1 /* $NetBSD: ip_encap.c,v 1.71 2019/05/15 03:33:41 knakahara Exp $ */ 2 /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 /* 33 * My grandfather said that there's a devil inside tunnelling technology... 34 * 35 * We have surprisingly many protocols that want packets with IP protocol 36 * #4 or #41. Here's a list of protocols that want protocol #41: 37 * RFC1933 configured tunnel 38 * RFC1933 automatic tunnel 39 * RFC2401 IPsec tunnel 40 * RFC2473 IPv6 generic packet tunnelling 41 * RFC2529 6over4 tunnel 42 * RFC3056 6to4 tunnel 43 * isatap tunnel 44 * mobile-ip6 (uses RFC2473) 45 * Here's a list of protocol that want protocol #4: 46 * RFC1853 IPv4-in-IPv4 tunnelling 47 * RFC2003 IPv4 encapsulation within IPv4 48 * RFC2344 reverse tunnelling for mobile-ip4 49 * RFC2401 IPsec tunnel 50 * Well, what can I say. They impose different en/decapsulation mechanism 51 * from each other, so they need separate protocol handler. The only one 52 * we can easily determine by protocol # is IPsec, which always has 53 * AH/ESP/IPComp header right after outer IP header. 54 * 55 * So, clearly good old protosw does not work for protocol #4 and #41. 56 * The code will let you match protocol via src/dst address pair. 57 */ 58 /* XXX is M_NETADDR correct? */ 59 60 /* 61 * With USE_RADIX the code will use radix table for tunnel lookup, for 62 * tunnels registered with encap_attach() with a addr/mask pair. 63 * Faster on machines with thousands of tunnel registerations (= interfaces). 64 * 65 * The code assumes that radix table code can handle non-continuous netmask, 66 * as it will pass radix table memory region with (src + dst) sockaddr pair. 67 */ 68 #define USE_RADIX 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: ip_encap.c,v 1.71 2019/05/15 03:33:41 knakahara Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_mrouting.h" 75 #include "opt_inet.h" 76 #include "opt_net_mpsafe.h" 77 #endif 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/socket.h> 82 #include <sys/socketvar.h> /* for softnet_lock */ 83 #include <sys/sockio.h> 84 #include <sys/mbuf.h> 85 #include <sys/errno.h> 86 #include <sys/queue.h> 87 #include <sys/kmem.h> 88 #include <sys/mutex.h> 89 #include <sys/condvar.h> 90 #include <sys/psref.h> 91 #include <sys/pslist.h> 92 93 #include <net/if.h> 94 95 #include <netinet/in.h> 96 #include <netinet/in_systm.h> 97 #include <netinet/ip.h> 98 #include <netinet/ip_var.h> 99 #include <netinet/ip_encap.h> 100 #ifdef MROUTING 101 #include <netinet/ip_mroute.h> 102 #endif /* MROUTING */ 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet6/ip6_var.h> 107 #include <netinet6/ip6protosw.h> /* for struct ip6ctlparam */ 108 #include <netinet6/in6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet/icmp6.h> 111 #endif 112 113 #ifdef NET_MPSAFE 114 #define ENCAP_MPSAFE 1 115 #endif 116 117 enum direction { INBOUND, OUTBOUND }; 118 119 #ifdef INET 120 static struct encaptab *encap4_lookup(struct mbuf *, int, int, enum direction, 121 struct psref *); 122 #endif 123 #ifdef INET6 124 static struct encaptab *encap6_lookup(struct mbuf *, int, int, enum direction, 125 struct psref *); 126 #endif 127 static int encap_add(struct encaptab *); 128 static int encap_remove(struct encaptab *); 129 static int encap_afcheck(int, const struct sockaddr *, const struct sockaddr *); 130 #ifdef USE_RADIX 131 static struct radix_node_head *encap_rnh(int); 132 static int mask_matchlen(const struct sockaddr *); 133 #else 134 static int mask_match(const struct encaptab *, const struct sockaddr *, 135 const struct sockaddr *); 136 #endif 137 138 /* 139 * In encap[46]_lookup(), ep->func can sleep(e.g. rtalloc1) while walking 140 * encap_table. So, it cannot use pserialize_read_enter() 141 */ 142 static struct { 143 struct pslist_head list; 144 pserialize_t psz; 145 struct psref_class *elem_class; /* for the element of et_list */ 146 } encaptab __cacheline_aligned = { 147 .list = PSLIST_INITIALIZER, 148 }; 149 #define encap_table encaptab.list 150 151 static struct { 152 kmutex_t lock; 153 kcondvar_t cv; 154 struct lwp *busy; 155 } encap_whole __cacheline_aligned; 156 157 #ifdef USE_RADIX 158 struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */ 159 static bool encap_head_updating = false; 160 #endif 161 162 static bool encap_initialized = false; 163 /* 164 * must be done before other encap interfaces initialization. 165 */ 166 void 167 encapinit(void) 168 { 169 170 if (encap_initialized) 171 return; 172 173 encaptab.psz = pserialize_create(); 174 encaptab.elem_class = psref_class_create("encapelem", IPL_SOFTNET); 175 176 mutex_init(&encap_whole.lock, MUTEX_DEFAULT, IPL_NONE); 177 cv_init(&encap_whole.cv, "ip_encap cv"); 178 encap_whole.busy = NULL; 179 180 encap_initialized = true; 181 } 182 183 void 184 encap_init(void) 185 { 186 static int initialized = 0; 187 188 if (initialized) 189 return; 190 initialized++; 191 #if 0 192 /* 193 * we cannot use LIST_INIT() here, since drivers may want to call 194 * encap_attach(), on driver attach. encap_init() will be called 195 * on AF_INET{,6} initialization, which happens after driver 196 * initialization - using LIST_INIT() here can nuke encap_attach() 197 * from drivers. 198 */ 199 PSLIST_INIT(&encap_table); 200 #endif 201 202 #ifdef USE_RADIX 203 /* 204 * initialize radix lookup table when the radix subsystem is inited. 205 */ 206 rn_delayedinit((void *)&encap_head[0], 207 sizeof(struct sockaddr_pack) << 3); 208 #ifdef INET6 209 rn_delayedinit((void *)&encap_head[1], 210 sizeof(struct sockaddr_pack) << 3); 211 #endif 212 #endif 213 } 214 215 #ifdef INET 216 static struct encaptab * 217 encap4_lookup(struct mbuf *m, int off, int proto, enum direction dir, 218 struct psref *match_psref) 219 { 220 struct ip *ip; 221 struct ip_pack4 pack; 222 struct encaptab *ep, *match; 223 int prio, matchprio; 224 int s; 225 #ifdef USE_RADIX 226 struct radix_node_head *rnh = encap_rnh(AF_INET); 227 struct radix_node *rn; 228 #endif 229 230 KASSERT(m->m_len >= sizeof(*ip)); 231 232 ip = mtod(m, struct ip *); 233 234 memset(&pack, 0, sizeof(pack)); 235 pack.p.sp_len = sizeof(pack); 236 pack.mine.sin_family = pack.yours.sin_family = AF_INET; 237 pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in); 238 if (dir == INBOUND) { 239 pack.mine.sin_addr = ip->ip_dst; 240 pack.yours.sin_addr = ip->ip_src; 241 } else { 242 pack.mine.sin_addr = ip->ip_src; 243 pack.yours.sin_addr = ip->ip_dst; 244 } 245 246 match = NULL; 247 matchprio = 0; 248 249 s = pserialize_read_enter(); 250 #ifdef USE_RADIX 251 if (encap_head_updating) { 252 /* 253 * Update in progress. Do nothing. 254 */ 255 pserialize_read_exit(s); 256 return NULL; 257 } 258 259 rn = rnh->rnh_matchaddr((void *)&pack, rnh); 260 if (rn && (rn->rn_flags & RNF_ROOT) == 0) { 261 struct encaptab *encapp = (struct encaptab *)rn; 262 263 psref_acquire(match_psref, &encapp->psref, 264 encaptab.elem_class); 265 match = encapp; 266 matchprio = mask_matchlen(match->srcmask) + 267 mask_matchlen(match->dstmask); 268 } 269 #endif 270 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { 271 struct psref elem_psref; 272 273 if (ep->af != AF_INET) 274 continue; 275 if (ep->proto >= 0 && ep->proto != proto) 276 continue; 277 278 psref_acquire(&elem_psref, &ep->psref, 279 encaptab.elem_class); 280 if (ep->func) { 281 pserialize_read_exit(s); 282 /* ep->func is sleepable. e.g. rtalloc1 */ 283 prio = (*ep->func)(m, off, proto, ep->arg); 284 s = pserialize_read_enter(); 285 } else { 286 #ifdef USE_RADIX 287 psref_release(&elem_psref, &ep->psref, 288 encaptab.elem_class); 289 continue; 290 #else 291 prio = mask_match(ep, (struct sockaddr *)&pack.mine, 292 (struct sockaddr *)&pack.yours); 293 #endif 294 } 295 296 /* 297 * We prioritize the matches by using bit length of the 298 * matches. mask_match() and user-supplied matching function 299 * should return the bit length of the matches (for example, 300 * if both src/dst are matched for IPv4, 64 should be returned). 301 * 0 or negative return value means "it did not match". 302 * 303 * The question is, since we have two "mask" portion, we 304 * cannot really define total order between entries. 305 * For example, which of these should be preferred? 306 * mask_match() returns 48 (32 + 16) for both of them. 307 * src=3ffe::/16, dst=3ffe:501::/32 308 * src=3ffe:501::/32, dst=3ffe::/16 309 * 310 * We need to loop through all the possible candidates 311 * to get the best match - the search takes O(n) for 312 * n attachments (i.e. interfaces). 313 * 314 * For radix-based lookup, I guess source takes precedence. 315 * See rn_{refines,lexobetter} for the correct answer. 316 */ 317 if (prio <= 0) { 318 psref_release(&elem_psref, &ep->psref, 319 encaptab.elem_class); 320 continue; 321 } 322 if (prio > matchprio) { 323 /* release last matched ep */ 324 if (match != NULL) 325 psref_release(match_psref, &match->psref, 326 encaptab.elem_class); 327 328 psref_copy(match_psref, &elem_psref, 329 encaptab.elem_class); 330 matchprio = prio; 331 match = ep; 332 } 333 KASSERTMSG((match == NULL) || psref_held(&match->psref, 334 encaptab.elem_class), 335 "current match = %p, but not hold its psref", match); 336 337 psref_release(&elem_psref, &ep->psref, 338 encaptab.elem_class); 339 } 340 pserialize_read_exit(s); 341 342 return match; 343 } 344 345 void 346 encap4_input(struct mbuf *m, int off, int proto) 347 { 348 const struct encapsw *esw; 349 struct encaptab *match; 350 struct psref match_psref; 351 352 match = encap4_lookup(m, off, proto, INBOUND, &match_psref); 353 if (match) { 354 /* found a match, "match" has the best one */ 355 esw = match->esw; 356 if (esw && esw->encapsw4.pr_input) { 357 (*esw->encapsw4.pr_input)(m, off, proto, match->arg); 358 psref_release(&match_psref, &match->psref, 359 encaptab.elem_class); 360 } else { 361 psref_release(&match_psref, &match->psref, 362 encaptab.elem_class); 363 m_freem(m); 364 } 365 return; 366 } 367 368 /* last resort: inject to raw socket */ 369 SOFTNET_LOCK_IF_NET_MPSAFE(); 370 rip_input(m, off, proto); 371 SOFTNET_UNLOCK_IF_NET_MPSAFE(); 372 } 373 #endif 374 375 #ifdef INET6 376 static struct encaptab * 377 encap6_lookup(struct mbuf *m, int off, int proto, enum direction dir, 378 struct psref *match_psref) 379 { 380 struct ip6_hdr *ip6; 381 struct ip_pack6 pack; 382 int prio, matchprio; 383 int s; 384 struct encaptab *ep, *match; 385 #ifdef USE_RADIX 386 struct radix_node_head *rnh = encap_rnh(AF_INET6); 387 struct radix_node *rn; 388 #endif 389 390 KASSERT(m->m_len >= sizeof(*ip6)); 391 392 ip6 = mtod(m, struct ip6_hdr *); 393 394 memset(&pack, 0, sizeof(pack)); 395 pack.p.sp_len = sizeof(pack); 396 pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6; 397 pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6); 398 if (dir == INBOUND) { 399 pack.mine.sin6_addr = ip6->ip6_dst; 400 pack.yours.sin6_addr = ip6->ip6_src; 401 } else { 402 pack.mine.sin6_addr = ip6->ip6_src; 403 pack.yours.sin6_addr = ip6->ip6_dst; 404 } 405 406 match = NULL; 407 matchprio = 0; 408 409 s = pserialize_read_enter(); 410 #ifdef USE_RADIX 411 if (encap_head_updating) { 412 /* 413 * Update in progress. Do nothing. 414 */ 415 pserialize_read_exit(s); 416 return NULL; 417 } 418 419 rn = rnh->rnh_matchaddr((void *)&pack, rnh); 420 if (rn && (rn->rn_flags & RNF_ROOT) == 0) { 421 struct encaptab *encapp = (struct encaptab *)rn; 422 423 psref_acquire(match_psref, &encapp->psref, 424 encaptab.elem_class); 425 match = encapp; 426 matchprio = mask_matchlen(match->srcmask) + 427 mask_matchlen(match->dstmask); 428 } 429 #endif 430 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { 431 struct psref elem_psref; 432 433 if (ep->af != AF_INET6) 434 continue; 435 if (ep->proto >= 0 && ep->proto != proto) 436 continue; 437 438 psref_acquire(&elem_psref, &ep->psref, 439 encaptab.elem_class); 440 441 if (ep->func) { 442 pserialize_read_exit(s); 443 /* ep->func is sleepable. e.g. rtalloc1 */ 444 prio = (*ep->func)(m, off, proto, ep->arg); 445 s = pserialize_read_enter(); 446 } else { 447 #ifdef USE_RADIX 448 psref_release(&elem_psref, &ep->psref, 449 encaptab.elem_class); 450 continue; 451 #else 452 prio = mask_match(ep, (struct sockaddr *)&pack.mine, 453 (struct sockaddr *)&pack.yours); 454 #endif 455 } 456 457 /* see encap4_lookup() for issues here */ 458 if (prio <= 0) { 459 psref_release(&elem_psref, &ep->psref, 460 encaptab.elem_class); 461 continue; 462 } 463 if (prio > matchprio) { 464 /* release last matched ep */ 465 if (match != NULL) 466 psref_release(match_psref, &match->psref, 467 encaptab.elem_class); 468 469 psref_copy(match_psref, &elem_psref, 470 encaptab.elem_class); 471 matchprio = prio; 472 match = ep; 473 } 474 KASSERTMSG((match == NULL) || psref_held(&match->psref, 475 encaptab.elem_class), 476 "current match = %p, but not hold its psref", match); 477 478 psref_release(&elem_psref, &ep->psref, 479 encaptab.elem_class); 480 } 481 pserialize_read_exit(s); 482 483 return match; 484 } 485 486 int 487 encap6_input(struct mbuf **mp, int *offp, int proto) 488 { 489 struct mbuf *m = *mp; 490 const struct encapsw *esw; 491 struct encaptab *match; 492 struct psref match_psref; 493 int rv; 494 495 match = encap6_lookup(m, *offp, proto, INBOUND, &match_psref); 496 497 if (match) { 498 /* found a match */ 499 esw = match->esw; 500 if (esw && esw->encapsw6.pr_input) { 501 int ret; 502 ret = (*esw->encapsw6.pr_input)(mp, offp, proto, 503 match->arg); 504 psref_release(&match_psref, &match->psref, 505 encaptab.elem_class); 506 return ret; 507 } else { 508 psref_release(&match_psref, &match->psref, 509 encaptab.elem_class); 510 m_freem(m); 511 return IPPROTO_DONE; 512 } 513 } 514 515 /* last resort: inject to raw socket */ 516 SOFTNET_LOCK_IF_NET_MPSAFE(); 517 rv = rip6_input(mp, offp, proto); 518 SOFTNET_UNLOCK_IF_NET_MPSAFE(); 519 return rv; 520 } 521 #endif 522 523 /* 524 * XXX 525 * The encaptab list and the rnh radix tree must be manipulated atomically. 526 */ 527 static int 528 encap_add(struct encaptab *ep) 529 { 530 #ifdef USE_RADIX 531 struct radix_node_head *rnh = encap_rnh(ep->af); 532 #endif 533 534 KASSERT(encap_lock_held()); 535 536 #ifdef USE_RADIX 537 if (!ep->func && rnh) { 538 /* Disable access to the radix tree for reader. */ 539 encap_head_updating = true; 540 /* Wait for all readers to drain. */ 541 pserialize_perform(encaptab.psz); 542 543 if (!rnh->rnh_addaddr((void *)ep->addrpack, 544 (void *)ep->maskpack, rnh, ep->nodes)) { 545 encap_head_updating = false; 546 return EEXIST; 547 } 548 549 /* 550 * The ep added to the radix tree must be skipped while 551 * encap[46]_lookup walks encaptab list. In other words, 552 * encap_add() does not need to care whether the ep has 553 * been added encaptab list or not yet. 554 * So, we can re-enable access to the radix tree for now. 555 */ 556 encap_head_updating = false; 557 } 558 #endif 559 PSLIST_WRITER_INSERT_HEAD(&encap_table, ep, chain); 560 561 return 0; 562 } 563 564 /* 565 * XXX 566 * The encaptab list and the rnh radix tree must be manipulated atomically. 567 */ 568 static int 569 encap_remove(struct encaptab *ep) 570 { 571 #ifdef USE_RADIX 572 struct radix_node_head *rnh = encap_rnh(ep->af); 573 #endif 574 int error = 0; 575 576 KASSERT(encap_lock_held()); 577 578 #ifdef USE_RADIX 579 if (!ep->func && rnh) { 580 /* Disable access to the radix tree for reader. */ 581 encap_head_updating = true; 582 /* Wait for all readers to drain. */ 583 pserialize_perform(encaptab.psz); 584 585 if (!rnh->rnh_deladdr((void *)ep->addrpack, 586 (void *)ep->maskpack, rnh)) 587 error = ESRCH; 588 589 /* 590 * The ep added to the radix tree must be skipped while 591 * encap[46]_lookup walks encaptab list. In other words, 592 * encap_add() does not need to care whether the ep has 593 * been added encaptab list or not yet. 594 * So, we can re-enable access to the radix tree for now. 595 */ 596 encap_head_updating = false; 597 } 598 #endif 599 PSLIST_WRITER_REMOVE(ep, chain); 600 601 return error; 602 } 603 604 static int 605 encap_afcheck(int af, const struct sockaddr *sp, const struct sockaddr *dp) 606 { 607 if (sp && dp) { 608 if (sp->sa_len != dp->sa_len) 609 return EINVAL; 610 if (af != sp->sa_family || af != dp->sa_family) 611 return EINVAL; 612 } else if (!sp && !dp) 613 ; 614 else 615 return EINVAL; 616 617 switch (af) { 618 case AF_INET: 619 if (sp && sp->sa_len != sizeof(struct sockaddr_in)) 620 return EINVAL; 621 if (dp && dp->sa_len != sizeof(struct sockaddr_in)) 622 return EINVAL; 623 break; 624 #ifdef INET6 625 case AF_INET6: 626 if (sp && sp->sa_len != sizeof(struct sockaddr_in6)) 627 return EINVAL; 628 if (dp && dp->sa_len != sizeof(struct sockaddr_in6)) 629 return EINVAL; 630 break; 631 #endif 632 default: 633 return EAFNOSUPPORT; 634 } 635 636 return 0; 637 } 638 639 /* 640 * sp (src ptr) is always my side, and dp (dst ptr) is always remote side. 641 * length of mask (sm and dm) is assumed to be same as sp/dp. 642 * Return value will be necessary as input (cookie) for encap_detach(). 643 */ 644 const struct encaptab * 645 encap_attach(int af, int proto, 646 const struct sockaddr *sp, const struct sockaddr *sm, 647 const struct sockaddr *dp, const struct sockaddr *dm, 648 const struct encapsw *esw, void *arg) 649 { 650 struct encaptab *ep; 651 int error; 652 int pss; 653 size_t l; 654 struct ip_pack4 *pack4; 655 #ifdef INET6 656 struct ip_pack6 *pack6; 657 #endif 658 #ifndef ENCAP_MPSAFE 659 int s; 660 661 s = splsoftnet(); 662 #endif 663 /* sanity check on args */ 664 error = encap_afcheck(af, sp, dp); 665 if (error) 666 goto fail; 667 668 /* check if anyone have already attached with exactly same config */ 669 pss = pserialize_read_enter(); 670 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { 671 if (ep->af != af) 672 continue; 673 if (ep->proto != proto) 674 continue; 675 if (ep->func) 676 continue; 677 678 KASSERT(ep->src != NULL); 679 KASSERT(ep->dst != NULL); 680 KASSERT(ep->srcmask != NULL); 681 KASSERT(ep->dstmask != NULL); 682 683 if (ep->src->sa_len != sp->sa_len || 684 memcmp(ep->src, sp, sp->sa_len) != 0 || 685 memcmp(ep->srcmask, sm, sp->sa_len) != 0) 686 continue; 687 if (ep->dst->sa_len != dp->sa_len || 688 memcmp(ep->dst, dp, dp->sa_len) != 0 || 689 memcmp(ep->dstmask, dm, dp->sa_len) != 0) 690 continue; 691 692 error = EEXIST; 693 pserialize_read_exit(pss); 694 goto fail; 695 } 696 pserialize_read_exit(pss); 697 698 switch (af) { 699 case AF_INET: 700 l = sizeof(*pack4); 701 break; 702 #ifdef INET6 703 case AF_INET6: 704 l = sizeof(*pack6); 705 break; 706 #endif 707 default: 708 goto fail; 709 } 710 711 /* M_NETADDR ok? */ 712 ep = kmem_zalloc(sizeof(*ep), KM_NOSLEEP); 713 if (ep == NULL) { 714 error = ENOBUFS; 715 goto fail; 716 } 717 ep->addrpack = kmem_zalloc(l, KM_NOSLEEP); 718 if (ep->addrpack == NULL) { 719 error = ENOBUFS; 720 goto gc; 721 } 722 ep->maskpack = kmem_zalloc(l, KM_NOSLEEP); 723 if (ep->maskpack == NULL) { 724 error = ENOBUFS; 725 goto gc; 726 } 727 728 ep->af = af; 729 ep->proto = proto; 730 ep->addrpack->sa_len = l & 0xff; 731 ep->maskpack->sa_len = l & 0xff; 732 switch (af) { 733 case AF_INET: 734 pack4 = (struct ip_pack4 *)ep->addrpack; 735 ep->src = (struct sockaddr *)&pack4->mine; 736 ep->dst = (struct sockaddr *)&pack4->yours; 737 pack4 = (struct ip_pack4 *)ep->maskpack; 738 ep->srcmask = (struct sockaddr *)&pack4->mine; 739 ep->dstmask = (struct sockaddr *)&pack4->yours; 740 break; 741 #ifdef INET6 742 case AF_INET6: 743 pack6 = (struct ip_pack6 *)ep->addrpack; 744 ep->src = (struct sockaddr *)&pack6->mine; 745 ep->dst = (struct sockaddr *)&pack6->yours; 746 pack6 = (struct ip_pack6 *)ep->maskpack; 747 ep->srcmask = (struct sockaddr *)&pack6->mine; 748 ep->dstmask = (struct sockaddr *)&pack6->yours; 749 break; 750 #endif 751 } 752 753 memcpy(ep->src, sp, sp->sa_len); 754 memcpy(ep->srcmask, sm, sp->sa_len); 755 memcpy(ep->dst, dp, dp->sa_len); 756 memcpy(ep->dstmask, dm, dp->sa_len); 757 ep->esw = esw; 758 ep->arg = arg; 759 psref_target_init(&ep->psref, encaptab.elem_class); 760 761 error = encap_add(ep); 762 if (error) 763 goto gc; 764 765 error = 0; 766 #ifndef ENCAP_MPSAFE 767 splx(s); 768 #endif 769 return ep; 770 771 gc: 772 if (ep->addrpack) 773 kmem_free(ep->addrpack, l); 774 if (ep->maskpack) 775 kmem_free(ep->maskpack, l); 776 if (ep) 777 kmem_free(ep, sizeof(*ep)); 778 fail: 779 #ifndef ENCAP_MPSAFE 780 splx(s); 781 #endif 782 return NULL; 783 } 784 785 const struct encaptab * 786 encap_attach_func(int af, int proto, 787 int (*func)(struct mbuf *, int, int, void *), 788 const struct encapsw *esw, void *arg) 789 { 790 struct encaptab *ep; 791 int error; 792 #ifndef ENCAP_MPSAFE 793 int s; 794 795 s = splsoftnet(); 796 #endif 797 /* sanity check on args */ 798 if (!func) { 799 error = EINVAL; 800 goto fail; 801 } 802 803 error = encap_afcheck(af, NULL, NULL); 804 if (error) 805 goto fail; 806 807 ep = kmem_alloc(sizeof(*ep), KM_NOSLEEP); /*XXX*/ 808 if (ep == NULL) { 809 error = ENOBUFS; 810 goto fail; 811 } 812 memset(ep, 0, sizeof(*ep)); 813 814 ep->af = af; 815 ep->proto = proto; 816 ep->func = func; 817 ep->esw = esw; 818 ep->arg = arg; 819 psref_target_init(&ep->psref, encaptab.elem_class); 820 821 error = encap_add(ep); 822 if (error) 823 goto gc; 824 825 error = 0; 826 #ifndef ENCAP_MPSAFE 827 splx(s); 828 #endif 829 return ep; 830 831 gc: 832 kmem_free(ep, sizeof(*ep)); 833 fail: 834 #ifndef ENCAP_MPSAFE 835 splx(s); 836 #endif 837 return NULL; 838 } 839 840 /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */ 841 842 #ifdef INET6 843 void * 844 encap6_ctlinput(int cmd, const struct sockaddr *sa, void *d0) 845 { 846 void *d = d0; 847 struct ip6_hdr *ip6; 848 struct mbuf *m; 849 int off; 850 struct ip6ctlparam *ip6cp = NULL; 851 int nxt; 852 int s; 853 struct encaptab *ep; 854 const struct encapsw *esw; 855 856 if (sa->sa_family != AF_INET6 || 857 sa->sa_len != sizeof(struct sockaddr_in6)) 858 return NULL; 859 860 if ((unsigned)cmd >= PRC_NCMDS) 861 return NULL; 862 if (cmd == PRC_HOSTDEAD) 863 d = NULL; 864 else if (cmd == PRC_MSGSIZE) 865 ; /* special code is present, see below */ 866 else if (inet6ctlerrmap[cmd] == 0) 867 return NULL; 868 869 /* if the parameter is from icmp6, decode it. */ 870 if (d != NULL) { 871 ip6cp = (struct ip6ctlparam *)d; 872 m = ip6cp->ip6c_m; 873 ip6 = ip6cp->ip6c_ip6; 874 off = ip6cp->ip6c_off; 875 nxt = ip6cp->ip6c_nxt; 876 877 if (ip6 && cmd == PRC_MSGSIZE) { 878 int valid = 0; 879 struct encaptab *match; 880 struct psref elem_psref; 881 882 /* 883 * Check to see if we have a valid encap configuration. 884 */ 885 match = encap6_lookup(m, off, nxt, OUTBOUND, 886 &elem_psref); 887 if (match) 888 valid++; 889 psref_release(&elem_psref, &match->psref, 890 encaptab.elem_class); 891 892 /* 893 * Depending on the value of "valid" and routing table 894 * size (mtudisc_{hi,lo}wat), we will: 895 * - recalcurate the new MTU and create the 896 * corresponding routing entry, or 897 * - ignore the MTU change notification. 898 */ 899 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid); 900 } 901 } else { 902 m = NULL; 903 ip6 = NULL; 904 nxt = -1; 905 } 906 907 /* inform all listeners */ 908 909 s = pserialize_read_enter(); 910 PSLIST_READER_FOREACH(ep, &encap_table, struct encaptab, chain) { 911 struct psref elem_psref; 912 913 if (ep->af != AF_INET6) 914 continue; 915 if (ep->proto >= 0 && ep->proto != nxt) 916 continue; 917 918 /* should optimize by looking at address pairs */ 919 920 /* XXX need to pass ep->arg or ep itself to listeners */ 921 psref_acquire(&elem_psref, &ep->psref, 922 encaptab.elem_class); 923 esw = ep->esw; 924 if (esw && esw->encapsw6.pr_ctlinput) { 925 pserialize_read_exit(s); 926 /* pr_ctlinput is sleepable. e.g. rtcache_free */ 927 (*esw->encapsw6.pr_ctlinput)(cmd, sa, d, ep->arg); 928 s = pserialize_read_enter(); 929 } 930 psref_release(&elem_psref, &ep->psref, 931 encaptab.elem_class); 932 } 933 pserialize_read_exit(s); 934 935 rip6_ctlinput(cmd, sa, d0); 936 return NULL; 937 } 938 #endif 939 940 int 941 encap_detach(const struct encaptab *cookie) 942 { 943 const struct encaptab *ep = cookie; 944 struct encaptab *p; 945 int error; 946 947 KASSERT(encap_lock_held()); 948 949 PSLIST_WRITER_FOREACH(p, &encap_table, struct encaptab, chain) { 950 if (p == ep) { 951 error = encap_remove(p); 952 if (error) 953 return error; 954 else 955 break; 956 } 957 } 958 if (p == NULL) 959 return ENOENT; 960 961 pserialize_perform(encaptab.psz); 962 psref_target_destroy(&p->psref, 963 encaptab.elem_class); 964 if (!ep->func) { 965 kmem_free(p->addrpack, ep->addrpack->sa_len); 966 kmem_free(p->maskpack, ep->maskpack->sa_len); 967 } 968 kmem_free(p, sizeof(*p)); 969 970 return 0; 971 } 972 973 #ifdef USE_RADIX 974 static struct radix_node_head * 975 encap_rnh(int af) 976 { 977 978 switch (af) { 979 case AF_INET: 980 return encap_head[0]; 981 #ifdef INET6 982 case AF_INET6: 983 return encap_head[1]; 984 #endif 985 default: 986 return NULL; 987 } 988 } 989 990 static int 991 mask_matchlen(const struct sockaddr *sa) 992 { 993 const char *p, *ep; 994 int l; 995 996 p = (const char *)sa; 997 ep = p + sa->sa_len; 998 p += 2; /* sa_len + sa_family */ 999 1000 l = 0; 1001 while (p < ep) { 1002 l += (*p ? 8 : 0); /* estimate */ 1003 p++; 1004 } 1005 return l; 1006 } 1007 #endif 1008 1009 #ifndef USE_RADIX 1010 static int 1011 mask_match(const struct encaptab *ep, 1012 const struct sockaddr *sp, 1013 const struct sockaddr *dp) 1014 { 1015 struct sockaddr_storage s; 1016 struct sockaddr_storage d; 1017 int i; 1018 const u_int8_t *p, *q; 1019 u_int8_t *r; 1020 int matchlen; 1021 1022 KASSERTMSG(ep->func == NULL, "wrong encaptab passed to mask_match"); 1023 1024 if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d)) 1025 return 0; 1026 if (sp->sa_family != ep->af || dp->sa_family != ep->af) 1027 return 0; 1028 if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len) 1029 return 0; 1030 1031 matchlen = 0; 1032 1033 p = (const u_int8_t *)sp; 1034 q = (const u_int8_t *)ep->srcmask; 1035 r = (u_int8_t *)&s; 1036 for (i = 0 ; i < sp->sa_len; i++) { 1037 r[i] = p[i] & q[i]; 1038 /* XXX estimate */ 1039 matchlen += (q[i] ? 8 : 0); 1040 } 1041 1042 p = (const u_int8_t *)dp; 1043 q = (const u_int8_t *)ep->dstmask; 1044 r = (u_int8_t *)&d; 1045 for (i = 0 ; i < dp->sa_len; i++) { 1046 r[i] = p[i] & q[i]; 1047 /* XXX rough estimate */ 1048 matchlen += (q[i] ? 8 : 0); 1049 } 1050 1051 /* need to overwrite len/family portion as we don't compare them */ 1052 s.ss_len = sp->sa_len; 1053 s.ss_family = sp->sa_family; 1054 d.ss_len = dp->sa_len; 1055 d.ss_family = dp->sa_family; 1056 1057 if (memcmp(&s, ep->src, ep->src->sa_len) == 0 && 1058 memcmp(&d, ep->dst, ep->dst->sa_len) == 0) { 1059 return matchlen; 1060 } else 1061 return 0; 1062 } 1063 #endif 1064 1065 int 1066 encap_lock_enter(void) 1067 { 1068 int error; 1069 1070 mutex_enter(&encap_whole.lock); 1071 while (encap_whole.busy != NULL) { 1072 error = cv_wait_sig(&encap_whole.cv, &encap_whole.lock); 1073 if (error) { 1074 mutex_exit(&encap_whole.lock); 1075 return error; 1076 } 1077 } 1078 KASSERT(encap_whole.busy == NULL); 1079 encap_whole.busy = curlwp; 1080 mutex_exit(&encap_whole.lock); 1081 1082 return 0; 1083 } 1084 1085 void 1086 encap_lock_exit(void) 1087 { 1088 1089 mutex_enter(&encap_whole.lock); 1090 KASSERT(encap_whole.busy == curlwp); 1091 encap_whole.busy = NULL; 1092 cv_broadcast(&encap_whole.cv); 1093 mutex_exit(&encap_whole.lock); 1094 } 1095 1096 bool 1097 encap_lock_held(void) 1098 { 1099 1100 return (encap_whole.busy == curlwp); 1101 } 1102