1 /* $NetBSD: if_inarp.h,v 1.23 1996/10/09 01:15:06 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)if_ether.h 8.1 (Berkeley) 6/10/93 36 */ 37 38 /* 39 * Ethernet address - 6 octets 40 * this is only used by the ethers(3) functions. 41 */ 42 struct ether_addr { 43 u_int8_t ether_addr_octet[6]; 44 }; 45 46 /* 47 * Structure of a 10Mb/s Ethernet header. 48 */ 49 #define ETHER_ADDR_LEN 6 50 51 struct ether_header { 52 u_int8_t ether_dhost[ETHER_ADDR_LEN]; 53 u_int8_t ether_shost[ETHER_ADDR_LEN]; 54 u_int16_t ether_type; 55 }; 56 57 #define ETHERTYPE_PUP 0x0200 /* PUP protocol */ 58 #define ETHERTYPE_IP 0x0800 /* IP protocol */ 59 #define ETHERTYPE_ARP 0x0806 /* address resolution protocol */ 60 #define ETHERTYPE_REVARP 0x8035 /* reverse addr resolution protocol */ 61 62 /* 63 * The ETHERTYPE_NTRAILER packet types starting at ETHERTYPE_TRAIL have 64 * (type-ETHERTYPE_TRAIL)*512 bytes of data followed 65 * by an ETHER type (as given above) and then the (variable-length) header. 66 */ 67 #define ETHERTYPE_TRAIL 0x1000 /* Trailer packet */ 68 #define ETHERTYPE_NTRAILER 16 69 70 #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ 71 72 #define ETHERMTU 1500 73 #define ETHERMIN (60-14) 74 75 #ifdef _KERNEL 76 /* 77 * Macro to map an IP multicast address to an Ethernet multicast address. 78 * The high-order 25 bits of the Ethernet address are statically assigned, 79 * and the low-order 23 bits are taken from the low end of the IP address. 80 */ 81 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ 82 /* struct in_addr *ipaddr; */ \ 83 /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ 84 { \ 85 (enaddr)[0] = 0x01; \ 86 (enaddr)[1] = 0x00; \ 87 (enaddr)[2] = 0x5e; \ 88 (enaddr)[3] = ((u_int8_t *)ipaddr)[1] & 0x7f; \ 89 (enaddr)[4] = ((u_int8_t *)ipaddr)[2]; \ 90 (enaddr)[5] = ((u_int8_t *)ipaddr)[3]; \ 91 } 92 #endif 93 94 /* 95 * Ethernet Address Resolution Protocol. 96 * 97 * See RFC 826 for protocol description. Structure below is adapted 98 * to resolving internet addresses. Field names used correspond to 99 * RFC 826. 100 */ 101 struct ether_arp { 102 struct arphdr ea_hdr; /* fixed-size header */ 103 u_int8_t arp_sha[ETHER_ADDR_LEN]; /* sender hardware address */ 104 u_int8_t arp_spa[4]; /* sender protocol address */ 105 u_int8_t arp_tha[ETHER_ADDR_LEN]; /* target hardware address */ 106 u_int8_t arp_tpa[4]; /* target protocol address */ 107 }; 108 #define arp_hrd ea_hdr.ar_hrd 109 #define arp_pro ea_hdr.ar_pro 110 #define arp_hln ea_hdr.ar_hln 111 #define arp_pln ea_hdr.ar_pln 112 #define arp_op ea_hdr.ar_op 113 114 /* 115 * Structure shared between the ethernet driver modules and 116 * the address resolution code. For example, each ec_softc or il_softc 117 * begins with this structure. 118 */ 119 struct arpcom { 120 struct ifnet ac_if; /* network-visible interface */ 121 u_int8_t ac_enaddr[ETHER_ADDR_LEN]; /* ethernet hardware address */ 122 char ac__pad[2]; /* be nice to m68k ports */ 123 LIST_HEAD(, ether_multi) ac_multiaddrs; /* list of ether multicast addrs */ 124 int ac_multicnt; /* length of ac_multiaddrs list */ 125 }; 126 127 struct llinfo_arp { 128 LIST_ENTRY(llinfo_arp) la_list; 129 struct rtentry *la_rt; 130 struct mbuf *la_hold; /* last packet until resolved/timeout */ 131 long la_asked; /* last time we QUERIED for this addr */ 132 #define la_timer la_rt->rt_rmx.rmx_expire /* deletion time in seconds */ 133 }; 134 135 struct sockaddr_inarp { 136 u_int8_t sin_len; 137 u_int8_t sin_family; 138 u_int16_t sin_port; 139 struct in_addr sin_addr; 140 struct in_addr sin_srcaddr; 141 u_int16_t sin_tos; 142 u_int16_t sin_other; 143 #define SIN_PROXY 1 144 }; 145 146 /* 147 * IP and ethernet specific routing flags 148 */ 149 #define RTF_USETRAILERS RTF_PROTO1 /* use trailers */ 150 #define RTF_ANNOUNCE RTF_PROTO2 /* announce new arp entry */ 151 152 #ifdef _KERNEL 153 u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN]; 154 u_int8_t ether_ipmulticast_min[ETHER_ADDR_LEN]; 155 u_int8_t ether_ipmulticast_max[ETHER_ADDR_LEN]; 156 struct ifqueue arpintrq; 157 158 void arpwhohas __P((struct arpcom *, struct in_addr *)); 159 void arpintr __P((void)); 160 int arpresolve __P((struct arpcom *, 161 struct rtentry *, struct mbuf *, struct sockaddr *, u_char *)); 162 void arp_ifinit __P((struct arpcom *, struct ifaddr *)); 163 void arp_rtrequest __P((int, struct rtentry *, struct sockaddr *)); 164 165 int ether_addmulti __P((struct ifreq *, struct arpcom *)); 166 int ether_delmulti __P((struct ifreq *, struct arpcom *)); 167 #endif /* _KERNEL */ 168 169 /* 170 * Ethernet multicast address structure. There is one of these for each 171 * multicast address or range of multicast addresses that we are supposed 172 * to listen to on a particular interface. They are kept in a linked list, 173 * rooted in the interface's arpcom structure. (This really has nothing to 174 * do with ARP, or with the Internet address family, but this appears to be 175 * the minimally-disrupting place to put it.) 176 */ 177 struct ether_multi { 178 u_int8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */ 179 u_int8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */ 180 struct arpcom *enm_ac; /* back pointer to arpcom */ 181 u_int enm_refcount; /* no. claims to this addr/range */ 182 LIST_ENTRY(ether_multi) enm_list; 183 }; 184 185 /* 186 * Structure used by macros below to remember position when stepping through 187 * all of the ether_multi records. 188 */ 189 struct ether_multistep { 190 struct ether_multi *e_enm; 191 }; 192 193 /* 194 * Macro for looking up the ether_multi record for a given range of Ethernet 195 * multicast addresses connected to a given arpcom structure. If no matching 196 * record is found, "enm" returns NULL. 197 */ 198 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \ 199 /* u_int8_t addrlo[ETHER_ADDR_LEN]; */ \ 200 /* u_int8_t addrhi[ETHER_ADDR_LEN]; */ \ 201 /* struct arpcom *ac; */ \ 202 /* struct ether_multi *enm; */ \ 203 { \ 204 for ((enm) = (ac)->ac_multiaddrs.lh_first; \ 205 (enm) != NULL && \ 206 (bcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 || \ 207 bcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \ 208 (enm) = (enm)->enm_list.le_next); \ 209 } 210 211 /* 212 * Macro to step through all of the ether_multi records, one at a time. 213 * The current position is remembered in "step", which the caller must 214 * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step" 215 * and get the first record. Both macros return a NULL "enm" when there 216 * are no remaining records. 217 */ 218 #define ETHER_NEXT_MULTI(step, enm) \ 219 /* struct ether_multistep step; */ \ 220 /* struct ether_multi *enm; */ \ 221 { \ 222 if (((enm) = (step).e_enm) != NULL) \ 223 (step).e_enm = (enm)->enm_list.le_next; \ 224 } 225 226 #define ETHER_FIRST_MULTI(step, ac, enm) \ 227 /* struct ether_multistep step; */ \ 228 /* struct arpcom *ac; */ \ 229 /* struct ether_multi *enm; */ \ 230 { \ 231 (step).e_enm = (ac)->ac_multiaddrs.lh_first; \ 232 ETHER_NEXT_MULTI((step), (enm)); \ 233 } 234 235 #ifdef _KERNEL 236 237 void arp_rtrequest __P((int, struct rtentry *, struct sockaddr *)); 238 int arpresolve __P((struct arpcom *, struct rtentry *, struct mbuf *, 239 struct sockaddr *, u_char *)); 240 void arpintr __P((void)); 241 int arpioctl __P((u_long, caddr_t)); 242 void arp_ifinit __P((struct arpcom *, struct ifaddr *)); 243 void revarpinput __P((struct mbuf *)); 244 void in_revarpinput __P((struct mbuf *)); 245 void revarprequest __P((struct ifnet *)); 246 int revarpwhoarewe __P((struct ifnet *, struct in_addr *, struct in_addr *)); 247 int revarpwhoami __P((struct in_addr *, struct ifnet *)); 248 int db_show_arptab __P((void)); 249 250 #endif 251