST_IPSEC)
656 	if (!ipsec_indone(m))
657 #else
658 	if (1)
659 #endif
660 	{
661 		struct in_addr odst;
662 
663 		odst = ip->ip_dst;
664 		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
665 		    PFIL_IN) != 0)
666 			return;
667 		if (m == NULL)
668 			return;
669 		ip = mtod(m, struct ip *);
670 		hlen = ip->ip_hl << 2;
671 		/*
672 		 * XXX The setting of "srcrt" here is to prevent ip_forward()
673 		 * from generating ICMP redirects for packets that have
674 		 * been redirected by a hook back out on to the same LAN that
675 		 * they came from and is not an indication that the packet
676 		 * is being inffluenced by source routing options.  This
677 		 * allows things like
678 		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
679 		 * where tlp0 is both on the 1.1.1.0/24 network and is the
680 		 * default route for hosts on 1.1.1.0/24.  Of course this
681 		 * also requires a "map tlp0 ..." to complete the story.
682 		 * One might argue whether or not this kind of network config.
683 		 * should be supported in this manner...
684 		 */
685 		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
686 	}
687 #endif /* PFIL_HOOKS */
688 
689 #ifdef ALTQ
690 	/* XXX Temporary until ALTQ is changed to use a pfil hook */
691 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
692 		/* packet dropped by traffic conditioner */
693 		return;
694 	}
695 #endif
696 
697 	/*
698 	 * Process options and, if not destined for us,
699 	 * ship it on.  ip_dooptions returns 1 when an
700 	 * error was detected (causing an icmp message
701 	 * to be sent and the original packet to be freed).
702 	 */
703 	ip_nhops = 0;		/* for source routed packets */
704 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
705 		return;
706 
707 	/*
708 	 * Enable a consistency check between the destination address
709 	 * and the arrival interface for a unicast packet (the RFC 1122
710 	 * strong ES model) if IP forwarding is disabled and the packet
711 	 * is not locally generated.
712 	 *
713 	 * XXX - Checking also should be disabled if the destination
714 	 * address is ipnat'ed to a different interface.
715 	 *
716 	 * XXX - Checking is incompatible with IP aliases added
717 	 * to the loopback interface instead of the interface where
718 	 * the packets are received.
719 	 *
720 	 * XXX - We need to add a per ifaddr flag for this so that
721 	 * we get finer grain control.
722 	 */
723 	checkif = ip_checkinterface && (ipforwarding == 0) &&
724 	    (m->m_pkthdr.rcvif != NULL) &&
725 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
726 
727 	/*
728 	 * Check our list of addresses, to see if the packet is for us.
729 	 *
730 	 * Traditional 4.4BSD did not consult IFF_UP at all.
731 	 * The behavior here is to treat addresses on !IFF_UP interface
732 	 * as not mine.
733 	 */
734 	downmatch = 0;
735 	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
736 		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
737 			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
738 				continue;
739 			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
740 				break;
741 			else
742 				downmatch++;
743 		}
744 	}
745 	if (ia != NULL)
746 		goto ours;
747 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
748 		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
749 			if (ifa->ifa_addr->sa_family != AF_INET)
750 				continue;
751 			ia = ifatoia(ifa);
752 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
753 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
754 			    /*
755 			     * Look for all-0's host part (old broadcast addr),
756 			     * either for subnet or net.
757 			     */
758 			    ip->ip_dst.s_addr == ia->ia_subnet ||
759 			    ip->ip_dst.s_addr == ia->ia_net)
760 				goto ours;
761 			/*
762 			 * An interface with IP address zero accepts
763 			 * all packets that arrive on that interface.
764 			 */
765 			if (in_nullhost(ia->ia_addr.sin_addr))
766 				goto ours;
767 		}
768 	}
769 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
770 		struct in_multi *inm;
771 #ifdef MROUTING
772 		extern struct socket *ip_mrouter;
773 
774 		if (ip_mrouter) {
775 			/*
776 			 * If we are acting as a multicast router, all
777 			 * incoming multicast packets are passed to the
778 			 * kernel-level multicast forwarding function.
779 			 * The packet is returned (relatively) intact; if
780 			 * ip_mforward() returns a non-zero value, the packet
781 			 * must be discarded, else it may be accepted below.
782 			 *
783 			 * (The IP ident field is put in the same byte order
784 			 * as expected when ip_mforward() is called from
785 			 * ip_output().)
786 			 */
787 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
788 				IP_STATINC(IP_STAT_CANTFORWARD);
789 				m_freem(m);
790 				return;
791 			}
792 
793 			/*
794 			 * The process-level routing demon needs to receive
795 			 * all multicast IGMP packets, whether or not this
796 			 * host belongs to their destination groups.
797 			 */
798 			if (ip->ip_p == IPPROTO_IGMP)
799 				goto ours;
800 			IP_STATINC(IP_STAT_CANTFORWARD);
801 		}
802 #endif
803 		/*
804 		 * See if we belong to the destination multicast group on the
805 		 * arrival interface.
806 		 */
807 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
808 		if (inm == NULL) {
809 			IP_STATINC(IP_STAT_CANTFORWARD);
810 			m_freem(m);
811 			return;
812 		}
813 		goto ours;
814 	}
815 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
816 	    in_nullhost(ip->ip_dst))
817 		goto ours;
818 
819 	/*
820 	 * Not for us; forward if possible and desirable.
821 	 */
822 	if (ipforwarding == 0) {
823 		IP_STATINC(IP_STAT_CANTFORWARD);
824 		m_freem(m);
825 	} else {
826 		/*
827 		 * If ip_dst matched any of my address on !IFF_UP interface,
828 		 * and there's no IFF_UP interface that matches ip_dst,
829 		 * send icmp unreach.  Forwarding it will result in in-kernel
830 		 * forwarding loop till TTL goes to 0.
831 		 */
832 		if (downmatch) {
833 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
834 			IP_STATINC(IP_STAT_CANTFORWARD);
835 			return;
836 		}
837 #ifdef IPSEC
838 		if (ipsec4_in_reject(m, NULL)) {
839 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
840 			goto bad;
841 		}
842 #endif
843 #ifdef FAST_IPSEC
844 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
845 		s = splsoftnet();
846 		if (mtag != NULL) {
847 			tdbi = (struct tdb_ident *)(mtag + 1);
848 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
849 		} else {
850 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
851 						   IP_FORWARDING, &error);
852 		}
853 		if (sp == NULL) {	/* NB: can happen if error */
854 			splx(s);
855 			/*XXX error stat???*/
856 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
857 			goto bad;
858 		}
859 
860 		/*
861 		 * Check security policy against packet attributes.
862 		 */
863 		error = ipsec_in_reject(sp, m);
864 		KEY_FREESP(&sp);
865 		splx(s);
866 		if (error) {
867 			IP_STATINC(IP_STAT_CANTFORWARD);
868 			goto bad;
869 		}
870 
871 		/*
872 		 * Peek at the outbound SP for this packet to determine if
873 		 * it's a Fast Forward candidate.
874 		 */
875 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
876 		if (mtag != NULL)
877 			m->m_flags &= ~M_CANFASTFWD;
878 		else {
879 			s = splsoftnet();
880 			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
881 			    (IP_FORWARDING |
882 			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
883 			    &error, NULL);
884 			if (sp != NULL) {
885 				m->m_flags &= ~M_CANFASTFWD;
886 				KEY_FREESP(&sp);
887 			}
888 			splx(s);
889 		}
890 #endif	/* FAST_IPSEC */
891 
892 		ip_forward(m, srcrt);
893 	}
894 	return;
895 
896 ours:
897 	/*
898 	 * If offset or IP_MF are set, must reassemble.
899 	 * Otherwise, nothing need be done.
900 	 * (We could look in the reassembly queue to see
901 	 * if the packet was previously fragmented,
902 	 * but it's not worth the time; just let them time out.)
903 	 */
904 	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
905 		uint16_t off;
906 		/*
907 		 * Prevent TCP blind data attacks by not allowing non-initial
908 		 * fragments to start at less than 68 bytes (minimal fragment
909 		 * size) and making sure the first fragment is at least 68
910 		 * bytes.
911 		 */
912 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
913 		if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
914 			IP_STATINC(IP_STAT_BADFRAGS);
915 			goto bad;
916 		}
917 		/*
918 		 * Look for queue of fragments
919 		 * of this datagram.
920 		 */
921 		IPQ_LOCK();
922 		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
923 		LIST_FOREACH(fp, &ipq[hash], ipq_q) {
924 			if (ip->ip_id == fp->ipq_id &&
925 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
926 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
927 			    ip->ip_p == fp->ipq_p) {
928 				/*
929 				 * Make sure the TOS is matches previous
930 				 * fragments.
931 				 */
932 				if (ip->ip_tos != fp->ipq_tos) {
933 					IP_STATINC(IP_STAT_BADFRAGS);
934 					IPQ_UNLOCK();
935 					goto bad;
936 				}
937 				goto found;
938 			}
939 		}
940 		fp = 0;
941 found:
942 
943 		/*
944 		 * Adjust ip_len to not reflect header,
945 		 * set ipqe_mff if more fragments are expected,
946 		 * convert offset of this to bytes.
947 		 */
948 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
949 		mff = (ip->ip_off & htons(IP_MF)) != 0;
950 		if (mff) {
951 		        /*
952 		         * Make sure that fragments have a data length
953 			 * that's a non-zero multiple of 8 bytes.
954 		         */
955 			if (ntohs(ip->ip_len) == 0 ||
956 			    (ntohs(ip->ip_len) & 0x7) != 0) {
957 				IP_STATINC(IP_STAT_BADFRAGS);
958 				IPQ_UNLOCK();
959 				goto bad;
960 			}
961 		}
962 		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
963 
964 		/*
965 		 * If datagram marked as having more fragments
966 		 * or if this is not the first fragment,
967 		 * attempt reassembly; if it succeeds, proceed.
968 		 */
969 		if (mff || ip->ip_off != htons(0)) {
970 			IP_STATINC(IP_STAT_FRAGMENTS);
971 			s = splvm();
972 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
973 			splx(s);
974 			if (ipqe == NULL) {
975 				IP_STATINC(IP_STAT_RCVMEMDROP);
976 				IPQ_UNLOCK();
977 				goto bad;
978 			}
979 			ipqe->ipqe_mff = mff;
980 			ipqe->ipqe_m = m;
981 			ipqe->ipqe_ip = ip;
982 			m = ip_reass(ipqe, fp, &ipq[hash]);
983 			if (m == 0) {
984 				IPQ_UNLOCK();
985 				return;
986 			}
987 			IP_STATINC(IP_STAT_REASSEMBLED);
988 			ip = mtod(m, struct ip *);
989 			hlen = ip->ip_hl << 2;
990 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
991 		} else
992 			if (fp)
993 				ip_freef(fp);
994 		IPQ_UNLOCK();
995 	}
996 
997 #if defined(IPSEC)
998 	/*
999 	 * enforce IPsec policy checking if we are seeing last header.
1000 	 * note that we do not visit this with protocols with pcb layer
1001 	 * code - like udp/tcp/raw ip.
1002 	 */
1003 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1004 	    ipsec4_in_reject(m, NULL)) {
1005 		IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1006 		goto bad;
1007 	}
1008 #endif
1009 #ifdef FAST_IPSEC
1010 	/*
1011 	 * enforce IPsec policy checking if we are seeing last header.
1012 	 * note that we do not visit this with protocols with pcb layer
1013 	 * code - like udp/tcp/raw ip.
1014 	 */
1015 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1016 		/*
1017 		 * Check if the packet has already had IPsec processing
1018 		 * done.  If so, then just pass it along.  This tag gets
1019 		 * set during AH, ESP, etc. input handling, before the
1020 		 * packet is returned to the ip input queue for delivery.
1021 		 */
1022 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1023 		s = splsoftnet();
1024 		if (mtag != NULL) {
1025 			tdbi = (struct tdb_ident *)(mtag + 1);
1026 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1027 		} else {
1028 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1029 						   IP_FORWARDING, &error);
1030 		}
1031 		if (sp != NULL) {
1032 			/*
1033 			 * Check security policy against packet attributes.
1034 			 */
1035 			error = ipsec_in_reject(sp, m);
1036 			KEY_FREESP(&sp);
1037 		} else {
1038 			/* XXX error stat??? */
1039 			error = EINVAL;
1040 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1041 		}
1042 		splx(s);
1043 		if (error)
1044 			goto bad;
1045 	}
1046 #endif /* FAST_IPSEC */
1047 
1048 	/*
1049 	 * Switch out to protocol's input routine.
1050 	 */
1051 #if IFA_STATS
1052 	if (ia && ip)
1053 		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1054 #endif
1055 	IP_STATINC(IP_STAT_DELIVERED);
1056     {
1057 	int off = hlen, nh = ip->ip_p;
1058 
1059 	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1060 	return;
1061     }
1062 bad:
1063 	m_freem(m);
1064 	return;
1065 
1066 badcsum:
1067 	IP_STATINC(IP_STAT_BADSUM);
1068 	m_freem(m);
1069 }
1070 
1071 /*
1072  * Take incoming datagram fragment and try to
1073  * reassemble it into whole datagram.  If a chain for
1074  * reassembly of this datagram already exists, then it
1075  * is given as fp; otherwise have to make a chain.
1076  */
1077 struct mbuf *
1078 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1079 {
1080 	struct mbuf *m = ipqe->ipqe_m;
1081 	struct ipqent *nq, *p, *q;
1082 	struct ip *ip;
1083 	struct mbuf *t;
1084 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1085 	int i, next, s;
1086 
1087 	IPQ_LOCK_CHECK();
1088 
1089 	/*
1090 	 * Presence of header sizes in mbufs
1091 	 * would confuse code below.
1092 	 */
1093 	m->m_data += hlen;
1094 	m->m_len -= hlen;
1095 
1096 #ifdef	notyet
1097 	/* make sure fragment limit is up-to-date */
1098 	CHECK_NMBCLUSTER_PARAMS();
1099 
1100 	/* If we have too many fragments, drop the older half. */
1101 	if (ip_nfrags >= ip_maxfrags)
1102 		ip_reass_drophalf(void);
1103 #endif
1104 
1105 	/*
1106 	 * We are about to add a fragment; increment frag count.
1107 	 */
1108 	ip_nfrags++;
1109 
1110 	/*
1111 	 * If first fragment to arrive, create a reassembly queue.
1112 	 */
1113 	if (fp == 0) {
1114 		/*
1115 		 * Enforce upper bound on number of fragmented packets
1116 		 * for which we attempt reassembly;
1117 		 * If maxfrag is 0, never accept fragments.
1118 		 * If maxfrag is -1, accept all fragments without limitation.
1119 		 */
1120 		if (ip_maxfragpackets < 0)
1121 			;
1122 		else if (ip_nfragpackets >= ip_maxfragpackets)
1123 			goto dropfrag;
1124 		ip_nfragpackets++;
1125 		fp = malloc(sizeof (struct ipq), M_FTABLE, M_NOWAIT);
1126 		if (fp == NULL)
1127 			goto dropfrag;
1128 		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1129 		fp->ipq_nfrags = 1;
1130 		fp->ipq_ttl = IPFRAGTTL;
1131 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1132 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1133 		fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1134 		TAILQ_INIT(&fp->ipq_fragq);
1135 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1136 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1137 		p = NULL;
1138 		goto insert;
1139 	} else {
1140 		fp->ipq_nfrags++;
1141 	}
1142 
1143 	/*
1144 	 * Find a segment which begins after this one does.
1145 	 */
1146 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1147 	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1148 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1149 			break;
1150 
1151 	/*
1152 	 * If there is a preceding segment, it may provide some of
1153 	 * our data already.  If so, drop the data from the incoming
1154 	 * segment.  If it provides all of our data, drop us.
1155 	 */
1156 	if (p != NULL) {
1157 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1158 		    ntohs(ipqe->ipqe_ip->ip_off);
1159 		if (i > 0) {
1160 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1161 				goto dropfrag;
1162 			m_adj(ipqe->ipqe_m, i);
1163 			ipqe->ipqe_ip->ip_off =
1164 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1165 			ipqe->ipqe_ip->ip_len =
1166 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1167 		}
1168 	}
1169 
1170 	/*
1171 	 * While we overlap succeeding segments trim them or,
1172 	 * if they are completely covered, dequeue them.
1173 	 */
1174 	for (; q != NULL &&
1175 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1176 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1177 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1178 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1179 		if (i < ntohs(q->ipqe_ip->ip_len)) {
1180 			q->ipqe_ip->ip_len =
1181 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1182 			q->ipqe_ip->ip_off =
1183 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1184 			m_adj(q->ipqe_m, i);
1185 			break;
1186 		}
1187 		nq = TAILQ_NEXT(q, ipqe_q);
1188 		m_freem(q->ipqe_m);
1189 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1190 		s = splvm();
1191 		pool_put(&ipqent_pool, q);
1192 		splx(s);
1193 		fp->ipq_nfrags--;
1194 		ip_nfrags--;
1195 	}
1196 
1197 insert:
1198 	/*
1199 	 * Stick new segment in its place;
1200 	 * check for complete reassembly.
1201 	 */
1202 	if (p == NULL) {
1203 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1204 	} else {
1205 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1206 	}
1207 	next = 0;
1208 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1209 	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1210 		if (ntohs(q->ipqe_ip->ip_off) != next)
1211 			return (0);
1212 		next += ntohs(q->ipqe_ip->ip_len);
1213 	}
1214 	if (p->ipqe_mff)
1215 		return (0);
1216 
1217 	/*
1218 	 * Reassembly is complete.  Check for a bogus message size and
1219 	 * concatenate fragments.
1220 	 */
1221 	q = TAILQ_FIRST(&fp->ipq_fragq);
1222 	ip = q->ipqe_ip;
1223 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1224 		IP_STATINC(IP_STAT_TOOLONG);
1225 		ip_freef(fp);
1226 		return (0);
1227 	}
1228 	m = q->ipqe_m;
1229 	t = m->m_next;
1230 	m->m_next = 0;
1231 	m_cat(m, t);
1232 	nq = TAILQ_NEXT(q, ipqe_q);
1233 	s = splvm();
1234 	pool_put(&ipqent_pool, q);
1235 	splx(s);
1236 	for (q = nq; q != NULL; q = nq) {
1237 		t = q->ipqe_m;
1238 		nq = TAILQ_NEXT(q, ipqe_q);
1239 		s = splvm();
1240 		pool_put(&ipqent_pool, q);
1241 		splx(s);
1242 		m_cat(m, t);
1243 	}
1244 	ip_nfrags -= fp->ipq_nfrags;
1245 
1246 	/*
1247 	 * Create header for new ip packet by
1248 	 * modifying header of first packet;
1249 	 * dequeue and discard fragment reassembly header.
1250 	 * Make header visible.
1251 	 */
1252 	ip->ip_len = htons(next);
1253 	ip->ip_src = fp->ipq_src;
1254 	ip->ip_dst = fp->ipq_dst;
1255 	LIST_REMOVE(fp, ipq_q);
1256 	free(fp, M_FTABLE);
1257 	ip_nfragpackets--;
1258 	m->m_len += (ip->ip_hl << 2);
1259 	m->m_data -= (ip->ip_hl << 2);
1260 	/* some debugging cruft by sklower, below, will go away soon */
1261 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1262 		int plen = 0;
1263 		for (t = m; t; t = t->m_next)
1264 			plen += t->m_len;
1265 		m->m_pkthdr.len = plen;
1266 		m->m_pkthdr.csum_flags = 0;
1267 	}
1268 	return (m);
1269 
1270 dropfrag:
1271 	if (fp != 0)
1272 		fp->ipq_nfrags--;
1273 	ip_nfrags--;
1274 	IP_STATINC(IP_STAT_FRAGDROPPED);
1275 	m_freem(m);
1276 	s = splvm();
1277 	pool_put(&ipqent_pool, ipqe);
1278 	splx(s);
1279 	return (0);
1280 }
1281 
1282 /*
1283  * Free a fragment reassembly header and all
1284  * associated datagrams.
1285  */
1286 void
1287 ip_freef(struct ipq *fp)
1288 {
1289 	struct ipqent *q, *p;
1290 	u_int nfrags = 0;
1291 	int s;
1292 
1293 	IPQ_LOCK_CHECK();
1294 
1295 	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1296 		p = TAILQ_NEXT(q, ipqe_q);
1297 		m_freem(q->ipqe_m);
1298 		nfrags++;
1299 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1300 		s = splvm();
1301 		pool_put(&ipqent_pool, q);
1302 		splx(s);
1303 	}
1304 
1305 	if (nfrags != fp->ipq_nfrags)
1306 	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1307 	ip_nfrags -= nfrags;
1308 	LIST_REMOVE(fp, ipq_q);
1309 	free(fp, M_FTABLE);
1310 	ip_nfragpackets--;
1311 }
1312 
1313 /*
1314  * IP reassembly TTL machinery for  multiplicative drop.
1315  */
1316 static u_int	fragttl_histo[(IPFRAGTTL+1)];
1317 
1318 
1319 /*
1320  * Decrement TTL of all reasembly queue entries by `ticks'.
1321  * Count number of distinct fragments (as opposed to partial, fragmented
1322  * datagrams) in the reassembly queue.  While we  traverse the entire
1323  * reassembly queue, compute and return the median TTL over all fragments.
1324  */
1325 static u_int
1326 ip_reass_ttl_decr(u_int ticks)
1327 {
1328 	u_int nfrags, median, dropfraction, keepfraction;
1329 	struct ipq *fp, *nfp;
1330 	int i;
1331 
1332 	nfrags = 0;
1333 	memset(fragttl_histo, 0, sizeof fragttl_histo);
1334 
1335 	for (i = 0; i < IPREASS_NHASH; i++) {
1336 		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1337 			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1338 				       0 : fp->ipq_ttl - ticks);
1339 			nfp = LIST_NEXT(fp, ipq_q);
1340 			if (fp->ipq_ttl == 0) {
1341 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
1342 				ip_freef(fp);
1343 			} else {
1344 				nfrags += fp->ipq_nfrags;
1345 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1346 			}
1347 		}
1348 	}
1349 
1350 	KASSERT(ip_nfrags == nfrags);
1351 
1352 	/* Find median (or other drop fraction) in histogram. */
1353 	dropfraction = (ip_nfrags / 2);
1354 	keepfraction = ip_nfrags - dropfraction;
1355 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1356 		median +=  fragttl_histo[i];
1357 		if (median >= keepfraction)
1358 			break;
1359 	}
1360 
1361 	/* Return TTL of median (or other fraction). */
1362 	return (u_int)i;
1363 }
1364 
1365 void
1366 ip_reass_drophalf(void)
1367 {
1368 
1369 	u_int median_ticks;
1370 	/*
1371 	 * Compute median TTL of all fragments, and count frags
1372 	 * with that TTL or lower (roughly half of all fragments).
1373 	 */
1374 	median_ticks = ip_reass_ttl_decr(0);
1375 
1376 	/* Drop half. */
1377 	median_ticks = ip_reass_ttl_decr(median_ticks);
1378 
1379 }
1380 
1381 /*
1382  * IP timer processing;
1383  * if a timer expires on a reassembly
1384  * queue, discard it.
1385  */
1386 void
1387 ip_slowtimo(void)
1388 {
1389 	static u_int dropscanidx = 0;
1390 	u_int i;
1391 	u_int median_ttl;
1392 
1393 	mutex_enter(softnet_lock);
1394 	KERNEL_LOCK(1, NULL);
1395 
1396 	IPQ_LOCK();
1397 
1398 	/* Age TTL of all fragments by 1 tick .*/
1399 	median_ttl = ip_reass_ttl_decr(1);
1400 
1401 	/* make sure fragment limit is up-to-date */
1402 	CHECK_NMBCLUSTER_PARAMS();
1403 
1404 	/* If we have too many fragments, drop the older half. */
1405 	if (ip_nfrags > ip_maxfrags)
1406 		ip_reass_ttl_decr(median_ttl);
1407 
1408 	/*
1409 	 * If we are over the maximum number of fragmented packets
1410 	 * (due to the limit being lowered), drain off
1411 	 * enough to get down to the new limit. Start draining
1412 	 * from the reassembly hashqueue most recently drained.
1413 	 */
1414 	if (ip_maxfragpackets < 0)
1415 		;
1416 	else {
1417 		int wrapped = 0;
1418 
1419 		i = dropscanidx;
1420 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1421 			while (LIST_FIRST(&ipq[i]) != NULL)
1422 				ip_freef(LIST_FIRST(&ipq[i]));
1423 			if (++i >= IPREASS_NHASH) {
1424 				i = 0;
1425 			}
1426 			/*
1427 			 * Dont scan forever even if fragment counters are
1428 			 * wrong: stop after scanning entire reassembly queue.
1429 			 */
1430 			if (i == dropscanidx)
1431 			    wrapped = 1;
1432 		}
1433 		dropscanidx = i;
1434 	}
1435 	IPQ_UNLOCK();
1436 
1437 	KERNEL_UNLOCK_ONE(NULL);
1438 	mutex_exit(softnet_lock);
1439 }
1440 
1441 /*
1442  * Drain off all datagram fragments.  Don't acquire softnet_lock as
1443  * can be called from hardware interrupt context.
1444  */
1445 void
1446 ip_drain(void)
1447 {
1448 
1449 	KERNEL_LOCK(1, NULL);
1450 
1451 	/*
1452 	 * We may be called from a device's interrupt context.  If
1453 	 * the ipq is already busy, just bail out now.
1454 	 */
1455 	if (ipq_lock_try() != 0) {
1456 		/*
1457 		 * Drop half the total fragments now. If more mbufs are
1458 		 * needed, we will be called again soon.
1459 		 */
1460 		ip_reass_drophalf();
1461 		IPQ_UNLOCK();
1462 	}
1463 
1464 	KERNEL_UNLOCK_ONE(NULL);
1465 }
1466 
1467 /*
1468  * Do option processing on a datagram,
1469  * possibly discarding it if bad options are encountered,
1470  * or forwarding it if source-routed.
1471  * Returns 1 if packet has been forwarded/freed,
1472  * 0 if the packet should be processed further.
1473  */
1474 int
1475 ip_dooptions(struct mbuf *m)
1476 {
1477 	struct ip *ip = mtod(m, struct ip *);
1478 	u_char *cp, *cp0;
1479 	struct ip_timestamp *ipt;
1480 	struct in_ifaddr *ia;
1481 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1482 	struct in_addr dst;
1483 	n_time ntime;
1484 
1485 	dst = ip->ip_dst;
1486 	cp = (u_char *)(ip + 1);
1487 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1488 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1489 		opt = cp[IPOPT_OPTVAL];
1490 		if (opt == IPOPT_EOL)
1491 			break;
1492 		if (opt == IPOPT_NOP)
1493 			optlen = 1;
1494 		else {
1495 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1496 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1497 				goto bad;
1498 			}
1499 			optlen = cp[IPOPT_OLEN];
1500 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1501 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1502 				goto bad;
1503 			}
1504 		}
1505 		switch (opt) {
1506 
1507 		default:
1508 			break;
1509 
1510 		/*
1511 		 * Source routing with record.
1512 		 * Find interface with current destination address.
1513 		 * If none on this machine then drop if strictly routed,
1514 		 * or do nothing if loosely routed.
1515 		 * Record interface address and bring up next address
1516 		 * component.  If strictly routed make sure next
1517 		 * address is on directly accessible net.
1518 		 */
1519 		case IPOPT_LSRR:
1520 		case IPOPT_SSRR:
1521 			if (ip_allowsrcrt == 0) {
1522 				type = ICMP_UNREACH;
1523 				code = ICMP_UNREACH_NET_PROHIB;
1524 				goto bad;
1525 			}
1526 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1527 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1528 				goto bad;
1529 			}
1530 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1531 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1532 				goto bad;
1533 			}
1534 			ipaddr.sin_addr = ip->ip_dst;
1535 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1536 			if (ia == 0) {
1537 				if (opt == IPOPT_SSRR) {
1538 					type = ICMP_UNREACH;
1539 					code = ICMP_UNREACH_SRCFAIL;
1540 					goto bad;
1541 				}
1542 				/*
1543 				 * Loose routing, and not at next destination
1544 				 * yet; nothing to do except forward.
1545 				 */
1546 				break;
1547 			}
1548 			off--;			/* 0 origin */
1549 			if ((off + sizeof(struct in_addr)) > optlen) {
1550 				/*
1551 				 * End of source route.  Should be for us.
1552 				 */
1553 				save_rte(cp, ip->ip_src);
1554 				break;
1555 			}
1556 			/*
1557 			 * locate outgoing interface
1558 			 */
1559 			bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr,
1560 			    sizeof(ipaddr.sin_addr));
1561 			if (opt == IPOPT_SSRR)
1562 				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1563 			else
1564 				ia = ip_rtaddr(ipaddr.sin_addr);
1565 			if (ia == 0) {
1566 				type = ICMP_UNREACH;
1567 				code = ICMP_UNREACH_SRCFAIL;
1568 				goto bad;
1569 			}
1570 			ip->ip_dst = ipaddr.sin_addr;
1571 			bcopy((void *)&ia->ia_addr.sin_addr,
1572 			    (void *)(cp + off), sizeof(struct in_addr));
1573 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1574 			/*
1575 			 * Let ip_intr's mcast routing check handle mcast pkts
1576 			 */
1577 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1578 			break;
1579 
1580 		case IPOPT_RR:
1581 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1582 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1583 				goto bad;
1584 			}
1585 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1586 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1587 				goto bad;
1588 			}
1589 			/*
1590 			 * If no space remains, ignore.
1591 			 */
1592 			off--;			/* 0 origin */
1593 			if ((off + sizeof(struct in_addr)) > optlen)
1594 				break;
1595 			bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr,
1596 			    sizeof(ipaddr.sin_addr));
1597 			/*
1598 			 * locate outgoing interface; if we're the destination,
1599 			 * use the incoming interface (should be same).
1600 			 */
1601 			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1602 			    == NULL &&
1603 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1604 				type = ICMP_UNREACH;
1605 				code = ICMP_UNREACH_HOST;
1606 				goto bad;
1607 			}
1608 			bcopy((void *)&ia->ia_addr.sin_addr,
1609 			    (void *)(cp + off), sizeof(struct in_addr));
1610 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1611 			break;
1612 
1613 		case IPOPT_TS:
1614 			code = cp - (u_char *)ip;
1615 			ipt = (struct ip_timestamp *)cp;
1616 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1617 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1618 				goto bad;
1619 			}
1620 			if (ipt->ipt_ptr < 5) {
1621 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1622 				goto bad;
1623 			}
1624 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1625 				if (++ipt->ipt_oflw == 0) {
1626 					code = (u_char *)&ipt->ipt_ptr -
1627 					    (u_char *)ip;
1628 					goto bad;
1629 				}
1630 				break;
1631 			}
1632 			cp0 = (cp + ipt->ipt_ptr - 1);
1633 			switch (ipt->ipt_flg) {
1634 
1635 			case IPOPT_TS_TSONLY:
1636 				break;
1637 
1638 			case IPOPT_TS_TSANDADDR:
1639 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1640 				    sizeof(struct in_addr) > ipt->ipt_len) {
1641 					code = (u_char *)&ipt->ipt_ptr -
1642 					    (u_char *)ip;
1643 					goto bad;
1644 				}
1645 				ipaddr.sin_addr = dst;
1646 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1647 				    m->m_pkthdr.rcvif));
1648 				if (ia == 0)
1649 					continue;
1650 				bcopy(&ia->ia_addr.sin_addr,
1651 				    cp0, sizeof(struct in_addr));
1652 				ipt->ipt_ptr += sizeof(struct in_addr);
1653 				break;
1654 
1655 			case IPOPT_TS_PRESPEC:
1656 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1657 				    sizeof(struct in_addr) > ipt->ipt_len) {
1658 					code = (u_char *)&ipt->ipt_ptr -
1659 					    (u_char *)ip;
1660 					goto bad;
1661 				}
1662 				bcopy(cp0, &ipaddr.sin_addr,
1663 				    sizeof(struct in_addr));
1664 				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1665 				    == NULL)
1666 					continue;
1667 				ipt->ipt_ptr += sizeof(struct in_addr);
1668 				break;
1669 
1670 			default:
1671 				/* XXX can't take &ipt->ipt_flg */
1672 				code = (u_char *)&ipt->ipt_ptr -
1673 				    (u_char *)ip + 1;
1674 				goto bad;
1675 			}
1676 			ntime = iptime();
1677 			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1678 			memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1679 			    sizeof(n_time));
1680 			ipt->ipt_ptr += sizeof(n_time);
1681 		}
1682 	}
1683 	if (forward) {
1684 		if (ip_forwsrcrt == 0) {
1685 			type = ICMP_UNREACH;
1686 			code = ICMP_UNREACH_SRCFAIL;
1687 			goto bad;
1688 		}
1689 		ip_forward(m, 1);
1690 		return (1);
1691 	}
1692 	return (0);
1693 bad:
1694 	icmp_error(m, type, code, 0, 0);
1695 	IP_STATINC(IP_STAT_BADOPTIONS);
1696 	return (1);
1697 }
1698 
1699 /*
1700  * Given address of next destination (final or next hop),
1701  * return internet address info of interface to be used to get there.
1702  */
1703 struct in_ifaddr *
1704 ip_rtaddr(struct in_addr dst)
1705 {
1706 	struct rtentry *rt;
1707 	union {
1708 		struct sockaddr		dst;
1709 		struct sockaddr_in	dst4;
1710 	} u;
1711 
1712 	sockaddr_in_init(&u.dst4, &dst, 0);
1713 
1714 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1715 		return NULL;
1716 
1717 	return ifatoia(rt->rt_ifa);
1718 }
1719 
1720 /*
1721  * Save incoming source route for use in replies,
1722  * to be picked up later by ip_srcroute if the receiver is interested.
1723  */
1724 void
1725 save_rte(u_char *option, struct in_addr dst)
1726 {
1727 	unsigned olen;
1728 
1729 	olen = option[IPOPT_OLEN];
1730 #ifdef DIAGNOSTIC
1731 	if (ipprintfs)
1732 		printf("save_rte: olen %d\n", olen);
1733 #endif /* 0 */
1734 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1735 		return;
1736 	bcopy((void *)option, (void *)ip_srcrt.srcopt, olen);
1737 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1738 	ip_srcrt.dst = dst;
1739 }
1740 
1741 /*
1742  * Retrieve incoming source route for use in replies,
1743  * in the same form used by setsockopt.
1744  * The first hop is placed before the options, will be removed later.
1745  */
1746 struct mbuf *
1747 ip_srcroute(void)
1748 {
1749 	struct in_addr *p, *q;
1750 	struct mbuf *m;
1751 
1752 	if (ip_nhops == 0)
1753 		return NULL;
1754 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1755 	if (m == 0)
1756 		return NULL;
1757 
1758 	MCLAIM(m, &inetdomain.dom_mowner);
1759 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1760 
1761 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1762 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1763 	    OPTSIZ;
1764 #ifdef DIAGNOSTIC
1765 	if (ipprintfs)
1766 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1767 #endif
1768 
1769 	/*
1770 	 * First save first hop for return route
1771 	 */
1772 	p = &ip_srcrt.route[ip_nhops - 1];
1773 	*(mtod(m, struct in_addr *)) = *p--;
1774 #ifdef DIAGNOSTIC
1775 	if (ipprintfs)
1776 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1777 #endif
1778 
1779 	/*
1780 	 * Copy option fields and padding (nop) to mbuf.
1781 	 */
1782 	ip_srcrt.nop = IPOPT_NOP;
1783 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1784 	memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1785 	    OPTSIZ);
1786 	q = (struct in_addr *)(mtod(m, char *) +
1787 	    sizeof(struct in_addr) + OPTSIZ);
1788 #undef OPTSIZ
1789 	/*
1790 	 * Record return path as an IP source route,
1791 	 * reversing the path (pointers are now aligned).
1792 	 */
1793 	while (p >= ip_srcrt.route) {
1794 #ifdef DIAGNOSTIC
1795 		if (ipprintfs)
1796 			printf(" %x", ntohl(q->s_addr));
1797 #endif
1798 		*q++ = *p--;
1799 	}
1800 	/*
1801 	 * Last hop goes to final destination.
1802 	 */
1803 	*q = ip_srcrt.dst;
1804 #ifdef DIAGNOSTIC
1805 	if (ipprintfs)
1806 		printf(" %x\n", ntohl(q->s_addr));
1807 #endif
1808 	return (m);
1809 }
1810 
1811 const int inetctlerrmap[PRC_NCMDS] = {
1812 	[PRC_MSGSIZE] = EMSGSIZE,
1813 	[PRC_HOSTDEAD] = EHOSTDOWN,
1814 	[PRC_HOSTUNREACH] = EHOSTUNREACH,
1815 	[PRC_UNREACH_NET] = EHOSTUNREACH,
1816 	[PRC_UNREACH_HOST] = EHOSTUNREACH,
1817 	[PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1818 	[PRC_UNREACH_PORT] = ECONNREFUSED,
1819 	[PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1820 	[PRC_PARAMPROB] = ENOPROTOOPT,
1821 };
1822 
1823 /*
1824  * Forward a packet.  If some error occurs return the sender
1825  * an icmp packet.  Note we can't always generate a meaningful
1826  * icmp message because icmp doesn't have a large enough repertoire
1827  * of codes and types.
1828  *
1829  * If not forwarding, just drop the packet.  This could be confusing
1830  * if ipforwarding was zero but some routing protocol was advancing
1831  * us as a gateway to somewhere.  However, we must let the routing
1832  * protocol deal with that.
1833  *
1834  * The srcrt parameter indicates whether the packet is being forwarded
1835  * via a source route.
1836  */
1837 void
1838 ip_forward(struct mbuf *m, int srcrt)
1839 {
1840 	struct ip *ip = mtod(m, struct ip *);
1841 	struct rtentry *rt;
1842 	int error, type = 0, code = 0, destmtu = 0;
1843 	struct mbuf *mcopy;
1844 	n_long dest;
1845 	union {
1846 		struct sockaddr		dst;
1847 		struct sockaddr_in	dst4;
1848 	} u;
1849 
1850 	/*
1851 	 * We are now in the output path.
1852 	 */
1853 	MCLAIM(m, &ip_tx_mowner);
1854 
1855 	/*
1856 	 * Clear any in-bound checksum flags for this packet.
1857 	 */
1858 	m->m_pkthdr.csum_flags = 0;
1859 
1860 	dest = 0;
1861 #ifdef DIAGNOSTIC
1862 	if (ipprintfs) {
1863 		printf("forward: src %s ", inet_ntoa(ip->ip_src));
1864 		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1865 	}
1866 #endif
1867 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1868 		IP_STATINC(IP_STAT_CANTFORWARD);
1869 		m_freem(m);
1870 		return;
1871 	}
1872 	if (ip->ip_ttl <= IPTTLDEC) {
1873 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1874 		return;
1875 	}
1876 
1877 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1878 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1879 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1880 		return;
1881 	}
1882 
1883 	/*
1884 	 * Save at most 68 bytes of the packet in case
1885 	 * we need to generate an ICMP message to the src.
1886 	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1887 	 */
1888 	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1889 	if (mcopy)
1890 		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1891 
1892 	ip->ip_ttl -= IPTTLDEC;
1893 
1894 	/*
1895 	 * If forwarding packet using same interface that it came in on,
1896 	 * perhaps should send a redirect to sender to shortcut a hop.
1897 	 * Only send redirect if source is sending directly to us,
1898 	 * and if packet was not source routed (or has any options).
1899 	 * Also, don't send redirect if forwarding using a default route
1900 	 * or a route modified by a redirect.
1901 	 */
1902 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1903 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1904 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1905 	    ipsendredirects && !srcrt) {
1906 		if (rt->rt_ifa &&
1907 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1908 		    ifatoia(rt->rt_ifa)->ia_subnet) {
1909 			if (rt->rt_flags & RTF_GATEWAY)
1910 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1911 			else
1912 				dest = ip->ip_dst.s_addr;
1913 			/*
1914 			 * Router requirements says to only send host
1915 			 * redirects.
1916 			 */
1917 			type = ICMP_REDIRECT;
1918 			code = ICMP_REDIRECT_HOST;
1919 #ifdef DIAGNOSTIC
1920 			if (ipprintfs)
1921 				printf("redirect (%d) to %x\n", code,
1922 				    (u_int32_t)dest);
1923 #endif
1924 		}
1925 	}
1926 
1927 	error = ip_output(m, NULL, &ipforward_rt,
1928 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1929 	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1930 
1931 	if (error)
1932 		IP_STATINC(IP_STAT_CANTFORWARD);
1933 	else {
1934 		uint64_t *ips = IP_STAT_GETREF();
1935 		ips[IP_STAT_FORWARD]++;
1936 		if (type) {
1937 			ips[IP_STAT_REDIRECTSENT]++;
1938 			IP_STAT_PUTREF();
1939 		} else {
1940 			IP_STAT_PUTREF();
1941 			if (mcopy) {
1942 #ifdef GATEWAY
1943 				if (mcopy->m_flags & M_CANFASTFWD)
1944 					ipflow_create(&ipforward_rt, mcopy);
1945 #endif
1946 				m_freem(mcopy);
1947 			}
1948 			return;
1949 		}
1950 	}
1951 	if (mcopy == NULL)
1952 		return;
1953 
1954 	switch (error) {
1955 
1956 	case 0:				/* forwarded, but need redirect */
1957 		/* type, code set above */
1958 		break;
1959 
1960 	case ENETUNREACH:		/* shouldn't happen, checked above */
1961 	case EHOSTUNREACH:
1962 	case ENETDOWN:
1963 	case EHOSTDOWN:
1964 	default:
1965 		type = ICMP_UNREACH;
1966 		code = ICMP_UNREACH_HOST;
1967 		break;
1968 
1969 	case EMSGSIZE:
1970 		type = ICMP_UNREACH;
1971 		code = ICMP_UNREACH_NEEDFRAG;
1972 
1973 		if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1974 			destmtu = rt->rt_ifp->if_mtu;
1975 
1976 #if defined(IPSEC) || defined(FAST_IPSEC)
1977 		{
1978 			/*
1979 			 * If the packet is routed over IPsec tunnel, tell the
1980 			 * originator the tunnel MTU.
1981 			 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1982 			 * XXX quickhack!!!
1983 			 */
1984 
1985 			struct secpolicy *sp;
1986 			int ipsecerror;
1987 			size_t ipsechdr;
1988 			struct route *ro;
1989 
1990 			sp = ipsec4_getpolicybyaddr(mcopy,
1991 			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
1992 			    &ipsecerror);
1993 
1994 			if (sp != NULL) {
1995 				/* count IPsec header size */
1996 				ipsechdr = ipsec4_hdrsiz(mcopy,
1997 				    IPSEC_DIR_OUTBOUND, NULL);
1998 
1999 				/*
2000 				 * find the correct route for outer IPv4
2001 				 * header, compute tunnel MTU.
2002 				 */
2003 
2004 				if (sp->req != NULL
2005 				 && sp->req->sav != NULL
2006 				 && sp->req->sav->sah != NULL) {
2007 					ro = &sp->req->sav->sah->sa_route;
2008 					rt = rtcache_validate(ro);
2009 					if (rt && rt->rt_ifp) {
2010 						destmtu =
2011 						    rt->rt_rmx.rmx_mtu ?
2012 						    rt->rt_rmx.rmx_mtu :
2013 						    rt->rt_ifp->if_mtu;
2014 						destmtu -= ipsechdr;
2015 					}
2016 				}
2017 
2018 #ifdef	IPSEC
2019 				key_freesp(sp);
2020 #else
2021 				KEY_FREESP(&sp);
2022 #endif
2023 			}
2024 		}
2025 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2026 		IP_STATINC(IP_STAT_CANTFRAG);
2027 		break;
2028 
2029 	case ENOBUFS:
2030 #if 1
2031 		/*
2032 		 * a router should not generate ICMP_SOURCEQUENCH as
2033 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2034 		 * source quench could be a big problem under DoS attacks,
2035 		 * or if the underlying interface is rate-limited.
2036 		 */
2037 		if (mcopy)
2038 			m_freem(mcopy);
2039 		return;
2040 #else
2041 		type = ICMP_SOURCEQUENCH;
2042 		code = 0;
2043 		break;
2044 #endif
2045 	}
2046 	icmp_error(mcopy, type, code, dest, destmtu);
2047 }
2048 
2049 void
2050 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2051     struct mbuf *m)
2052 {
2053 
2054 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2055 		struct timeval tv;
2056 
2057 		microtime(&tv);
2058 		*mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2059 		    SCM_TIMESTAMP, SOL_SOCKET);
2060 		if (*mp)
2061 			mp = &(*mp)->m_next;
2062 	}
2063 	if (inp->inp_flags & INP_RECVDSTADDR) {
2064 		*mp = sbcreatecontrol((void *) &ip->ip_dst,
2065 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2066 		if (*mp)
2067 			mp = &(*mp)->m_next;
2068 	}
2069 #ifdef notyet
2070 	/*
2071 	 * XXX
2072 	 * Moving these out of udp_input() made them even more broken
2073 	 * than they already were.
2074 	 *	- fenner@parc.xerox.com
2075 	 */
2076 	/* options were tossed already */
2077 	if (inp->inp_flags & INP_RECVOPTS) {
2078 		*mp = sbcreatecontrol((void *) opts_deleted_above,
2079 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2080 		if (*mp)
2081 			mp = &(*mp)->m_next;
2082 	}
2083 	/* ip_srcroute doesn't do what we want here, need to fix */
2084 	if (inp->inp_flags & INP_RECVRETOPTS) {
2085 		*mp = sbcreatecontrol((void *) ip_srcroute(),
2086 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2087 		if (*mp)
2088 			mp = &(*mp)->m_next;
2089 	}
2090 #endif
2091 	if (inp->inp_flags & INP_RECVIF) {
2092 		struct sockaddr_dl sdl;
2093 
2094 		sockaddr_dl_init(&sdl, sizeof(sdl),
2095 		    (m->m_pkthdr.rcvif != NULL)
2096 		        ?  m->m_pkthdr.rcvif->if_index
2097 			: 0,
2098 			0, NULL, 0, NULL, 0);
2099 		*mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2100 		if (*mp)
2101 			mp = &(*mp)->m_next;
2102 	}
2103 }
2104 
2105 /*
2106  * sysctl helper routine for net.inet.ip.forwsrcrt.
2107  */
2108 static int
2109 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2110 {
2111 	int error, tmp;
2112 	struct sysctlnode node;
2113 
2114 	node = *rnode;
2115 	tmp = ip_forwsrcrt;
2116 	node.sysctl_data = &tmp;
2117 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2118 	if (error || newp == NULL)
2119 		return (error);
2120 
2121 	if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2122 	    0, NULL, NULL, NULL))
2123 		return (EPERM);
2124 
2125 	ip_forwsrcrt = tmp;
2126 
2127 	return (0);
2128 }
2129 
2130 /*
2131  * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2132  * range of the new value and tweaks timers if it changes.
2133  */
2134 static int
2135 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2136 {
2137 	int error, tmp;
2138 	struct sysctlnode node;
2139 
2140 	node = *rnode;
2141 	tmp = ip_mtudisc_timeout;
2142 	node.sysctl_data = &tmp;
2143 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2144 	if (error || newp == NULL)
2145 		return (error);
2146 	if (tmp < 0)
2147 		return (EINVAL);
2148 
2149 	mutex_enter(softnet_lock);
2150 
2151 	ip_mtudisc_timeout = tmp;
2152 	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2153 
2154 	mutex_exit(softnet_lock);
2155 
2156 	return (0);
2157 }
2158 
2159 #ifdef GATEWAY
2160 /*
2161  * sysctl helper routine for net.inet.ip.maxflows.
2162  */
2163 static int
2164 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2165 {
2166 	int error;
2167 
2168 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
2169 	if (error || newp == NULL)
2170 		return (error);
2171 
2172 	mutex_enter(softnet_lock);
2173 	KERNEL_LOCK(1, NULL);
2174 
2175 	ipflow_prune();
2176 
2177 	KERNEL_UNLOCK_ONE(NULL);
2178 	mutex_exit(softnet_lock);
2179 
2180 	return (0);
2181 }
2182 
2183 static int
2184 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2185 {
2186 	int error, tmp;
2187 	struct sysctlnode node;
2188 
2189 	node = *rnode;
2190 	tmp = ip_hashsize;
2191 	node.sysctl_data = &tmp;
2192 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2193 	if (error || newp == NULL)
2194 		return (error);
2195 
2196 	if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2197 		/*
2198 		 * Can only fail due to malloc()
2199 		 */
2200 		mutex_enter(softnet_lock);
2201 		KERNEL_LOCK(1, NULL);
2202 
2203 		error = ipflow_invalidate_all(tmp);
2204 
2205 		KERNEL_UNLOCK_ONE(NULL);
2206 		mutex_exit(softnet_lock);
2207 
2208 	} else {
2209 		/*
2210 		 * EINVAL if not a power of 2
2211 	         */
2212 		error = EINVAL;
2213 	}
2214 
2215 	return error;
2216 }
2217 #endif /* GATEWAY */
2218 
2219 static int
2220 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2221 {
2222 
2223 	return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2224 }
2225 
2226 SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup")
2227 {
2228 	extern int subnetsarelocal, hostzeroisbroadcast;
2229 
2230 	sysctl_createv(clog, 0, NULL, NULL,
2231 		       CTLFLAG_PERMANENT,
2232 		       CTLTYPE_NODE, "net", NULL,
2233 		       NULL, 0, NULL, 0,
2234 		       CTL_NET, CTL_EOL);
2235 	sysctl_createv(clog, 0, NULL, NULL,
2236 		       CTLFLAG_PERMANENT,
2237 		       CTLTYPE_NODE, "inet",
2238 		       SYSCTL_DESCR("PF_INET related settings"),
2239 		       NULL, 0, NULL, 0,
2240 		       CTL_NET, PF_INET, CTL_EOL);
2241 	sysctl_createv(clog, 0, NULL, NULL,
2242 		       CTLFLAG_PERMANENT,
2243 		       CTLTYPE_NODE, "ip",
2244 		       SYSCTL_DESCR("IPv4 related settings"),
2245 		       NULL, 0, NULL, 0,
2246 		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2247 
2248 	sysctl_createv(clog, 0, NULL, NULL,
2249 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2250 		       CTLTYPE_INT, "forwarding",
2251 		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2252 		       NULL, 0, &ipforwarding, 0,
2253 		       CTL_NET, PF_INET, IPPROTO_IP,
2254 		       IPCTL_FORWARDING, CTL_EOL);
2255 	sysctl_createv(clog, 0, NULL, NULL,
2256 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2257 		       CTLTYPE_INT, "redirect",
2258 		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2259 		       NULL, 0, &ipsendredirects, 0,
2260 		       CTL_NET, PF_INET, IPPROTO_IP,
2261 		       IPCTL_SENDREDIRECTS, CTL_EOL);
2262 	sysctl_createv(clog, 0, NULL, NULL,
2263 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2264 		       CTLTYPE_INT, "ttl",
2265 		       SYSCTL_DESCR("Default TTL for an INET datagram"),
2266 		       NULL, 0, &ip_defttl, 0,
2267 		       CTL_NET, PF_INET, IPPROTO_IP,
2268 		       IPCTL_DEFTTL, CTL_EOL);
2269 #ifdef IPCTL_DEFMTU
2270 	sysctl_createv(clog, 0, NULL, NULL,
2271 		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2272 		       CTLTYPE_INT, "mtu",
2273 		       SYSCTL_DESCR("Default MTA for an INET route"),
2274 		       NULL, 0, &ip_mtu, 0,
2275 		       CTL_NET, PF_INET, IPPROTO_IP,
2276 		       IPCTL_DEFMTU, CTL_EOL);
2277 #endif /* IPCTL_DEFMTU */
2278 	sysctl_createv(clog, 0, NULL, NULL,
2279 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2280 		       CTLTYPE_INT, "forwsrcrt",
2281 		       SYSCTL_DESCR("Enable forwarding of source-routed "
2282 				    "datagrams"),
2283 		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2284 		       CTL_NET, PF_INET, IPPROTO_IP,
2285 		       IPCTL_FORWSRCRT, CTL_EOL);
2286 	sysctl_createv(clog, 0, NULL, NULL,
2287 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2288 		       CTLTYPE_INT, "directed-broadcast",
2289 		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2290 		       NULL, 0, &ip_directedbcast, 0,
2291 		       CTL_NET, PF_INET, IPPROTO_IP,
2292 		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2293 	sysctl_createv(clog, 0, NULL, NULL,
2294 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2295 		       CTLTYPE_INT, "allowsrcrt",
2296 		       SYSCTL_DESCR("Accept source-routed datagrams"),
2297 		       NULL, 0, &ip_allowsrcrt, 0,
2298 		       CTL_NET, PF_INET, IPPROTO_IP,
2299 		       IPCTL_ALLOWSRCRT, CTL_EOL);
2300 	sysctl_createv(clog, 0, NULL, NULL,
2301 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2302 		       CTLTYPE_INT, "subnetsarelocal",
2303 		       SYSCTL_DESCR("Whether logical subnets are considered "
2304 				    "local"),
2305 		       NULL, 0, &subnetsarelocal, 0,
2306 		       CTL_NET, PF_INET, IPPROTO_IP,
2307 		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2308 	sysctl_createv(clog, 0, NULL, NULL,
2309 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2310 		       CTLTYPE_INT, "mtudisc",
2311 		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2312 		       NULL, 0, &ip_mtudisc, 0,
2313 		       CTL_NET, PF_INET, IPPROTO_IP,
2314 		       IPCTL_MTUDISC, CTL_EOL);
2315 	sysctl_createv(clog, 0, NULL, NULL,
2316 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2317 		       CTLTYPE_INT, "anonportmin",
2318 		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2319 		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2320 		       CTL_NET, PF_INET, IPPROTO_IP,
2321 		       IPCTL_ANONPORTMIN, CTL_EOL);
2322 	sysctl_createv(clog, 0, NULL, NULL,
2323 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2324 		       CTLTYPE_INT, "anonportmax",
2325 		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
2326 		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2327 		       CTL_NET, PF_INET, IPPROTO_IP,
2328 		       IPCTL_ANONPORTMAX, CTL_EOL);
2329 	sysctl_createv(clog, 0, NULL, NULL,
2330 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2331 		       CTLTYPE_INT, "mtudisctimeout",
2332 		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2333 		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2334 		       CTL_NET, PF_INET, IPPROTO_IP,
2335 		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2336 #ifdef GATEWAY
2337 	sysctl_createv(clog, 0, NULL, NULL,
2338 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2339 		       CTLTYPE_INT, "maxflows",
2340 		       SYSCTL_DESCR("Number of flows for fast forwarding"),
2341 		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2342 		       CTL_NET, PF_INET, IPPROTO_IP,
2343 		       IPCTL_MAXFLOWS, CTL_EOL);
2344 	sysctl_createv(clog, 0, NULL, NULL,
2345 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2346 			CTLTYPE_INT, "hashsize",
2347 			SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2348 			sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2349 			CTL_NET, PF_INET, IPPROTO_IP,
2350 			CTL_CREATE, CTL_EOL);
2351 #endif /* GATEWAY */
2352 	sysctl_createv(clog, 0, NULL, NULL,
2353 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2354 		       CTLTYPE_INT, "hostzerobroadcast",
2355 		       SYSCTL_DESCR("All zeroes address is broadcast address"),
2356 		       NULL, 0, &hostzeroisbroadcast, 0,
2357 		       CTL_NET, PF_INET, IPPROTO_IP,
2358 		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2359 #if NGIF > 0
2360 	sysctl_createv(clog, 0, NULL, NULL,
2361 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2362 		       CTLTYPE_INT, "gifttl",
2363 		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2364 		       NULL, 0, &ip_gif_ttl, 0,
2365 		       CTL_NET, PF_INET, IPPROTO_IP,
2366 		       IPCTL_GIF_TTL, CTL_EOL);
2367 #endif /* NGIF */
2368 #ifndef IPNOPRIVPORTS
2369 	sysctl_createv(clog, 0, NULL, NULL,
2370 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2371 		       CTLTYPE_INT, "lowportmin",
2372 		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
2373 				    "to assign"),
2374 		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2375 		       CTL_NET, PF_INET, IPPROTO_IP,
2376 		       IPCTL_LOWPORTMIN, CTL_EOL);
2377 	sysctl_createv(clog, 0, NULL, NULL,
2378 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2379 		       CTLTYPE_INT, "lowportmax",
2380 		       SYSCTL_DESCR("Highest privileged ephemeral port number "
2381 				    "to assign"),
2382 		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2383 		       CTL_NET, PF_INET, IPPROTO_IP,
2384 		       IPCTL_LOWPORTMAX, CTL_EOL);
2385 #endif /* IPNOPRIVPORTS */
2386 	sysctl_createv(clog, 0, NULL, NULL,
2387 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2388 		       CTLTYPE_INT, "maxfragpackets",
2389 		       SYSCTL_DESCR("Maximum number of fragments to retain for "
2390 				    "possible reassembly"),
2391 		       NULL, 0, &ip_maxfragpackets, 0,
2392 		       CTL_NET, PF_INET, IPPROTO_IP,
2393 		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2394 #if NGRE > 0
2395 	sysctl_createv(clog, 0, NULL, NULL,
2396 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2397 		       CTLTYPE_INT, "grettl",
2398 		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2399 		       NULL, 0, &ip_gre_ttl, 0,
2400 		       CTL_NET, PF_INET, IPPROTO_IP,
2401 		       IPCTL_GRE_TTL, CTL_EOL);
2402 #endif /* NGRE */
2403 	sysctl_createv(clog, 0, NULL, NULL,
2404 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2405 		       CTLTYPE_INT, "checkinterface",
2406 		       SYSCTL_DESCR("Enable receive side of Strong ES model "
2407 				    "from RFC1122"),
2408 		       NULL, 0, &ip_checkinterface, 0,
2409 		       CTL_NET, PF_INET, IPPROTO_IP,
2410 		       IPCTL_CHECKINTERFACE, CTL_EOL);
2411 	sysctl_createv(clog, 0, NULL, NULL,
2412 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2413 		       CTLTYPE_INT, "random_id",
2414 		       SYSCTL_DESCR("Assign random ip_id values"),
2415 		       NULL, 0, &ip_do_randomid, 0,
2416 		       CTL_NET, PF_INET, IPPROTO_IP,
2417 		       IPCTL_RANDOMID, CTL_EOL);
2418 	sysctl_createv(clog, 0, NULL, NULL,
2419 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2420 		       CTLTYPE_INT, "do_loopback_cksum",
2421 		       SYSCTL_DESCR("Perform IP checksum on loopback"),
2422 		       NULL, 0, &ip_do_loopback_cksum, 0,
2423 		       CTL_NET, PF_INET, IPPROTO_IP,
2424 		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
2425 	sysctl_createv(clog, 0, NULL, NULL,
2426 		       CTLFLAG_PERMANENT,
2427 		       CTLTYPE_STRUCT, "stats",
2428 		       SYSCTL_DESCR("IP statistics"),
2429 		       sysctl_net_inet_ip_stats, 0, NULL, 0,
2430 		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2431 		       CTL_EOL);
2432 }
2433 
2434 void
2435 ip_statinc(u_int stat)
2436 {
2437 
2438 	KASSERT(stat < IP_NSTATS);
2439 	IP_STATINC(stat);
2440 }
2441