xref: /netbsd-src/sys/netinet/if_inarp.h (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: if_inarp.h,v 1.23 1996/10/09 01:15:06 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)if_ether.h	8.1 (Berkeley) 6/10/93
36  */
37 
38 /*
39  * Ethernet address - 6 octets
40  * this is only used by the ethers(3) functions.
41  */
42 struct ether_addr {
43 	u_int8_t ether_addr_octet[6];
44 };
45 
46 /*
47  * Structure of a 10Mb/s Ethernet header.
48  */
49 #define	ETHER_ADDR_LEN	6
50 
51 struct	ether_header {
52 	u_int8_t  ether_dhost[ETHER_ADDR_LEN];
53 	u_int8_t  ether_shost[ETHER_ADDR_LEN];
54 	u_int16_t ether_type;
55 };
56 
57 #define	ETHERTYPE_PUP		0x0200	/* PUP protocol */
58 #define	ETHERTYPE_IP		0x0800	/* IP protocol */
59 #define	ETHERTYPE_ARP		0x0806	/* address resolution protocol */
60 #define	ETHERTYPE_REVARP	0x8035	/* reverse addr resolution protocol */
61 
62 /*
63  * The ETHERTYPE_NTRAILER packet types starting at ETHERTYPE_TRAIL have
64  * (type-ETHERTYPE_TRAIL)*512 bytes of data followed
65  * by an ETHER type (as given above) and then the (variable-length) header.
66  */
67 #define	ETHERTYPE_TRAIL		0x1000		/* Trailer packet */
68 #define	ETHERTYPE_NTRAILER	16
69 
70 #define	ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */
71 
72 #define	ETHERMTU	1500
73 #define	ETHERMIN	(60-14)
74 
75 #ifdef _KERNEL
76 /*
77  * Macro to map an IP multicast address to an Ethernet multicast address.
78  * The high-order 25 bits of the Ethernet address are statically assigned,
79  * and the low-order 23 bits are taken from the low end of the IP address.
80  */
81 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr)				\
82 	/* struct in_addr *ipaddr; */					\
83 	/* u_int8_t enaddr[ETHER_ADDR_LEN]; */				\
84 {									\
85 	(enaddr)[0] = 0x01;						\
86 	(enaddr)[1] = 0x00;						\
87 	(enaddr)[2] = 0x5e;						\
88 	(enaddr)[3] = ((u_int8_t *)ipaddr)[1] & 0x7f;			\
89 	(enaddr)[4] = ((u_int8_t *)ipaddr)[2];				\
90 	(enaddr)[5] = ((u_int8_t *)ipaddr)[3];				\
91 }
92 #endif
93 
94 /*
95  * Ethernet Address Resolution Protocol.
96  *
97  * See RFC 826 for protocol description.  Structure below is adapted
98  * to resolving internet addresses.  Field names used correspond to
99  * RFC 826.
100  */
101 struct	ether_arp {
102 	struct	 arphdr ea_hdr;			/* fixed-size header */
103 	u_int8_t arp_sha[ETHER_ADDR_LEN];	/* sender hardware address */
104 	u_int8_t arp_spa[4];			/* sender protocol address */
105 	u_int8_t arp_tha[ETHER_ADDR_LEN];	/* target hardware address */
106 	u_int8_t arp_tpa[4];			/* target protocol address */
107 };
108 #define	arp_hrd	ea_hdr.ar_hrd
109 #define	arp_pro	ea_hdr.ar_pro
110 #define	arp_hln	ea_hdr.ar_hln
111 #define	arp_pln	ea_hdr.ar_pln
112 #define	arp_op	ea_hdr.ar_op
113 
114 /*
115  * Structure shared between the ethernet driver modules and
116  * the address resolution code.  For example, each ec_softc or il_softc
117  * begins with this structure.
118  */
119 struct	arpcom {
120 	struct	 ifnet ac_if;			/* network-visible interface */
121 	u_int8_t ac_enaddr[ETHER_ADDR_LEN];	/* ethernet hardware address */
122 	char	 ac__pad[2];			/* be nice to m68k ports */
123 	LIST_HEAD(, ether_multi) ac_multiaddrs;	/* list of ether multicast addrs */
124 	int	 ac_multicnt;			/* length of ac_multiaddrs list */
125 };
126 
127 struct llinfo_arp {
128 	LIST_ENTRY(llinfo_arp) la_list;
129 	struct	rtentry *la_rt;
130 	struct	mbuf *la_hold;		/* last packet until resolved/timeout */
131 	long	la_asked;		/* last time we QUERIED for this addr */
132 #define la_timer la_rt->rt_rmx.rmx_expire /* deletion time in seconds */
133 };
134 
135 struct sockaddr_inarp {
136 	u_int8_t  sin_len;
137 	u_int8_t  sin_family;
138 	u_int16_t sin_port;
139 	struct	  in_addr sin_addr;
140 	struct	  in_addr sin_srcaddr;
141 	u_int16_t sin_tos;
142 	u_int16_t sin_other;
143 #define SIN_PROXY 1
144 };
145 
146 /*
147  * IP and ethernet specific routing flags
148  */
149 #define	RTF_USETRAILERS	RTF_PROTO1	/* use trailers */
150 #define	RTF_ANNOUNCE	RTF_PROTO2	/* announce new arp entry */
151 
152 #ifdef	_KERNEL
153 u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN];
154 u_int8_t ether_ipmulticast_min[ETHER_ADDR_LEN];
155 u_int8_t ether_ipmulticast_max[ETHER_ADDR_LEN];
156 struct	ifqueue arpintrq;
157 
158 void	arpwhohas __P((struct arpcom *, struct in_addr *));
159 void	arpintr __P((void));
160 int	arpresolve __P((struct arpcom *,
161 	    struct rtentry *, struct mbuf *, struct sockaddr *, u_char *));
162 void	arp_ifinit __P((struct arpcom *, struct ifaddr *));
163 void	arp_rtrequest __P((int, struct rtentry *, struct sockaddr *));
164 
165 int	ether_addmulti __P((struct ifreq *, struct arpcom *));
166 int	ether_delmulti __P((struct ifreq *, struct arpcom *));
167 #endif /* _KERNEL */
168 
169 /*
170  * Ethernet multicast address structure.  There is one of these for each
171  * multicast address or range of multicast addresses that we are supposed
172  * to listen to on a particular interface.  They are kept in a linked list,
173  * rooted in the interface's arpcom structure.  (This really has nothing to
174  * do with ARP, or with the Internet address family, but this appears to be
175  * the minimally-disrupting place to put it.)
176  */
177 struct ether_multi {
178 	u_int8_t enm_addrlo[ETHER_ADDR_LEN]; /* low  or only address of range */
179 	u_int8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */
180 	struct	 arpcom *enm_ac;	/* back pointer to arpcom */
181 	u_int	 enm_refcount;		/* no. claims to this addr/range */
182 	LIST_ENTRY(ether_multi) enm_list;
183 };
184 
185 /*
186  * Structure used by macros below to remember position when stepping through
187  * all of the ether_multi records.
188  */
189 struct ether_multistep {
190 	struct ether_multi  *e_enm;
191 };
192 
193 /*
194  * Macro for looking up the ether_multi record for a given range of Ethernet
195  * multicast addresses connected to a given arpcom structure.  If no matching
196  * record is found, "enm" returns NULL.
197  */
198 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm)			\
199 	/* u_int8_t addrlo[ETHER_ADDR_LEN]; */				\
200 	/* u_int8_t addrhi[ETHER_ADDR_LEN]; */				\
201 	/* struct arpcom *ac; */					\
202 	/* struct ether_multi *enm; */					\
203 {									\
204 	for ((enm) = (ac)->ac_multiaddrs.lh_first;			\
205 	    (enm) != NULL &&						\
206 	    (bcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 ||	\
207 	     bcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0);	\
208 		(enm) = (enm)->enm_list.le_next);			\
209 }
210 
211 /*
212  * Macro to step through all of the ether_multi records, one at a time.
213  * The current position is remembered in "step", which the caller must
214  * provide.  ETHER_FIRST_MULTI(), below, must be called to initialize "step"
215  * and get the first record.  Both macros return a NULL "enm" when there
216  * are no remaining records.
217  */
218 #define ETHER_NEXT_MULTI(step, enm) \
219 	/* struct ether_multistep step; */  \
220 	/* struct ether_multi *enm; */  \
221 { \
222 	if (((enm) = (step).e_enm) != NULL) \
223 		(step).e_enm = (enm)->enm_list.le_next; \
224 }
225 
226 #define ETHER_FIRST_MULTI(step, ac, enm) \
227 	/* struct ether_multistep step; */ \
228 	/* struct arpcom *ac; */ \
229 	/* struct ether_multi *enm; */ \
230 { \
231 	(step).e_enm = (ac)->ac_multiaddrs.lh_first; \
232 	ETHER_NEXT_MULTI((step), (enm)); \
233 }
234 
235 #ifdef _KERNEL
236 
237 void arp_rtrequest __P((int, struct rtentry *, struct sockaddr *));
238 int arpresolve __P((struct arpcom *, struct rtentry *, struct mbuf *,
239 		    struct sockaddr *, u_char *));
240 void arpintr __P((void));
241 int arpioctl __P((u_long, caddr_t));
242 void arp_ifinit __P((struct arpcom *, struct ifaddr *));
243 void revarpinput __P((struct mbuf *));
244 void in_revarpinput __P((struct mbuf *));
245 void revarprequest __P((struct ifnet *));
246 int revarpwhoarewe __P((struct ifnet *, struct in_addr *, struct in_addr *));
247 int revarpwhoami __P((struct in_addr *, struct ifnet *));
248 int db_show_arptab __P((void));
249 
250 #endif
251