1 /* $NetBSD: if_arp.c,v 1.146 2009/08/12 22:16:15 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Public Access Networks Corporation ("Panix"). It was developed under 9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)if_ether.c 8.2 (Berkeley) 9/26/94 62 */ 63 64 /* 65 * Ethernet address resolution protocol. 66 * TODO: 67 * add "inuse/lock" bit (or ref. count) along with valid bit 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.146 2009/08/12 22:16:15 dyoung Exp $"); 72 73 #include "opt_ddb.h" 74 #include "opt_inet.h" 75 76 #ifdef INET 77 78 #include "bridge.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/callout.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/socket.h> 86 #include <sys/time.h> 87 #include <sys/timetc.h> 88 #include <sys/kernel.h> 89 #include <sys/errno.h> 90 #include <sys/ioctl.h> 91 #include <sys/syslog.h> 92 #include <sys/proc.h> 93 #include <sys/protosw.h> 94 #include <sys/domain.h> 95 #include <sys/sysctl.h> 96 #include <sys/socketvar.h> 97 #include <sys/percpu.h> 98 99 #include <net/ethertypes.h> 100 #include <net/if.h> 101 #include <net/if_dl.h> 102 #include <net/if_token.h> 103 #include <net/if_types.h> 104 #include <net/if_ether.h> 105 #include <net/route.h> 106 #include <net/net_stats.h> 107 108 #include <netinet/in.h> 109 #include <netinet/in_systm.h> 110 #include <netinet/in_var.h> 111 #include <netinet/ip.h> 112 #include <netinet/if_inarp.h> 113 114 #include "arcnet.h" 115 #if NARCNET > 0 116 #include <net/if_arc.h> 117 #endif 118 #include "fddi.h" 119 #if NFDDI > 0 120 #include <net/if_fddi.h> 121 #endif 122 #include "token.h" 123 #include "carp.h" 124 #if NCARP > 0 125 #include <netinet/ip_carp.h> 126 #endif 127 128 #define SIN(s) ((struct sockaddr_in *)s) 129 #define SRP(s) ((struct sockaddr_inarp *)s) 130 131 /* 132 * ARP trailer negotiation. Trailer protocol is not IP specific, 133 * but ARP request/response use IP addresses. 134 */ 135 #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL 136 137 /* timer values */ 138 int arpt_prune = (5*60*1); /* walk list every 5 minutes */ 139 int arpt_keep = (20*60); /* once resolved, good for 20 more minutes */ 140 int arpt_down = 20; /* once declared down, don't send for 20 secs */ 141 int arpt_refresh = (5*60); /* time left before refreshing */ 142 #define rt_expire rt_rmx.rmx_expire 143 #define rt_pksent rt_rmx.rmx_pksent 144 145 static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *, 146 const struct sockaddr *); 147 static void arptfree(struct llinfo_arp *); 148 static void arptimer(void *); 149 static struct llinfo_arp *arplookup1(struct mbuf *, const struct in_addr *, 150 int, int, struct rtentry *); 151 static struct llinfo_arp *arplookup(struct mbuf *, const struct in_addr *, 152 int, int); 153 static void in_arpinput(struct mbuf *); 154 155 LIST_HEAD(, llinfo_arp) llinfo_arp; 156 struct ifqueue arpintrq = { 157 .ifq_head = NULL, 158 .ifq_tail = NULL, 159 .ifq_len = 0, 160 .ifq_maxlen = 50, 161 .ifq_drops = 0, 162 }; 163 int arp_inuse, arp_allocated, arp_intimer; 164 int arp_maxtries = 5; 165 int useloopback = 1; /* use loopback interface for local traffic */ 166 int arpinit_done = 0; 167 168 static percpu_t *arpstat_percpu; 169 170 #define ARP_STAT_GETREF() _NET_STAT_GETREF(arpstat_percpu) 171 #define ARP_STAT_PUTREF() _NET_STAT_PUTREF(arpstat_percpu) 172 173 #define ARP_STATINC(x) _NET_STATINC(arpstat_percpu, x) 174 #define ARP_STATADD(x, v) _NET_STATADD(arpstat_percpu, x, v) 175 176 struct callout arptimer_ch; 177 178 /* revarp state */ 179 struct in_addr myip, srv_ip; 180 int myip_initialized = 0; 181 int revarp_in_progress = 0; 182 struct ifnet *myip_ifp = NULL; 183 184 #ifdef DDB 185 static void db_print_sa(const struct sockaddr *); 186 static void db_print_ifa(struct ifaddr *); 187 static void db_print_llinfo(void *); 188 static int db_show_rtentry(struct rtentry *, void *); 189 #endif 190 191 /* 192 * this should be elsewhere. 193 */ 194 195 static char * 196 lla_snprintf(u_int8_t *, int); 197 198 static char * 199 lla_snprintf(u_int8_t *adrp, int len) 200 { 201 #define NUMBUFS 3 202 static char buf[NUMBUFS][16*3]; 203 static int bnum = 0; 204 205 int i; 206 char *p; 207 208 p = buf[bnum]; 209 210 *p++ = hexdigits[(*adrp)>>4]; 211 *p++ = hexdigits[(*adrp++)&0xf]; 212 213 for (i=1; i<len && i<16; i++) { 214 *p++ = ':'; 215 *p++ = hexdigits[(*adrp)>>4]; 216 *p++ = hexdigits[(*adrp++)&0xf]; 217 } 218 219 *p = 0; 220 p = buf[bnum]; 221 bnum = (bnum + 1) % NUMBUFS; 222 return p; 223 } 224 225 DOMAIN_DEFINE(arpdomain); /* forward declare and add to link set */ 226 227 const struct protosw arpsw[] = { 228 { .pr_type = 0, 229 .pr_domain = &arpdomain, 230 .pr_protocol = 0, 231 .pr_flags = 0, 232 .pr_input = 0, 233 .pr_output = 0, 234 .pr_ctlinput = 0, 235 .pr_ctloutput = 0, 236 .pr_usrreq = 0, 237 .pr_init = arp_init, 238 .pr_fasttimo = 0, 239 .pr_slowtimo = 0, 240 .pr_drain = arp_drain, 241 } 242 }; 243 244 245 struct domain arpdomain = { 246 .dom_family = PF_ARP, 247 .dom_name = "arp", 248 .dom_protosw = arpsw, 249 .dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)], 250 }; 251 252 /* 253 * ARP table locking. 254 * 255 * to prevent lossage vs. the arp_drain routine (which may be called at 256 * any time, including in a device driver context), we do two things: 257 * 258 * 1) manipulation of la->la_hold is done at splnet() (for all of 259 * about two instructions). 260 * 261 * 2) manipulation of the arp table's linked list is done under the 262 * protection of the ARP_LOCK; if arp_drain() or arptimer is called 263 * while the arp table is locked, we punt and try again later. 264 */ 265 266 static int arp_locked; 267 static inline int arp_lock_try(int); 268 static inline void arp_unlock(void); 269 270 static inline int 271 arp_lock_try(int recurse) 272 { 273 int s; 274 275 /* 276 * Use splvm() -- we're blocking things that would cause 277 * mbuf allocation. 278 */ 279 s = splvm(); 280 if (!recurse && arp_locked) { 281 splx(s); 282 return 0; 283 } 284 arp_locked++; 285 splx(s); 286 return 1; 287 } 288 289 static inline void 290 arp_unlock(void) 291 { 292 int s; 293 294 s = splvm(); 295 arp_locked--; 296 splx(s); 297 } 298 299 #ifdef DIAGNOSTIC 300 #define ARP_LOCK(recurse) \ 301 do { \ 302 if (arp_lock_try(recurse) == 0) { \ 303 printf("%s:%d: arp already locked\n", __FILE__, __LINE__); \ 304 panic("arp_lock"); \ 305 } \ 306 } while (/*CONSTCOND*/ 0) 307 #define ARP_LOCK_CHECK() \ 308 do { \ 309 if (arp_locked == 0) { \ 310 printf("%s:%d: arp lock not held\n", __FILE__, __LINE__); \ 311 panic("arp lock check"); \ 312 } \ 313 } while (/*CONSTCOND*/ 0) 314 #else 315 #define ARP_LOCK(x) (void) arp_lock_try(x) 316 #define ARP_LOCK_CHECK() /* nothing */ 317 #endif 318 319 #define ARP_UNLOCK() arp_unlock() 320 321 void 322 arp_init(void) 323 { 324 325 arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS); 326 } 327 328 /* 329 * ARP protocol drain routine. Called when memory is in short supply. 330 * Called at splvm(); don't acquire softnet_lock as can be called from 331 * hardware interrupt handlers. 332 */ 333 void 334 arp_drain(void) 335 { 336 struct llinfo_arp *la, *nla; 337 int count = 0; 338 struct mbuf *mold; 339 340 KERNEL_LOCK(1, NULL); 341 342 if (arp_lock_try(0) == 0) { 343 KERNEL_UNLOCK_ONE(NULL); 344 return; 345 } 346 347 for (la = LIST_FIRST(&llinfo_arp); la != NULL; la = nla) { 348 nla = LIST_NEXT(la, la_list); 349 350 mold = la->la_hold; 351 la->la_hold = 0; 352 353 if (mold) { 354 m_freem(mold); 355 count++; 356 } 357 } 358 ARP_UNLOCK(); 359 ARP_STATADD(ARP_STAT_DFRDROPPED, count); 360 KERNEL_UNLOCK_ONE(NULL); 361 } 362 363 364 /* 365 * Timeout routine. Age arp_tab entries periodically. 366 */ 367 /* ARGSUSED */ 368 static void 369 arptimer(void *arg) 370 { 371 struct llinfo_arp *la, *nla; 372 373 mutex_enter(softnet_lock); 374 KERNEL_LOCK(1, NULL); 375 376 if (arp_lock_try(0) == 0) { 377 /* get it later.. */ 378 KERNEL_UNLOCK_ONE(NULL); 379 mutex_exit(softnet_lock); 380 return; 381 } 382 383 callout_reset(&arptimer_ch, arpt_prune * hz, arptimer, NULL); 384 for (la = LIST_FIRST(&llinfo_arp); la != NULL; la = nla) { 385 struct rtentry *rt = la->la_rt; 386 387 nla = LIST_NEXT(la, la_list); 388 if (rt->rt_expire == 0) 389 continue; 390 if ((rt->rt_expire - time_second) < arpt_refresh && 391 rt->rt_pksent > (time_second - arpt_keep)) { 392 /* 393 * If the entry has been used during since last 394 * refresh, try to renew it before deleting. 395 */ 396 arprequest(rt->rt_ifp, 397 &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, 398 &satocsin(rt_getkey(rt))->sin_addr, 399 CLLADDR(rt->rt_ifp->if_sadl)); 400 } else if (rt->rt_expire <= time_second) 401 arptfree(la); /* timer has expired; clear */ 402 } 403 404 ARP_UNLOCK(); 405 406 KERNEL_UNLOCK_ONE(NULL); 407 mutex_exit(softnet_lock); 408 } 409 410 /* 411 * We set the gateway for RTF_CLONING routes to a "prototype" 412 * link-layer sockaddr whose interface type (if_type) and interface 413 * index (if_index) fields are prepared. 414 */ 415 static struct sockaddr * 416 arp_setgate(struct rtentry *rt, struct sockaddr *gate, 417 const struct sockaddr *netmask) 418 { 419 const struct ifnet *ifp = rt->rt_ifp; 420 uint8_t namelen = strlen(ifp->if_xname); 421 uint8_t addrlen = ifp->if_addrlen; 422 423 /* 424 * XXX: If this is a manually added route to interface 425 * such as older version of routed or gated might provide, 426 * restore cloning bit. 427 */ 428 if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL && 429 satocsin(netmask)->sin_addr.s_addr != 0xffffffff) 430 rt->rt_flags |= RTF_CLONING; 431 if (rt->rt_flags & RTF_CLONING) { 432 union { 433 struct sockaddr sa; 434 struct sockaddr_storage ss; 435 struct sockaddr_dl sdl; 436 } u; 437 /* 438 * Case 1: This route should come from a route to iface. 439 */ 440 sockaddr_dl_init(&u.sdl, sizeof(u.ss), 441 ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen); 442 rt_setgate(rt, &u.sa); 443 gate = rt->rt_gateway; 444 } 445 return gate; 446 } 447 448 /* 449 * Parallel to llc_rtrequest. 450 */ 451 void 452 arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 453 { 454 struct sockaddr *gate = rt->rt_gateway; 455 struct llinfo_arp *la = (struct llinfo_arp *)rt->rt_llinfo; 456 size_t allocsize; 457 struct mbuf *mold; 458 int s; 459 struct in_ifaddr *ia; 460 struct ifaddr *ifa; 461 struct ifnet *ifp = rt->rt_ifp; 462 463 if (!arpinit_done) { 464 arpinit_done = 1; 465 /* 466 * We generate expiration times from time_second 467 * so avoid accidentally creating permanent routes. 468 */ 469 if (time_second == 0) { 470 struct timespec ts; 471 ts.tv_sec = 1; 472 ts.tv_nsec = 0; 473 tc_setclock(&ts); 474 } 475 callout_init(&arptimer_ch, CALLOUT_MPSAFE); 476 callout_reset(&arptimer_ch, hz, arptimer, NULL); 477 } 478 479 if (req == RTM_LLINFO_UPD) { 480 struct in_addr *in; 481 482 if ((ifa = info->rti_ifa) == NULL) 483 return; 484 485 in = &ifatoia(ifa)->ia_addr.sin_addr; 486 487 arprequest(ifa->ifa_ifp, in, in, 488 CLLADDR(ifa->ifa_ifp->if_sadl)); 489 return; 490 } 491 492 if ((rt->rt_flags & RTF_GATEWAY) != 0) { 493 if (req != RTM_ADD) 494 return; 495 496 /* 497 * linklayers with particular link MTU limitation. 498 */ 499 switch(ifp->if_type) { 500 #if NFDDI > 0 501 case IFT_FDDI: 502 if (ifp->if_mtu > FDDIIPMTU) 503 rt->rt_rmx.rmx_mtu = FDDIIPMTU; 504 break; 505 #endif 506 #if NARC > 0 507 case IFT_ARCNET: 508 { 509 int arcipifmtu; 510 511 if (ifp->if_flags & IFF_LINK0) 512 arcipifmtu = arc_ipmtu; 513 else 514 arcipifmtu = ARCMTU; 515 if (ifp->if_mtu > arcipifmtu) 516 rt->rt_rmx.rmx_mtu = arcipifmtu; 517 break; 518 } 519 #endif 520 } 521 return; 522 } 523 524 ARP_LOCK(1); /* we may already be locked here. */ 525 526 switch (req) { 527 case RTM_SETGATE: 528 gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); 529 break; 530 case RTM_ADD: 531 gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); 532 if (rt->rt_flags & RTF_CLONING) { 533 /* 534 * Give this route an expiration time, even though 535 * it's a "permanent" route, so that routes cloned 536 * from it do not need their expiration time set. 537 */ 538 rt->rt_expire = time_second; 539 /* 540 * linklayers with particular link MTU limitation. 541 */ 542 switch (ifp->if_type) { 543 #if NFDDI > 0 544 case IFT_FDDI: 545 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && 546 (rt->rt_rmx.rmx_mtu > FDDIIPMTU || 547 (rt->rt_rmx.rmx_mtu == 0 && 548 ifp->if_mtu > FDDIIPMTU))) 549 rt->rt_rmx.rmx_mtu = FDDIIPMTU; 550 break; 551 #endif 552 #if NARC > 0 553 case IFT_ARCNET: 554 { 555 int arcipifmtu; 556 if (ifp->if_flags & IFF_LINK0) 557 arcipifmtu = arc_ipmtu; 558 else 559 arcipifmtu = ARCMTU; 560 561 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && 562 (rt->rt_rmx.rmx_mtu > arcipifmtu || 563 (rt->rt_rmx.rmx_mtu == 0 && 564 ifp->if_mtu > arcipifmtu))) 565 rt->rt_rmx.rmx_mtu = arcipifmtu; 566 break; 567 } 568 #endif 569 } 570 break; 571 } 572 /* Announce a new entry if requested. */ 573 if (rt->rt_flags & RTF_ANNOUNCE) { 574 arprequest(ifp, 575 &satocsin(rt_getkey(rt))->sin_addr, 576 &satocsin(rt_getkey(rt))->sin_addr, 577 CLLADDR(satocsdl(gate))); 578 } 579 /*FALLTHROUGH*/ 580 case RTM_RESOLVE: 581 if (gate->sa_family != AF_LINK || 582 gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) { 583 log(LOG_DEBUG, "arp_rtrequest: bad gateway value\n"); 584 break; 585 } 586 satosdl(gate)->sdl_type = ifp->if_type; 587 satosdl(gate)->sdl_index = ifp->if_index; 588 if (la != NULL) 589 break; /* This happens on a route change */ 590 /* 591 * Case 2: This route may come from cloning, or a manual route 592 * add with a LL address. 593 */ 594 switch (ifp->if_type) { 595 #if NTOKEN > 0 596 case IFT_ISO88025: 597 allocsize = sizeof(*la) + sizeof(struct token_rif); 598 break; 599 #endif /* NTOKEN > 0 */ 600 default: 601 allocsize = sizeof(*la); 602 } 603 R_Malloc(la, struct llinfo_arp *, allocsize); 604 rt->rt_llinfo = (void *)la; 605 if (la == NULL) { 606 log(LOG_DEBUG, "arp_rtrequest: malloc failed\n"); 607 break; 608 } 609 arp_inuse++, arp_allocated++; 610 memset(la, 0, allocsize); 611 la->la_rt = rt; 612 rt->rt_flags |= RTF_LLINFO; 613 LIST_INSERT_HEAD(&llinfo_arp, la, la_list); 614 615 INADDR_TO_IA(satocsin(rt_getkey(rt))->sin_addr, ia); 616 while (ia && ia->ia_ifp != ifp) 617 NEXT_IA_WITH_SAME_ADDR(ia); 618 if (ia) { 619 /* 620 * This test used to be 621 * if (lo0ifp->if_flags & IFF_UP) 622 * It allowed local traffic to be forced through 623 * the hardware by configuring the loopback down. 624 * However, it causes problems during network 625 * configuration for boards that can't receive 626 * packets they send. It is now necessary to clear 627 * "useloopback" and remove the route to force 628 * traffic out to the hardware. 629 * 630 * In 4.4BSD, the above "if" statement checked 631 * rt->rt_ifa against rt_getkey(rt). It was changed 632 * to the current form so that we can provide a 633 * better support for multiple IPv4 addresses on a 634 * interface. 635 */ 636 rt->rt_expire = 0; 637 if (sockaddr_dl_init(satosdl(gate), gate->sa_len, 638 ifp->if_index, ifp->if_type, NULL, 0, 639 CLLADDR(ifp->if_sadl), ifp->if_addrlen) == NULL) { 640 panic("%s(%s): sockaddr_dl_init cannot fail", 641 __func__, ifp->if_xname); 642 } 643 if (useloopback) 644 ifp = rt->rt_ifp = lo0ifp; 645 /* 646 * make sure to set rt->rt_ifa to the interface 647 * address we are using, otherwise we will have trouble 648 * with source address selection. 649 */ 650 ifa = &ia->ia_ifa; 651 if (ifa != rt->rt_ifa) 652 rt_replace_ifa(rt, ifa); 653 } 654 break; 655 656 case RTM_DELETE: 657 if (la == NULL) 658 break; 659 arp_inuse--; 660 LIST_REMOVE(la, la_list); 661 rt->rt_llinfo = NULL; 662 rt->rt_flags &= ~RTF_LLINFO; 663 664 s = splnet(); 665 mold = la->la_hold; 666 la->la_hold = 0; 667 splx(s); 668 669 if (mold) 670 m_freem(mold); 671 672 Free((void *)la); 673 } 674 ARP_UNLOCK(); 675 } 676 677 /* 678 * Broadcast an ARP request. Caller specifies: 679 * - arp header source ip address 680 * - arp header target ip address 681 * - arp header source ethernet address 682 */ 683 void 684 arprequest(struct ifnet *ifp, 685 const struct in_addr *sip, const struct in_addr *tip, 686 const u_int8_t *enaddr) 687 { 688 struct mbuf *m; 689 struct arphdr *ah; 690 struct sockaddr sa; 691 uint64_t *arps; 692 693 if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) 694 return; 695 MCLAIM(m, &arpdomain.dom_mowner); 696 switch (ifp->if_type) { 697 case IFT_IEEE1394: 698 m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 699 ifp->if_addrlen; 700 break; 701 default: 702 m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 703 2 * ifp->if_addrlen; 704 break; 705 } 706 m->m_pkthdr.len = m->m_len; 707 MH_ALIGN(m, m->m_len); 708 ah = mtod(m, struct arphdr *); 709 memset(ah, 0, m->m_len); 710 switch (ifp->if_type) { 711 case IFT_IEEE1394: /* RFC2734 */ 712 /* fill it now for ar_tpa computation */ 713 ah->ar_hrd = htons(ARPHRD_IEEE1394); 714 break; 715 default: 716 /* ifp->if_output will fill ar_hrd */ 717 break; 718 } 719 ah->ar_pro = htons(ETHERTYPE_IP); 720 ah->ar_hln = ifp->if_addrlen; /* hardware address length */ 721 ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ 722 ah->ar_op = htons(ARPOP_REQUEST); 723 memcpy(ar_sha(ah), enaddr, ah->ar_hln); 724 memcpy(ar_spa(ah), sip, ah->ar_pln); 725 memcpy(ar_tpa(ah), tip, ah->ar_pln); 726 sa.sa_family = AF_ARP; 727 sa.sa_len = 2; 728 m->m_flags |= M_BCAST; 729 arps = ARP_STAT_GETREF(); 730 arps[ARP_STAT_SNDTOTAL]++; 731 arps[ARP_STAT_SENDREQUEST]++; 732 ARP_STAT_PUTREF(); 733 (*ifp->if_output)(ifp, m, &sa, NULL); 734 } 735 736 /* 737 * Resolve an IP address into an ethernet address. If success, 738 * desten is filled in. If there is no entry in arptab, 739 * set one up and broadcast a request for the IP address. 740 * Hold onto this mbuf and resend it once the address 741 * is finally resolved. A return value of 1 indicates 742 * that desten has been filled in and the packet should be sent 743 * normally; a 0 return indicates that the packet has been 744 * taken over here, either now or for later transmission. 745 */ 746 int 747 arpresolve(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m, 748 const struct sockaddr *dst, u_char *desten) 749 { 750 struct llinfo_arp *la; 751 const struct sockaddr_dl *sdl; 752 struct mbuf *mold; 753 int s; 754 755 if ((la = arplookup1(m, &satocsin(dst)->sin_addr, 1, 0, rt)) != NULL) 756 rt = la->la_rt; 757 758 if (la == NULL || rt == NULL) { 759 ARP_STATINC(ARP_STAT_ALLOCFAIL); 760 log(LOG_DEBUG, 761 "arpresolve: can't allocate llinfo on %s for %s\n", 762 ifp->if_xname, in_fmtaddr(satocsin(dst)->sin_addr)); 763 m_freem(m); 764 return 0; 765 } 766 sdl = satocsdl(rt->rt_gateway); 767 /* 768 * Check the address family and length is valid, the address 769 * is resolved; otherwise, try to resolve. 770 */ 771 if ((rt->rt_expire == 0 || rt->rt_expire > time_second) && 772 sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0) { 773 memcpy(desten, CLLADDR(sdl), 774 min(sdl->sdl_alen, ifp->if_addrlen)); 775 rt->rt_pksent = time_second; /* Time for last pkt sent */ 776 return 1; 777 } 778 /* 779 * There is an arptab entry, but no ethernet address 780 * response yet. Replace the held mbuf with this 781 * latest one. 782 */ 783 784 ARP_STATINC(ARP_STAT_DFRTOTAL); 785 s = splnet(); 786 mold = la->la_hold; 787 la->la_hold = m; 788 splx(s); 789 790 if (mold) { 791 ARP_STATINC(ARP_STAT_DFRDROPPED); 792 m_freem(mold); 793 } 794 795 /* 796 * Re-send the ARP request when appropriate. 797 */ 798 #ifdef DIAGNOSTIC 799 if (rt->rt_expire == 0) { 800 /* This should never happen. (Should it? -gwr) */ 801 printf("arpresolve: unresolved and rt_expire == 0\n"); 802 /* Set expiration time to now (expired). */ 803 rt->rt_expire = time_second; 804 } 805 #endif 806 if (rt->rt_expire) { 807 rt->rt_flags &= ~RTF_REJECT; 808 if (la->la_asked == 0 || rt->rt_expire != time_second) { 809 rt->rt_expire = time_second; 810 if (la->la_asked++ < arp_maxtries) { 811 arprequest(ifp, 812 &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, 813 &satocsin(dst)->sin_addr, 814 #if NCARP > 0 815 (rt->rt_ifp->if_type == IFT_CARP) ? 816 CLLADDR(rt->rt_ifp->if_sadl): 817 #endif 818 CLLADDR(ifp->if_sadl)); 819 } else { 820 rt->rt_flags |= RTF_REJECT; 821 rt->rt_expire += arpt_down; 822 la->la_asked = 0; 823 } 824 } 825 } 826 return 0; 827 } 828 829 /* 830 * Common length and type checks are done here, 831 * then the protocol-specific routine is called. 832 */ 833 void 834 arpintr(void) 835 { 836 struct mbuf *m; 837 struct arphdr *ar; 838 int s; 839 int arplen; 840 841 mutex_enter(softnet_lock); 842 KERNEL_LOCK(1, NULL); 843 while (arpintrq.ifq_head) { 844 s = splnet(); 845 IF_DEQUEUE(&arpintrq, m); 846 splx(s); 847 if (m == 0 || (m->m_flags & M_PKTHDR) == 0) 848 panic("arpintr"); 849 850 MCLAIM(m, &arpdomain.dom_mowner); 851 ARP_STATINC(ARP_STAT_RCVTOTAL); 852 853 /* 854 * First, make sure we have at least struct arphdr. 855 */ 856 if (m->m_len < sizeof(struct arphdr) || 857 (ar = mtod(m, struct arphdr *)) == NULL) 858 goto badlen; 859 860 switch (m->m_pkthdr.rcvif->if_type) { 861 case IFT_IEEE1394: 862 arplen = sizeof(struct arphdr) + 863 ar->ar_hln + 2 * ar->ar_pln; 864 break; 865 default: 866 arplen = sizeof(struct arphdr) + 867 2 * ar->ar_hln + 2 * ar->ar_pln; 868 break; 869 } 870 871 if (/* XXX ntohs(ar->ar_hrd) == ARPHRD_ETHER && */ 872 m->m_len >= arplen) 873 switch (ntohs(ar->ar_pro)) { 874 case ETHERTYPE_IP: 875 case ETHERTYPE_IPTRAILERS: 876 in_arpinput(m); 877 continue; 878 default: 879 ARP_STATINC(ARP_STAT_RCVBADPROTO); 880 } 881 else { 882 badlen: 883 ARP_STATINC(ARP_STAT_RCVBADLEN); 884 } 885 m_freem(m); 886 } 887 KERNEL_UNLOCK_ONE(NULL); 888 mutex_exit(softnet_lock); 889 } 890 891 /* 892 * ARP for Internet protocols on 10 Mb/s Ethernet. 893 * Algorithm is that given in RFC 826. 894 * In addition, a sanity check is performed on the sender 895 * protocol address, to catch impersonators. 896 * We no longer handle negotiations for use of trailer protocol: 897 * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent 898 * along with IP replies if we wanted trailers sent to us, 899 * and also sent them in response to IP replies. 900 * This allowed either end to announce the desire to receive 901 * trailer packets. 902 * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, 903 * but formerly didn't normally send requests. 904 */ 905 static void 906 in_arpinput(struct mbuf *m) 907 { 908 struct arphdr *ah; 909 struct ifnet *ifp = m->m_pkthdr.rcvif; 910 struct llinfo_arp *la = NULL; 911 struct rtentry *rt; 912 struct in_ifaddr *ia; 913 #if NBRIDGE > 0 914 struct in_ifaddr *bridge_ia = NULL; 915 #endif 916 #if NCARP > 0 917 u_int32_t count = 0, index = 0; 918 #endif 919 struct sockaddr_dl *sdl; 920 struct sockaddr sa; 921 struct in_addr isaddr, itaddr, myaddr; 922 int op; 923 struct mbuf *mold; 924 void *tha; 925 int s; 926 uint64_t *arps; 927 928 if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT))) 929 goto out; 930 ah = mtod(m, struct arphdr *); 931 op = ntohs(ah->ar_op); 932 933 /* 934 * Fix up ah->ar_hrd if necessary, before using ar_tha() or 935 * ar_tpa(). 936 */ 937 switch (ifp->if_type) { 938 case IFT_IEEE1394: 939 if (ntohs(ah->ar_hrd) == ARPHRD_IEEE1394) 940 ; 941 else { 942 /* XXX this is to make sure we compute ar_tha right */ 943 /* XXX check ar_hrd more strictly? */ 944 ah->ar_hrd = htons(ARPHRD_IEEE1394); 945 } 946 break; 947 default: 948 /* XXX check ar_hrd? */ 949 break; 950 } 951 952 memcpy(&isaddr, ar_spa(ah), sizeof (isaddr)); 953 memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr)); 954 955 if (m->m_flags & (M_BCAST|M_MCAST)) 956 ARP_STATINC(ARP_STAT_RCVMCAST); 957 958 /* 959 * If the target IP address is zero, ignore the packet. 960 * This prevents the code below from tring to answer 961 * when we are using IP address zero (booting). 962 */ 963 if (in_nullhost(itaddr)) { 964 ARP_STATINC(ARP_STAT_RCVZEROTPA); 965 goto out; 966 } 967 968 /* 969 * If the source IP address is zero, this is most likely a 970 * confused host trying to use IP address zero. (Windoze?) 971 * XXX: Should we bother trying to reply to these? 972 */ 973 if (in_nullhost(isaddr)) { 974 ARP_STATINC(ARP_STAT_RCVZEROSPA); 975 goto out; 976 } 977 978 /* 979 * Search for a matching interface address 980 * or any address on the interface to use 981 * as a dummy address in the rest of this function 982 */ 983 984 INADDR_TO_IA(itaddr, ia); 985 while (ia != NULL) { 986 #if NCARP > 0 987 if (ia->ia_ifp->if_type == IFT_CARP && 988 ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) == 989 (IFF_UP|IFF_RUNNING))) { 990 index++; 991 if (ia->ia_ifp == m->m_pkthdr.rcvif && 992 carp_iamatch(ia, ar_sha(ah), 993 &count, index)) { 994 break; 995 } 996 } else 997 #endif 998 if (ia->ia_ifp == m->m_pkthdr.rcvif) 999 break; 1000 #if NBRIDGE > 0 1001 /* 1002 * If the interface we received the packet on 1003 * is part of a bridge, check to see if we need 1004 * to "bridge" the packet to ourselves at this 1005 * layer. Note we still prefer a perfect match, 1006 * but allow this weaker match if necessary. 1007 */ 1008 if (m->m_pkthdr.rcvif->if_bridge != NULL && 1009 m->m_pkthdr.rcvif->if_bridge == ia->ia_ifp->if_bridge) 1010 bridge_ia = ia; 1011 #endif /* NBRIDGE > 0 */ 1012 1013 NEXT_IA_WITH_SAME_ADDR(ia); 1014 } 1015 1016 #if NBRIDGE > 0 1017 if (ia == NULL && bridge_ia != NULL) { 1018 ia = bridge_ia; 1019 ifp = bridge_ia->ia_ifp; 1020 } 1021 #endif 1022 1023 if (ia == NULL) { 1024 INADDR_TO_IA(isaddr, ia); 1025 while ((ia != NULL) && ia->ia_ifp != m->m_pkthdr.rcvif) 1026 NEXT_IA_WITH_SAME_ADDR(ia); 1027 1028 if (ia == NULL) { 1029 IFP_TO_IA(ifp, ia); 1030 if (ia == NULL) { 1031 ARP_STATINC(ARP_STAT_RCVNOINT); 1032 goto out; 1033 } 1034 } 1035 } 1036 1037 myaddr = ia->ia_addr.sin_addr; 1038 1039 /* XXX checks for bridge case? */ 1040 if (!memcmp(ar_sha(ah), CLLADDR(ifp->if_sadl), ifp->if_addrlen)) { 1041 ARP_STATINC(ARP_STAT_RCVLOCALSHA); 1042 goto out; /* it's from me, ignore it. */ 1043 } 1044 1045 /* XXX checks for bridge case? */ 1046 if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) { 1047 ARP_STATINC(ARP_STAT_RCVBCASTSHA); 1048 log(LOG_ERR, 1049 "%s: arp: link address is broadcast for IP address %s!\n", 1050 ifp->if_xname, in_fmtaddr(isaddr)); 1051 goto out; 1052 } 1053 1054 if (in_hosteq(isaddr, myaddr)) { 1055 ARP_STATINC(ARP_STAT_RCVLOCALSPA); 1056 log(LOG_ERR, 1057 "duplicate IP address %s sent from link address %s\n", 1058 in_fmtaddr(isaddr), lla_snprintf(ar_sha(ah), ah->ar_hln)); 1059 itaddr = myaddr; 1060 goto reply; 1061 } 1062 la = arplookup(m, &isaddr, in_hosteq(itaddr, myaddr), 0); 1063 if (la != NULL && (rt = la->la_rt) && (sdl = satosdl(rt->rt_gateway))) { 1064 if (sdl->sdl_alen && 1065 memcmp(ar_sha(ah), CLLADDR(sdl), sdl->sdl_alen)) { 1066 if (rt->rt_flags & RTF_STATIC) { 1067 ARP_STATINC(ARP_STAT_RCVOVERPERM); 1068 log(LOG_INFO, 1069 "%s tried to overwrite permanent arp info" 1070 " for %s\n", 1071 lla_snprintf(ar_sha(ah), ah->ar_hln), 1072 in_fmtaddr(isaddr)); 1073 goto out; 1074 } else if (rt->rt_ifp != ifp) { 1075 ARP_STATINC(ARP_STAT_RCVOVERINT); 1076 log(LOG_INFO, 1077 "%s on %s tried to overwrite " 1078 "arp info for %s on %s\n", 1079 lla_snprintf(ar_sha(ah), ah->ar_hln), 1080 ifp->if_xname, in_fmtaddr(isaddr), 1081 rt->rt_ifp->if_xname); 1082 goto out; 1083 } else { 1084 ARP_STATINC(ARP_STAT_RCVOVER); 1085 log(LOG_INFO, 1086 "arp info overwritten for %s by %s\n", 1087 in_fmtaddr(isaddr), 1088 lla_snprintf(ar_sha(ah), ah->ar_hln)); 1089 } 1090 } 1091 /* 1092 * sanity check for the address length. 1093 * XXX this does not work for protocols with variable address 1094 * length. -is 1095 */ 1096 if (sdl->sdl_alen && 1097 sdl->sdl_alen != ah->ar_hln) { 1098 ARP_STATINC(ARP_STAT_RCVLENCHG); 1099 log(LOG_WARNING, 1100 "arp from %s: new addr len %d, was %d\n", 1101 in_fmtaddr(isaddr), ah->ar_hln, sdl->sdl_alen); 1102 } 1103 if (ifp->if_addrlen != ah->ar_hln) { 1104 ARP_STATINC(ARP_STAT_RCVBADLEN); 1105 log(LOG_WARNING, 1106 "arp from %s: addr len: new %d, i/f %d (ignored)\n", 1107 in_fmtaddr(isaddr), ah->ar_hln, 1108 ifp->if_addrlen); 1109 goto reply; 1110 } 1111 #if NTOKEN > 0 1112 /* 1113 * XXX uses m_data and assumes the complete answer including 1114 * XXX token-ring headers is in the same buf 1115 */ 1116 if (ifp->if_type == IFT_ISO88025) { 1117 struct token_header *trh; 1118 1119 trh = (struct token_header *)M_TRHSTART(m); 1120 if (trh->token_shost[0] & TOKEN_RI_PRESENT) { 1121 struct token_rif *rif; 1122 size_t riflen; 1123 1124 rif = TOKEN_RIF(trh); 1125 riflen = (ntohs(rif->tr_rcf) & 1126 TOKEN_RCF_LEN_MASK) >> 8; 1127 1128 if (riflen > 2 && 1129 riflen < sizeof(struct token_rif) && 1130 (riflen & 1) == 0) { 1131 rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION); 1132 rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK); 1133 memcpy(TOKEN_RIF(la), rif, riflen); 1134 } 1135 } 1136 } 1137 #endif /* NTOKEN > 0 */ 1138 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, ar_sha(ah), 1139 ah->ar_hln); 1140 if (rt->rt_expire) 1141 rt->rt_expire = time_second + arpt_keep; 1142 rt->rt_flags &= ~RTF_REJECT; 1143 la->la_asked = 0; 1144 1145 s = splnet(); 1146 mold = la->la_hold; 1147 la->la_hold = 0; 1148 splx(s); 1149 1150 if (mold) { 1151 ARP_STATINC(ARP_STAT_DFRSENT); 1152 (*ifp->if_output)(ifp, mold, rt_getkey(rt), rt); 1153 } 1154 } 1155 reply: 1156 if (op != ARPOP_REQUEST) { 1157 if (op == ARPOP_REPLY) 1158 ARP_STATINC(ARP_STAT_RCVREPLY); 1159 out: 1160 m_freem(m); 1161 return; 1162 } 1163 ARP_STATINC(ARP_STAT_RCVREQUEST); 1164 if (in_hosteq(itaddr, myaddr)) { 1165 /* I am the target */ 1166 tha = ar_tha(ah); 1167 if (tha) 1168 memcpy(tha, ar_sha(ah), ah->ar_hln); 1169 memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); 1170 } else { 1171 la = arplookup(m, &itaddr, 0, SIN_PROXY); 1172 if (la == NULL) 1173 goto out; 1174 rt = la->la_rt; 1175 if (rt->rt_ifp->if_type == IFT_CARP && 1176 m->m_pkthdr.rcvif->if_type != IFT_CARP) 1177 goto out; 1178 tha = ar_tha(ah); 1179 if (tha) 1180 memcpy(tha, ar_sha(ah), ah->ar_hln); 1181 sdl = satosdl(rt->rt_gateway); 1182 memcpy(ar_sha(ah), CLLADDR(sdl), ah->ar_hln); 1183 } 1184 1185 memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln); 1186 memcpy(ar_spa(ah), &itaddr, ah->ar_pln); 1187 ah->ar_op = htons(ARPOP_REPLY); 1188 ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */ 1189 switch (ifp->if_type) { 1190 case IFT_IEEE1394: 1191 /* 1192 * ieee1394 arp reply is broadcast 1193 */ 1194 m->m_flags &= ~M_MCAST; 1195 m->m_flags |= M_BCAST; 1196 m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln; 1197 break; 1198 1199 default: 1200 m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */ 1201 m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln); 1202 break; 1203 } 1204 m->m_pkthdr.len = m->m_len; 1205 sa.sa_family = AF_ARP; 1206 sa.sa_len = 2; 1207 arps = ARP_STAT_GETREF(); 1208 arps[ARP_STAT_SNDTOTAL]++; 1209 arps[ARP_STAT_SNDREPLY]++; 1210 ARP_STAT_PUTREF(); 1211 (*ifp->if_output)(ifp, m, &sa, (struct rtentry *)0); 1212 return; 1213 } 1214 1215 /* 1216 * Free an arp entry. 1217 */ 1218 static void arptfree(struct llinfo_arp *la) 1219 { 1220 struct rtentry *rt = la->la_rt; 1221 struct sockaddr_dl *sdl; 1222 1223 ARP_LOCK_CHECK(); 1224 1225 if (rt == NULL) 1226 panic("arptfree"); 1227 if (rt->rt_refcnt > 0 && (sdl = satosdl(rt->rt_gateway)) && 1228 sdl->sdl_family == AF_LINK) { 1229 sdl->sdl_alen = 0; 1230 la->la_asked = 0; 1231 rt->rt_flags &= ~RTF_REJECT; 1232 return; 1233 } 1234 rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL); 1235 } 1236 1237 static struct llinfo_arp * 1238 arplookup(struct mbuf *m, const struct in_addr *addr, int create, int proxy) 1239 { 1240 return arplookup1(m, addr, create, proxy, NULL); 1241 } 1242 1243 /* 1244 * Lookup or enter a new address in arptab. 1245 */ 1246 static struct llinfo_arp * 1247 arplookup1(struct mbuf *m, const struct in_addr *addr, int create, int proxy, 1248 struct rtentry *rt0) 1249 { 1250 struct arphdr *ah; 1251 struct ifnet *ifp = m->m_pkthdr.rcvif; 1252 struct rtentry *rt; 1253 struct sockaddr_inarp sin; 1254 const char *why = NULL; 1255 1256 ah = mtod(m, struct arphdr *); 1257 if (rt0 == NULL) { 1258 memset(&sin, 0, sizeof(sin)); 1259 sin.sin_len = sizeof(sin); 1260 sin.sin_family = AF_INET; 1261 sin.sin_addr = *addr; 1262 sin.sin_other = proxy ? SIN_PROXY : 0; 1263 rt = rtalloc1(sintosa(&sin), create); 1264 if (rt == NULL) 1265 return NULL; 1266 rt->rt_refcnt--; 1267 } else 1268 rt = rt0; 1269 1270 #define IS_LLINFO(__rt) \ 1271 (((__rt)->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) == RTF_LLINFO && \ 1272 (__rt)->rt_gateway->sa_family == AF_LINK) 1273 1274 1275 if (IS_LLINFO(rt)) 1276 return (struct llinfo_arp *)rt->rt_llinfo; 1277 1278 if (create) { 1279 if (rt->rt_flags & RTF_GATEWAY) 1280 why = "host is not on local network"; 1281 else if ((rt->rt_flags & RTF_LLINFO) == 0) { 1282 ARP_STATINC(ARP_STAT_ALLOCFAIL); 1283 why = "could not allocate llinfo"; 1284 } else 1285 why = "gateway route is not ours"; 1286 log(LOG_DEBUG, "arplookup: unable to enter address" 1287 " for %s@%s on %s (%s)\n", 1288 in_fmtaddr(*addr), lla_snprintf(ar_sha(ah), ah->ar_hln), 1289 (ifp) ? ifp->if_xname : "null", why); 1290 if (rt->rt_refcnt <= 0 && (rt->rt_flags & RTF_CLONED) != 0) { 1291 rtrequest(RTM_DELETE, rt_getkey(rt), 1292 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); 1293 } 1294 } 1295 return NULL; 1296 } 1297 1298 int 1299 arpioctl(u_long cmd, void *data) 1300 { 1301 1302 return EOPNOTSUPP; 1303 } 1304 1305 void 1306 arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa) 1307 { 1308 struct in_addr *ip; 1309 1310 /* 1311 * Warn the user if another station has this IP address, 1312 * but only if the interface IP address is not zero. 1313 */ 1314 ip = &IA_SIN(ifa)->sin_addr; 1315 if (!in_nullhost(*ip)) 1316 arprequest(ifp, ip, ip, CLLADDR(ifp->if_sadl)); 1317 1318 ifa->ifa_rtrequest = arp_rtrequest; 1319 ifa->ifa_flags |= RTF_CLONING; 1320 } 1321 1322 /* 1323 * Called from 10 Mb/s Ethernet interrupt handlers 1324 * when ether packet type ETHERTYPE_REVARP 1325 * is received. Common length and type checks are done here, 1326 * then the protocol-specific routine is called. 1327 */ 1328 void 1329 revarpinput(struct mbuf *m) 1330 { 1331 struct arphdr *ar; 1332 1333 if (m->m_len < sizeof(struct arphdr)) 1334 goto out; 1335 ar = mtod(m, struct arphdr *); 1336 #if 0 /* XXX I don't think we need this... and it will prevent other LL */ 1337 if (ntohs(ar->ar_hrd) != ARPHRD_ETHER) 1338 goto out; 1339 #endif 1340 if (m->m_len < sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln)) 1341 goto out; 1342 switch (ntohs(ar->ar_pro)) { 1343 case ETHERTYPE_IP: 1344 case ETHERTYPE_IPTRAILERS: 1345 in_revarpinput(m); 1346 return; 1347 1348 default: 1349 break; 1350 } 1351 out: 1352 m_freem(m); 1353 } 1354 1355 /* 1356 * RARP for Internet protocols on 10 Mb/s Ethernet. 1357 * Algorithm is that given in RFC 903. 1358 * We are only using for bootstrap purposes to get an ip address for one of 1359 * our interfaces. Thus we support no user-interface. 1360 * 1361 * Since the contents of the RARP reply are specific to the interface that 1362 * sent the request, this code must ensure that they are properly associated. 1363 * 1364 * Note: also supports ARP via RARP packets, per the RFC. 1365 */ 1366 void 1367 in_revarpinput(struct mbuf *m) 1368 { 1369 struct ifnet *ifp; 1370 struct arphdr *ah; 1371 void *tha; 1372 int op; 1373 1374 ah = mtod(m, struct arphdr *); 1375 op = ntohs(ah->ar_op); 1376 1377 switch (m->m_pkthdr.rcvif->if_type) { 1378 case IFT_IEEE1394: 1379 /* ARP without target hardware address is not supported */ 1380 goto out; 1381 default: 1382 break; 1383 } 1384 1385 switch (op) { 1386 case ARPOP_REQUEST: 1387 case ARPOP_REPLY: /* per RFC */ 1388 in_arpinput(m); 1389 return; 1390 case ARPOP_REVREPLY: 1391 break; 1392 case ARPOP_REVREQUEST: /* handled by rarpd(8) */ 1393 default: 1394 goto out; 1395 } 1396 if (!revarp_in_progress) 1397 goto out; 1398 ifp = m->m_pkthdr.rcvif; 1399 if (ifp != myip_ifp) /* !same interface */ 1400 goto out; 1401 if (myip_initialized) 1402 goto wake; 1403 tha = ar_tha(ah); 1404 KASSERT(tha); 1405 if (memcmp(tha, CLLADDR(ifp->if_sadl), ifp->if_sadl->sdl_alen)) 1406 goto out; 1407 memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip)); 1408 memcpy(&myip, ar_tpa(ah), sizeof(myip)); 1409 myip_initialized = 1; 1410 wake: /* Do wakeup every time in case it was missed. */ 1411 wakeup((void *)&myip); 1412 1413 out: 1414 m_freem(m); 1415 } 1416 1417 /* 1418 * Send a RARP request for the ip address of the specified interface. 1419 * The request should be RFC 903-compliant. 1420 */ 1421 void 1422 revarprequest(struct ifnet *ifp) 1423 { 1424 struct sockaddr sa; 1425 struct mbuf *m; 1426 struct arphdr *ah; 1427 void *tha; 1428 1429 if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) 1430 return; 1431 MCLAIM(m, &arpdomain.dom_mowner); 1432 m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) + 1433 2*ifp->if_addrlen; 1434 m->m_pkthdr.len = m->m_len; 1435 MH_ALIGN(m, m->m_len); 1436 ah = mtod(m, struct arphdr *); 1437 memset(ah, 0, m->m_len); 1438 ah->ar_pro = htons(ETHERTYPE_IP); 1439 ah->ar_hln = ifp->if_addrlen; /* hardware address length */ 1440 ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ 1441 ah->ar_op = htons(ARPOP_REVREQUEST); 1442 1443 memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); 1444 tha = ar_tha(ah); 1445 KASSERT(tha); 1446 memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln); 1447 1448 sa.sa_family = AF_ARP; 1449 sa.sa_len = 2; 1450 m->m_flags |= M_BCAST; 1451 (*ifp->if_output)(ifp, m, &sa, NULL); 1452 1453 } 1454 1455 /* 1456 * RARP for the ip address of the specified interface, but also 1457 * save the ip address of the server that sent the answer. 1458 * Timeout if no response is received. 1459 */ 1460 int 1461 revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in, 1462 struct in_addr *clnt_in) 1463 { 1464 int result, count = 20; 1465 1466 myip_initialized = 0; 1467 myip_ifp = ifp; 1468 1469 revarp_in_progress = 1; 1470 while (count--) { 1471 revarprequest(ifp); 1472 result = tsleep((void *)&myip, PSOCK, "revarp", hz/2); 1473 if (result != EWOULDBLOCK) 1474 break; 1475 } 1476 revarp_in_progress = 0; 1477 1478 if (!myip_initialized) 1479 return ENETUNREACH; 1480 1481 memcpy(serv_in, &srv_ip, sizeof(*serv_in)); 1482 memcpy(clnt_in, &myip, sizeof(*clnt_in)); 1483 return 0; 1484 } 1485 1486 1487 1488 #ifdef DDB 1489 1490 #include <machine/db_machdep.h> 1491 #include <ddb/db_interface.h> 1492 #include <ddb/db_output.h> 1493 1494 static void 1495 db_print_sa(const struct sockaddr *sa) 1496 { 1497 int len; 1498 const u_char *p; 1499 1500 if (sa == NULL) { 1501 db_printf("[NULL]"); 1502 return; 1503 } 1504 1505 p = (const u_char *)sa; 1506 len = sa->sa_len; 1507 db_printf("["); 1508 while (len > 0) { 1509 db_printf("%d", *p); 1510 p++; len--; 1511 if (len) db_printf(","); 1512 } 1513 db_printf("]\n"); 1514 } 1515 1516 static void 1517 db_print_ifa(struct ifaddr *ifa) 1518 { 1519 if (ifa == NULL) 1520 return; 1521 db_printf(" ifa_addr="); 1522 db_print_sa(ifa->ifa_addr); 1523 db_printf(" ifa_dsta="); 1524 db_print_sa(ifa->ifa_dstaddr); 1525 db_printf(" ifa_mask="); 1526 db_print_sa(ifa->ifa_netmask); 1527 db_printf(" flags=0x%x,refcnt=%d,metric=%d\n", 1528 ifa->ifa_flags, 1529 ifa->ifa_refcnt, 1530 ifa->ifa_metric); 1531 } 1532 1533 static void 1534 db_print_llinfo(void *li) 1535 { 1536 struct llinfo_arp *la; 1537 1538 if (li == NULL) 1539 return; 1540 la = (struct llinfo_arp *)li; 1541 db_printf(" la_rt=%p la_hold=%p, la_asked=0x%lx\n", 1542 la->la_rt, la->la_hold, la->la_asked); 1543 } 1544 1545 /* 1546 * Function to pass to rt_walktree(). 1547 * Return non-zero error to abort walk. 1548 */ 1549 static int 1550 db_show_rtentry(struct rtentry *rt, void *w) 1551 { 1552 db_printf("rtentry=%p", rt); 1553 1554 db_printf(" flags=0x%x refcnt=%d use=%ld expire=%lld\n", 1555 rt->rt_flags, rt->rt_refcnt, 1556 rt->rt_use, (long long)rt->rt_expire); 1557 1558 db_printf(" key="); db_print_sa(rt_getkey(rt)); 1559 db_printf(" mask="); db_print_sa(rt_mask(rt)); 1560 db_printf(" gw="); db_print_sa(rt->rt_gateway); 1561 1562 db_printf(" ifp=%p ", rt->rt_ifp); 1563 if (rt->rt_ifp) 1564 db_printf("(%s)", rt->rt_ifp->if_xname); 1565 else 1566 db_printf("(NULL)"); 1567 1568 db_printf(" ifa=%p\n", rt->rt_ifa); 1569 db_print_ifa(rt->rt_ifa); 1570 1571 db_printf(" gwroute=%p llinfo=%p\n", 1572 rt->rt_gwroute, rt->rt_llinfo); 1573 db_print_llinfo(rt->rt_llinfo); 1574 1575 return 0; 1576 } 1577 1578 /* 1579 * Function to print all the route trees. 1580 * Use this from ddb: "show arptab" 1581 */ 1582 void 1583 db_show_arptab(db_expr_t addr, bool have_addr, 1584 db_expr_t count, const char *modif) 1585 { 1586 rt_walktree(AF_INET, db_show_rtentry, NULL); 1587 } 1588 #endif 1589 1590 static int 1591 sysctl_net_inet_arp_stats(SYSCTLFN_ARGS) 1592 { 1593 1594 return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS); 1595 } 1596 1597 SYSCTL_SETUP(sysctl_net_inet_arp_setup, "sysctl net.inet.arp subtree setup") 1598 { 1599 const struct sysctlnode *node; 1600 1601 sysctl_createv(clog, 0, NULL, NULL, 1602 CTLFLAG_PERMANENT, 1603 CTLTYPE_NODE, "net", NULL, 1604 NULL, 0, NULL, 0, 1605 CTL_NET, CTL_EOL); 1606 sysctl_createv(clog, 0, NULL, NULL, 1607 CTLFLAG_PERMANENT, 1608 CTLTYPE_NODE, "inet", NULL, 1609 NULL, 0, NULL, 0, 1610 CTL_NET, PF_INET, CTL_EOL); 1611 sysctl_createv(clog, 0, NULL, &node, 1612 CTLFLAG_PERMANENT, 1613 CTLTYPE_NODE, "arp", 1614 SYSCTL_DESCR("Address Resolution Protocol"), 1615 NULL, 0, NULL, 0, 1616 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL); 1617 1618 sysctl_createv(clog, 0, NULL, NULL, 1619 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1620 CTLTYPE_INT, "prune", 1621 SYSCTL_DESCR("ARP cache pruning interval"), 1622 NULL, 0, &arpt_prune, 0, 1623 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 1624 1625 sysctl_createv(clog, 0, NULL, NULL, 1626 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1627 CTLTYPE_INT, "keep", 1628 SYSCTL_DESCR("Valid ARP entry lifetime"), 1629 NULL, 0, &arpt_keep, 0, 1630 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 1631 1632 sysctl_createv(clog, 0, NULL, NULL, 1633 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1634 CTLTYPE_INT, "down", 1635 SYSCTL_DESCR("Failed ARP entry lifetime"), 1636 NULL, 0, &arpt_down, 0, 1637 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 1638 1639 sysctl_createv(clog, 0, NULL, NULL, 1640 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1641 CTLTYPE_INT, "refresh", 1642 SYSCTL_DESCR("ARP entry refresh interval"), 1643 NULL, 0, &arpt_refresh, 0, 1644 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 1645 1646 sysctl_createv(clog, 0, NULL, NULL, 1647 CTLFLAG_PERMANENT, 1648 CTLTYPE_STRUCT, "stats", 1649 SYSCTL_DESCR("ARP statistics"), 1650 sysctl_net_inet_arp_stats, 0, NULL, 0, 1651 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 1652 } 1653 1654 #endif /* INET */ 1655