xref: /netbsd-src/sys/netinet/ip_input.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: ip_input.c,v 1.284 2009/09/16 15:23:05 pooka Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
34  * All rights reserved.
35  *
36  * This code is derived from software contributed to The NetBSD Foundation
37  * by Public Access Networks Corporation ("Panix").  It was developed under
38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59  * POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 /*
63  * Copyright (c) 1982, 1986, 1988, 1993
64  *	The Regents of the University of California.  All rights reserved.
65  *
66  * Redistribution and use in source and binary forms, with or without
67  * modification, are permitted provided that the following conditions
68  * are met:
69  * 1. Redistributions of source code must retain the above copyright
70  *    notice, this list of conditions and the following disclaimer.
71  * 2. Redistributions in binary form must reproduce the above copyright
72  *    notice, this list of conditions and the following disclaimer in the
73  *    documentation and/or other materials provided with the distribution.
74  * 3. Neither the name of the University nor the names of its contributors
75  *    may be used to endorse or promote products derived from this software
76  *    without specific prior written permission.
77  *
78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88  * SUCH DAMAGE.
89  *
90  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
91  */
92 
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.284 2009/09/16 15:23:05 pooka Exp $");
95 
96 #include "opt_inet.h"
97 #include "opt_compat_netbsd.h"
98 #include "opt_gateway.h"
99 #include "opt_pfil_hooks.h"
100 #include "opt_ipsec.h"
101 #include "opt_mrouting.h"
102 #include "opt_mbuftrace.h"
103 #include "opt_inet_csum.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/pool.h>
117 #include <sys/sysctl.h>
118 #include <sys/kauth.h>
119 
120 #include <net/if.h>
121 #include <net/if_dl.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124 
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_proto.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_private.h>
133 #include <netinet/ip_icmp.h>
134 /* just for gif_ttl */
135 #include <netinet/in_gif.h>
136 #include "gif.h"
137 #include <net/if_gre.h>
138 #include "gre.h"
139 
140 #ifdef MROUTING
141 #include <netinet/ip_mroute.h>
142 #endif
143 
144 #ifdef IPSEC
145 #include <netinet6/ipsec.h>
146 #include <netinet6/ipsec_private.h>
147 #include <netkey/key.h>
148 #endif
149 #ifdef FAST_IPSEC
150 #include <netipsec/ipsec.h>
151 #include <netipsec/key.h>
152 #endif	/* FAST_IPSEC*/
153 
154 #ifndef	IPFORWARDING
155 #ifdef GATEWAY
156 #define	IPFORWARDING	1	/* forward IP packets not for us */
157 #else /* GATEWAY */
158 #define	IPFORWARDING	0	/* don't forward IP packets not for us */
159 #endif /* GATEWAY */
160 #endif /* IPFORWARDING */
161 #ifndef	IPSENDREDIRECTS
162 #define	IPSENDREDIRECTS	1
163 #endif
164 #ifndef IPFORWSRCRT
165 #define	IPFORWSRCRT	1	/* forward source-routed packets */
166 #endif
167 #ifndef IPALLOWSRCRT
168 #define	IPALLOWSRCRT	1	/* allow source-routed packets */
169 #endif
170 #ifndef IPMTUDISC
171 #define IPMTUDISC	1
172 #endif
173 #ifndef IPMTUDISCTIMEOUT
174 #define IPMTUDISCTIMEOUT (10 * 60)	/* as per RFC 1191 */
175 #endif
176 
177 #ifdef COMPAT_50
178 #include <compat/sys/time.h>
179 #include <compat/sys/socket.h>
180 #endif
181 
182 /*
183  * Note: DIRECTED_BROADCAST is handled this way so that previous
184  * configuration using this option will Just Work.
185  */
186 #ifndef IPDIRECTEDBCAST
187 #ifdef DIRECTED_BROADCAST
188 #define IPDIRECTEDBCAST	1
189 #else
190 #define	IPDIRECTEDBCAST	0
191 #endif /* DIRECTED_BROADCAST */
192 #endif /* IPDIRECTEDBCAST */
193 int	ipforwarding = IPFORWARDING;
194 int	ipsendredirects = IPSENDREDIRECTS;
195 int	ip_defttl = IPDEFTTL;
196 int	ip_forwsrcrt = IPFORWSRCRT;
197 int	ip_directedbcast = IPDIRECTEDBCAST;
198 int	ip_allowsrcrt = IPALLOWSRCRT;
199 int	ip_mtudisc = IPMTUDISC;
200 int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
201 #ifdef DIAGNOSTIC
202 int	ipprintfs = 0;
203 #endif
204 
205 int	ip_do_randomid = 0;
206 
207 /*
208  * XXX - Setting ip_checkinterface mostly implements the receive side of
209  * the Strong ES model described in RFC 1122, but since the routing table
210  * and transmit implementation do not implement the Strong ES model,
211  * setting this to 1 results in an odd hybrid.
212  *
213  * XXX - ip_checkinterface currently must be disabled if you use ipnat
214  * to translate the destination address to another local interface.
215  *
216  * XXX - ip_checkinterface must be disabled if you add IP aliases
217  * to the loopback interface instead of the interface where the
218  * packets for those addresses are received.
219  */
220 int	ip_checkinterface = 0;
221 
222 
223 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
224 
225 int	ipqmaxlen = IFQ_MAXLEN;
226 u_long	in_ifaddrhash;				/* size of hash table - 1 */
227 int	in_ifaddrentries;			/* total number of addrs */
228 struct in_ifaddrhead in_ifaddrhead;
229 struct	in_ifaddrhashhead *in_ifaddrhashtbl;
230 u_long	in_multihash;				/* size of hash table - 1 */
231 int	in_multientries;			/* total number of addrs */
232 struct	in_multihashhead *in_multihashtbl;
233 struct	ifqueue ipintrq;
234 uint16_t ip_id;
235 
236 percpu_t *ipstat_percpu;
237 
238 #ifdef PFIL_HOOKS
239 struct pfil_head inet_pfil_hook;
240 #endif
241 
242 /*
243  * Cached copy of nmbclusters. If nbclusters is different,
244  * recalculate IP parameters derived from nmbclusters.
245  */
246 static int	ip_nmbclusters;			/* copy of nmbclusters */
247 static void	ip_nmbclusters_changed(void);	/* recalc limits */
248 
249 #define CHECK_NMBCLUSTER_PARAMS()				\
250 do {								\
251 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
252 		ip_nmbclusters_changed();			\
253 } while (/*CONSTCOND*/0)
254 
255 /* IP datagram reassembly queues (hashed) */
256 #define IPREASS_NHASH_LOG2      6
257 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
258 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
259 #define IPREASS_HASH(x,y) \
260 	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
261 struct ipqhead ipq[IPREASS_NHASH];
262 int	ipq_locked;
263 static int	ip_nfragpackets;	/* packets in reass queue */
264 static int	ip_nfrags;		/* total fragments in reass queues */
265 
266 int	ip_maxfragpackets = 200;	/* limit on packets. XXX sysctl */
267 int	ip_maxfrags;		        /* limit on fragments. XXX sysctl */
268 
269 
270 /*
271  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for
272  * IP reassembly queue buffer managment.
273  *
274  * We keep a count of total IP fragments (NB: not fragmented packets!)
275  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
276  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the
277  * total fragments in  reassembly queues.This AIMD policy avoids
278  * repeatedly deleting single packets under heavy fragmentation load
279  * (e.g., from lossy NFS peers).
280  */
281 static u_int	ip_reass_ttl_decr(u_int ticks);
282 static void	ip_reass_drophalf(void);
283 
284 
285 static inline int ipq_lock_try(void);
286 static inline void ipq_unlock(void);
287 
288 static inline int
289 ipq_lock_try(void)
290 {
291 	int s;
292 
293 	/*
294 	 * Use splvm() -- we're blocking things that would cause
295 	 * mbuf allocation.
296 	 */
297 	s = splvm();
298 	if (ipq_locked) {
299 		splx(s);
300 		return (0);
301 	}
302 	ipq_locked = 1;
303 	splx(s);
304 	return (1);
305 }
306 
307 static inline void
308 ipq_unlock(void)
309 {
310 	int s;
311 
312 	s = splvm();
313 	ipq_locked = 0;
314 	splx(s);
315 }
316 
317 #ifdef DIAGNOSTIC
318 #define	IPQ_LOCK()							\
319 do {									\
320 	if (ipq_lock_try() == 0) {					\
321 		printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
322 		panic("ipq_lock");					\
323 	}								\
324 } while (/*CONSTCOND*/ 0)
325 #define	IPQ_LOCK_CHECK()						\
326 do {									\
327 	if (ipq_locked == 0) {						\
328 		printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
329 		panic("ipq lock check");				\
330 	}								\
331 } while (/*CONSTCOND*/ 0)
332 #else
333 #define	IPQ_LOCK()		(void) ipq_lock_try()
334 #define	IPQ_LOCK_CHECK()	/* nothing */
335 #endif
336 
337 #define	IPQ_UNLOCK()		ipq_unlock()
338 
339 struct pool inmulti_pool;
340 struct pool ipqent_pool;
341 
342 #ifdef INET_CSUM_COUNTERS
343 #include <sys/device.h>
344 
345 struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346     NULL, "inet", "hwcsum bad");
347 struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348     NULL, "inet", "hwcsum ok");
349 struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350     NULL, "inet", "swcsum");
351 
352 #define	INET_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
353 
354 EVCNT_ATTACH_STATIC(ip_hwcsum_bad);
355 EVCNT_ATTACH_STATIC(ip_hwcsum_ok);
356 EVCNT_ATTACH_STATIC(ip_swcsum);
357 
358 #else
359 
360 #define	INET_CSUM_COUNTER_INCR(ev)	/* nothing */
361 
362 #endif /* INET_CSUM_COUNTERS */
363 
364 /*
365  * We need to save the IP options in case a protocol wants to respond
366  * to an incoming packet over the same route if the packet got here
367  * using IP source routing.  This allows connection establishment and
368  * maintenance when the remote end is on a network that is not known
369  * to us.
370  */
371 int	ip_nhops = 0;
372 static	struct ip_srcrt {
373 	struct	in_addr dst;			/* final destination */
374 	char	nop;				/* one NOP to align */
375 	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
376 	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
377 } ip_srcrt;
378 
379 static void save_rte(u_char *, struct in_addr);
380 
381 #ifdef MBUFTRACE
382 struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx");
383 struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx");
384 #endif
385 
386 static void sysctl_net_inet_ip_setup(struct sysctllog **);
387 
388 /*
389  * Compute IP limits derived from the value of nmbclusters.
390  */
391 static void
392 ip_nmbclusters_changed(void)
393 {
394 	ip_maxfrags = nmbclusters / 4;
395 	ip_nmbclusters =  nmbclusters;
396 }
397 
398 /*
399  * IP initialization: fill in IP protocol switch table.
400  * All protocols not implemented in kernel go to raw IP protocol handler.
401  */
402 void
403 ip_init(void)
404 {
405 	const struct protosw *pr;
406 	int i;
407 
408 	sysctl_net_inet_ip_setup(NULL);
409 
410 	pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl",
411 	    NULL, IPL_SOFTNET);
412 	pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
413 	    NULL, IPL_VM);
414 
415 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
416 	if (pr == 0)
417 		panic("ip_init");
418 	for (i = 0; i < IPPROTO_MAX; i++)
419 		ip_protox[i] = pr - inetsw;
420 	for (pr = inetdomain.dom_protosw;
421 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
422 		if (pr->pr_domain->dom_family == PF_INET &&
423 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
424 			ip_protox[pr->pr_protocol] = pr - inetsw;
425 
426 	for (i = 0; i < IPREASS_NHASH; i++)
427 	    	LIST_INIT(&ipq[i]);
428 
429 	ip_initid();
430 	ip_id = time_second & 0xfffff;
431 
432 	ipintrq.ifq_maxlen = ipqmaxlen;
433 	ip_nmbclusters_changed();
434 
435 	TAILQ_INIT(&in_ifaddrhead);
436 	in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
437 	    &in_ifaddrhash);
438 	in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true,
439 	    &in_multihash);
440 	ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout);
441 #ifdef GATEWAY
442 	ipflow_init(ip_hashsize);
443 #endif
444 
445 #ifdef PFIL_HOOKS
446 	/* Register our Packet Filter hook. */
447 	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
448 	inet_pfil_hook.ph_af   = AF_INET;
449 	i = pfil_head_register(&inet_pfil_hook);
450 	if (i != 0)
451 		printf("ip_init: WARNING: unable to register pfil hook, "
452 		    "error %d\n", i);
453 #endif /* PFIL_HOOKS */
454 
455 #ifdef MBUFTRACE
456 	MOWNER_ATTACH(&ip_tx_mowner);
457 	MOWNER_ATTACH(&ip_rx_mowner);
458 #endif /* MBUFTRACE */
459 
460 	ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS);
461 }
462 
463 struct	sockaddr_in ipaddr = {
464 	.sin_len = sizeof(ipaddr),
465 	.sin_family = AF_INET,
466 };
467 struct	route ipforward_rt;
468 
469 /*
470  * IP software interrupt routine
471  */
472 void
473 ipintr(void)
474 {
475 	int s;
476 	struct mbuf *m;
477 
478 	mutex_enter(softnet_lock);
479 	KERNEL_LOCK(1, NULL);
480 	while (!IF_IS_EMPTY(&ipintrq)) {
481 		s = splnet();
482 		IF_DEQUEUE(&ipintrq, m);
483 		splx(s);
484 		if (m == NULL)
485 			break;
486 		ip_input(m);
487 	}
488 	KERNEL_UNLOCK_ONE(NULL);
489 	mutex_exit(softnet_lock);
490 }
491 
492 /*
493  * Ip input routine.  Checksum and byte swap header.  If fragmented
494  * try to reassemble.  Process options.  Pass to next level.
495  */
496 void
497 ip_input(struct mbuf *m)
498 {
499 	struct ip *ip = NULL;
500 	struct ipq *fp;
501 	struct in_ifaddr *ia;
502 	struct ifaddr *ifa;
503 	struct ipqent *ipqe;
504 	int hlen = 0, mff, len;
505 	int downmatch;
506 	int checkif;
507 	int srcrt = 0;
508 	int s;
509 	u_int hash;
510 #ifdef FAST_IPSEC
511 	struct m_tag *mtag;
512 	struct tdb_ident *tdbi;
513 	struct secpolicy *sp;
514 	int error;
515 #endif /* FAST_IPSEC */
516 
517 	MCLAIM(m, &ip_rx_mowner);
518 #ifdef	DIAGNOSTIC
519 	if ((m->m_flags & M_PKTHDR) == 0)
520 		panic("ipintr no HDR");
521 #endif
522 
523 	/*
524 	 * If no IP addresses have been set yet but the interfaces
525 	 * are receiving, can't do anything with incoming packets yet.
526 	 */
527 	if (TAILQ_FIRST(&in_ifaddrhead) == 0)
528 		goto bad;
529 	IP_STATINC(IP_STAT_TOTAL);
530 	/*
531 	 * If the IP header is not aligned, slurp it up into a new
532 	 * mbuf with space for link headers, in the event we forward
533 	 * it.  Otherwise, if it is aligned, make sure the entire
534 	 * base IP header is in the first mbuf of the chain.
535 	 */
536 	if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
537 		if ((m = m_copyup(m, sizeof(struct ip),
538 				  (max_linkhdr + 3) & ~3)) == NULL) {
539 			/* XXXJRT new stat, please */
540 			IP_STATINC(IP_STAT_TOOSMALL);
541 			return;
542 		}
543 	} else if (__predict_false(m->m_len < sizeof (struct ip))) {
544 		if ((m = m_pullup(m, sizeof (struct ip))) == NULL) {
545 			IP_STATINC(IP_STAT_TOOSMALL);
546 			return;
547 		}
548 	}
549 	ip = mtod(m, struct ip *);
550 	if (ip->ip_v != IPVERSION) {
551 		IP_STATINC(IP_STAT_BADVERS);
552 		goto bad;
553 	}
554 	hlen = ip->ip_hl << 2;
555 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
556 		IP_STATINC(IP_STAT_BADHLEN);
557 		goto bad;
558 	}
559 	if (hlen > m->m_len) {
560 		if ((m = m_pullup(m, hlen)) == 0) {
561 			IP_STATINC(IP_STAT_BADHLEN);
562 			return;
563 		}
564 		ip = mtod(m, struct ip *);
565 	}
566 
567 	/*
568 	 * RFC1122: packets with a multicast source address are
569 	 * not allowed.
570 	 */
571 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
572 		IP_STATINC(IP_STAT_BADADDR);
573 		goto bad;
574 	}
575 
576 	/* 127/8 must not appear on wire - RFC1122 */
577 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
578 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
579 		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
580 			IP_STATINC(IP_STAT_BADADDR);
581 			goto bad;
582 		}
583 	}
584 
585 	switch (m->m_pkthdr.csum_flags &
586 		((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) |
587 		 M_CSUM_IPv4_BAD)) {
588 	case M_CSUM_IPv4|M_CSUM_IPv4_BAD:
589 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad);
590 		goto badcsum;
591 
592 	case M_CSUM_IPv4:
593 		/* Checksum was okay. */
594 		INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok);
595 		break;
596 
597 	default:
598 		/*
599 		 * Must compute it ourselves.  Maybe skip checksum on
600 		 * loopback interfaces.
601 		 */
602 		if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
603 				     IFF_LOOPBACK) || ip_do_loopback_cksum)) {
604 			INET_CSUM_COUNTER_INCR(&ip_swcsum);
605 			if (in_cksum(m, hlen) != 0)
606 				goto badcsum;
607 		}
608 		break;
609 	}
610 
611 	/* Retrieve the packet length. */
612 	len = ntohs(ip->ip_len);
613 
614 	/*
615 	 * Check for additional length bogosity
616 	 */
617 	if (len < hlen) {
618 		IP_STATINC(IP_STAT_BADLEN);
619 		goto bad;
620 	}
621 
622 	/*
623 	 * Check that the amount of data in the buffers
624 	 * is as at least much as the IP header would have us expect.
625 	 * Trim mbufs if longer than we expect.
626 	 * Drop packet if shorter than we expect.
627 	 */
628 	if (m->m_pkthdr.len < len) {
629 		IP_STATINC(IP_STAT_TOOSHORT);
630 		goto bad;
631 	}
632 	if (m->m_pkthdr.len > len) {
633 		if (m->m_len == m->m_pkthdr.len) {
634 			m->m_len = len;
635 			m->m_pkthdr.len = len;
636 		} else
637 			m_adj(m, len - m->m_pkthdr.len);
638 	}
639 
640 #if defined(IPSEC)
641 	/* ipflow (IP fast forwarding) is not compatible with IPsec. */
642 	m->m_flags &= ~M_CANFASTFWD;
643 #else
644 	/*
645 	 * Assume that we can create a fast-forward IP flow entry
646 	 * based on this packet.
647 	 */
648 	m->m_flags |= M_CANFASTFWD;
649 #endif
650 
651 #ifdef PFIL_HOOKS
652 	/*
653 	 * Run through list of hooks for input packets.  If there are any
654 	 * filters which require that additional packets in the flow are
655 	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
656 	 * Note that filters must _never_ set this flag, as another filter
657 	 * in the list may have previously cleared it.
658 	 */
659 	/*
660 	 * let ipfilter look at packet on the wire,
661 	 * not the decapsulated packet.
662 	 */
663 #ifdef IPSEC
664 	if (!ipsec_getnhist(m))
665 #elif defined(FAST_IPSEC)
666 	if (!ipsec_indone(m))
667 #else
668 	if (1)
669 #endif
670 	{
671 		struct in_addr odst;
672 
673 		odst = ip->ip_dst;
674 		if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
675 		    PFIL_IN) != 0)
676 			return;
677 		if (m == NULL)
678 			return;
679 		ip = mtod(m, struct ip *);
680 		hlen = ip->ip_hl << 2;
681 		/*
682 		 * XXX The setting of "srcrt" here is to prevent ip_forward()
683 		 * from generating ICMP redirects for packets that have
684 		 * been redirected by a hook back out on to the same LAN that
685 		 * they came from and is not an indication that the packet
686 		 * is being inffluenced by source routing options.  This
687 		 * allows things like
688 		 * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp"
689 		 * where tlp0 is both on the 1.1.1.0/24 network and is the
690 		 * default route for hosts on 1.1.1.0/24.  Of course this
691 		 * also requires a "map tlp0 ..." to complete the story.
692 		 * One might argue whether or not this kind of network config.
693 		 * should be supported in this manner...
694 		 */
695 		srcrt = (odst.s_addr != ip->ip_dst.s_addr);
696 	}
697 #endif /* PFIL_HOOKS */
698 
699 #ifdef ALTQ
700 	/* XXX Temporary until ALTQ is changed to use a pfil hook */
701 	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
702 		/* packet dropped by traffic conditioner */
703 		return;
704 	}
705 #endif
706 
707 	/*
708 	 * Process options and, if not destined for us,
709 	 * ship it on.  ip_dooptions returns 1 when an
710 	 * error was detected (causing an icmp message
711 	 * to be sent and the original packet to be freed).
712 	 */
713 	ip_nhops = 0;		/* for source routed packets */
714 	if (hlen > sizeof (struct ip) && ip_dooptions(m))
715 		return;
716 
717 	/*
718 	 * Enable a consistency check between the destination address
719 	 * and the arrival interface for a unicast packet (the RFC 1122
720 	 * strong ES model) if IP forwarding is disabled and the packet
721 	 * is not locally generated.
722 	 *
723 	 * XXX - Checking also should be disabled if the destination
724 	 * address is ipnat'ed to a different interface.
725 	 *
726 	 * XXX - Checking is incompatible with IP aliases added
727 	 * to the loopback interface instead of the interface where
728 	 * the packets are received.
729 	 *
730 	 * XXX - We need to add a per ifaddr flag for this so that
731 	 * we get finer grain control.
732 	 */
733 	checkif = ip_checkinterface && (ipforwarding == 0) &&
734 	    (m->m_pkthdr.rcvif != NULL) &&
735 	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
736 
737 	/*
738 	 * Check our list of addresses, to see if the packet is for us.
739 	 *
740 	 * Traditional 4.4BSD did not consult IFF_UP at all.
741 	 * The behavior here is to treat addresses on !IFF_UP interface
742 	 * as not mine.
743 	 */
744 	downmatch = 0;
745 	LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
746 		if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) {
747 			if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif)
748 				continue;
749 			if ((ia->ia_ifp->if_flags & IFF_UP) != 0)
750 				break;
751 			else
752 				downmatch++;
753 		}
754 	}
755 	if (ia != NULL)
756 		goto ours;
757 	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
758 		IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) {
759 			if (ifa->ifa_addr->sa_family != AF_INET)
760 				continue;
761 			ia = ifatoia(ifa);
762 			if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
763 			    in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
764 			    /*
765 			     * Look for all-0's host part (old broadcast addr),
766 			     * either for subnet or net.
767 			     */
768 			    ip->ip_dst.s_addr == ia->ia_subnet ||
769 			    ip->ip_dst.s_addr == ia->ia_net)
770 				goto ours;
771 			/*
772 			 * An interface with IP address zero accepts
773 			 * all packets that arrive on that interface.
774 			 */
775 			if (in_nullhost(ia->ia_addr.sin_addr))
776 				goto ours;
777 		}
778 	}
779 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
780 		struct in_multi *inm;
781 #ifdef MROUTING
782 		extern struct socket *ip_mrouter;
783 
784 		if (ip_mrouter) {
785 			/*
786 			 * If we are acting as a multicast router, all
787 			 * incoming multicast packets are passed to the
788 			 * kernel-level multicast forwarding function.
789 			 * The packet is returned (relatively) intact; if
790 			 * ip_mforward() returns a non-zero value, the packet
791 			 * must be discarded, else it may be accepted below.
792 			 *
793 			 * (The IP ident field is put in the same byte order
794 			 * as expected when ip_mforward() is called from
795 			 * ip_output().)
796 			 */
797 			if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
798 				IP_STATINC(IP_STAT_CANTFORWARD);
799 				m_freem(m);
800 				return;
801 			}
802 
803 			/*
804 			 * The process-level routing demon needs to receive
805 			 * all multicast IGMP packets, whether or not this
806 			 * host belongs to their destination groups.
807 			 */
808 			if (ip->ip_p == IPPROTO_IGMP)
809 				goto ours;
810 			IP_STATINC(IP_STAT_CANTFORWARD);
811 		}
812 #endif
813 		/*
814 		 * See if we belong to the destination multicast group on the
815 		 * arrival interface.
816 		 */
817 		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
818 		if (inm == NULL) {
819 			IP_STATINC(IP_STAT_CANTFORWARD);
820 			m_freem(m);
821 			return;
822 		}
823 		goto ours;
824 	}
825 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
826 	    in_nullhost(ip->ip_dst))
827 		goto ours;
828 
829 	/*
830 	 * Not for us; forward if possible and desirable.
831 	 */
832 	if (ipforwarding == 0) {
833 		IP_STATINC(IP_STAT_CANTFORWARD);
834 		m_freem(m);
835 	} else {
836 		/*
837 		 * If ip_dst matched any of my address on !IFF_UP interface,
838 		 * and there's no IFF_UP interface that matches ip_dst,
839 		 * send icmp unreach.  Forwarding it will result in in-kernel
840 		 * forwarding loop till TTL goes to 0.
841 		 */
842 		if (downmatch) {
843 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
844 			IP_STATINC(IP_STAT_CANTFORWARD);
845 			return;
846 		}
847 #ifdef IPSEC
848 		if (ipsec4_in_reject(m, NULL)) {
849 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
850 			goto bad;
851 		}
852 #endif
853 #ifdef FAST_IPSEC
854 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
855 		s = splsoftnet();
856 		if (mtag != NULL) {
857 			tdbi = (struct tdb_ident *)(mtag + 1);
858 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
859 		} else {
860 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
861 						   IP_FORWARDING, &error);
862 		}
863 		if (sp == NULL) {	/* NB: can happen if error */
864 			splx(s);
865 			/*XXX error stat???*/
866 			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
867 			goto bad;
868 		}
869 
870 		/*
871 		 * Check security policy against packet attributes.
872 		 */
873 		error = ipsec_in_reject(sp, m);
874 		KEY_FREESP(&sp);
875 		splx(s);
876 		if (error) {
877 			IP_STATINC(IP_STAT_CANTFORWARD);
878 			goto bad;
879 		}
880 
881 		/*
882 		 * Peek at the outbound SP for this packet to determine if
883 		 * it's a Fast Forward candidate.
884 		 */
885 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
886 		if (mtag != NULL)
887 			m->m_flags &= ~M_CANFASTFWD;
888 		else {
889 			s = splsoftnet();
890 			sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND,
891 			    (IP_FORWARDING |
892 			     (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
893 			    &error, NULL);
894 			if (sp != NULL) {
895 				m->m_flags &= ~M_CANFASTFWD;
896 				KEY_FREESP(&sp);
897 			}
898 			splx(s);
899 		}
900 #endif	/* FAST_IPSEC */
901 
902 		ip_forward(m, srcrt);
903 	}
904 	return;
905 
906 ours:
907 	/*
908 	 * If offset or IP_MF are set, must reassemble.
909 	 * Otherwise, nothing need be done.
910 	 * (We could look in the reassembly queue to see
911 	 * if the packet was previously fragmented,
912 	 * but it's not worth the time; just let them time out.)
913 	 */
914 	if (ip->ip_off & ~htons(IP_DF|IP_RF)) {
915 		uint16_t off;
916 		/*
917 		 * Prevent TCP blind data attacks by not allowing non-initial
918 		 * fragments to start at less than 68 bytes (minimal fragment
919 		 * size) and making sure the first fragment is at least 68
920 		 * bytes.
921 		 */
922 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
923 		if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
924 			IP_STATINC(IP_STAT_BADFRAGS);
925 			goto bad;
926 		}
927 		/*
928 		 * Look for queue of fragments
929 		 * of this datagram.
930 		 */
931 		IPQ_LOCK();
932 		hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
933 		LIST_FOREACH(fp, &ipq[hash], ipq_q) {
934 			if (ip->ip_id == fp->ipq_id &&
935 			    in_hosteq(ip->ip_src, fp->ipq_src) &&
936 			    in_hosteq(ip->ip_dst, fp->ipq_dst) &&
937 			    ip->ip_p == fp->ipq_p) {
938 				/*
939 				 * Make sure the TOS is matches previous
940 				 * fragments.
941 				 */
942 				if (ip->ip_tos != fp->ipq_tos) {
943 					IP_STATINC(IP_STAT_BADFRAGS);
944 					IPQ_UNLOCK();
945 					goto bad;
946 				}
947 				goto found;
948 			}
949 		}
950 		fp = 0;
951 found:
952 
953 		/*
954 		 * Adjust ip_len to not reflect header,
955 		 * set ipqe_mff if more fragments are expected,
956 		 * convert offset of this to bytes.
957 		 */
958 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
959 		mff = (ip->ip_off & htons(IP_MF)) != 0;
960 		if (mff) {
961 		        /*
962 		         * Make sure that fragments have a data length
963 			 * that's a non-zero multiple of 8 bytes.
964 		         */
965 			if (ntohs(ip->ip_len) == 0 ||
966 			    (ntohs(ip->ip_len) & 0x7) != 0) {
967 				IP_STATINC(IP_STAT_BADFRAGS);
968 				IPQ_UNLOCK();
969 				goto bad;
970 			}
971 		}
972 		ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3);
973 
974 		/*
975 		 * If datagram marked as having more fragments
976 		 * or if this is not the first fragment,
977 		 * attempt reassembly; if it succeeds, proceed.
978 		 */
979 		if (mff || ip->ip_off != htons(0)) {
980 			IP_STATINC(IP_STAT_FRAGMENTS);
981 			s = splvm();
982 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
983 			splx(s);
984 			if (ipqe == NULL) {
985 				IP_STATINC(IP_STAT_RCVMEMDROP);
986 				IPQ_UNLOCK();
987 				goto bad;
988 			}
989 			ipqe->ipqe_mff = mff;
990 			ipqe->ipqe_m = m;
991 			ipqe->ipqe_ip = ip;
992 			m = ip_reass(ipqe, fp, &ipq[hash]);
993 			if (m == 0) {
994 				IPQ_UNLOCK();
995 				return;
996 			}
997 			IP_STATINC(IP_STAT_REASSEMBLED);
998 			ip = mtod(m, struct ip *);
999 			hlen = ip->ip_hl << 2;
1000 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
1001 		} else
1002 			if (fp)
1003 				ip_freef(fp);
1004 		IPQ_UNLOCK();
1005 	}
1006 
1007 #if defined(IPSEC)
1008 	/*
1009 	 * enforce IPsec policy checking if we are seeing last header.
1010 	 * note that we do not visit this with protocols with pcb layer
1011 	 * code - like udp/tcp/raw ip.
1012 	 */
1013 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
1014 	    ipsec4_in_reject(m, NULL)) {
1015 		IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1016 		goto bad;
1017 	}
1018 #endif
1019 #ifdef FAST_IPSEC
1020 	/*
1021 	 * enforce IPsec policy checking if we are seeing last header.
1022 	 * note that we do not visit this with protocols with pcb layer
1023 	 * code - like udp/tcp/raw ip.
1024 	 */
1025 	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
1026 		/*
1027 		 * Check if the packet has already had IPsec processing
1028 		 * done.  If so, then just pass it along.  This tag gets
1029 		 * set during AH, ESP, etc. input handling, before the
1030 		 * packet is returned to the ip input queue for delivery.
1031 		 */
1032 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1033 		s = splsoftnet();
1034 		if (mtag != NULL) {
1035 			tdbi = (struct tdb_ident *)(mtag + 1);
1036 			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1037 		} else {
1038 			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1039 						   IP_FORWARDING, &error);
1040 		}
1041 		if (sp != NULL) {
1042 			/*
1043 			 * Check security policy against packet attributes.
1044 			 */
1045 			error = ipsec_in_reject(sp, m);
1046 			KEY_FREESP(&sp);
1047 		} else {
1048 			/* XXX error stat??? */
1049 			error = EINVAL;
1050 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1051 		}
1052 		splx(s);
1053 		if (error)
1054 			goto bad;
1055 	}
1056 #endif /* FAST_IPSEC */
1057 
1058 	/*
1059 	 * Switch out to protocol's input routine.
1060 	 */
1061 #if IFA_STATS
1062 	if (ia && ip)
1063 		ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len);
1064 #endif
1065 	IP_STATINC(IP_STAT_DELIVERED);
1066     {
1067 	int off = hlen, nh = ip->ip_p;
1068 
1069 	(*inetsw[ip_protox[nh]].pr_input)(m, off, nh);
1070 	return;
1071     }
1072 bad:
1073 	m_freem(m);
1074 	return;
1075 
1076 badcsum:
1077 	IP_STATINC(IP_STAT_BADSUM);
1078 	m_freem(m);
1079 }
1080 
1081 /*
1082  * Take incoming datagram fragment and try to
1083  * reassemble it into whole datagram.  If a chain for
1084  * reassembly of this datagram already exists, then it
1085  * is given as fp; otherwise have to make a chain.
1086  */
1087 struct mbuf *
1088 ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead)
1089 {
1090 	struct mbuf *m = ipqe->ipqe_m;
1091 	struct ipqent *nq, *p, *q;
1092 	struct ip *ip;
1093 	struct mbuf *t;
1094 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
1095 	int i, next, s;
1096 
1097 	IPQ_LOCK_CHECK();
1098 
1099 	/*
1100 	 * Presence of header sizes in mbufs
1101 	 * would confuse code below.
1102 	 */
1103 	m->m_data += hlen;
1104 	m->m_len -= hlen;
1105 
1106 #ifdef	notyet
1107 	/* make sure fragment limit is up-to-date */
1108 	CHECK_NMBCLUSTER_PARAMS();
1109 
1110 	/* If we have too many fragments, drop the older half. */
1111 	if (ip_nfrags >= ip_maxfrags)
1112 		ip_reass_drophalf(void);
1113 #endif
1114 
1115 	/*
1116 	 * We are about to add a fragment; increment frag count.
1117 	 */
1118 	ip_nfrags++;
1119 
1120 	/*
1121 	 * If first fragment to arrive, create a reassembly queue.
1122 	 */
1123 	if (fp == 0) {
1124 		/*
1125 		 * Enforce upper bound on number of fragmented packets
1126 		 * for which we attempt reassembly;
1127 		 * If maxfrag is 0, never accept fragments.
1128 		 * If maxfrag is -1, accept all fragments without limitation.
1129 		 */
1130 		if (ip_maxfragpackets < 0)
1131 			;
1132 		else if (ip_nfragpackets >= ip_maxfragpackets)
1133 			goto dropfrag;
1134 		ip_nfragpackets++;
1135 		fp = malloc(sizeof (struct ipq), M_FTABLE, M_NOWAIT);
1136 		if (fp == NULL)
1137 			goto dropfrag;
1138 		LIST_INSERT_HEAD(ipqhead, fp, ipq_q);
1139 		fp->ipq_nfrags = 1;
1140 		fp->ipq_ttl = IPFRAGTTL;
1141 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
1142 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
1143 		fp->ipq_tos = ipqe->ipqe_ip->ip_tos;
1144 		TAILQ_INIT(&fp->ipq_fragq);
1145 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
1146 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
1147 		p = NULL;
1148 		goto insert;
1149 	} else {
1150 		fp->ipq_nfrags++;
1151 	}
1152 
1153 	/*
1154 	 * Find a segment which begins after this one does.
1155 	 */
1156 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1157 	    p = q, q = TAILQ_NEXT(q, ipqe_q))
1158 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
1159 			break;
1160 
1161 	/*
1162 	 * If there is a preceding segment, it may provide some of
1163 	 * our data already.  If so, drop the data from the incoming
1164 	 * segment.  If it provides all of our data, drop us.
1165 	 */
1166 	if (p != NULL) {
1167 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
1168 		    ntohs(ipqe->ipqe_ip->ip_off);
1169 		if (i > 0) {
1170 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
1171 				goto dropfrag;
1172 			m_adj(ipqe->ipqe_m, i);
1173 			ipqe->ipqe_ip->ip_off =
1174 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
1175 			ipqe->ipqe_ip->ip_len =
1176 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * While we overlap succeeding segments trim them or,
1182 	 * if they are completely covered, dequeue them.
1183 	 */
1184 	for (; q != NULL &&
1185 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
1186 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
1187 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
1188 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
1189 		if (i < ntohs(q->ipqe_ip->ip_len)) {
1190 			q->ipqe_ip->ip_len =
1191 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
1192 			q->ipqe_ip->ip_off =
1193 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
1194 			m_adj(q->ipqe_m, i);
1195 			break;
1196 		}
1197 		nq = TAILQ_NEXT(q, ipqe_q);
1198 		m_freem(q->ipqe_m);
1199 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1200 		s = splvm();
1201 		pool_put(&ipqent_pool, q);
1202 		splx(s);
1203 		fp->ipq_nfrags--;
1204 		ip_nfrags--;
1205 	}
1206 
1207 insert:
1208 	/*
1209 	 * Stick new segment in its place;
1210 	 * check for complete reassembly.
1211 	 */
1212 	if (p == NULL) {
1213 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
1214 	} else {
1215 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
1216 	}
1217 	next = 0;
1218 	for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL;
1219 	    p = q, q = TAILQ_NEXT(q, ipqe_q)) {
1220 		if (ntohs(q->ipqe_ip->ip_off) != next)
1221 			return (0);
1222 		next += ntohs(q->ipqe_ip->ip_len);
1223 	}
1224 	if (p->ipqe_mff)
1225 		return (0);
1226 
1227 	/*
1228 	 * Reassembly is complete.  Check for a bogus message size and
1229 	 * concatenate fragments.
1230 	 */
1231 	q = TAILQ_FIRST(&fp->ipq_fragq);
1232 	ip = q->ipqe_ip;
1233 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
1234 		IP_STATINC(IP_STAT_TOOLONG);
1235 		ip_freef(fp);
1236 		return (0);
1237 	}
1238 	m = q->ipqe_m;
1239 	t = m->m_next;
1240 	m->m_next = 0;
1241 	m_cat(m, t);
1242 	nq = TAILQ_NEXT(q, ipqe_q);
1243 	s = splvm();
1244 	pool_put(&ipqent_pool, q);
1245 	splx(s);
1246 	for (q = nq; q != NULL; q = nq) {
1247 		t = q->ipqe_m;
1248 		nq = TAILQ_NEXT(q, ipqe_q);
1249 		s = splvm();
1250 		pool_put(&ipqent_pool, q);
1251 		splx(s);
1252 		m_cat(m, t);
1253 	}
1254 	ip_nfrags -= fp->ipq_nfrags;
1255 
1256 	/*
1257 	 * Create header for new ip packet by
1258 	 * modifying header of first packet;
1259 	 * dequeue and discard fragment reassembly header.
1260 	 * Make header visible.
1261 	 */
1262 	ip->ip_len = htons(next);
1263 	ip->ip_src = fp->ipq_src;
1264 	ip->ip_dst = fp->ipq_dst;
1265 	LIST_REMOVE(fp, ipq_q);
1266 	free(fp, M_FTABLE);
1267 	ip_nfragpackets--;
1268 	m->m_len += (ip->ip_hl << 2);
1269 	m->m_data -= (ip->ip_hl << 2);
1270 	/* some debugging cruft by sklower, below, will go away soon */
1271 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1272 		int plen = 0;
1273 		for (t = m; t; t = t->m_next)
1274 			plen += t->m_len;
1275 		m->m_pkthdr.len = plen;
1276 		m->m_pkthdr.csum_flags = 0;
1277 	}
1278 	return (m);
1279 
1280 dropfrag:
1281 	if (fp != 0)
1282 		fp->ipq_nfrags--;
1283 	ip_nfrags--;
1284 	IP_STATINC(IP_STAT_FRAGDROPPED);
1285 	m_freem(m);
1286 	s = splvm();
1287 	pool_put(&ipqent_pool, ipqe);
1288 	splx(s);
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Free a fragment reassembly header and all
1294  * associated datagrams.
1295  */
1296 void
1297 ip_freef(struct ipq *fp)
1298 {
1299 	struct ipqent *q, *p;
1300 	u_int nfrags = 0;
1301 	int s;
1302 
1303 	IPQ_LOCK_CHECK();
1304 
1305 	for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
1306 		p = TAILQ_NEXT(q, ipqe_q);
1307 		m_freem(q->ipqe_m);
1308 		nfrags++;
1309 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
1310 		s = splvm();
1311 		pool_put(&ipqent_pool, q);
1312 		splx(s);
1313 	}
1314 
1315 	if (nfrags != fp->ipq_nfrags)
1316 	    printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags);
1317 	ip_nfrags -= nfrags;
1318 	LIST_REMOVE(fp, ipq_q);
1319 	free(fp, M_FTABLE);
1320 	ip_nfragpackets--;
1321 }
1322 
1323 /*
1324  * IP reassembly TTL machinery for  multiplicative drop.
1325  */
1326 static u_int	fragttl_histo[(IPFRAGTTL+1)];
1327 
1328 
1329 /*
1330  * Decrement TTL of all reasembly queue entries by `ticks'.
1331  * Count number of distinct fragments (as opposed to partial, fragmented
1332  * datagrams) in the reassembly queue.  While we  traverse the entire
1333  * reassembly queue, compute and return the median TTL over all fragments.
1334  */
1335 static u_int
1336 ip_reass_ttl_decr(u_int ticks)
1337 {
1338 	u_int nfrags, median, dropfraction, keepfraction;
1339 	struct ipq *fp, *nfp;
1340 	int i;
1341 
1342 	nfrags = 0;
1343 	memset(fragttl_histo, 0, sizeof fragttl_histo);
1344 
1345 	for (i = 0; i < IPREASS_NHASH; i++) {
1346 		for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) {
1347 			fp->ipq_ttl = ((fp->ipq_ttl  <= ticks) ?
1348 				       0 : fp->ipq_ttl - ticks);
1349 			nfp = LIST_NEXT(fp, ipq_q);
1350 			if (fp->ipq_ttl == 0) {
1351 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
1352 				ip_freef(fp);
1353 			} else {
1354 				nfrags += fp->ipq_nfrags;
1355 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
1356 			}
1357 		}
1358 	}
1359 
1360 	KASSERT(ip_nfrags == nfrags);
1361 
1362 	/* Find median (or other drop fraction) in histogram. */
1363 	dropfraction = (ip_nfrags / 2);
1364 	keepfraction = ip_nfrags - dropfraction;
1365 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
1366 		median +=  fragttl_histo[i];
1367 		if (median >= keepfraction)
1368 			break;
1369 	}
1370 
1371 	/* Return TTL of median (or other fraction). */
1372 	return (u_int)i;
1373 }
1374 
1375 void
1376 ip_reass_drophalf(void)
1377 {
1378 
1379 	u_int median_ticks;
1380 	/*
1381 	 * Compute median TTL of all fragments, and count frags
1382 	 * with that TTL or lower (roughly half of all fragments).
1383 	 */
1384 	median_ticks = ip_reass_ttl_decr(0);
1385 
1386 	/* Drop half. */
1387 	median_ticks = ip_reass_ttl_decr(median_ticks);
1388 
1389 }
1390 
1391 /*
1392  * IP timer processing;
1393  * if a timer expires on a reassembly
1394  * queue, discard it.
1395  */
1396 void
1397 ip_slowtimo(void)
1398 {
1399 	static u_int dropscanidx = 0;
1400 	u_int i;
1401 	u_int median_ttl;
1402 
1403 	mutex_enter(softnet_lock);
1404 	KERNEL_LOCK(1, NULL);
1405 
1406 	IPQ_LOCK();
1407 
1408 	/* Age TTL of all fragments by 1 tick .*/
1409 	median_ttl = ip_reass_ttl_decr(1);
1410 
1411 	/* make sure fragment limit is up-to-date */
1412 	CHECK_NMBCLUSTER_PARAMS();
1413 
1414 	/* If we have too many fragments, drop the older half. */
1415 	if (ip_nfrags > ip_maxfrags)
1416 		ip_reass_ttl_decr(median_ttl);
1417 
1418 	/*
1419 	 * If we are over the maximum number of fragmented packets
1420 	 * (due to the limit being lowered), drain off
1421 	 * enough to get down to the new limit. Start draining
1422 	 * from the reassembly hashqueue most recently drained.
1423 	 */
1424 	if (ip_maxfragpackets < 0)
1425 		;
1426 	else {
1427 		int wrapped = 0;
1428 
1429 		i = dropscanidx;
1430 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
1431 			while (LIST_FIRST(&ipq[i]) != NULL)
1432 				ip_freef(LIST_FIRST(&ipq[i]));
1433 			if (++i >= IPREASS_NHASH) {
1434 				i = 0;
1435 			}
1436 			/*
1437 			 * Dont scan forever even if fragment counters are
1438 			 * wrong: stop after scanning entire reassembly queue.
1439 			 */
1440 			if (i == dropscanidx)
1441 			    wrapped = 1;
1442 		}
1443 		dropscanidx = i;
1444 	}
1445 	IPQ_UNLOCK();
1446 
1447 	KERNEL_UNLOCK_ONE(NULL);
1448 	mutex_exit(softnet_lock);
1449 }
1450 
1451 /*
1452  * Drain off all datagram fragments.  Don't acquire softnet_lock as
1453  * can be called from hardware interrupt context.
1454  */
1455 void
1456 ip_drain(void)
1457 {
1458 
1459 	KERNEL_LOCK(1, NULL);
1460 
1461 	/*
1462 	 * We may be called from a device's interrupt context.  If
1463 	 * the ipq is already busy, just bail out now.
1464 	 */
1465 	if (ipq_lock_try() != 0) {
1466 		/*
1467 		 * Drop half the total fragments now. If more mbufs are
1468 		 * needed, we will be called again soon.
1469 		 */
1470 		ip_reass_drophalf();
1471 		IPQ_UNLOCK();
1472 	}
1473 
1474 	KERNEL_UNLOCK_ONE(NULL);
1475 }
1476 
1477 /*
1478  * Do option processing on a datagram,
1479  * possibly discarding it if bad options are encountered,
1480  * or forwarding it if source-routed.
1481  * Returns 1 if packet has been forwarded/freed,
1482  * 0 if the packet should be processed further.
1483  */
1484 int
1485 ip_dooptions(struct mbuf *m)
1486 {
1487 	struct ip *ip = mtod(m, struct ip *);
1488 	u_char *cp, *cp0;
1489 	struct ip_timestamp *ipt;
1490 	struct in_ifaddr *ia;
1491 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1492 	struct in_addr dst;
1493 	n_time ntime;
1494 
1495 	dst = ip->ip_dst;
1496 	cp = (u_char *)(ip + 1);
1497 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1498 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1499 		opt = cp[IPOPT_OPTVAL];
1500 		if (opt == IPOPT_EOL)
1501 			break;
1502 		if (opt == IPOPT_NOP)
1503 			optlen = 1;
1504 		else {
1505 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1506 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1507 				goto bad;
1508 			}
1509 			optlen = cp[IPOPT_OLEN];
1510 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1511 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1512 				goto bad;
1513 			}
1514 		}
1515 		switch (opt) {
1516 
1517 		default:
1518 			break;
1519 
1520 		/*
1521 		 * Source routing with record.
1522 		 * Find interface with current destination address.
1523 		 * If none on this machine then drop if strictly routed,
1524 		 * or do nothing if loosely routed.
1525 		 * Record interface address and bring up next address
1526 		 * component.  If strictly routed make sure next
1527 		 * address is on directly accessible net.
1528 		 */
1529 		case IPOPT_LSRR:
1530 		case IPOPT_SSRR:
1531 			if (ip_allowsrcrt == 0) {
1532 				type = ICMP_UNREACH;
1533 				code = ICMP_UNREACH_NET_PROHIB;
1534 				goto bad;
1535 			}
1536 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1537 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1538 				goto bad;
1539 			}
1540 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1541 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1542 				goto bad;
1543 			}
1544 			ipaddr.sin_addr = ip->ip_dst;
1545 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
1546 			if (ia == 0) {
1547 				if (opt == IPOPT_SSRR) {
1548 					type = ICMP_UNREACH;
1549 					code = ICMP_UNREACH_SRCFAIL;
1550 					goto bad;
1551 				}
1552 				/*
1553 				 * Loose routing, and not at next destination
1554 				 * yet; nothing to do except forward.
1555 				 */
1556 				break;
1557 			}
1558 			off--;			/* 0 origin */
1559 			if ((off + sizeof(struct in_addr)) > optlen) {
1560 				/*
1561 				 * End of source route.  Should be for us.
1562 				 */
1563 				save_rte(cp, ip->ip_src);
1564 				break;
1565 			}
1566 			/*
1567 			 * locate outgoing interface
1568 			 */
1569 			memcpy((void *)&ipaddr.sin_addr, (void *)(cp + off),
1570 			    sizeof(ipaddr.sin_addr));
1571 			if (opt == IPOPT_SSRR)
1572 				ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr)));
1573 			else
1574 				ia = ip_rtaddr(ipaddr.sin_addr);
1575 			if (ia == 0) {
1576 				type = ICMP_UNREACH;
1577 				code = ICMP_UNREACH_SRCFAIL;
1578 				goto bad;
1579 			}
1580 			ip->ip_dst = ipaddr.sin_addr;
1581 			bcopy((void *)&ia->ia_addr.sin_addr,
1582 			    (void *)(cp + off), sizeof(struct in_addr));
1583 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1584 			/*
1585 			 * Let ip_intr's mcast routing check handle mcast pkts
1586 			 */
1587 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1588 			break;
1589 
1590 		case IPOPT_RR:
1591 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1592 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1593 				goto bad;
1594 			}
1595 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1596 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1597 				goto bad;
1598 			}
1599 			/*
1600 			 * If no space remains, ignore.
1601 			 */
1602 			off--;			/* 0 origin */
1603 			if ((off + sizeof(struct in_addr)) > optlen)
1604 				break;
1605 			memcpy((void *)&ipaddr.sin_addr, (void *)(&ip->ip_dst),
1606 			    sizeof(ipaddr.sin_addr));
1607 			/*
1608 			 * locate outgoing interface; if we're the destination,
1609 			 * use the incoming interface (should be same).
1610 			 */
1611 			if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))))
1612 			    == NULL &&
1613 			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1614 				type = ICMP_UNREACH;
1615 				code = ICMP_UNREACH_HOST;
1616 				goto bad;
1617 			}
1618 			bcopy((void *)&ia->ia_addr.sin_addr,
1619 			    (void *)(cp + off), sizeof(struct in_addr));
1620 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1621 			break;
1622 
1623 		case IPOPT_TS:
1624 			code = cp - (u_char *)ip;
1625 			ipt = (struct ip_timestamp *)cp;
1626 			if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
1627 				code = (u_char *)&ipt->ipt_len - (u_char *)ip;
1628 				goto bad;
1629 			}
1630 			if (ipt->ipt_ptr < 5) {
1631 				code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
1632 				goto bad;
1633 			}
1634 			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
1635 				if (++ipt->ipt_oflw == 0) {
1636 					code = (u_char *)&ipt->ipt_ptr -
1637 					    (u_char *)ip;
1638 					goto bad;
1639 				}
1640 				break;
1641 			}
1642 			cp0 = (cp + ipt->ipt_ptr - 1);
1643 			switch (ipt->ipt_flg) {
1644 
1645 			case IPOPT_TS_TSONLY:
1646 				break;
1647 
1648 			case IPOPT_TS_TSANDADDR:
1649 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1650 				    sizeof(struct in_addr) > ipt->ipt_len) {
1651 					code = (u_char *)&ipt->ipt_ptr -
1652 					    (u_char *)ip;
1653 					goto bad;
1654 				}
1655 				ipaddr.sin_addr = dst;
1656 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1657 				    m->m_pkthdr.rcvif));
1658 				if (ia == 0)
1659 					continue;
1660 				bcopy(&ia->ia_addr.sin_addr,
1661 				    cp0, sizeof(struct in_addr));
1662 				ipt->ipt_ptr += sizeof(struct in_addr);
1663 				break;
1664 
1665 			case IPOPT_TS_PRESPEC:
1666 				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1667 				    sizeof(struct in_addr) > ipt->ipt_len) {
1668 					code = (u_char *)&ipt->ipt_ptr -
1669 					    (u_char *)ip;
1670 					goto bad;
1671 				}
1672 				memcpy(&ipaddr.sin_addr, cp0,
1673 				    sizeof(struct in_addr));
1674 				if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))
1675 				    == NULL)
1676 					continue;
1677 				ipt->ipt_ptr += sizeof(struct in_addr);
1678 				break;
1679 
1680 			default:
1681 				/* XXX can't take &ipt->ipt_flg */
1682 				code = (u_char *)&ipt->ipt_ptr -
1683 				    (u_char *)ip + 1;
1684 				goto bad;
1685 			}
1686 			ntime = iptime();
1687 			cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */
1688 			memmove((char *)cp + ipt->ipt_ptr - 1, cp0,
1689 			    sizeof(n_time));
1690 			ipt->ipt_ptr += sizeof(n_time);
1691 		}
1692 	}
1693 	if (forward) {
1694 		if (ip_forwsrcrt == 0) {
1695 			type = ICMP_UNREACH;
1696 			code = ICMP_UNREACH_SRCFAIL;
1697 			goto bad;
1698 		}
1699 		ip_forward(m, 1);
1700 		return (1);
1701 	}
1702 	return (0);
1703 bad:
1704 	icmp_error(m, type, code, 0, 0);
1705 	IP_STATINC(IP_STAT_BADOPTIONS);
1706 	return (1);
1707 }
1708 
1709 /*
1710  * Given address of next destination (final or next hop),
1711  * return internet address info of interface to be used to get there.
1712  */
1713 struct in_ifaddr *
1714 ip_rtaddr(struct in_addr dst)
1715 {
1716 	struct rtentry *rt;
1717 	union {
1718 		struct sockaddr		dst;
1719 		struct sockaddr_in	dst4;
1720 	} u;
1721 
1722 	sockaddr_in_init(&u.dst4, &dst, 0);
1723 
1724 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL)
1725 		return NULL;
1726 
1727 	return ifatoia(rt->rt_ifa);
1728 }
1729 
1730 /*
1731  * Save incoming source route for use in replies,
1732  * to be picked up later by ip_srcroute if the receiver is interested.
1733  */
1734 void
1735 save_rte(u_char *option, struct in_addr dst)
1736 {
1737 	unsigned olen;
1738 
1739 	olen = option[IPOPT_OLEN];
1740 #ifdef DIAGNOSTIC
1741 	if (ipprintfs)
1742 		printf("save_rte: olen %d\n", olen);
1743 #endif /* 0 */
1744 	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1745 		return;
1746 	memcpy((void *)ip_srcrt.srcopt, (void *)option, olen);
1747 	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1748 	ip_srcrt.dst = dst;
1749 }
1750 
1751 /*
1752  * Retrieve incoming source route for use in replies,
1753  * in the same form used by setsockopt.
1754  * The first hop is placed before the options, will be removed later.
1755  */
1756 struct mbuf *
1757 ip_srcroute(void)
1758 {
1759 	struct in_addr *p, *q;
1760 	struct mbuf *m;
1761 
1762 	if (ip_nhops == 0)
1763 		return NULL;
1764 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1765 	if (m == 0)
1766 		return NULL;
1767 
1768 	MCLAIM(m, &inetdomain.dom_mowner);
1769 #define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1770 
1771 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1772 	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1773 	    OPTSIZ;
1774 #ifdef DIAGNOSTIC
1775 	if (ipprintfs)
1776 		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1777 #endif
1778 
1779 	/*
1780 	 * First save first hop for return route
1781 	 */
1782 	p = &ip_srcrt.route[ip_nhops - 1];
1783 	*(mtod(m, struct in_addr *)) = *p--;
1784 #ifdef DIAGNOSTIC
1785 	if (ipprintfs)
1786 		printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1787 #endif
1788 
1789 	/*
1790 	 * Copy option fields and padding (nop) to mbuf.
1791 	 */
1792 	ip_srcrt.nop = IPOPT_NOP;
1793 	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1794 	memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop,
1795 	    OPTSIZ);
1796 	q = (struct in_addr *)(mtod(m, char *) +
1797 	    sizeof(struct in_addr) + OPTSIZ);
1798 #undef OPTSIZ
1799 	/*
1800 	 * Record return path as an IP source route,
1801 	 * reversing the path (pointers are now aligned).
1802 	 */
1803 	while (p >= ip_srcrt.route) {
1804 #ifdef DIAGNOSTIC
1805 		if (ipprintfs)
1806 			printf(" %x", ntohl(q->s_addr));
1807 #endif
1808 		*q++ = *p--;
1809 	}
1810 	/*
1811 	 * Last hop goes to final destination.
1812 	 */
1813 	*q = ip_srcrt.dst;
1814 #ifdef DIAGNOSTIC
1815 	if (ipprintfs)
1816 		printf(" %x\n", ntohl(q->s_addr));
1817 #endif
1818 	return (m);
1819 }
1820 
1821 const int inetctlerrmap[PRC_NCMDS] = {
1822 	[PRC_MSGSIZE] = EMSGSIZE,
1823 	[PRC_HOSTDEAD] = EHOSTDOWN,
1824 	[PRC_HOSTUNREACH] = EHOSTUNREACH,
1825 	[PRC_UNREACH_NET] = EHOSTUNREACH,
1826 	[PRC_UNREACH_HOST] = EHOSTUNREACH,
1827 	[PRC_UNREACH_PROTOCOL] = ECONNREFUSED,
1828 	[PRC_UNREACH_PORT] = ECONNREFUSED,
1829 	[PRC_UNREACH_SRCFAIL] = EHOSTUNREACH,
1830 	[PRC_PARAMPROB] = ENOPROTOOPT,
1831 };
1832 
1833 /*
1834  * Forward a packet.  If some error occurs return the sender
1835  * an icmp packet.  Note we can't always generate a meaningful
1836  * icmp message because icmp doesn't have a large enough repertoire
1837  * of codes and types.
1838  *
1839  * If not forwarding, just drop the packet.  This could be confusing
1840  * if ipforwarding was zero but some routing protocol was advancing
1841  * us as a gateway to somewhere.  However, we must let the routing
1842  * protocol deal with that.
1843  *
1844  * The srcrt parameter indicates whether the packet is being forwarded
1845  * via a source route.
1846  */
1847 void
1848 ip_forward(struct mbuf *m, int srcrt)
1849 {
1850 	struct ip *ip = mtod(m, struct ip *);
1851 	struct rtentry *rt;
1852 	int error, type = 0, code = 0, destmtu = 0;
1853 	struct mbuf *mcopy;
1854 	n_long dest;
1855 	union {
1856 		struct sockaddr		dst;
1857 		struct sockaddr_in	dst4;
1858 	} u;
1859 
1860 	/*
1861 	 * We are now in the output path.
1862 	 */
1863 	MCLAIM(m, &ip_tx_mowner);
1864 
1865 	/*
1866 	 * Clear any in-bound checksum flags for this packet.
1867 	 */
1868 	m->m_pkthdr.csum_flags = 0;
1869 
1870 	dest = 0;
1871 #ifdef DIAGNOSTIC
1872 	if (ipprintfs) {
1873 		printf("forward: src %s ", inet_ntoa(ip->ip_src));
1874 		printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl);
1875 	}
1876 #endif
1877 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1878 		IP_STATINC(IP_STAT_CANTFORWARD);
1879 		m_freem(m);
1880 		return;
1881 	}
1882 	if (ip->ip_ttl <= IPTTLDEC) {
1883 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1884 		return;
1885 	}
1886 
1887 	sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
1888 	if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) {
1889 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0);
1890 		return;
1891 	}
1892 
1893 	/*
1894 	 * Save at most 68 bytes of the packet in case
1895 	 * we need to generate an ICMP message to the src.
1896 	 * Pullup to avoid sharing mbuf cluster between m and mcopy.
1897 	 */
1898 	mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT);
1899 	if (mcopy)
1900 		mcopy = m_pullup(mcopy, ip->ip_hl << 2);
1901 
1902 	ip->ip_ttl -= IPTTLDEC;
1903 
1904 	/*
1905 	 * If forwarding packet using same interface that it came in on,
1906 	 * perhaps should send a redirect to sender to shortcut a hop.
1907 	 * Only send redirect if source is sending directly to us,
1908 	 * and if packet was not source routed (or has any options).
1909 	 * Also, don't send redirect if forwarding using a default route
1910 	 * or a route modified by a redirect.
1911 	 */
1912 	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1913 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1914 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) &&
1915 	    ipsendredirects && !srcrt) {
1916 		if (rt->rt_ifa &&
1917 		    (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1918 		    ifatoia(rt->rt_ifa)->ia_subnet) {
1919 			if (rt->rt_flags & RTF_GATEWAY)
1920 				dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1921 			else
1922 				dest = ip->ip_dst.s_addr;
1923 			/*
1924 			 * Router requirements says to only send host
1925 			 * redirects.
1926 			 */
1927 			type = ICMP_REDIRECT;
1928 			code = ICMP_REDIRECT_HOST;
1929 #ifdef DIAGNOSTIC
1930 			if (ipprintfs)
1931 				printf("redirect (%d) to %x\n", code,
1932 				    (u_int32_t)dest);
1933 #endif
1934 		}
1935 	}
1936 
1937 	error = ip_output(m, NULL, &ipforward_rt,
1938 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1939 	    (struct ip_moptions *)NULL, (struct socket *)NULL);
1940 
1941 	if (error)
1942 		IP_STATINC(IP_STAT_CANTFORWARD);
1943 	else {
1944 		uint64_t *ips = IP_STAT_GETREF();
1945 		ips[IP_STAT_FORWARD]++;
1946 		if (type) {
1947 			ips[IP_STAT_REDIRECTSENT]++;
1948 			IP_STAT_PUTREF();
1949 		} else {
1950 			IP_STAT_PUTREF();
1951 			if (mcopy) {
1952 #ifdef GATEWAY
1953 				if (mcopy->m_flags & M_CANFASTFWD)
1954 					ipflow_create(&ipforward_rt, mcopy);
1955 #endif
1956 				m_freem(mcopy);
1957 			}
1958 			return;
1959 		}
1960 	}
1961 	if (mcopy == NULL)
1962 		return;
1963 
1964 	switch (error) {
1965 
1966 	case 0:				/* forwarded, but need redirect */
1967 		/* type, code set above */
1968 		break;
1969 
1970 	case ENETUNREACH:		/* shouldn't happen, checked above */
1971 	case EHOSTUNREACH:
1972 	case ENETDOWN:
1973 	case EHOSTDOWN:
1974 	default:
1975 		type = ICMP_UNREACH;
1976 		code = ICMP_UNREACH_HOST;
1977 		break;
1978 
1979 	case EMSGSIZE:
1980 		type = ICMP_UNREACH;
1981 		code = ICMP_UNREACH_NEEDFRAG;
1982 
1983 		if ((rt = rtcache_validate(&ipforward_rt)) != NULL)
1984 			destmtu = rt->rt_ifp->if_mtu;
1985 
1986 #if defined(IPSEC) || defined(FAST_IPSEC)
1987 		{
1988 			/*
1989 			 * If the packet is routed over IPsec tunnel, tell the
1990 			 * originator the tunnel MTU.
1991 			 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1992 			 * XXX quickhack!!!
1993 			 */
1994 
1995 			struct secpolicy *sp;
1996 			int ipsecerror;
1997 			size_t ipsechdr;
1998 			struct route *ro;
1999 
2000 			sp = ipsec4_getpolicybyaddr(mcopy,
2001 			    IPSEC_DIR_OUTBOUND, IP_FORWARDING,
2002 			    &ipsecerror);
2003 
2004 			if (sp != NULL) {
2005 				/* count IPsec header size */
2006 				ipsechdr = ipsec4_hdrsiz(mcopy,
2007 				    IPSEC_DIR_OUTBOUND, NULL);
2008 
2009 				/*
2010 				 * find the correct route for outer IPv4
2011 				 * header, compute tunnel MTU.
2012 				 */
2013 
2014 				if (sp->req != NULL
2015 				 && sp->req->sav != NULL
2016 				 && sp->req->sav->sah != NULL) {
2017 					ro = &sp->req->sav->sah->sa_route;
2018 					rt = rtcache_validate(ro);
2019 					if (rt && rt->rt_ifp) {
2020 						destmtu =
2021 						    rt->rt_rmx.rmx_mtu ?
2022 						    rt->rt_rmx.rmx_mtu :
2023 						    rt->rt_ifp->if_mtu;
2024 						destmtu -= ipsechdr;
2025 					}
2026 				}
2027 
2028 #ifdef	IPSEC
2029 				key_freesp(sp);
2030 #else
2031 				KEY_FREESP(&sp);
2032 #endif
2033 			}
2034 		}
2035 #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/
2036 		IP_STATINC(IP_STAT_CANTFRAG);
2037 		break;
2038 
2039 	case ENOBUFS:
2040 #if 1
2041 		/*
2042 		 * a router should not generate ICMP_SOURCEQUENCH as
2043 		 * required in RFC1812 Requirements for IP Version 4 Routers.
2044 		 * source quench could be a big problem under DoS attacks,
2045 		 * or if the underlying interface is rate-limited.
2046 		 */
2047 		if (mcopy)
2048 			m_freem(mcopy);
2049 		return;
2050 #else
2051 		type = ICMP_SOURCEQUENCH;
2052 		code = 0;
2053 		break;
2054 #endif
2055 	}
2056 	icmp_error(mcopy, type, code, dest, destmtu);
2057 }
2058 
2059 void
2060 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2061     struct mbuf *m)
2062 {
2063 
2064 	if (inp->inp_socket->so_options & SO_TIMESTAMP
2065 #ifdef SO_OTIMESTAMP
2066 	    || inp->inp_socket->so_options & SO_OTIMESTAMP
2067 #endif
2068 	    ) {
2069 		struct timeval tv;
2070 
2071 		microtime(&tv);
2072 #ifdef SO_OTIMESTAMP
2073 		if (inp->inp_socket->so_options & SO_OTIMESTAMP) {
2074 			struct timeval50 tv50;
2075 			timeval_to_timeval50(&tv, &tv50);
2076 			*mp = sbcreatecontrol((void *) &tv50, sizeof(tv50),
2077 			    SCM_OTIMESTAMP, SOL_SOCKET);
2078 		} else
2079 #endif
2080 		*mp = sbcreatecontrol((void *) &tv, sizeof(tv),
2081 		    SCM_TIMESTAMP, SOL_SOCKET);
2082 		if (*mp)
2083 			mp = &(*mp)->m_next;
2084 	}
2085 	if (inp->inp_flags & INP_RECVDSTADDR) {
2086 		*mp = sbcreatecontrol((void *) &ip->ip_dst,
2087 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2088 		if (*mp)
2089 			mp = &(*mp)->m_next;
2090 	}
2091 #ifdef notyet
2092 	/*
2093 	 * XXX
2094 	 * Moving these out of udp_input() made them even more broken
2095 	 * than they already were.
2096 	 *	- fenner@parc.xerox.com
2097 	 */
2098 	/* options were tossed already */
2099 	if (inp->inp_flags & INP_RECVOPTS) {
2100 		*mp = sbcreatecontrol((void *) opts_deleted_above,
2101 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2102 		if (*mp)
2103 			mp = &(*mp)->m_next;
2104 	}
2105 	/* ip_srcroute doesn't do what we want here, need to fix */
2106 	if (inp->inp_flags & INP_RECVRETOPTS) {
2107 		*mp = sbcreatecontrol((void *) ip_srcroute(),
2108 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2109 		if (*mp)
2110 			mp = &(*mp)->m_next;
2111 	}
2112 #endif
2113 	if (inp->inp_flags & INP_RECVIF) {
2114 		struct sockaddr_dl sdl;
2115 
2116 		sockaddr_dl_init(&sdl, sizeof(sdl),
2117 		    (m->m_pkthdr.rcvif != NULL)
2118 		        ?  m->m_pkthdr.rcvif->if_index
2119 			: 0,
2120 			0, NULL, 0, NULL, 0);
2121 		*mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP);
2122 		if (*mp)
2123 			mp = &(*mp)->m_next;
2124 	}
2125 	if (inp->inp_flags & INP_RECVTTL) {
2126 		*mp = sbcreatecontrol((void *) &ip->ip_ttl,
2127 		    sizeof(uint8_t), IP_RECVTTL, IPPROTO_IP);
2128 		if (*mp)
2129 			mp = &(*mp)->m_next;
2130 	}
2131 }
2132 
2133 /*
2134  * sysctl helper routine for net.inet.ip.forwsrcrt.
2135  */
2136 static int
2137 sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS)
2138 {
2139 	int error, tmp;
2140 	struct sysctlnode node;
2141 
2142 	node = *rnode;
2143 	tmp = ip_forwsrcrt;
2144 	node.sysctl_data = &tmp;
2145 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2146 	if (error || newp == NULL)
2147 		return (error);
2148 
2149 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT,
2150 	    0, NULL, NULL, NULL);
2151 	if (error)
2152 		return (error);
2153 
2154 	ip_forwsrcrt = tmp;
2155 
2156 	return (0);
2157 }
2158 
2159 /*
2160  * sysctl helper routine for net.inet.ip.mtudisctimeout.  checks the
2161  * range of the new value and tweaks timers if it changes.
2162  */
2163 static int
2164 sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS)
2165 {
2166 	int error, tmp;
2167 	struct sysctlnode node;
2168 
2169 	node = *rnode;
2170 	tmp = ip_mtudisc_timeout;
2171 	node.sysctl_data = &tmp;
2172 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2173 	if (error || newp == NULL)
2174 		return (error);
2175 	if (tmp < 0)
2176 		return (EINVAL);
2177 
2178 	mutex_enter(softnet_lock);
2179 
2180 	ip_mtudisc_timeout = tmp;
2181 	rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout);
2182 
2183 	mutex_exit(softnet_lock);
2184 
2185 	return (0);
2186 }
2187 
2188 #ifdef GATEWAY
2189 /*
2190  * sysctl helper routine for net.inet.ip.maxflows.
2191  */
2192 static int
2193 sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS)
2194 {
2195 	int error;
2196 
2197 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
2198 	if (error || newp == NULL)
2199 		return (error);
2200 
2201 	mutex_enter(softnet_lock);
2202 	KERNEL_LOCK(1, NULL);
2203 
2204 	ipflow_prune();
2205 
2206 	KERNEL_UNLOCK_ONE(NULL);
2207 	mutex_exit(softnet_lock);
2208 
2209 	return (0);
2210 }
2211 
2212 static int
2213 sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS)
2214 {
2215 	int error, tmp;
2216 	struct sysctlnode node;
2217 
2218 	node = *rnode;
2219 	tmp = ip_hashsize;
2220 	node.sysctl_data = &tmp;
2221 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2222 	if (error || newp == NULL)
2223 		return (error);
2224 
2225 	if ((tmp & (tmp - 1)) == 0 && tmp != 0) {
2226 		/*
2227 		 * Can only fail due to malloc()
2228 		 */
2229 		mutex_enter(softnet_lock);
2230 		KERNEL_LOCK(1, NULL);
2231 
2232 		error = ipflow_invalidate_all(tmp);
2233 
2234 		KERNEL_UNLOCK_ONE(NULL);
2235 		mutex_exit(softnet_lock);
2236 
2237 	} else {
2238 		/*
2239 		 * EINVAL if not a power of 2
2240 	         */
2241 		error = EINVAL;
2242 	}
2243 
2244 	return error;
2245 }
2246 #endif /* GATEWAY */
2247 
2248 static int
2249 sysctl_net_inet_ip_stats(SYSCTLFN_ARGS)
2250 {
2251 
2252 	return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS));
2253 }
2254 
2255 static void
2256 sysctl_net_inet_ip_setup(struct sysctllog **clog)
2257 {
2258 	extern int subnetsarelocal, hostzeroisbroadcast;
2259 
2260 	sysctl_createv(clog, 0, NULL, NULL,
2261 		       CTLFLAG_PERMANENT,
2262 		       CTLTYPE_NODE, "net", NULL,
2263 		       NULL, 0, NULL, 0,
2264 		       CTL_NET, CTL_EOL);
2265 	sysctl_createv(clog, 0, NULL, NULL,
2266 		       CTLFLAG_PERMANENT,
2267 		       CTLTYPE_NODE, "inet",
2268 		       SYSCTL_DESCR("PF_INET related settings"),
2269 		       NULL, 0, NULL, 0,
2270 		       CTL_NET, PF_INET, CTL_EOL);
2271 	sysctl_createv(clog, 0, NULL, NULL,
2272 		       CTLFLAG_PERMANENT,
2273 		       CTLTYPE_NODE, "ip",
2274 		       SYSCTL_DESCR("IPv4 related settings"),
2275 		       NULL, 0, NULL, 0,
2276 		       CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
2277 
2278 	sysctl_createv(clog, 0, NULL, NULL,
2279 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2280 		       CTLTYPE_INT, "forwarding",
2281 		       SYSCTL_DESCR("Enable forwarding of INET datagrams"),
2282 		       NULL, 0, &ipforwarding, 0,
2283 		       CTL_NET, PF_INET, IPPROTO_IP,
2284 		       IPCTL_FORWARDING, CTL_EOL);
2285 	sysctl_createv(clog, 0, NULL, NULL,
2286 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2287 		       CTLTYPE_INT, "redirect",
2288 		       SYSCTL_DESCR("Enable sending of ICMP redirect messages"),
2289 		       NULL, 0, &ipsendredirects, 0,
2290 		       CTL_NET, PF_INET, IPPROTO_IP,
2291 		       IPCTL_SENDREDIRECTS, CTL_EOL);
2292 	sysctl_createv(clog, 0, NULL, NULL,
2293 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2294 		       CTLTYPE_INT, "ttl",
2295 		       SYSCTL_DESCR("Default TTL for an INET datagram"),
2296 		       NULL, 0, &ip_defttl, 0,
2297 		       CTL_NET, PF_INET, IPPROTO_IP,
2298 		       IPCTL_DEFTTL, CTL_EOL);
2299 #ifdef IPCTL_DEFMTU
2300 	sysctl_createv(clog, 0, NULL, NULL,
2301 		       CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */,
2302 		       CTLTYPE_INT, "mtu",
2303 		       SYSCTL_DESCR("Default MTA for an INET route"),
2304 		       NULL, 0, &ip_mtu, 0,
2305 		       CTL_NET, PF_INET, IPPROTO_IP,
2306 		       IPCTL_DEFMTU, CTL_EOL);
2307 #endif /* IPCTL_DEFMTU */
2308 	sysctl_createv(clog, 0, NULL, NULL,
2309 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2310 		       CTLTYPE_INT, "forwsrcrt",
2311 		       SYSCTL_DESCR("Enable forwarding of source-routed "
2312 				    "datagrams"),
2313 		       sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0,
2314 		       CTL_NET, PF_INET, IPPROTO_IP,
2315 		       IPCTL_FORWSRCRT, CTL_EOL);
2316 	sysctl_createv(clog, 0, NULL, NULL,
2317 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2318 		       CTLTYPE_INT, "directed-broadcast",
2319 		       SYSCTL_DESCR("Enable forwarding of broadcast datagrams"),
2320 		       NULL, 0, &ip_directedbcast, 0,
2321 		       CTL_NET, PF_INET, IPPROTO_IP,
2322 		       IPCTL_DIRECTEDBCAST, CTL_EOL);
2323 	sysctl_createv(clog, 0, NULL, NULL,
2324 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2325 		       CTLTYPE_INT, "allowsrcrt",
2326 		       SYSCTL_DESCR("Accept source-routed datagrams"),
2327 		       NULL, 0, &ip_allowsrcrt, 0,
2328 		       CTL_NET, PF_INET, IPPROTO_IP,
2329 		       IPCTL_ALLOWSRCRT, CTL_EOL);
2330 	sysctl_createv(clog, 0, NULL, NULL,
2331 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2332 		       CTLTYPE_INT, "subnetsarelocal",
2333 		       SYSCTL_DESCR("Whether logical subnets are considered "
2334 				    "local"),
2335 		       NULL, 0, &subnetsarelocal, 0,
2336 		       CTL_NET, PF_INET, IPPROTO_IP,
2337 		       IPCTL_SUBNETSARELOCAL, CTL_EOL);
2338 	sysctl_createv(clog, 0, NULL, NULL,
2339 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2340 		       CTLTYPE_INT, "mtudisc",
2341 		       SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"),
2342 		       NULL, 0, &ip_mtudisc, 0,
2343 		       CTL_NET, PF_INET, IPPROTO_IP,
2344 		       IPCTL_MTUDISC, CTL_EOL);
2345 	sysctl_createv(clog, 0, NULL, NULL,
2346 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2347 		       CTLTYPE_INT, "anonportmin",
2348 		       SYSCTL_DESCR("Lowest ephemeral port number to assign"),
2349 		       sysctl_net_inet_ip_ports, 0, &anonportmin, 0,
2350 		       CTL_NET, PF_INET, IPPROTO_IP,
2351 		       IPCTL_ANONPORTMIN, CTL_EOL);
2352 	sysctl_createv(clog, 0, NULL, NULL,
2353 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2354 		       CTLTYPE_INT, "anonportmax",
2355 		       SYSCTL_DESCR("Highest ephemeral port number to assign"),
2356 		       sysctl_net_inet_ip_ports, 0, &anonportmax, 0,
2357 		       CTL_NET, PF_INET, IPPROTO_IP,
2358 		       IPCTL_ANONPORTMAX, CTL_EOL);
2359 	sysctl_createv(clog, 0, NULL, NULL,
2360 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2361 		       CTLTYPE_INT, "mtudisctimeout",
2362 		       SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"),
2363 		       sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0,
2364 		       CTL_NET, PF_INET, IPPROTO_IP,
2365 		       IPCTL_MTUDISCTIMEOUT, CTL_EOL);
2366 #ifdef GATEWAY
2367 	sysctl_createv(clog, 0, NULL, NULL,
2368 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2369 		       CTLTYPE_INT, "maxflows",
2370 		       SYSCTL_DESCR("Number of flows for fast forwarding"),
2371 		       sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0,
2372 		       CTL_NET, PF_INET, IPPROTO_IP,
2373 		       IPCTL_MAXFLOWS, CTL_EOL);
2374 	sysctl_createv(clog, 0, NULL, NULL,
2375 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2376 			CTLTYPE_INT, "hashsize",
2377 			SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"),
2378 			sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0,
2379 			CTL_NET, PF_INET, IPPROTO_IP,
2380 			CTL_CREATE, CTL_EOL);
2381 #endif /* GATEWAY */
2382 	sysctl_createv(clog, 0, NULL, NULL,
2383 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2384 		       CTLTYPE_INT, "hostzerobroadcast",
2385 		       SYSCTL_DESCR("All zeroes address is broadcast address"),
2386 		       NULL, 0, &hostzeroisbroadcast, 0,
2387 		       CTL_NET, PF_INET, IPPROTO_IP,
2388 		       IPCTL_HOSTZEROBROADCAST, CTL_EOL);
2389 #if NGIF > 0
2390 	sysctl_createv(clog, 0, NULL, NULL,
2391 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2392 		       CTLTYPE_INT, "gifttl",
2393 		       SYSCTL_DESCR("Default TTL for a gif tunnel datagram"),
2394 		       NULL, 0, &ip_gif_ttl, 0,
2395 		       CTL_NET, PF_INET, IPPROTO_IP,
2396 		       IPCTL_GIF_TTL, CTL_EOL);
2397 #endif /* NGIF */
2398 #ifndef IPNOPRIVPORTS
2399 	sysctl_createv(clog, 0, NULL, NULL,
2400 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2401 		       CTLTYPE_INT, "lowportmin",
2402 		       SYSCTL_DESCR("Lowest privileged ephemeral port number "
2403 				    "to assign"),
2404 		       sysctl_net_inet_ip_ports, 0, &lowportmin, 0,
2405 		       CTL_NET, PF_INET, IPPROTO_IP,
2406 		       IPCTL_LOWPORTMIN, CTL_EOL);
2407 	sysctl_createv(clog, 0, NULL, NULL,
2408 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2409 		       CTLTYPE_INT, "lowportmax",
2410 		       SYSCTL_DESCR("Highest privileged ephemeral port number "
2411 				    "to assign"),
2412 		       sysctl_net_inet_ip_ports, 0, &lowportmax, 0,
2413 		       CTL_NET, PF_INET, IPPROTO_IP,
2414 		       IPCTL_LOWPORTMAX, CTL_EOL);
2415 #endif /* IPNOPRIVPORTS */
2416 	sysctl_createv(clog, 0, NULL, NULL,
2417 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2418 		       CTLTYPE_INT, "maxfragpackets",
2419 		       SYSCTL_DESCR("Maximum number of fragments to retain for "
2420 				    "possible reassembly"),
2421 		       NULL, 0, &ip_maxfragpackets, 0,
2422 		       CTL_NET, PF_INET, IPPROTO_IP,
2423 		       IPCTL_MAXFRAGPACKETS, CTL_EOL);
2424 #if NGRE > 0
2425 	sysctl_createv(clog, 0, NULL, NULL,
2426 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2427 		       CTLTYPE_INT, "grettl",
2428 		       SYSCTL_DESCR("Default TTL for a gre tunnel datagram"),
2429 		       NULL, 0, &ip_gre_ttl, 0,
2430 		       CTL_NET, PF_INET, IPPROTO_IP,
2431 		       IPCTL_GRE_TTL, CTL_EOL);
2432 #endif /* NGRE */
2433 	sysctl_createv(clog, 0, NULL, NULL,
2434 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2435 		       CTLTYPE_INT, "checkinterface",
2436 		       SYSCTL_DESCR("Enable receive side of Strong ES model "
2437 				    "from RFC1122"),
2438 		       NULL, 0, &ip_checkinterface, 0,
2439 		       CTL_NET, PF_INET, IPPROTO_IP,
2440 		       IPCTL_CHECKINTERFACE, CTL_EOL);
2441 	sysctl_createv(clog, 0, NULL, NULL,
2442 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2443 		       CTLTYPE_INT, "random_id",
2444 		       SYSCTL_DESCR("Assign random ip_id values"),
2445 		       NULL, 0, &ip_do_randomid, 0,
2446 		       CTL_NET, PF_INET, IPPROTO_IP,
2447 		       IPCTL_RANDOMID, CTL_EOL);
2448 	sysctl_createv(clog, 0, NULL, NULL,
2449 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2450 		       CTLTYPE_INT, "do_loopback_cksum",
2451 		       SYSCTL_DESCR("Perform IP checksum on loopback"),
2452 		       NULL, 0, &ip_do_loopback_cksum, 0,
2453 		       CTL_NET, PF_INET, IPPROTO_IP,
2454 		       IPCTL_LOOPBACKCKSUM, CTL_EOL);
2455 	sysctl_createv(clog, 0, NULL, NULL,
2456 		       CTLFLAG_PERMANENT,
2457 		       CTLTYPE_STRUCT, "stats",
2458 		       SYSCTL_DESCR("IP statistics"),
2459 		       sysctl_net_inet_ip_stats, 0, NULL, 0,
2460 		       CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS,
2461 		       CTL_EOL);
2462 }
2463 
2464 void
2465 ip_statinc(u_int stat)
2466 {
2467 
2468 	KASSERT(stat < IP_NSTATS);
2469 	IP_STATINC(stat);
2470 }
2471