1 /* $NetBSD: in.c,v 1.242 2021/09/21 15:05:41 christos Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1998 The NetBSD Foundation, Inc. 34 * All rights reserved. 35 * 36 * This code is derived from software contributed to The NetBSD Foundation 37 * by Public Access Networks Corporation ("Panix"). It was developed under 38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 59 * POSSIBILITY OF SUCH DAMAGE. 60 */ 61 62 /* 63 * Copyright (c) 1982, 1986, 1991, 1993 64 * The Regents of the University of California. All rights reserved. 65 * 66 * Redistribution and use in source and binary forms, with or without 67 * modification, are permitted provided that the following conditions 68 * are met: 69 * 1. Redistributions of source code must retain the above copyright 70 * notice, this list of conditions and the following disclaimer. 71 * 2. Redistributions in binary form must reproduce the above copyright 72 * notice, this list of conditions and the following disclaimer in the 73 * documentation and/or other materials provided with the distribution. 74 * 3. Neither the name of the University nor the names of its contributors 75 * may be used to endorse or promote products derived from this software 76 * without specific prior written permission. 77 * 78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 88 * SUCH DAMAGE. 89 * 90 * @(#)in.c 8.4 (Berkeley) 1/9/95 91 */ 92 93 #include <sys/cdefs.h> 94 __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.242 2021/09/21 15:05:41 christos Exp $"); 95 96 #include "arp.h" 97 98 #ifdef _KERNEL_OPT 99 #include "opt_inet.h" 100 #include "opt_inet_conf.h" 101 #include "opt_mrouting.h" 102 #include "opt_net_mpsafe.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/ioctl.h> 107 #include <sys/errno.h> 108 #include <sys/kernel.h> 109 #include <sys/malloc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/systm.h> 114 #include <sys/proc.h> 115 #include <sys/syslog.h> 116 #include <sys/kauth.h> 117 #include <sys/kmem.h> 118 119 #include <sys/cprng.h> 120 121 #include <net/if.h> 122 #include <net/route.h> 123 #include <net/pfil.h> 124 125 #include <net/if_arp.h> 126 #include <net/if_ether.h> 127 #include <net/if_types.h> 128 #include <net/if_llatbl.h> 129 #include <net/if_dl.h> 130 131 #include <netinet/in_systm.h> 132 #include <netinet/in.h> 133 #include <netinet/in_var.h> 134 #include <netinet/ip.h> 135 #include <netinet/ip_var.h> 136 #include <netinet/in_ifattach.h> 137 #include <netinet/in_pcb.h> 138 #include <netinet/in_selsrc.h> 139 #include <netinet/if_inarp.h> 140 #include <netinet/ip_mroute.h> 141 #include <netinet/igmp_var.h> 142 143 #ifdef IPSELSRC 144 #include <netinet/in_selsrc.h> 145 #endif 146 147 static u_int in_mask2len(struct in_addr *); 148 static int in_lifaddr_ioctl(struct socket *, u_long, void *, 149 struct ifnet *); 150 151 static void in_addrhash_insert_locked(struct in_ifaddr *); 152 static void in_addrhash_remove_locked(struct in_ifaddr *); 153 154 static int in_addprefix(struct in_ifaddr *, int); 155 static void in_scrubaddr(struct in_ifaddr *); 156 static int in_scrubprefix(struct in_ifaddr *); 157 static void in_sysctl_init(struct sysctllog **); 158 159 #ifndef SUBNETSARELOCAL 160 #define SUBNETSARELOCAL 1 161 #endif 162 163 #ifndef HOSTZEROBROADCAST 164 #define HOSTZEROBROADCAST 0 165 #endif 166 167 /* Note: 61, 127, 251, 509, 1021, 2039 are good. */ 168 #ifndef IN_MULTI_HASH_SIZE 169 #define IN_MULTI_HASH_SIZE 509 170 #endif 171 172 static int subnetsarelocal = SUBNETSARELOCAL; 173 static int hostzeroisbroadcast = HOSTZEROBROADCAST; 174 175 /* 176 * This list is used to keep track of in_multi chains which belong to 177 * deleted interface addresses. We use in_ifaddr so that a chain head 178 * won't be deallocated until all multicast address record are deleted. 179 */ 180 181 LIST_HEAD(in_multihashhead, in_multi); /* Type of the hash head */ 182 183 static struct pool inmulti_pool; 184 static u_int in_multientries; 185 static struct in_multihashhead *in_multihashtbl; 186 static u_long in_multihash; 187 static krwlock_t in_multilock; 188 189 #define IN_MULTI_HASH(x, ifp) \ 190 (in_multihashtbl[(u_long)((x) ^ (ifp->if_index)) % IN_MULTI_HASH_SIZE]) 191 192 /* XXX DEPRECATED. Keep them to avoid breaking kvm(3) users. */ 193 struct in_ifaddrhashhead * in_ifaddrhashtbl; 194 u_long in_ifaddrhash; 195 struct in_ifaddrhead in_ifaddrhead; 196 static kmutex_t in_ifaddr_lock; 197 198 pserialize_t in_ifaddrhash_psz; 199 struct pslist_head * in_ifaddrhashtbl_pslist; 200 u_long in_ifaddrhash_pslist; 201 struct pslist_head in_ifaddrhead_pslist; 202 203 void 204 in_init(void) 205 { 206 pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", 207 NULL, IPL_SOFTNET); 208 TAILQ_INIT(&in_ifaddrhead); 209 PSLIST_INIT(&in_ifaddrhead_pslist); 210 211 in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, 212 &in_ifaddrhash); 213 214 in_ifaddrhash_psz = pserialize_create(); 215 in_ifaddrhashtbl_pslist = hashinit(IN_IFADDR_HASH_SIZE, HASH_PSLIST, 216 true, &in_ifaddrhash_pslist); 217 mutex_init(&in_ifaddr_lock, MUTEX_DEFAULT, IPL_NONE); 218 219 in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, 220 &in_multihash); 221 rw_init(&in_multilock); 222 223 in_sysctl_init(NULL); 224 } 225 226 /* 227 * Return 1 if an internet address is for a ``local'' host 228 * (one to which we have a connection). If subnetsarelocal 229 * is true, this includes other subnets of the local net. 230 * Otherwise, it includes only the directly-connected (sub)nets. 231 */ 232 int 233 in_localaddr(struct in_addr in) 234 { 235 struct in_ifaddr *ia; 236 int localaddr = 0; 237 int s = pserialize_read_enter(); 238 239 if (subnetsarelocal) { 240 IN_ADDRLIST_READER_FOREACH(ia) { 241 if ((in.s_addr & ia->ia_netmask) == ia->ia_net) { 242 localaddr = 1; 243 break; 244 } 245 } 246 } else { 247 IN_ADDRLIST_READER_FOREACH(ia) { 248 if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) { 249 localaddr = 1; 250 break; 251 } 252 } 253 } 254 pserialize_read_exit(s); 255 256 return localaddr; 257 } 258 259 /* 260 * like in_localaddr() but can specify ifp. 261 */ 262 int 263 in_direct(struct in_addr in, struct ifnet *ifp) 264 { 265 struct ifaddr *ifa; 266 int localaddr = 0; 267 int s; 268 269 KASSERT(ifp != NULL); 270 271 #define ia (ifatoia(ifa)) 272 s = pserialize_read_enter(); 273 if (subnetsarelocal) { 274 IFADDR_READER_FOREACH(ifa, ifp) { 275 if (ifa->ifa_addr->sa_family == AF_INET && 276 ((in.s_addr & ia->ia_netmask) == ia->ia_net)) { 277 localaddr = 1; 278 break; 279 } 280 } 281 } else { 282 IFADDR_READER_FOREACH(ifa, ifp) { 283 if (ifa->ifa_addr->sa_family == AF_INET && 284 (in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) { 285 localaddr = 1; 286 break; 287 } 288 } 289 } 290 pserialize_read_exit(s); 291 292 return localaddr; 293 #undef ia 294 } 295 296 /* 297 * Determine whether an IP address is in a reserved set of addresses 298 * that may not be forwarded, or whether datagrams to that destination 299 * may be forwarded. 300 */ 301 int 302 in_canforward(struct in_addr in) 303 { 304 u_int32_t net; 305 306 if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr)) 307 return (0); 308 if (IN_CLASSA(in.s_addr)) { 309 net = in.s_addr & IN_CLASSA_NET; 310 if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) 311 return (0); 312 } 313 return (1); 314 } 315 316 /* 317 * Trim a mask in a sockaddr 318 */ 319 void 320 in_socktrim(struct sockaddr_in *ap) 321 { 322 char *cplim = (char *) &ap->sin_addr; 323 char *cp = (char *) (&ap->sin_addr + 1); 324 325 ap->sin_len = 0; 326 while (--cp >= cplim) 327 if (*cp) { 328 (ap)->sin_len = cp - (char *) (ap) + 1; 329 break; 330 } 331 } 332 333 /* 334 * Maintain the "in_maxmtu" variable, which is the largest 335 * mtu for non-local interfaces with AF_INET addresses assigned 336 * to them that are up. 337 */ 338 unsigned long in_maxmtu; 339 340 void 341 in_setmaxmtu(void) 342 { 343 struct in_ifaddr *ia; 344 struct ifnet *ifp; 345 unsigned long maxmtu = 0; 346 int s = pserialize_read_enter(); 347 348 IN_ADDRLIST_READER_FOREACH(ia) { 349 if ((ifp = ia->ia_ifp) == 0) 350 continue; 351 if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP) 352 continue; 353 if (ifp->if_mtu > maxmtu) 354 maxmtu = ifp->if_mtu; 355 } 356 if (maxmtu) 357 in_maxmtu = maxmtu; 358 pserialize_read_exit(s); 359 } 360 361 static u_int 362 in_mask2len(struct in_addr *mask) 363 { 364 u_int x, y; 365 u_char *p; 366 367 p = (u_char *)mask; 368 for (x = 0; x < sizeof(*mask); x++) { 369 if (p[x] != 0xff) 370 break; 371 } 372 y = 0; 373 if (x < sizeof(*mask)) { 374 for (y = 0; y < NBBY; y++) { 375 if ((p[x] & (0x80 >> y)) == 0) 376 break; 377 } 378 } 379 return x * NBBY + y; 380 } 381 382 void 383 in_len2mask(struct in_addr *mask, u_int len) 384 { 385 u_int i; 386 u_char *p; 387 388 p = (u_char *)mask; 389 memset(mask, 0, sizeof(*mask)); 390 for (i = 0; i < len / NBBY; i++) 391 p[i] = 0xff; 392 if (len % NBBY) 393 p[i] = (0xff00 >> (len % NBBY)) & 0xff; 394 } 395 396 /* 397 * Generic internet control operations (ioctl's). 398 * Ifp is 0 if not an interface-specific ioctl. 399 */ 400 /* ARGSUSED */ 401 static int 402 in_control0(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 403 { 404 struct ifreq *ifr = (struct ifreq *)data; 405 struct in_ifaddr *ia = NULL; 406 struct in_aliasreq *ifra = (struct in_aliasreq *)data; 407 struct sockaddr_in oldaddr, *new_dstaddr; 408 int error, hostIsNew, maskIsNew; 409 int newifaddr = 0; 410 bool run_hook = false; 411 bool need_reinsert = false; 412 struct psref psref; 413 int bound; 414 415 switch (cmd) { 416 case SIOCALIFADDR: 417 case SIOCDLIFADDR: 418 case SIOCGLIFADDR: 419 if (ifp == NULL) 420 return EINVAL; 421 return in_lifaddr_ioctl(so, cmd, data, ifp); 422 case SIOCGIFADDRPREF: 423 case SIOCSIFADDRPREF: 424 if (ifp == NULL) 425 return EINVAL; 426 return ifaddrpref_ioctl(so, cmd, data, ifp); 427 #if NARP > 0 428 case SIOCGNBRINFO: 429 { 430 struct in_nbrinfo *nbi = (struct in_nbrinfo *)data; 431 struct llentry *ln; 432 struct in_addr nb_addr = nbi->addr; /* make local for safety */ 433 434 ln = arplookup(ifp, &nb_addr, NULL, 0); 435 if (ln == NULL) 436 return EINVAL; 437 nbi->state = ln->ln_state; 438 nbi->asked = ln->ln_asked; 439 nbi->expire = ln->ln_expire ? 440 time_mono_to_wall(ln->ln_expire) : 0; 441 LLE_RUNLOCK(ln); 442 return 0; 443 } 444 #endif 445 } 446 447 bound = curlwp_bind(); 448 /* 449 * Find address for this interface, if it exists. 450 */ 451 if (ifp != NULL) 452 ia = in_get_ia_from_ifp_psref(ifp, &psref); 453 454 hostIsNew = 1; /* moved here to appease gcc */ 455 switch (cmd) { 456 case SIOCAIFADDR: 457 case SIOCDIFADDR: 458 case SIOCGIFALIAS: 459 case SIOCGIFAFLAG_IN: 460 if (ifra->ifra_addr.sin_family == AF_INET) { 461 int s; 462 463 if (ia != NULL) 464 ia4_release(ia, &psref); 465 s = pserialize_read_enter(); 466 IN_ADDRHASH_READER_FOREACH(ia, 467 ifra->ifra_addr.sin_addr.s_addr) { 468 if (ia->ia_ifp == ifp && 469 in_hosteq(ia->ia_addr.sin_addr, 470 ifra->ifra_addr.sin_addr)) 471 break; 472 } 473 if (ia != NULL) 474 ia4_acquire(ia, &psref); 475 pserialize_read_exit(s); 476 } 477 if ((cmd == SIOCDIFADDR || 478 cmd == SIOCGIFALIAS || 479 cmd == SIOCGIFAFLAG_IN) && 480 ia == NULL) { 481 error = EADDRNOTAVAIL; 482 goto out; 483 } 484 485 if (cmd == SIOCDIFADDR && 486 ifra->ifra_addr.sin_family == AF_UNSPEC) { 487 ifra->ifra_addr.sin_family = AF_INET; 488 } 489 /* FALLTHROUGH */ 490 case SIOCSIFADDR: 491 if (ia == NULL || ia->ia_addr.sin_family != AF_INET) 492 ; 493 else if (ifra->ifra_addr.sin_len == 0) { 494 ifra->ifra_addr = ia->ia_addr; 495 hostIsNew = 0; 496 } else if (in_hosteq(ia->ia_addr.sin_addr, 497 ifra->ifra_addr.sin_addr)) 498 hostIsNew = 0; 499 if (ifra->ifra_addr.sin_family != AF_INET) { 500 error = EAFNOSUPPORT; 501 goto out; 502 } 503 /* FALLTHROUGH */ 504 case SIOCSIFDSTADDR: 505 if (cmd == SIOCSIFDSTADDR && 506 ifreq_getaddr(cmd, ifr)->sa_family != AF_INET) { 507 error = EAFNOSUPPORT; 508 goto out; 509 } 510 /* FALLTHROUGH */ 511 case SIOCSIFNETMASK: 512 if (ifp == NULL) 513 panic("in_control"); 514 515 if (cmd == SIOCGIFALIAS || cmd == SIOCGIFAFLAG_IN) 516 break; 517 518 if (ia == NULL && 519 (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) { 520 error = EADDRNOTAVAIL; 521 goto out; 522 } 523 524 if (kauth_authorize_network(kauth_cred_get(), 525 KAUTH_NETWORK_INTERFACE, 526 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 527 NULL) != 0) { 528 error = EPERM; 529 goto out; 530 } 531 532 if (ia == NULL) { 533 ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO); 534 if (ia == NULL) { 535 error = ENOBUFS; 536 goto out; 537 } 538 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); 539 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); 540 ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask); 541 #ifdef IPSELSRC 542 ia->ia_ifa.ifa_getifa = in_getifa; 543 #else /* IPSELSRC */ 544 ia->ia_ifa.ifa_getifa = NULL; 545 #endif /* IPSELSRC */ 546 ia->ia_sockmask.sin_len = 8; 547 ia->ia_sockmask.sin_family = AF_INET; 548 if (ifp->if_flags & IFF_BROADCAST) { 549 ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); 550 ia->ia_broadaddr.sin_family = AF_INET; 551 } 552 ia->ia_ifp = ifp; 553 ia->ia_idsalt = cprng_fast32() % 65535; 554 LIST_INIT(&ia->ia_multiaddrs); 555 IN_ADDRHASH_ENTRY_INIT(ia); 556 IN_ADDRLIST_ENTRY_INIT(ia); 557 ifa_psref_init(&ia->ia_ifa); 558 /* 559 * We need a reference to make ia survive over in_ifinit 560 * that does ifaref and ifafree. 561 */ 562 ifaref(&ia->ia_ifa); 563 564 newifaddr = 1; 565 } 566 break; 567 568 case SIOCSIFBRDADDR: 569 if (kauth_authorize_network(kauth_cred_get(), 570 KAUTH_NETWORK_INTERFACE, 571 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 572 NULL) != 0) { 573 error = EPERM; 574 goto out; 575 } 576 /* FALLTHROUGH */ 577 578 case SIOCGIFADDR: 579 case SIOCGIFNETMASK: 580 case SIOCGIFDSTADDR: 581 case SIOCGIFBRDADDR: 582 if (ia == NULL) { 583 error = EADDRNOTAVAIL; 584 goto out; 585 } 586 break; 587 } 588 error = 0; 589 switch (cmd) { 590 591 case SIOCGIFADDR: 592 ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr)); 593 break; 594 595 case SIOCGIFBRDADDR: 596 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 597 error = EINVAL; 598 goto out; 599 } 600 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr)); 601 break; 602 603 case SIOCGIFDSTADDR: 604 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 605 error = EINVAL; 606 goto out; 607 } 608 ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr)); 609 break; 610 611 case SIOCGIFNETMASK: 612 /* 613 * We keep the number of trailing zero bytes the sin_len field 614 * of ia_sockmask, so we fix this before we pass it back to 615 * userland. 616 */ 617 oldaddr = ia->ia_sockmask; 618 oldaddr.sin_len = sizeof(struct sockaddr_in); 619 ifreq_setaddr(cmd, ifr, (const void *)&oldaddr); 620 break; 621 622 case SIOCSIFDSTADDR: 623 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 624 error = EINVAL; 625 goto out; 626 } 627 oldaddr = ia->ia_dstaddr; 628 ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr)); 629 if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) { 630 ia->ia_dstaddr = oldaddr; 631 goto out; 632 } 633 if (ia->ia_flags & IFA_ROUTE) { 634 ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr); 635 rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST); 636 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); 637 rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP); 638 } 639 break; 640 641 case SIOCSIFBRDADDR: 642 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 643 error = EINVAL; 644 goto out; 645 } 646 ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr)); 647 break; 648 649 case SIOCSIFADDR: 650 if (!newifaddr) { 651 in_addrhash_remove(ia); 652 need_reinsert = true; 653 } 654 error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)), 655 NULL, 1); 656 657 run_hook = true; 658 break; 659 660 case SIOCSIFNETMASK: 661 in_scrubprefix(ia); 662 ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr)); 663 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; 664 if (!newifaddr) { 665 in_addrhash_remove(ia); 666 need_reinsert = true; 667 } 668 error = in_ifinit(ifp, ia, NULL, NULL, 0); 669 break; 670 671 case SIOCAIFADDR: 672 maskIsNew = 0; 673 if (ifra->ifra_mask.sin_len) { 674 in_scrubprefix(ia); 675 ia->ia_sockmask = ifra->ifra_mask; 676 ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; 677 maskIsNew = 1; 678 } 679 if ((ifp->if_flags & IFF_POINTOPOINT) && 680 (ifra->ifra_dstaddr.sin_family == AF_INET)) { 681 new_dstaddr = &ifra->ifra_dstaddr; 682 maskIsNew = 1; /* We lie; but the effect's the same */ 683 } else 684 new_dstaddr = NULL; 685 if (ifra->ifra_addr.sin_family == AF_INET && 686 (hostIsNew || maskIsNew)) { 687 if (!newifaddr) { 688 in_addrhash_remove(ia); 689 need_reinsert = true; 690 } 691 error = in_ifinit(ifp, ia, &ifra->ifra_addr, 692 new_dstaddr, 0); 693 } 694 if ((ifp->if_flags & IFF_BROADCAST) && 695 (ifra->ifra_broadaddr.sin_family == AF_INET)) 696 ia->ia_broadaddr = ifra->ifra_broadaddr; 697 run_hook = true; 698 break; 699 700 case SIOCGIFALIAS: 701 ifra->ifra_mask = ia->ia_sockmask; 702 if ((ifp->if_flags & IFF_POINTOPOINT) && 703 (ia->ia_dstaddr.sin_family == AF_INET)) 704 ifra->ifra_dstaddr = ia->ia_dstaddr; 705 else if ((ifp->if_flags & IFF_BROADCAST) && 706 (ia->ia_broadaddr.sin_family == AF_INET)) 707 ifra->ifra_broadaddr = ia->ia_broadaddr; 708 else 709 memset(&ifra->ifra_broadaddr, 0, 710 sizeof(ifra->ifra_broadaddr)); 711 break; 712 713 case SIOCGIFAFLAG_IN: 714 ifr->ifr_addrflags = ia->ia4_flags; 715 break; 716 717 case SIOCDIFADDR: 718 ia4_release(ia, &psref); 719 ifaref(&ia->ia_ifa); 720 in_purgeaddr(&ia->ia_ifa); 721 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa); 722 ifafree(&ia->ia_ifa); 723 ia = NULL; 724 break; 725 726 #ifdef MROUTING 727 case SIOCGETVIFCNT: 728 case SIOCGETSGCNT: 729 error = mrt_ioctl(so, cmd, data); 730 break; 731 #endif /* MROUTING */ 732 733 default: 734 error = ENOTTY; 735 goto out; 736 } 737 738 /* 739 * XXX insert regardless of error to make in_purgeaddr below work. 740 * Need to improve. 741 */ 742 if (newifaddr) { 743 ifaref(&ia->ia_ifa); 744 ifa_insert(ifp, &ia->ia_ifa); 745 746 mutex_enter(&in_ifaddr_lock); 747 TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list); 748 IN_ADDRLIST_WRITER_INSERT_TAIL(ia); 749 in_addrhash_insert_locked(ia); 750 /* Release a reference that is held just after creation. */ 751 ifafree(&ia->ia_ifa); 752 mutex_exit(&in_ifaddr_lock); 753 } else if (need_reinsert) { 754 in_addrhash_insert(ia); 755 } 756 757 if (error == 0) { 758 if (run_hook) 759 pfil_run_addrhooks(if_pfil, cmd, &ia->ia_ifa); 760 } else if (newifaddr) { 761 KASSERT(ia != NULL); 762 in_purgeaddr(&ia->ia_ifa); 763 ia = NULL; 764 } 765 766 out: 767 if (!newifaddr && ia != NULL) 768 ia4_release(ia, &psref); 769 curlwp_bindx(bound); 770 return error; 771 } 772 773 int 774 in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 775 { 776 int error; 777 778 #ifndef NET_MPSAFE 779 KASSERT(KERNEL_LOCKED_P()); 780 #endif 781 error = in_control0(so, cmd, data, ifp); 782 783 return error; 784 } 785 786 /* Add ownaddr as loopback rtentry. */ 787 static void 788 in_ifaddlocal(struct ifaddr *ifa) 789 { 790 struct in_ifaddr *ia; 791 792 ia = (struct in_ifaddr *)ifa; 793 if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY || 794 (ia->ia_ifp->if_flags & IFF_POINTOPOINT && 795 in_hosteq(ia->ia_dstaddr.sin_addr, ia->ia_addr.sin_addr))) 796 { 797 rt_addrmsg(RTM_NEWADDR, ifa); 798 return; 799 } 800 801 rt_ifa_addlocal(ifa); 802 } 803 804 /* Remove loopback entry of ownaddr */ 805 static void 806 in_ifremlocal(struct ifaddr *ifa) 807 { 808 struct in_ifaddr *ia, *p; 809 struct ifaddr *alt_ifa = NULL; 810 int ia_count = 0; 811 int s; 812 struct psref psref; 813 int bound = curlwp_bind(); 814 815 ia = (struct in_ifaddr *)ifa; 816 /* Delete the entry if exactly one ifaddr matches the 817 * address, ifa->ifa_addr. */ 818 s = pserialize_read_enter(); 819 IN_ADDRLIST_READER_FOREACH(p) { 820 if (!in_hosteq(p->ia_addr.sin_addr, ia->ia_addr.sin_addr)) 821 continue; 822 if (p->ia_ifp != ia->ia_ifp) 823 alt_ifa = &p->ia_ifa; 824 if (++ia_count > 1 && alt_ifa != NULL) 825 break; 826 } 827 if (alt_ifa != NULL && ia_count > 1) 828 ifa_acquire(alt_ifa, &psref); 829 pserialize_read_exit(s); 830 831 if (ia_count == 0) 832 goto out; 833 834 rt_ifa_remlocal(ifa, ia_count == 1 ? NULL : alt_ifa); 835 if (alt_ifa != NULL && ia_count > 1) 836 ifa_release(alt_ifa, &psref); 837 out: 838 curlwp_bindx(bound); 839 } 840 841 static void 842 in_scrubaddr(struct in_ifaddr *ia) 843 { 844 845 /* stop DAD processing */ 846 if (ia->ia_dad_stop != NULL) 847 ia->ia_dad_stop(&ia->ia_ifa); 848 849 in_scrubprefix(ia); 850 in_ifremlocal(&ia->ia_ifa); 851 852 mutex_enter(&in_ifaddr_lock); 853 if (ia->ia_allhosts != NULL) { 854 in_delmulti(ia->ia_allhosts); 855 ia->ia_allhosts = NULL; 856 } 857 mutex_exit(&in_ifaddr_lock); 858 } 859 860 /* 861 * Depends on it isn't called in concurrent. It should be guaranteed 862 * by ifa->ifa_ifp's ioctl lock. The possible callers are in_control 863 * and if_purgeaddrs; the former is called iva ifa->ifa_ifp's ioctl 864 * and the latter is called via ifa->ifa_ifp's if_detach. The functions 865 * never be executed in concurrent. 866 */ 867 void 868 in_purgeaddr(struct ifaddr *ifa) 869 { 870 struct in_ifaddr *ia = (void *) ifa; 871 struct ifnet *ifp = ifa->ifa_ifp; 872 873 /* KASSERT(!ifa_held(ifa)); XXX need ifa_not_held (psref_not_held) */ 874 875 ifa->ifa_flags |= IFA_DESTROYING; 876 in_scrubaddr(ia); 877 878 mutex_enter(&in_ifaddr_lock); 879 in_addrhash_remove_locked(ia); 880 TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list); 881 IN_ADDRLIST_WRITER_REMOVE(ia); 882 ifa_remove(ifp, &ia->ia_ifa); 883 /* Assume ifa_remove called pserialize_perform and psref_destroy */ 884 mutex_exit(&in_ifaddr_lock); 885 IN_ADDRHASH_ENTRY_DESTROY(ia); 886 IN_ADDRLIST_ENTRY_DESTROY(ia); 887 ifafree(&ia->ia_ifa); 888 in_setmaxmtu(); 889 } 890 891 static void 892 in_addrhash_insert_locked(struct in_ifaddr *ia) 893 { 894 895 KASSERT(mutex_owned(&in_ifaddr_lock)); 896 897 LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, 898 ia_hash); 899 IN_ADDRHASH_ENTRY_INIT(ia); 900 IN_ADDRHASH_WRITER_INSERT_HEAD(ia); 901 } 902 903 void 904 in_addrhash_insert(struct in_ifaddr *ia) 905 { 906 907 mutex_enter(&in_ifaddr_lock); 908 in_addrhash_insert_locked(ia); 909 mutex_exit(&in_ifaddr_lock); 910 } 911 912 static void 913 in_addrhash_remove_locked(struct in_ifaddr *ia) 914 { 915 916 KASSERT(mutex_owned(&in_ifaddr_lock)); 917 918 LIST_REMOVE(ia, ia_hash); 919 IN_ADDRHASH_WRITER_REMOVE(ia); 920 } 921 922 void 923 in_addrhash_remove(struct in_ifaddr *ia) 924 { 925 926 mutex_enter(&in_ifaddr_lock); 927 in_addrhash_remove_locked(ia); 928 #ifdef NET_MPSAFE 929 pserialize_perform(in_ifaddrhash_psz); 930 #endif 931 mutex_exit(&in_ifaddr_lock); 932 IN_ADDRHASH_ENTRY_DESTROY(ia); 933 } 934 935 void 936 in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */ 937 { 938 939 IFNET_LOCK(ifp); 940 if_purgeaddrs(ifp, AF_INET, in_purgeaddr); 941 igmp_purgeif(ifp); /* manipulates pools */ 942 #ifdef MROUTING 943 ip_mrouter_detach(ifp); 944 #endif 945 IFNET_UNLOCK(ifp); 946 } 947 948 /* 949 * SIOC[GAD]LIFADDR. 950 * SIOCGLIFADDR: get first address. (???) 951 * SIOCGLIFADDR with IFLR_PREFIX: 952 * get first address that matches the specified prefix. 953 * SIOCALIFADDR: add the specified address. 954 * SIOCALIFADDR with IFLR_PREFIX: 955 * EINVAL since we can't deduce hostid part of the address. 956 * SIOCDLIFADDR: delete the specified address. 957 * SIOCDLIFADDR with IFLR_PREFIX: 958 * delete the first address that matches the specified prefix. 959 * return values: 960 * EINVAL on invalid parameters 961 * EADDRNOTAVAIL on prefix match failed/specified address not found 962 * other values may be returned from in_ioctl() 963 */ 964 static int 965 in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data, 966 struct ifnet *ifp) 967 { 968 struct if_laddrreq *iflr = (struct if_laddrreq *)data; 969 struct ifaddr *ifa; 970 struct sockaddr *sa; 971 972 /* sanity checks */ 973 if (data == NULL || ifp == NULL) { 974 panic("invalid argument to in_lifaddr_ioctl"); 975 /*NOTRECHED*/ 976 } 977 978 switch (cmd) { 979 case SIOCGLIFADDR: 980 /* address must be specified on GET with IFLR_PREFIX */ 981 if ((iflr->flags & IFLR_PREFIX) == 0) 982 break; 983 /*FALLTHROUGH*/ 984 case SIOCALIFADDR: 985 case SIOCDLIFADDR: 986 /* address must be specified on ADD and DELETE */ 987 sa = (struct sockaddr *)&iflr->addr; 988 if (sa->sa_family != AF_INET) 989 return EINVAL; 990 if (sa->sa_len != sizeof(struct sockaddr_in)) 991 return EINVAL; 992 /* XXX need improvement */ 993 sa = (struct sockaddr *)&iflr->dstaddr; 994 if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET) 995 return EINVAL; 996 if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in)) 997 return EINVAL; 998 break; 999 default: /*shouldn't happen*/ 1000 #if 0 1001 panic("invalid cmd to in_lifaddr_ioctl"); 1002 /*NOTREACHED*/ 1003 #else 1004 return EOPNOTSUPP; 1005 #endif 1006 } 1007 if (sizeof(struct in_addr) * NBBY < iflr->prefixlen) 1008 return EINVAL; 1009 1010 switch (cmd) { 1011 case SIOCALIFADDR: 1012 { 1013 struct in_aliasreq ifra; 1014 1015 if (iflr->flags & IFLR_PREFIX) 1016 return EINVAL; 1017 1018 /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */ 1019 memset(&ifra, 0, sizeof(ifra)); 1020 memcpy(ifra.ifra_name, iflr->iflr_name, 1021 sizeof(ifra.ifra_name)); 1022 1023 memcpy(&ifra.ifra_addr, &iflr->addr, 1024 ((struct sockaddr *)&iflr->addr)->sa_len); 1025 1026 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ 1027 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr, 1028 ((struct sockaddr *)&iflr->dstaddr)->sa_len); 1029 } 1030 1031 ifra.ifra_mask.sin_family = AF_INET; 1032 ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in); 1033 in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen); 1034 1035 return in_control(so, SIOCAIFADDR, &ifra, ifp); 1036 } 1037 case SIOCGLIFADDR: 1038 case SIOCDLIFADDR: 1039 { 1040 struct in_ifaddr *ia; 1041 struct in_addr mask, candidate, match; 1042 struct sockaddr_in *sin; 1043 int cmp, s; 1044 1045 memset(&mask, 0, sizeof(mask)); 1046 memset(&match, 0, sizeof(match)); /* XXX gcc */ 1047 if (iflr->flags & IFLR_PREFIX) { 1048 /* lookup a prefix rather than address. */ 1049 in_len2mask(&mask, iflr->prefixlen); 1050 1051 sin = (struct sockaddr_in *)&iflr->addr; 1052 match.s_addr = sin->sin_addr.s_addr; 1053 match.s_addr &= mask.s_addr; 1054 1055 /* if you set extra bits, that's wrong */ 1056 if (match.s_addr != sin->sin_addr.s_addr) 1057 return EINVAL; 1058 1059 cmp = 1; 1060 } else { 1061 if (cmd == SIOCGLIFADDR) { 1062 /* on getting an address, take the 1st match */ 1063 cmp = 0; /*XXX*/ 1064 } else { 1065 /* on deleting an address, do exact match */ 1066 in_len2mask(&mask, 32); 1067 sin = (struct sockaddr_in *)&iflr->addr; 1068 match.s_addr = sin->sin_addr.s_addr; 1069 1070 cmp = 1; 1071 } 1072 } 1073 1074 s = pserialize_read_enter(); 1075 IFADDR_READER_FOREACH(ifa, ifp) { 1076 if (ifa->ifa_addr->sa_family != AF_INET) 1077 continue; 1078 if (cmp == 0) 1079 break; 1080 candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr; 1081 candidate.s_addr &= mask.s_addr; 1082 if (candidate.s_addr == match.s_addr) 1083 break; 1084 } 1085 if (ifa == NULL) { 1086 pserialize_read_exit(s); 1087 return EADDRNOTAVAIL; 1088 } 1089 ia = (struct in_ifaddr *)ifa; 1090 1091 if (cmd == SIOCGLIFADDR) { 1092 /* fill in the if_laddrreq structure */ 1093 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len); 1094 1095 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1096 memcpy(&iflr->dstaddr, &ia->ia_dstaddr, 1097 ia->ia_dstaddr.sin_len); 1098 } else 1099 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr)); 1100 1101 iflr->prefixlen = 1102 in_mask2len(&ia->ia_sockmask.sin_addr); 1103 1104 iflr->flags = 0; /*XXX*/ 1105 pserialize_read_exit(s); 1106 1107 return 0; 1108 } else { 1109 struct in_aliasreq ifra; 1110 1111 /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */ 1112 memset(&ifra, 0, sizeof(ifra)); 1113 memcpy(ifra.ifra_name, iflr->iflr_name, 1114 sizeof(ifra.ifra_name)); 1115 1116 memcpy(&ifra.ifra_addr, &ia->ia_addr, 1117 ia->ia_addr.sin_len); 1118 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { 1119 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr, 1120 ia->ia_dstaddr.sin_len); 1121 } 1122 memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask, 1123 ia->ia_sockmask.sin_len); 1124 pserialize_read_exit(s); 1125 1126 return in_control(so, SIOCDIFADDR, &ifra, ifp); 1127 } 1128 } 1129 } 1130 1131 return EOPNOTSUPP; /*just for safety*/ 1132 } 1133 1134 /* 1135 * Initialize an interface's internet address 1136 * and routing table entry. 1137 */ 1138 int 1139 in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia, 1140 const struct sockaddr_in *sin, const struct sockaddr_in *dst, int scrub) 1141 { 1142 u_int32_t i; 1143 struct sockaddr_in oldaddr, olddst; 1144 int s, oldflags, flags = RTF_UP, error, hostIsNew; 1145 1146 if (sin == NULL) 1147 sin = &ia->ia_addr; 1148 if (dst == NULL) 1149 dst = &ia->ia_dstaddr; 1150 1151 /* 1152 * Set up new addresses. 1153 */ 1154 oldaddr = ia->ia_addr; 1155 olddst = ia->ia_dstaddr; 1156 oldflags = ia->ia4_flags; 1157 ia->ia_addr = *sin; 1158 ia->ia_dstaddr = *dst; 1159 hostIsNew = oldaddr.sin_family != AF_INET || 1160 !in_hosteq(ia->ia_addr.sin_addr, oldaddr.sin_addr); 1161 if (!scrub) 1162 scrub = oldaddr.sin_family != ia->ia_dstaddr.sin_family || 1163 !in_hosteq(ia->ia_dstaddr.sin_addr, olddst.sin_addr); 1164 1165 /* 1166 * Configure address flags. 1167 * We need to do this early because they may be adjusted 1168 * by if_addr_init depending on the address. 1169 */ 1170 if (ia->ia4_flags & IN_IFF_DUPLICATED) { 1171 ia->ia4_flags &= ~IN_IFF_DUPLICATED; 1172 hostIsNew = 1; 1173 } 1174 if (ifp->if_link_state == LINK_STATE_DOWN) { 1175 ia->ia4_flags |= IN_IFF_DETACHED; 1176 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1177 } else if (hostIsNew && if_do_dad(ifp) && ip_dad_enabled()) 1178 ia->ia4_flags |= IN_IFF_TRYTENTATIVE; 1179 1180 /* 1181 * Give the interface a chance to initialize 1182 * if this is its first address, 1183 * and to validate the address if necessary. 1184 */ 1185 s = splsoftnet(); 1186 error = if_addr_init(ifp, &ia->ia_ifa, true); 1187 splx(s); 1188 /* Now clear the try tentative flag, its job is done. */ 1189 ia->ia4_flags &= ~IN_IFF_TRYTENTATIVE; 1190 if (error != 0) { 1191 ia->ia_addr = oldaddr; 1192 ia->ia_dstaddr = olddst; 1193 ia->ia4_flags = oldflags; 1194 return error; 1195 } 1196 1197 if (scrub || hostIsNew) { 1198 int newflags = ia->ia4_flags; 1199 1200 ia->ia_ifa.ifa_addr = sintosa(&oldaddr); 1201 ia->ia_ifa.ifa_dstaddr = sintosa(&olddst); 1202 ia->ia4_flags = oldflags; 1203 if (hostIsNew) 1204 in_scrubaddr(ia); 1205 else if (scrub) 1206 in_scrubprefix(ia); 1207 ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); 1208 ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); 1209 ia->ia4_flags = newflags; 1210 } 1211 1212 i = ia->ia_addr.sin_addr.s_addr; 1213 if (ifp->if_flags & IFF_POINTOPOINT) 1214 ia->ia_netmask = INADDR_BROADCAST; /* default to /32 */ 1215 else if (IN_CLASSA(i)) 1216 ia->ia_netmask = IN_CLASSA_NET; 1217 else if (IN_CLASSB(i)) 1218 ia->ia_netmask = IN_CLASSB_NET; 1219 else 1220 ia->ia_netmask = IN_CLASSC_NET; 1221 /* 1222 * The subnet mask usually includes at least the standard network part, 1223 * but may may be smaller in the case of supernetting. 1224 * If it is set, we believe it. 1225 */ 1226 if (ia->ia_subnetmask == 0) { 1227 ia->ia_subnetmask = ia->ia_netmask; 1228 ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask; 1229 } else 1230 ia->ia_netmask &= ia->ia_subnetmask; 1231 1232 ia->ia_net = i & ia->ia_netmask; 1233 ia->ia_subnet = i & ia->ia_subnetmask; 1234 in_socktrim(&ia->ia_sockmask); 1235 1236 /* re-calculate the "in_maxmtu" value */ 1237 in_setmaxmtu(); 1238 1239 ia->ia_ifa.ifa_metric = ifp->if_metric; 1240 if (ifp->if_flags & IFF_BROADCAST) { 1241 if (ia->ia_subnetmask == IN_RFC3021_MASK) { 1242 ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST; 1243 ia->ia_netbroadcast.s_addr = INADDR_BROADCAST; 1244 } else { 1245 ia->ia_broadaddr.sin_addr.s_addr = 1246 ia->ia_subnet | ~ia->ia_subnetmask; 1247 ia->ia_netbroadcast.s_addr = 1248 ia->ia_net | ~ia->ia_netmask; 1249 } 1250 } else if (ifp->if_flags & IFF_LOOPBACK) { 1251 ia->ia_dstaddr = ia->ia_addr; 1252 flags |= RTF_HOST; 1253 } else if (ifp->if_flags & IFF_POINTOPOINT) { 1254 if (ia->ia_dstaddr.sin_family != AF_INET) 1255 return (0); 1256 flags |= RTF_HOST; 1257 } 1258 1259 /* Add the local route to the address */ 1260 in_ifaddlocal(&ia->ia_ifa); 1261 1262 /* Add the prefix route for the address */ 1263 error = in_addprefix(ia, flags); 1264 1265 /* 1266 * If the interface supports multicast, join the "all hosts" 1267 * multicast group on that interface. 1268 */ 1269 mutex_enter(&in_ifaddr_lock); 1270 if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) { 1271 struct in_addr addr; 1272 1273 addr.s_addr = INADDR_ALLHOSTS_GROUP; 1274 ia->ia_allhosts = in_addmulti(&addr, ifp); 1275 } 1276 mutex_exit(&in_ifaddr_lock); 1277 1278 if (hostIsNew && 1279 ia->ia4_flags & IN_IFF_TENTATIVE && 1280 if_do_dad(ifp)) 1281 ia->ia_dad_start((struct ifaddr *)ia); 1282 1283 return error; 1284 } 1285 1286 #define rtinitflags(x) \ 1287 ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \ 1288 ? RTF_HOST : 0) 1289 1290 /* 1291 * add a route to prefix ("connected route" in cisco terminology). 1292 * does nothing if there's some interface address with the same prefix already. 1293 */ 1294 static int 1295 in_addprefix(struct in_ifaddr *target, int flags) 1296 { 1297 struct in_ifaddr *ia; 1298 struct in_addr prefix, mask, p; 1299 int error; 1300 int s; 1301 1302 if ((flags & RTF_HOST) != 0) 1303 prefix = target->ia_dstaddr.sin_addr; 1304 else { 1305 prefix = target->ia_addr.sin_addr; 1306 mask = target->ia_sockmask.sin_addr; 1307 prefix.s_addr &= mask.s_addr; 1308 } 1309 1310 s = pserialize_read_enter(); 1311 IN_ADDRLIST_READER_FOREACH(ia) { 1312 if (rtinitflags(ia)) 1313 p = ia->ia_dstaddr.sin_addr; 1314 else { 1315 p = ia->ia_addr.sin_addr; 1316 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; 1317 } 1318 1319 if (prefix.s_addr != p.s_addr) 1320 continue; 1321 1322 /* 1323 * if we got a matching prefix route inserted by other 1324 * interface address, we don't need to bother 1325 * 1326 * XXX RADIX_MPATH implications here? -dyoung 1327 */ 1328 if (ia->ia_flags & IFA_ROUTE) { 1329 pserialize_read_exit(s); 1330 return 0; 1331 } 1332 } 1333 pserialize_read_exit(s); 1334 1335 /* 1336 * noone seem to have prefix route. insert it. 1337 */ 1338 error = rtinit(&target->ia_ifa, RTM_ADD, flags); 1339 if (error == 0) 1340 target->ia_flags |= IFA_ROUTE; 1341 else if (error == EEXIST) { 1342 /* 1343 * the fact the route already exists is not an error. 1344 */ 1345 error = 0; 1346 } 1347 return error; 1348 } 1349 1350 /* 1351 * remove a route to prefix ("connected route" in cisco terminology). 1352 * re-installs the route by using another interface address, if there's one 1353 * with the same prefix (otherwise we lose the route mistakenly). 1354 */ 1355 static int 1356 in_scrubprefix(struct in_ifaddr *target) 1357 { 1358 struct in_ifaddr *ia; 1359 struct in_addr prefix, mask, p; 1360 int error; 1361 int s; 1362 1363 /* If we don't have IFA_ROUTE we have nothing to do */ 1364 if ((target->ia_flags & IFA_ROUTE) == 0) 1365 return 0; 1366 1367 if (rtinitflags(target)) 1368 prefix = target->ia_dstaddr.sin_addr; 1369 else { 1370 prefix = target->ia_addr.sin_addr; 1371 mask = target->ia_sockmask.sin_addr; 1372 prefix.s_addr &= mask.s_addr; 1373 } 1374 1375 s = pserialize_read_enter(); 1376 IN_ADDRLIST_READER_FOREACH(ia) { 1377 if (rtinitflags(ia)) 1378 p = ia->ia_dstaddr.sin_addr; 1379 else { 1380 p = ia->ia_addr.sin_addr; 1381 p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; 1382 } 1383 1384 if (prefix.s_addr != p.s_addr) 1385 continue; 1386 1387 /* 1388 * if we got a matching prefix route, move IFA_ROUTE to him 1389 */ 1390 if ((ia->ia_flags & IFA_ROUTE) == 0) { 1391 struct psref psref; 1392 int bound = curlwp_bind(); 1393 1394 ia4_acquire(ia, &psref); 1395 pserialize_read_exit(s); 1396 1397 rtinit(&target->ia_ifa, RTM_DELETE, 1398 rtinitflags(target)); 1399 target->ia_flags &= ~IFA_ROUTE; 1400 1401 error = rtinit(&ia->ia_ifa, RTM_ADD, 1402 rtinitflags(ia) | RTF_UP); 1403 if (error == 0) 1404 ia->ia_flags |= IFA_ROUTE; 1405 1406 ia4_release(ia, &psref); 1407 curlwp_bindx(bound); 1408 1409 return error; 1410 } 1411 } 1412 pserialize_read_exit(s); 1413 1414 /* 1415 * noone seem to have prefix route. remove it. 1416 */ 1417 rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target)); 1418 target->ia_flags &= ~IFA_ROUTE; 1419 return 0; 1420 } 1421 1422 #undef rtinitflags 1423 1424 /* 1425 * Return 1 if the address might be a local broadcast address. 1426 */ 1427 int 1428 in_broadcast(struct in_addr in, struct ifnet *ifp) 1429 { 1430 struct ifaddr *ifa; 1431 int s; 1432 1433 KASSERT(ifp != NULL); 1434 1435 if (in.s_addr == INADDR_BROADCAST || 1436 in_nullhost(in)) 1437 return 1; 1438 if ((ifp->if_flags & IFF_BROADCAST) == 0) 1439 return 0; 1440 /* 1441 * Look through the list of addresses for a match 1442 * with a broadcast address. 1443 */ 1444 #define ia (ifatoia(ifa)) 1445 s = pserialize_read_enter(); 1446 IFADDR_READER_FOREACH(ifa, ifp) { 1447 if (ifa->ifa_addr->sa_family == AF_INET && 1448 !in_hosteq(in, ia->ia_addr.sin_addr) && 1449 (in_hosteq(in, ia->ia_broadaddr.sin_addr) || 1450 in_hosteq(in, ia->ia_netbroadcast) || 1451 (hostzeroisbroadcast && 1452 /* 1453 * Check for old-style (host 0) broadcast, but 1454 * taking into account that RFC 3021 obsoletes it. 1455 */ 1456 ia->ia_subnetmask != IN_RFC3021_MASK && 1457 (in.s_addr == ia->ia_subnet || 1458 in.s_addr == ia->ia_net)))) { 1459 pserialize_read_exit(s); 1460 return 1; 1461 } 1462 } 1463 pserialize_read_exit(s); 1464 return (0); 1465 #undef ia 1466 } 1467 1468 /* 1469 * perform DAD when interface becomes IFF_UP. 1470 */ 1471 void 1472 in_if_link_up(struct ifnet *ifp) 1473 { 1474 struct ifaddr *ifa; 1475 struct in_ifaddr *ia; 1476 int s, bound; 1477 1478 /* Ensure it's sane to run DAD */ 1479 if (ifp->if_link_state == LINK_STATE_DOWN) 1480 return; 1481 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) 1482 return; 1483 1484 bound = curlwp_bind(); 1485 s = pserialize_read_enter(); 1486 IFADDR_READER_FOREACH(ifa, ifp) { 1487 struct psref psref; 1488 1489 if (ifa->ifa_addr->sa_family != AF_INET) 1490 continue; 1491 ifa_acquire(ifa, &psref); 1492 pserialize_read_exit(s); 1493 1494 ia = (struct in_ifaddr *)ifa; 1495 1496 /* If detached then mark as tentative */ 1497 if (ia->ia4_flags & IN_IFF_DETACHED) { 1498 ia->ia4_flags &= ~IN_IFF_DETACHED; 1499 if (ip_dad_enabled() && if_do_dad(ifp) && 1500 ia->ia_dad_start != NULL) 1501 ia->ia4_flags |= IN_IFF_TENTATIVE; 1502 else if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0) 1503 rt_addrmsg(RTM_NEWADDR, ifa); 1504 } 1505 1506 if (ia->ia4_flags & IN_IFF_TENTATIVE) { 1507 /* Clear the duplicated flag as we're starting DAD. */ 1508 ia->ia4_flags &= ~IN_IFF_DUPLICATED; 1509 ia->ia_dad_start(ifa); 1510 } 1511 1512 s = pserialize_read_enter(); 1513 ifa_release(ifa, &psref); 1514 } 1515 pserialize_read_exit(s); 1516 curlwp_bindx(bound); 1517 } 1518 1519 void 1520 in_if_up(struct ifnet *ifp) 1521 { 1522 1523 /* interface may not support link state, so bring it up also */ 1524 in_if_link_up(ifp); 1525 } 1526 1527 /* 1528 * Mark all addresses as detached. 1529 */ 1530 void 1531 in_if_link_down(struct ifnet *ifp) 1532 { 1533 struct ifaddr *ifa; 1534 struct in_ifaddr *ia; 1535 int s, bound; 1536 1537 bound = curlwp_bind(); 1538 s = pserialize_read_enter(); 1539 IFADDR_READER_FOREACH(ifa, ifp) { 1540 struct psref psref; 1541 1542 if (ifa->ifa_addr->sa_family != AF_INET) 1543 continue; 1544 ifa_acquire(ifa, &psref); 1545 pserialize_read_exit(s); 1546 1547 ia = (struct in_ifaddr *)ifa; 1548 1549 /* Stop DAD processing */ 1550 if (ia->ia_dad_stop != NULL) 1551 ia->ia_dad_stop(ifa); 1552 1553 /* 1554 * Mark the address as detached. 1555 */ 1556 if (!(ia->ia4_flags & IN_IFF_DETACHED)) { 1557 ia->ia4_flags |= IN_IFF_DETACHED; 1558 ia->ia4_flags &= 1559 ~(IN_IFF_TENTATIVE | IN_IFF_DUPLICATED); 1560 rt_addrmsg(RTM_NEWADDR, ifa); 1561 } 1562 1563 s = pserialize_read_enter(); 1564 ifa_release(ifa, &psref); 1565 } 1566 pserialize_read_exit(s); 1567 curlwp_bindx(bound); 1568 } 1569 1570 void 1571 in_if_down(struct ifnet *ifp) 1572 { 1573 1574 in_if_link_down(ifp); 1575 #if NARP > 0 1576 lltable_purge_entries(LLTABLE(ifp)); 1577 #endif 1578 } 1579 1580 void 1581 in_if_link_state_change(struct ifnet *ifp, int link_state) 1582 { 1583 1584 /* 1585 * Treat LINK_STATE_UNKNOWN as UP. 1586 * LINK_STATE_UNKNOWN transitions to LINK_STATE_DOWN when 1587 * if_link_state_change() transitions to LINK_STATE_UP. 1588 */ 1589 if (link_state == LINK_STATE_DOWN) 1590 in_if_link_down(ifp); 1591 else 1592 in_if_link_up(ifp); 1593 } 1594 1595 /* 1596 * in_lookup_multi: look up the in_multi record for a given IP 1597 * multicast address on a given interface. If no matching record is 1598 * found, return NULL. 1599 */ 1600 struct in_multi * 1601 in_lookup_multi(struct in_addr addr, ifnet_t *ifp) 1602 { 1603 struct in_multi *inm; 1604 1605 KASSERT(rw_lock_held(&in_multilock)); 1606 1607 LIST_FOREACH(inm, &IN_MULTI_HASH(addr.s_addr, ifp), inm_list) { 1608 if (in_hosteq(inm->inm_addr, addr) && inm->inm_ifp == ifp) 1609 break; 1610 } 1611 return inm; 1612 } 1613 1614 /* 1615 * in_multi_group: check whether the address belongs to an IP multicast 1616 * group we are joined on this interface. Returns true or false. 1617 */ 1618 bool 1619 in_multi_group(struct in_addr addr, ifnet_t *ifp, int flags) 1620 { 1621 bool ingroup; 1622 1623 if (__predict_true(flags & IP_IGMP_MCAST) == 0) { 1624 rw_enter(&in_multilock, RW_READER); 1625 ingroup = in_lookup_multi(addr, ifp) != NULL; 1626 rw_exit(&in_multilock); 1627 } else { 1628 /* XXX Recursive call from ip_output(). */ 1629 KASSERT(rw_lock_held(&in_multilock)); 1630 ingroup = in_lookup_multi(addr, ifp) != NULL; 1631 } 1632 return ingroup; 1633 } 1634 1635 /* 1636 * Add an address to the list of IP multicast addresses for a given interface. 1637 */ 1638 struct in_multi * 1639 in_addmulti(struct in_addr *ap, ifnet_t *ifp) 1640 { 1641 struct sockaddr_in sin; 1642 struct in_multi *inm; 1643 1644 /* 1645 * See if address already in list. 1646 */ 1647 rw_enter(&in_multilock, RW_WRITER); 1648 inm = in_lookup_multi(*ap, ifp); 1649 if (inm != NULL) { 1650 /* 1651 * Found it; just increment the reference count. 1652 */ 1653 inm->inm_refcount++; 1654 rw_exit(&in_multilock); 1655 return inm; 1656 } 1657 1658 /* 1659 * New address; allocate a new multicast record. 1660 */ 1661 inm = pool_get(&inmulti_pool, PR_NOWAIT); 1662 if (inm == NULL) { 1663 rw_exit(&in_multilock); 1664 return NULL; 1665 } 1666 inm->inm_addr = *ap; 1667 inm->inm_ifp = ifp; 1668 inm->inm_refcount = 1; 1669 1670 /* 1671 * Ask the network driver to update its multicast reception 1672 * filter appropriately for the new address. 1673 */ 1674 sockaddr_in_init(&sin, ap, 0); 1675 if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) { 1676 rw_exit(&in_multilock); 1677 pool_put(&inmulti_pool, inm); 1678 return NULL; 1679 } 1680 1681 /* 1682 * Let IGMP know that we have joined a new IP multicast group. 1683 */ 1684 if (igmp_joingroup(inm) != 0) { 1685 rw_exit(&in_multilock); 1686 pool_put(&inmulti_pool, inm); 1687 return NULL; 1688 } 1689 LIST_INSERT_HEAD( 1690 &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp), 1691 inm, inm_list); 1692 in_multientries++; 1693 rw_exit(&in_multilock); 1694 1695 return inm; 1696 } 1697 1698 /* 1699 * Delete a multicast address record. 1700 */ 1701 void 1702 in_delmulti(struct in_multi *inm) 1703 { 1704 struct sockaddr_in sin; 1705 1706 rw_enter(&in_multilock, RW_WRITER); 1707 if (--inm->inm_refcount > 0) { 1708 rw_exit(&in_multilock); 1709 return; 1710 } 1711 1712 /* 1713 * No remaining claims to this record; let IGMP know that 1714 * we are leaving the multicast group. 1715 */ 1716 igmp_leavegroup(inm); 1717 1718 /* 1719 * Notify the network driver to update its multicast reception 1720 * filter. 1721 */ 1722 sockaddr_in_init(&sin, &inm->inm_addr, 0); 1723 if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin)); 1724 1725 /* 1726 * Unlink from list. 1727 */ 1728 LIST_REMOVE(inm, inm_list); 1729 in_multientries--; 1730 rw_exit(&in_multilock); 1731 1732 pool_put(&inmulti_pool, inm); 1733 } 1734 1735 /* 1736 * in_next_multi: step through all of the in_multi records, one at a time. 1737 * The current position is remembered in "step", which the caller must 1738 * provide. in_first_multi(), below, must be called to initialize "step" 1739 * and get the first record. Both macros return a NULL "inm" when there 1740 * are no remaining records. 1741 */ 1742 struct in_multi * 1743 in_next_multi(struct in_multistep *step) 1744 { 1745 struct in_multi *inm; 1746 1747 KASSERT(rw_lock_held(&in_multilock)); 1748 1749 while (step->i_inm == NULL && step->i_n < IN_MULTI_HASH_SIZE) { 1750 step->i_inm = LIST_FIRST(&in_multihashtbl[++step->i_n]); 1751 } 1752 if ((inm = step->i_inm) != NULL) { 1753 step->i_inm = LIST_NEXT(inm, inm_list); 1754 } 1755 return inm; 1756 } 1757 1758 struct in_multi * 1759 in_first_multi(struct in_multistep *step) 1760 { 1761 KASSERT(rw_lock_held(&in_multilock)); 1762 1763 step->i_n = 0; 1764 step->i_inm = LIST_FIRST(&in_multihashtbl[0]); 1765 return in_next_multi(step); 1766 } 1767 1768 void 1769 in_multi_lock(int op) 1770 { 1771 rw_enter(&in_multilock, op); 1772 } 1773 1774 void 1775 in_multi_unlock(void) 1776 { 1777 rw_exit(&in_multilock); 1778 } 1779 1780 int 1781 in_multi_lock_held(void) 1782 { 1783 return rw_lock_held(&in_multilock); 1784 } 1785 1786 struct in_ifaddr * 1787 in_selectsrc(struct sockaddr_in *sin, struct route *ro, 1788 int soopts, struct ip_moptions *mopts, int *errorp, struct psref *psref) 1789 { 1790 struct rtentry *rt = NULL; 1791 struct in_ifaddr *ia = NULL; 1792 1793 KASSERT(ISSET(curlwp->l_pflag, LP_BOUND)); 1794 /* 1795 * If route is known or can be allocated now, take the 1796 * source address from the interface. Otherwise, punt. 1797 */ 1798 if ((soopts & SO_DONTROUTE) != 0) 1799 rtcache_free(ro); 1800 else { 1801 union { 1802 struct sockaddr dst; 1803 struct sockaddr_in dst4; 1804 } u; 1805 1806 sockaddr_in_init(&u.dst4, &sin->sin_addr, 0); 1807 rt = rtcache_lookup(ro, &u.dst); 1808 } 1809 /* 1810 * If we found a route, use the address 1811 * corresponding to the outgoing interface 1812 * unless it is the loopback (in case a route 1813 * to our address on another net goes to loopback). 1814 * 1815 * XXX Is this still true? Do we care? 1816 */ 1817 if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1818 int s; 1819 struct ifaddr *ifa; 1820 /* 1821 * Just in case. May not need to do this workaround. 1822 * Revisit when working on rtentry MP-ification. 1823 */ 1824 s = pserialize_read_enter(); 1825 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) { 1826 if (ifa == rt->rt_ifa) 1827 break; 1828 } 1829 if (ifa != NULL) 1830 ifa_acquire(ifa, psref); 1831 pserialize_read_exit(s); 1832 1833 ia = ifatoia(ifa); 1834 } 1835 if (ia == NULL) { 1836 u_int16_t fport = sin->sin_port; 1837 struct ifaddr *ifa; 1838 int s; 1839 1840 sin->sin_port = 0; 1841 ifa = ifa_ifwithladdr_psref(sintosa(sin), psref); 1842 sin->sin_port = fport; 1843 if (ifa == NULL) { 1844 /* Find 1st non-loopback AF_INET address */ 1845 s = pserialize_read_enter(); 1846 IN_ADDRLIST_READER_FOREACH(ia) { 1847 if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK)) 1848 break; 1849 } 1850 if (ia != NULL) 1851 ia4_acquire(ia, psref); 1852 pserialize_read_exit(s); 1853 } else { 1854 /* ia is already referenced by psref */ 1855 ia = ifatoia(ifa); 1856 } 1857 if (ia == NULL) { 1858 *errorp = EADDRNOTAVAIL; 1859 goto out; 1860 } 1861 } 1862 /* 1863 * If the destination address is multicast and an outgoing 1864 * interface has been set as a multicast option, use the 1865 * address of that interface as our source address. 1866 */ 1867 if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) { 1868 struct ip_moptions *imo; 1869 1870 imo = mopts; 1871 if (imo->imo_multicast_if_index != 0) { 1872 struct ifnet *ifp; 1873 int s; 1874 1875 if (ia != NULL) 1876 ia4_release(ia, psref); 1877 s = pserialize_read_enter(); 1878 ifp = if_byindex(imo->imo_multicast_if_index); 1879 if (ifp != NULL) { 1880 /* XXX */ 1881 ia = in_get_ia_from_ifp_psref(ifp, psref); 1882 } else 1883 ia = NULL; 1884 if (ia == NULL || ia->ia4_flags & IN_IFF_NOTREADY) { 1885 pserialize_read_exit(s); 1886 if (ia != NULL) 1887 ia4_release(ia, psref); 1888 *errorp = EADDRNOTAVAIL; 1889 ia = NULL; 1890 goto out; 1891 } 1892 pserialize_read_exit(s); 1893 } 1894 } 1895 if (ia->ia_ifa.ifa_getifa != NULL) { 1896 ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa, 1897 sintosa(sin))); 1898 if (ia == NULL) { 1899 *errorp = EADDRNOTAVAIL; 1900 goto out; 1901 } 1902 /* FIXME NOMPSAFE */ 1903 ia4_acquire(ia, psref); 1904 } 1905 #ifdef GETIFA_DEBUG 1906 else 1907 printf("%s: missing ifa_getifa\n", __func__); 1908 #endif 1909 out: 1910 rtcache_unref(rt, ro); 1911 return ia; 1912 } 1913 1914 int 1915 in_tunnel_validate(const struct ip *ip, struct in_addr src, struct in_addr dst) 1916 { 1917 struct in_ifaddr *ia4; 1918 int s; 1919 1920 /* check for address match */ 1921 if (src.s_addr != ip->ip_dst.s_addr || 1922 dst.s_addr != ip->ip_src.s_addr) 1923 return 0; 1924 1925 /* martian filters on outer source - NOT done in ip_input! */ 1926 if (IN_MULTICAST(ip->ip_src.s_addr)) 1927 return 0; 1928 switch ((ntohl(ip->ip_src.s_addr) & 0xff000000) >> 24) { 1929 case 0: 1930 case 127: 1931 case 255: 1932 return 0; 1933 } 1934 /* reject packets with broadcast on source */ 1935 s = pserialize_read_enter(); 1936 IN_ADDRLIST_READER_FOREACH(ia4) { 1937 if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0) 1938 continue; 1939 if (ip->ip_src.s_addr == ia4->ia_broadaddr.sin_addr.s_addr) { 1940 pserialize_read_exit(s); 1941 return 0; 1942 } 1943 } 1944 pserialize_read_exit(s); 1945 1946 /* NOTE: packet may dropped by uRPF */ 1947 1948 /* return valid bytes length */ 1949 return sizeof(src) + sizeof(dst); 1950 } 1951 1952 #if NARP > 0 1953 1954 #define IN_LLTBL_DEFAULT_HSIZE 32 1955 #define IN_LLTBL_HASH(k, h) \ 1956 (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) 1957 1958 /* 1959 * Do actual deallocation of @lle. 1960 * Called by LLE_FREE_LOCKED when number of references 1961 * drops to zero. 1962 */ 1963 static void 1964 in_lltable_destroy_lle(struct llentry *lle) 1965 { 1966 1967 KASSERTMSG(lle->la_numheld == 0, "la_numheld=%d", lle->la_numheld); 1968 1969 LLE_WUNLOCK(lle); 1970 LLE_LOCK_DESTROY(lle); 1971 llentry_pool_put(lle); 1972 } 1973 1974 static struct llentry * 1975 in_lltable_new(struct in_addr addr4, u_int flags) 1976 { 1977 struct llentry *lle; 1978 1979 lle = llentry_pool_get(PR_NOWAIT); 1980 if (lle == NULL) /* NB: caller generates msg */ 1981 return NULL; 1982 1983 lle->r_l3addr.addr4 = addr4; 1984 lle->lle_refcnt = 1; 1985 lle->lle_free = in_lltable_destroy_lle; 1986 LLE_LOCK_INIT(lle); 1987 callout_init(&lle->la_timer, CALLOUT_MPSAFE); 1988 1989 return lle; 1990 } 1991 1992 #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ 1993 (((ntohl((d).s_addr) ^ (a)->sin_addr.s_addr) & (m)->sin_addr.s_addr)) == 0 ) 1994 1995 static int 1996 in_lltable_match_prefix(const struct sockaddr *prefix, 1997 const struct sockaddr *mask, u_int flags, struct llentry *lle) 1998 { 1999 const struct sockaddr_in *pfx = (const struct sockaddr_in *)prefix; 2000 const struct sockaddr_in *msk = (const struct sockaddr_in *)mask; 2001 struct in_addr lle_addr; 2002 2003 lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr); 2004 2005 /* 2006 * (flags & LLE_STATIC) means deleting all entries 2007 * including static ARP entries. 2008 */ 2009 if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, pfx, msk) && 2010 ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC))) 2011 return (1); 2012 2013 return (0); 2014 } 2015 2016 static void 2017 in_lltable_free_entry(struct lltable *llt, struct llentry *lle) 2018 { 2019 size_t pkts_dropped; 2020 2021 LLE_WLOCK_ASSERT(lle); 2022 KASSERT(llt != NULL); 2023 2024 pkts_dropped = llentry_free(lle); 2025 arp_stat_add(ARP_STAT_DFRDROPPED, (uint64_t)pkts_dropped); 2026 } 2027 2028 static int 2029 in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr, 2030 const struct rtentry *rt) 2031 { 2032 int error = EINVAL; 2033 2034 if (rt == NULL) 2035 return error; 2036 2037 /* 2038 * If the gateway for an existing host route matches the target L3 2039 * address, which is a special route inserted by some implementation 2040 * such as MANET, and the interface is of the correct type, then 2041 * allow for ARP to proceed. 2042 */ 2043 if (rt->rt_flags & RTF_GATEWAY) { 2044 if (!(rt->rt_flags & RTF_HOST) || !rt->rt_ifp || 2045 rt->rt_ifp->if_type != IFT_ETHER || 2046 (rt->rt_ifp->if_flags & IFF_NOARP) != 0 || 2047 memcmp(rt->rt_gateway->sa_data, l3addr->sa_data, 2048 sizeof(in_addr_t)) != 0) { 2049 goto error; 2050 } 2051 } 2052 2053 /* 2054 * Make sure that at least the destination address is covered 2055 * by the route. This is for handling the case where 2 or more 2056 * interfaces have the same prefix. An incoming packet arrives 2057 * on one interface and the corresponding outgoing packet leaves 2058 * another interface. 2059 */ 2060 if (!(rt->rt_flags & RTF_HOST) && rt->rt_ifp != ifp) { 2061 const char *sa, *mask, *addr, *lim; 2062 int len; 2063 2064 mask = (const char *)rt_mask(rt); 2065 /* 2066 * Just being extra cautious to avoid some custom 2067 * code getting into trouble. 2068 */ 2069 if (mask == NULL) 2070 goto error; 2071 2072 sa = (const char *)rt_getkey(rt); 2073 addr = (const char *)l3addr; 2074 len = ((const struct sockaddr_in *)l3addr)->sin_len; 2075 lim = addr + len; 2076 2077 for ( ; addr < lim; sa++, mask++, addr++) { 2078 if ((*sa ^ *addr) & *mask) { 2079 #ifdef DIAGNOSTIC 2080 log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n", 2081 inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr)); 2082 #endif 2083 goto error; 2084 } 2085 } 2086 } 2087 2088 error = 0; 2089 error: 2090 return error; 2091 } 2092 2093 static inline uint32_t 2094 in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) 2095 { 2096 2097 return (IN_LLTBL_HASH(dst.s_addr, hsize)); 2098 } 2099 2100 static uint32_t 2101 in_lltable_hash(const struct llentry *lle, uint32_t hsize) 2102 { 2103 2104 return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); 2105 } 2106 2107 static void 2108 in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) 2109 { 2110 struct sockaddr_in *sin; 2111 2112 sin = (struct sockaddr_in *)sa; 2113 memset(sin, 0, sizeof(*sin)); 2114 sin->sin_family = AF_INET; 2115 sin->sin_len = sizeof(*sin); 2116 sin->sin_addr = lle->r_l3addr.addr4; 2117 } 2118 2119 static inline struct llentry * 2120 in_lltable_find_dst(struct lltable *llt, struct in_addr dst) 2121 { 2122 struct llentry *lle; 2123 struct llentries *lleh; 2124 u_int hashidx; 2125 2126 hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); 2127 lleh = &llt->lle_head[hashidx]; 2128 LIST_FOREACH(lle, lleh, lle_next) { 2129 if (lle->la_flags & LLE_DELETED) 2130 continue; 2131 if (lle->r_l3addr.addr4.s_addr == dst.s_addr) 2132 break; 2133 } 2134 2135 return (lle); 2136 } 2137 2138 static int 2139 in_lltable_delete(struct lltable *llt, u_int flags, 2140 const struct sockaddr *l3addr) 2141 { 2142 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; 2143 struct ifnet *ifp __diagused = llt->llt_ifp; 2144 struct llentry *lle; 2145 2146 IF_AFDATA_WLOCK_ASSERT(ifp); 2147 KASSERTMSG(l3addr->sa_family == AF_INET, 2148 "sin_family %d", l3addr->sa_family); 2149 2150 lle = in_lltable_find_dst(llt, sin->sin_addr); 2151 if (lle == NULL) { 2152 #ifdef LLTABLE_DEBUG 2153 char buf[64]; 2154 sockaddr_format(l3addr, buf, sizeof(buf)); 2155 log(LOG_INFO, "%s: cache for %s is not found\n", 2156 __func__, buf); 2157 #endif 2158 return (ENOENT); 2159 } 2160 2161 LLE_WLOCK(lle); 2162 #ifdef LLTABLE_DEBUG 2163 { 2164 char buf[64]; 2165 sockaddr_format(l3addr, buf, sizeof(buf)); 2166 log(LOG_INFO, "%s: cache for %s (%p) is deleted\n", 2167 __func__, buf, lle); 2168 } 2169 #endif 2170 llentry_free(lle); 2171 2172 return (0); 2173 } 2174 2175 static struct llentry * 2176 in_lltable_create(struct lltable *llt, u_int flags, const struct sockaddr *l3addr, 2177 const struct rtentry *rt) 2178 { 2179 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; 2180 struct ifnet *ifp = llt->llt_ifp; 2181 struct llentry *lle; 2182 2183 IF_AFDATA_WLOCK_ASSERT(ifp); 2184 KASSERTMSG(l3addr->sa_family == AF_INET, 2185 "sin_family %d", l3addr->sa_family); 2186 2187 lle = in_lltable_find_dst(llt, sin->sin_addr); 2188 2189 if (lle != NULL) { 2190 LLE_WLOCK(lle); 2191 return (lle); 2192 } 2193 2194 /* no existing record, we need to create new one */ 2195 2196 /* 2197 * A route that covers the given address must have 2198 * been installed 1st because we are doing a resolution, 2199 * verify this. 2200 */ 2201 if (!(flags & LLE_IFADDR) && 2202 in_lltable_rtcheck(ifp, flags, l3addr, rt) != 0) 2203 return (NULL); 2204 2205 lle = in_lltable_new(sin->sin_addr, flags); 2206 if (lle == NULL) { 2207 log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); 2208 return (NULL); 2209 } 2210 lle->la_flags = flags; 2211 if ((flags & LLE_IFADDR) == LLE_IFADDR) { 2212 memcpy(&lle->ll_addr, CLLADDR(ifp->if_sadl), ifp->if_addrlen); 2213 lle->la_flags |= (LLE_VALID | LLE_STATIC); 2214 } 2215 2216 lltable_link_entry(llt, lle); 2217 LLE_WLOCK(lle); 2218 2219 return (lle); 2220 } 2221 2222 /* 2223 * Return NULL if not found or marked for deletion. 2224 * If found return lle read locked. 2225 */ 2226 static struct llentry * 2227 in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) 2228 { 2229 const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; 2230 struct llentry *lle; 2231 2232 IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); 2233 KASSERTMSG(l3addr->sa_family == AF_INET, 2234 "sin_family %d", l3addr->sa_family); 2235 2236 lle = in_lltable_find_dst(llt, sin->sin_addr); 2237 2238 if (lle == NULL) 2239 return NULL; 2240 2241 if (flags & LLE_EXCLUSIVE) 2242 LLE_WLOCK(lle); 2243 else 2244 LLE_RLOCK(lle); 2245 2246 return lle; 2247 } 2248 2249 static int 2250 in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, 2251 struct rt_walkarg *w) 2252 { 2253 struct sockaddr_in sin; 2254 2255 LLTABLE_LOCK_ASSERT(); 2256 2257 /* skip deleted entries */ 2258 if (lle->la_flags & LLE_DELETED) 2259 return 0; 2260 2261 sockaddr_in_init(&sin, &lle->r_l3addr.addr4, 0); 2262 2263 return lltable_dump_entry(llt, lle, w, sintosa(&sin)); 2264 } 2265 2266 #endif /* NARP > 0 */ 2267 2268 static int 2269 in_multicast_sysctl(SYSCTLFN_ARGS) 2270 { 2271 struct ifnet *ifp; 2272 struct ifaddr *ifa; 2273 struct in_ifaddr *ifa4; 2274 struct in_multi *inm; 2275 uint32_t tmp; 2276 int error; 2277 size_t written; 2278 struct psref psref; 2279 int bound; 2280 2281 if (namelen != 1) 2282 return EINVAL; 2283 2284 bound = curlwp_bind(); 2285 ifp = if_get_byindex(name[0], &psref); 2286 if (ifp == NULL) { 2287 curlwp_bindx(bound); 2288 return ENODEV; 2289 } 2290 2291 if (oldp == NULL) { 2292 *oldlenp = 0; 2293 IFADDR_FOREACH(ifa, ifp) { 2294 if (ifa->ifa_addr->sa_family != AF_INET) 2295 continue; 2296 ifa4 = (void *)ifa; 2297 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) { 2298 *oldlenp += 2 * sizeof(struct in_addr) + 2299 sizeof(uint32_t); 2300 } 2301 } 2302 if_put(ifp, &psref); 2303 curlwp_bindx(bound); 2304 return 0; 2305 } 2306 2307 error = 0; 2308 written = 0; 2309 IFADDR_FOREACH(ifa, ifp) { 2310 if (ifa->ifa_addr->sa_family != AF_INET) 2311 continue; 2312 ifa4 = (void *)ifa; 2313 LIST_FOREACH(inm, &ifa4->ia_multiaddrs, inm_list) { 2314 if (written + 2 * sizeof(struct in_addr) + 2315 sizeof(uint32_t) > *oldlenp) 2316 goto done; 2317 error = sysctl_copyout(l, &ifa4->ia_addr.sin_addr, 2318 oldp, sizeof(struct in_addr)); 2319 if (error) 2320 goto done; 2321 oldp = (char *)oldp + sizeof(struct in_addr); 2322 written += sizeof(struct in_addr); 2323 error = sysctl_copyout(l, &inm->inm_addr, 2324 oldp, sizeof(struct in_addr)); 2325 if (error) 2326 goto done; 2327 oldp = (char *)oldp + sizeof(struct in_addr); 2328 written += sizeof(struct in_addr); 2329 tmp = inm->inm_refcount; 2330 error = sysctl_copyout(l, &tmp, oldp, sizeof(tmp)); 2331 if (error) 2332 goto done; 2333 oldp = (char *)oldp + sizeof(tmp); 2334 written += sizeof(tmp); 2335 } 2336 } 2337 done: 2338 if_put(ifp, &psref); 2339 curlwp_bindx(bound); 2340 *oldlenp = written; 2341 return error; 2342 } 2343 2344 static void 2345 in_sysctl_init(struct sysctllog **clog) 2346 { 2347 sysctl_createv(clog, 0, NULL, NULL, 2348 CTLFLAG_PERMANENT, 2349 CTLTYPE_NODE, "inet", 2350 SYSCTL_DESCR("PF_INET related settings"), 2351 NULL, 0, NULL, 0, 2352 CTL_NET, PF_INET, CTL_EOL); 2353 sysctl_createv(clog, 0, NULL, NULL, 2354 CTLFLAG_PERMANENT, 2355 CTLTYPE_NODE, "multicast", 2356 SYSCTL_DESCR("Multicast information"), 2357 in_multicast_sysctl, 0, NULL, 0, 2358 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL); 2359 sysctl_createv(clog, 0, NULL, NULL, 2360 CTLFLAG_PERMANENT, 2361 CTLTYPE_NODE, "ip", 2362 SYSCTL_DESCR("IPv4 related settings"), 2363 NULL, 0, NULL, 0, 2364 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL); 2365 2366 sysctl_createv(clog, 0, NULL, NULL, 2367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2368 CTLTYPE_INT, "subnetsarelocal", 2369 SYSCTL_DESCR("Whether logical subnets are considered " 2370 "local"), 2371 NULL, 0, &subnetsarelocal, 0, 2372 CTL_NET, PF_INET, IPPROTO_IP, 2373 IPCTL_SUBNETSARELOCAL, CTL_EOL); 2374 sysctl_createv(clog, 0, NULL, NULL, 2375 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2376 CTLTYPE_INT, "hostzerobroadcast", 2377 SYSCTL_DESCR("All zeroes address is broadcast address"), 2378 NULL, 0, &hostzeroisbroadcast, 0, 2379 CTL_NET, PF_INET, IPPROTO_IP, 2380 IPCTL_HOSTZEROBROADCAST, CTL_EOL); 2381 } 2382 2383 #if NARP > 0 2384 2385 static struct lltable * 2386 in_lltattach(struct ifnet *ifp) 2387 { 2388 struct lltable *llt; 2389 2390 llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); 2391 llt->llt_af = AF_INET; 2392 llt->llt_ifp = ifp; 2393 2394 llt->llt_lookup = in_lltable_lookup; 2395 llt->llt_create = in_lltable_create; 2396 llt->llt_delete = in_lltable_delete; 2397 llt->llt_dump_entry = in_lltable_dump_entry; 2398 llt->llt_hash = in_lltable_hash; 2399 llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; 2400 llt->llt_free_entry = in_lltable_free_entry; 2401 llt->llt_match_prefix = in_lltable_match_prefix; 2402 lltable_link(llt); 2403 2404 return (llt); 2405 } 2406 2407 #endif /* NARP > 0 */ 2408 2409 void * 2410 in_domifattach(struct ifnet *ifp) 2411 { 2412 struct in_ifinfo *ii; 2413 2414 ii = kmem_zalloc(sizeof(struct in_ifinfo), KM_SLEEP); 2415 2416 #if NARP > 0 2417 ii->ii_llt = in_lltattach(ifp); 2418 #endif 2419 2420 #ifdef IPSELSRC 2421 ii->ii_selsrc = in_selsrc_domifattach(ifp); 2422 KASSERT(ii->ii_selsrc != NULL); 2423 #endif 2424 2425 return ii; 2426 } 2427 2428 void 2429 in_domifdetach(struct ifnet *ifp, void *aux) 2430 { 2431 struct in_ifinfo *ii = aux; 2432 2433 #ifdef IPSELSRC 2434 in_selsrc_domifdetach(ifp, ii->ii_selsrc); 2435 #endif 2436 #if NARP > 0 2437 lltable_free(ii->ii_llt); 2438 #endif 2439 kmem_free(ii, sizeof(struct in_ifinfo)); 2440 } 2441