xref: /netbsd-src/sys/netinet/if_arp.c (revision c34236556bea94afcaca1782d7d228301edc3ea0)
1 /*	$NetBSD: if_arp.c,v 1.233 2016/12/12 03:55:57 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Public Access Networks Corporation ("Panix").  It was developed under
9  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)if_ether.c	8.2 (Berkeley) 9/26/94
62  */
63 
64 /*
65  * Ethernet address resolution protocol.
66  * TODO:
67  *	add "inuse/lock" bit (or ref. count) along with valid bit
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.233 2016/12/12 03:55:57 ozaki-r Exp $");
72 
73 #ifdef _KERNEL_OPT
74 #include "opt_ddb.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78 
79 #ifdef INET
80 
81 #include "arp.h"
82 #include "bridge.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/malloc.h>
88 #include <sys/mbuf.h>
89 #include <sys/socket.h>
90 #include <sys/time.h>
91 #include <sys/timetc.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/ioctl.h>
95 #include <sys/syslog.h>
96 #include <sys/proc.h>
97 #include <sys/protosw.h>
98 #include <sys/domain.h>
99 #include <sys/sysctl.h>
100 #include <sys/socketvar.h>
101 #include <sys/percpu.h>
102 #include <sys/cprng.h>
103 #include <sys/kmem.h>
104 
105 #include <net/ethertypes.h>
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_token.h>
109 #include <net/if_types.h>
110 #include <net/if_ether.h>
111 #include <net/if_llatbl.h>
112 #include <net/net_osdep.h>
113 #include <net/route.h>
114 #include <net/net_stats.h>
115 
116 #include <netinet/in.h>
117 #include <netinet/in_systm.h>
118 #include <netinet/in_var.h>
119 #include <netinet/ip.h>
120 #include <netinet/if_inarp.h>
121 
122 #include "arcnet.h"
123 #if NARCNET > 0
124 #include <net/if_arc.h>
125 #endif
126 #include "fddi.h"
127 #if NFDDI > 0
128 #include <net/if_fddi.h>
129 #endif
130 #include "token.h"
131 #include "carp.h"
132 #if NCARP > 0
133 #include <netinet/ip_carp.h>
134 #endif
135 
136 #define SIN(s) ((struct sockaddr_in *)s)
137 #define SRP(s) ((struct sockaddr_inarp *)s)
138 
139 /*
140  * ARP trailer negotiation.  Trailer protocol is not IP specific,
141  * but ARP request/response use IP addresses.
142  */
143 #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL
144 
145 /* timer values */
146 static int	arpt_keep = (20*60);	/* once resolved, good for 20 more minutes */
147 static int	arpt_down = 20;		/* once declared down, don't send for 20 secs */
148 static int	arp_maxhold = 1;	/* number of packets to hold per ARP entry */
149 #define	rt_expire rt_rmx.rmx_expire
150 #define	rt_pksent rt_rmx.rmx_pksent
151 
152 int		ip_dad_count = PROBE_NUM;
153 #ifdef ARP_DEBUG
154 int		arp_debug = 1;
155 #else
156 int		arp_debug = 0;
157 #endif
158 
159 static	void arp_init(void);
160 
161 static	void arprequest(struct ifnet *,
162     const struct in_addr *, const struct in_addr *,
163     const u_int8_t *);
164 static	void arpannounce1(struct ifaddr *);
165 static	struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *,
166 	    const struct sockaddr *);
167 static	void arptimer(void *);
168 static	void arp_settimer(struct llentry *, int);
169 static	struct llentry *arplookup(struct ifnet *, struct mbuf *,
170 	    const struct in_addr *, const struct sockaddr *, int);
171 static	struct llentry *arpcreate(struct ifnet *, struct mbuf *,
172 	    const struct in_addr *, const struct sockaddr *, int);
173 static	void in_arpinput(struct mbuf *);
174 static	void in_revarpinput(struct mbuf *);
175 static	void revarprequest(struct ifnet *);
176 
177 static	void arp_drainstub(void);
178 
179 static void arp_dad_timer(struct ifaddr *);
180 static void arp_dad_start(struct ifaddr *);
181 static void arp_dad_stop(struct ifaddr *);
182 static void arp_dad_duplicated(struct ifaddr *, const char *);
183 
184 static void arp_init_llentry(struct ifnet *, struct llentry *);
185 #if NTOKEN > 0
186 static void arp_free_llentry_tokenring(struct llentry *);
187 #endif
188 
189 struct	ifqueue arpintrq = {
190 	.ifq_head = NULL,
191 	.ifq_tail = NULL,
192 	.ifq_len = 0,
193 	.ifq_maxlen = 50,
194 	.ifq_drops = 0,
195 };
196 static int	arp_maxtries = 5;
197 static int	useloopback = 1;	/* use loopback interface for local traffic */
198 
199 static percpu_t *arpstat_percpu;
200 
201 #define	ARP_STAT_GETREF()	_NET_STAT_GETREF(arpstat_percpu)
202 #define	ARP_STAT_PUTREF()	_NET_STAT_PUTREF(arpstat_percpu)
203 
204 #define	ARP_STATINC(x)		_NET_STATINC(arpstat_percpu, x)
205 #define	ARP_STATADD(x, v)	_NET_STATADD(arpstat_percpu, x, v)
206 
207 /* revarp state */
208 static struct	in_addr myip, srv_ip;
209 static int	myip_initialized = 0;
210 static int	revarp_in_progress = 0;
211 static struct	ifnet *myip_ifp = NULL;
212 
213 static int arp_drainwanted;
214 
215 static int log_movements = 1;
216 static int log_permanent_modify = 1;
217 static int log_wrong_iface = 1;
218 static int log_unknown_network = 1;
219 
220 /*
221  * this should be elsewhere.
222  */
223 
224 static char *
225 lla_snprintf(u_int8_t *, int);
226 
227 static char *
228 lla_snprintf(u_int8_t *adrp, int len)
229 {
230 #define NUMBUFS 3
231 	static char buf[NUMBUFS][16*3];
232 	static int bnum = 0;
233 
234 	int i;
235 	char *p;
236 
237 	p = buf[bnum];
238 
239 	*p++ = hexdigits[(*adrp)>>4];
240 	*p++ = hexdigits[(*adrp++)&0xf];
241 
242 	for (i=1; i<len && i<16; i++) {
243 		*p++ = ':';
244 		*p++ = hexdigits[(*adrp)>>4];
245 		*p++ = hexdigits[(*adrp++)&0xf];
246 	}
247 
248 	*p = 0;
249 	p = buf[bnum];
250 	bnum = (bnum + 1) % NUMBUFS;
251 	return p;
252 }
253 
254 DOMAIN_DEFINE(arpdomain);	/* forward declare and add to link set */
255 
256 static void
257 arp_fasttimo(void)
258 {
259 	if (arp_drainwanted) {
260 		arp_drain();
261 		arp_drainwanted = 0;
262 	}
263 }
264 
265 const struct protosw arpsw[] = {
266 	{ .pr_type = 0,
267 	  .pr_domain = &arpdomain,
268 	  .pr_protocol = 0,
269 	  .pr_flags = 0,
270 	  .pr_input = 0,
271 	  .pr_ctlinput = 0,
272 	  .pr_ctloutput = 0,
273 	  .pr_usrreqs = 0,
274 	  .pr_init = arp_init,
275 	  .pr_fasttimo = arp_fasttimo,
276 	  .pr_slowtimo = 0,
277 	  .pr_drain = arp_drainstub,
278 	}
279 };
280 
281 struct domain arpdomain = {
282 	.dom_family = PF_ARP,
283 	.dom_name = "arp",
284 	.dom_protosw = arpsw,
285 	.dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)],
286 };
287 
288 static void sysctl_net_inet_arp_setup(struct sysctllog **);
289 
290 void
291 arp_init(void)
292 {
293 
294 	sysctl_net_inet_arp_setup(NULL);
295 	arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS);
296 	IFQ_LOCK_INIT(&arpintrq);
297 }
298 
299 static void
300 arp_drainstub(void)
301 {
302 	arp_drainwanted = 1;
303 }
304 
305 /*
306  * ARP protocol drain routine.  Called when memory is in short supply.
307  * Called at splvm();  don't acquire softnet_lock as can be called from
308  * hardware interrupt handlers.
309  */
310 void
311 arp_drain(void)
312 {
313 
314 	lltable_drain(AF_INET);
315 }
316 
317 static void
318 arptimer(void *arg)
319 {
320 	struct llentry *lle = arg;
321 	struct ifnet *ifp;
322 
323 	if (lle == NULL)
324 		return;
325 
326 	if (lle->la_flags & LLE_STATIC)
327 		return;
328 
329 	LLE_WLOCK(lle);
330 	if (callout_pending(&lle->la_timer)) {
331 		/*
332 		 * Here we are a bit odd here in the treatment of
333 		 * active/pending. If the pending bit is set, it got
334 		 * rescheduled before I ran. The active
335 		 * bit we ignore, since if it was stopped
336 		 * in ll_tablefree() and was currently running
337 		 * it would have return 0 so the code would
338 		 * not have deleted it since the callout could
339 		 * not be stopped so we want to go through
340 		 * with the delete here now. If the callout
341 		 * was restarted, the pending bit will be back on and
342 		 * we just want to bail since the callout_reset would
343 		 * return 1 and our reference would have been removed
344 		 * by arpresolve() below.
345 		 */
346 		LLE_WUNLOCK(lle);
347 		return;
348 	}
349 	ifp = lle->lle_tbl->llt_ifp;
350 
351 	callout_stop(&lle->la_timer);
352 
353 	/* XXX: LOR avoidance. We still have ref on lle. */
354 	LLE_WUNLOCK(lle);
355 
356 	IF_AFDATA_LOCK(ifp);
357 	LLE_WLOCK(lle);
358 
359 	/* Guard against race with other llentry_free(). */
360 	if (lle->la_flags & LLE_LINKED) {
361 		size_t pkts_dropped;
362 
363 		LLE_REMREF(lle);
364 		pkts_dropped = llentry_free(lle);
365 		ARP_STATADD(ARP_STAT_DFRDROPPED, pkts_dropped);
366 		ARP_STATADD(ARP_STAT_DFRTOTAL, pkts_dropped);
367 	} else {
368 		LLE_FREE_LOCKED(lle);
369 	}
370 
371 	IF_AFDATA_UNLOCK(ifp);
372 }
373 
374 static void
375 arp_settimer(struct llentry *la, int sec)
376 {
377 
378 	LLE_WLOCK_ASSERT(la);
379 	LLE_ADDREF(la);
380 	callout_reset(&la->la_timer, hz * sec, arptimer, la);
381 }
382 
383 /*
384  * We set the gateway for RTF_CLONING routes to a "prototype"
385  * link-layer sockaddr whose interface type (if_type) and interface
386  * index (if_index) fields are prepared.
387  */
388 static struct sockaddr *
389 arp_setgate(struct rtentry *rt, struct sockaddr *gate,
390     const struct sockaddr *netmask)
391 {
392 	const struct ifnet *ifp = rt->rt_ifp;
393 	uint8_t namelen = strlen(ifp->if_xname);
394 	uint8_t addrlen = ifp->if_addrlen;
395 
396 	/*
397 	 * XXX: If this is a manually added route to interface
398 	 * such as older version of routed or gated might provide,
399 	 * restore cloning bit.
400 	 */
401 	if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL &&
402 	    satocsin(netmask)->sin_addr.s_addr != 0xffffffff)
403 		rt->rt_flags |= RTF_CONNECTED;
404 
405 	if ((rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL))) {
406 		union {
407 			struct sockaddr sa;
408 			struct sockaddr_storage ss;
409 			struct sockaddr_dl sdl;
410 		} u;
411 		/*
412 		 * Case 1: This route should come from a route to iface.
413 		 */
414 		sockaddr_dl_init(&u.sdl, sizeof(u.ss),
415 		    ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen);
416 		rt_setgate(rt, &u.sa);
417 		gate = rt->rt_gateway;
418 	}
419 	return gate;
420 }
421 
422 static void
423 arp_init_llentry(struct ifnet *ifp, struct llentry *lle)
424 {
425 
426 	switch (ifp->if_type) {
427 #if NTOKEN > 0
428 	case IFT_ISO88025:
429 		lle->la_opaque = kmem_intr_alloc(sizeof(struct token_rif),
430 		    KM_NOSLEEP);
431 		lle->lle_ll_free = arp_free_llentry_tokenring;
432 		break;
433 #endif
434 	}
435 }
436 
437 #if NTOKEN > 0
438 static void
439 arp_free_llentry_tokenring(struct llentry *lle)
440 {
441 
442 	kmem_intr_free(lle->la_opaque, sizeof(struct token_rif));
443 }
444 #endif
445 
446 /*
447  * Parallel to llc_rtrequest.
448  */
449 void
450 arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
451 {
452 	struct sockaddr *gate = rt->rt_gateway;
453 	struct in_ifaddr *ia;
454 	struct ifaddr *ifa;
455 	struct ifnet *ifp = rt->rt_ifp;
456 	int bound;
457 	int s;
458 
459 	if (req == RTM_LLINFO_UPD) {
460 		if ((ifa = info->rti_ifa) != NULL)
461 			arpannounce1(ifa);
462 		return;
463 	}
464 
465 	if ((rt->rt_flags & RTF_GATEWAY) != 0) {
466 		if (req != RTM_ADD)
467 			return;
468 
469 		/*
470 		 * linklayers with particular link MTU limitation.
471 		 */
472 		switch(ifp->if_type) {
473 #if NFDDI > 0
474 		case IFT_FDDI:
475 			if (ifp->if_mtu > FDDIIPMTU)
476 				rt->rt_rmx.rmx_mtu = FDDIIPMTU;
477 			break;
478 #endif
479 #if NARCNET > 0
480 		case IFT_ARCNET:
481 		    {
482 			int arcipifmtu;
483 
484 			if (ifp->if_flags & IFF_LINK0)
485 				arcipifmtu = arc_ipmtu;
486 			else
487 				arcipifmtu = ARCMTU;
488 			if (ifp->if_mtu > arcipifmtu)
489 				rt->rt_rmx.rmx_mtu = arcipifmtu;
490 			break;
491 		    }
492 #endif
493 		}
494 		return;
495 	}
496 
497 	switch (req) {
498 	case RTM_SETGATE:
499 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
500 		break;
501 	case RTM_ADD:
502 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
503 		if (gate == NULL) {
504 			log(LOG_ERR, "%s: arp_setgate failed\n", __func__);
505 			break;
506 		}
507 		if ((rt->rt_flags & RTF_CONNECTED) ||
508 		    (rt->rt_flags & RTF_LOCAL)) {
509 			/*
510 			 * Give this route an expiration time, even though
511 			 * it's a "permanent" route, so that routes cloned
512 			 * from it do not need their expiration time set.
513 			 */
514 			KASSERT(time_uptime != 0);
515 			rt->rt_expire = time_uptime;
516 			/*
517 			 * linklayers with particular link MTU limitation.
518 			 */
519 			switch (ifp->if_type) {
520 #if NFDDI > 0
521 			case IFT_FDDI:
522 				if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
523 				    (rt->rt_rmx.rmx_mtu > FDDIIPMTU ||
524 				     (rt->rt_rmx.rmx_mtu == 0 &&
525 				      ifp->if_mtu > FDDIIPMTU)))
526 					rt->rt_rmx.rmx_mtu = FDDIIPMTU;
527 				break;
528 #endif
529 #if NARCNET > 0
530 			case IFT_ARCNET:
531 			    {
532 				int arcipifmtu;
533 				if (ifp->if_flags & IFF_LINK0)
534 					arcipifmtu = arc_ipmtu;
535 				else
536 					arcipifmtu = ARCMTU;
537 
538 				if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
539 				    (rt->rt_rmx.rmx_mtu > arcipifmtu ||
540 				     (rt->rt_rmx.rmx_mtu == 0 &&
541 				      ifp->if_mtu > arcipifmtu)))
542 					rt->rt_rmx.rmx_mtu = arcipifmtu;
543 				break;
544 			    }
545 #endif
546 			}
547 			if (rt->rt_flags & RTF_CONNECTED)
548 				break;
549 		}
550 
551 		bound = curlwp_bind();
552 		/* Announce a new entry if requested. */
553 		if (rt->rt_flags & RTF_ANNOUNCE) {
554 			struct psref psref;
555 			ia = in_get_ia_on_iface_psref(
556 			    satocsin(rt_getkey(rt))->sin_addr, ifp, &psref);
557 			if (ia != NULL) {
558 				arpannounce(ifp, &ia->ia_ifa,
559 				    CLLADDR(satocsdl(gate)));
560 				ia4_release(ia, &psref);
561 			}
562 		}
563 
564 		if (gate->sa_family != AF_LINK ||
565 		    gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) {
566 			log(LOG_DEBUG, "%s: bad gateway value\n", __func__);
567 			goto out;
568 		}
569 
570 		satosdl(gate)->sdl_type = ifp->if_type;
571 		satosdl(gate)->sdl_index = ifp->if_index;
572 
573 		/* If the route is for a broadcast address mark it as such.
574 		 * This way we can avoid an expensive call to in_broadcast()
575 		 * in ip_output() most of the time (because the route passed
576 		 * to ip_output() is almost always a host route). */
577 		if (rt->rt_flags & RTF_HOST &&
578 		    !(rt->rt_flags & RTF_BROADCAST) &&
579 		    in_broadcast(satocsin(rt_getkey(rt))->sin_addr, rt->rt_ifp))
580 			rt->rt_flags |= RTF_BROADCAST;
581 		/* There is little point in resolving the broadcast address */
582 		if (rt->rt_flags & RTF_BROADCAST)
583 			goto out;
584 
585 		/*
586 		 * When called from rt_ifa_addlocal, we cannot depend on that
587 		 * the address (rt_getkey(rt)) exits in the address list of the
588 		 * interface. So check RTF_LOCAL instead.
589 		 */
590 		if (rt->rt_flags & RTF_LOCAL) {
591 			rt->rt_expire = 0;
592 			if (useloopback) {
593 				rt->rt_ifp = lo0ifp;
594 				rt->rt_rmx.rmx_mtu = 0;
595 			}
596 			goto out;
597 		}
598 
599 		s = pserialize_read_enter();
600 		ia = in_get_ia_on_iface(satocsin(rt_getkey(rt))->sin_addr, ifp);
601 		if (ia == NULL) {
602 			pserialize_read_exit(s);
603 			goto out;
604 		}
605 
606 		rt->rt_expire = 0;
607 		if (useloopback) {
608 			rt->rt_ifp = lo0ifp;
609 			rt->rt_rmx.rmx_mtu = 0;
610 		}
611 		rt->rt_flags |= RTF_LOCAL;
612 		/*
613 		 * make sure to set rt->rt_ifa to the interface
614 		 * address we are using, otherwise we will have trouble
615 		 * with source address selection.
616 		 */
617 		ifa = &ia->ia_ifa;
618 		if (ifa != rt->rt_ifa)
619 			/* Assume it doesn't sleep */
620 			rt_replace_ifa(rt, ifa);
621 		pserialize_read_exit(s);
622 	out:
623 		curlwp_bindx(bound);
624 		break;
625 	}
626 }
627 
628 /*
629  * Broadcast an ARP request. Caller specifies:
630  *	- arp header source ip address
631  *	- arp header target ip address
632  *	- arp header source ethernet address
633  */
634 static void
635 arprequest(struct ifnet *ifp,
636     const struct in_addr *sip, const struct in_addr *tip,
637     const u_int8_t *enaddr)
638 {
639 	struct mbuf *m;
640 	struct arphdr *ah;
641 	struct sockaddr sa;
642 	uint64_t *arps;
643 
644 	KASSERT(sip != NULL);
645 	KASSERT(tip != NULL);
646 	KASSERT(enaddr != NULL);
647 
648 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
649 		return;
650 	MCLAIM(m, &arpdomain.dom_mowner);
651 	switch (ifp->if_type) {
652 	case IFT_IEEE1394:
653 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
654 		    ifp->if_addrlen;
655 		break;
656 	default:
657 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
658 		    2 * ifp->if_addrlen;
659 		break;
660 	}
661 	m->m_pkthdr.len = m->m_len;
662 	MH_ALIGN(m, m->m_len);
663 	ah = mtod(m, struct arphdr *);
664 	memset(ah, 0, m->m_len);
665 	switch (ifp->if_type) {
666 	case IFT_IEEE1394:	/* RFC2734 */
667 		/* fill it now for ar_tpa computation */
668 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
669 		break;
670 	default:
671 		/* ifp->if_output will fill ar_hrd */
672 		break;
673 	}
674 	ah->ar_pro = htons(ETHERTYPE_IP);
675 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
676 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
677 	ah->ar_op = htons(ARPOP_REQUEST);
678 	memcpy(ar_sha(ah), enaddr, ah->ar_hln);
679 	memcpy(ar_spa(ah), sip, ah->ar_pln);
680 	memcpy(ar_tpa(ah), tip, ah->ar_pln);
681 	sa.sa_family = AF_ARP;
682 	sa.sa_len = 2;
683 	m->m_flags |= M_BCAST;
684 	arps = ARP_STAT_GETREF();
685 	arps[ARP_STAT_SNDTOTAL]++;
686 	arps[ARP_STAT_SENDREQUEST]++;
687 	ARP_STAT_PUTREF();
688 	if_output_lock(ifp, ifp, m, &sa, NULL);
689 }
690 
691 void
692 arpannounce(struct ifnet *ifp, struct ifaddr *ifa, const uint8_t *enaddr)
693 {
694 	struct in_ifaddr *ia = ifatoia(ifa);
695 	struct in_addr *ip = &IA_SIN(ifa)->sin_addr;
696 
697 	if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) {
698 		arplog(LOG_DEBUG, "%s not ready\n", in_fmtaddr(*ip));
699 		return;
700 	}
701 	arprequest(ifp, ip, ip, enaddr);
702 }
703 
704 static void
705 arpannounce1(struct ifaddr *ifa)
706 {
707 
708 	arpannounce(ifa->ifa_ifp, ifa, CLLADDR(ifa->ifa_ifp->if_sadl));
709 }
710 
711 /*
712  * Resolve an IP address into an ethernet address.  If success,
713  * desten is filled in.  If there is no entry in arptab,
714  * set one up and broadcast a request for the IP address.
715  * Hold onto this mbuf and resend it once the address
716  * is finally resolved.  A return value of 0 indicates
717  * that desten has been filled in and the packet should be sent
718  * normally; a return value of EWOULDBLOCK indicates that the packet has been
719  * held pending resolution.
720  * Any other value indicates an error.
721  */
722 int
723 arpresolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m,
724     const struct sockaddr *dst, void *desten, size_t destlen)
725 {
726 	struct llentry *la;
727 	const char *create_lookup;
728 	bool renew;
729 	int error;
730 
731 	KASSERT(m != NULL);
732 
733 	la = arplookup(ifp, m, NULL, dst, 0);
734 	if (la == NULL)
735 		goto notfound;
736 
737 	if ((la->la_flags & LLE_VALID) &&
738 	    ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) {
739 		KASSERT(destlen >= ifp->if_addrlen);
740 		memcpy(desten, &la->ll_addr, ifp->if_addrlen);
741 		LLE_RUNLOCK(la);
742 		return 0;
743 	}
744 
745 notfound:
746 #ifdef IFF_STATICARP /* FreeBSD */
747 #define _IFF_NOARP (IFF_NOARP | IFF_STATICARP)
748 #else
749 #define _IFF_NOARP IFF_NOARP
750 #endif
751 	if (ifp->if_flags & _IFF_NOARP) {
752 		if (la != NULL)
753 			LLE_RUNLOCK(la);
754 		error = ENOTSUP;
755 		goto bad;
756 	}
757 #undef _IFF_NOARP
758 	if (la == NULL) {
759 		create_lookup = "create";
760 		IF_AFDATA_WLOCK(ifp);
761 		la = lla_create(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
762 		IF_AFDATA_WUNLOCK(ifp);
763 		if (la == NULL)
764 			ARP_STATINC(ARP_STAT_ALLOCFAIL);
765 		else
766 			arp_init_llentry(ifp, la);
767 	} else if (LLE_TRY_UPGRADE(la) == 0) {
768 		create_lookup = "lookup";
769 		LLE_RUNLOCK(la);
770 		IF_AFDATA_RLOCK(ifp);
771 		la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
772 		IF_AFDATA_RUNLOCK(ifp);
773 	}
774 
775 	error = EINVAL;
776 	if (la == NULL) {
777 		log(LOG_DEBUG,
778 		    "%s: failed to %s llentry for %s on %s\n",
779 		    __func__, create_lookup, inet_ntoa(satocsin(dst)->sin_addr),
780 		    ifp->if_xname);
781 		goto bad;
782 	}
783 
784 	if ((la->la_flags & LLE_VALID) &&
785 	    ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime))
786 	{
787 		KASSERT(destlen >= ifp->if_addrlen);
788 		memcpy(desten, &la->ll_addr, ifp->if_addrlen);
789 		renew = false;
790 		/*
791 		 * If entry has an expiry time and it is approaching,
792 		 * see if we need to send an ARP request within this
793 		 * arpt_down interval.
794 		 */
795 		if (!(la->la_flags & LLE_STATIC) &&
796 		    time_uptime + la->la_preempt > la->la_expire)
797 		{
798 			renew = true;
799 			la->la_preempt--;
800 		}
801 
802 		LLE_WUNLOCK(la);
803 
804 		if (renew) {
805 			const u_int8_t *enaddr =
806 #if NCARP > 0
807 			    (ifp->if_type == IFT_CARP) ?
808 			    CLLADDR(ifp->if_sadl):
809 #endif
810 			    CLLADDR(ifp->if_sadl);
811 			arprequest(ifp,
812 			    &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
813 			    &satocsin(dst)->sin_addr, enaddr);
814 		}
815 
816 		return 0;
817 	}
818 
819 	if (la->la_flags & LLE_STATIC) {   /* should not happen! */
820 		LLE_RUNLOCK(la);
821 		log(LOG_DEBUG, "%s: ouch, empty static llinfo for %s\n",
822 		    __func__, inet_ntoa(satocsin(dst)->sin_addr));
823 		error = EINVAL;
824 		goto bad;
825 	}
826 
827 	renew = (la->la_asked == 0 || la->la_expire != time_uptime);
828 
829 	/*
830 	 * There is an arptab entry, but no ethernet address
831 	 * response yet.  Add the mbuf to the list, dropping
832 	 * the oldest packet if we have exceeded the system
833 	 * setting.
834 	 */
835 	LLE_WLOCK_ASSERT(la);
836 	if (la->la_numheld >= arp_maxhold) {
837 		if (la->la_hold != NULL) {
838 			struct mbuf *next = la->la_hold->m_nextpkt;
839 			m_freem(la->la_hold);
840 			la->la_hold = next;
841 			la->la_numheld--;
842 			ARP_STATINC(ARP_STAT_DFRDROPPED);
843 			ARP_STATINC(ARP_STAT_DFRTOTAL);
844 		}
845 	}
846 	if (la->la_hold != NULL) {
847 		struct mbuf *curr = la->la_hold;
848 		while (curr->m_nextpkt != NULL)
849 			curr = curr->m_nextpkt;
850 		curr->m_nextpkt = m;
851 	} else
852 		la->la_hold = m;
853 	la->la_numheld++;
854 	if (!renew)
855 		LLE_DOWNGRADE(la);
856 
857 	/*
858 	 * Return EWOULDBLOCK if we have tried less than arp_maxtries. It
859 	 * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH
860 	 * if we have already sent arp_maxtries ARP requests. Retransmit the
861 	 * ARP request, but not faster than one request per second.
862 	 */
863 	if (la->la_asked < arp_maxtries)
864 		error = EWOULDBLOCK;	/* First request. */
865 	else
866 		error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ?
867 		    EHOSTUNREACH : EHOSTDOWN;
868 
869 	if (renew) {
870 		const u_int8_t *enaddr =
871 #if NCARP > 0
872 		    (rt != NULL && rt->rt_ifp->if_type == IFT_CARP) ?
873 		    CLLADDR(rt->rt_ifp->if_sadl):
874 #endif
875 		    CLLADDR(ifp->if_sadl);
876 		la->la_expire = time_uptime;
877 		arp_settimer(la, arpt_down);
878 		la->la_asked++;
879 		LLE_WUNLOCK(la);
880 
881 		if (rt != NULL) {
882 			arprequest(ifp, &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
883 			    &satocsin(dst)->sin_addr, enaddr);
884 		} else {
885 			struct sockaddr_in sin;
886 			struct rtentry *_rt;
887 
888 			sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
889 
890 			/* XXX */
891 			_rt = rtalloc1((struct sockaddr *)&sin, 0);
892 			if (_rt == NULL)
893 				goto bad;
894 			arprequest(ifp,
895 			    &satocsin(_rt->rt_ifa->ifa_addr)->sin_addr,
896 			    &satocsin(dst)->sin_addr, enaddr);
897 			rt_unref(_rt);
898 		}
899 		return error;
900 	}
901 
902 	LLE_RUNLOCK(la);
903 	return error;
904 
905 bad:
906 	m_freem(m);
907 	return error;
908 }
909 
910 /*
911  * Common length and type checks are done here,
912  * then the protocol-specific routine is called.
913  */
914 void
915 arpintr(void)
916 {
917 	struct mbuf *m;
918 	struct arphdr *ar;
919 	int s;
920 	int arplen;
921 
922 #ifndef NET_MPSAFE
923 	mutex_enter(softnet_lock);
924 	KERNEL_LOCK(1, NULL);
925 #endif
926 	for (;;) {
927 		struct ifnet *rcvif;
928 
929 		IFQ_LOCK(&arpintrq);
930 		IF_DEQUEUE(&arpintrq, m);
931 		IFQ_UNLOCK(&arpintrq);
932 		if (m == NULL)
933 			goto out;
934 		if ((m->m_flags & M_PKTHDR) == 0)
935 			panic("arpintr");
936 
937 		MCLAIM(m, &arpdomain.dom_mowner);
938 		ARP_STATINC(ARP_STAT_RCVTOTAL);
939 
940 		/*
941 		 * First, make sure we have at least struct arphdr.
942 		 */
943 		if (m->m_len < sizeof(struct arphdr) ||
944 		    (ar = mtod(m, struct arphdr *)) == NULL)
945 			goto badlen;
946 
947 		rcvif = m_get_rcvif(m, &s);
948 		switch (rcvif->if_type) {
949 		case IFT_IEEE1394:
950 			arplen = sizeof(struct arphdr) +
951 			    ar->ar_hln + 2 * ar->ar_pln;
952 			break;
953 		default:
954 			arplen = sizeof(struct arphdr) +
955 			    2 * ar->ar_hln + 2 * ar->ar_pln;
956 			break;
957 		}
958 		m_put_rcvif(rcvif, &s);
959 
960 		if (/* XXX ntohs(ar->ar_hrd) == ARPHRD_ETHER && */
961 		    m->m_len >= arplen)
962 			switch (ntohs(ar->ar_pro)) {
963 			case ETHERTYPE_IP:
964 			case ETHERTYPE_IPTRAILERS:
965 				in_arpinput(m);
966 				continue;
967 			default:
968 				ARP_STATINC(ARP_STAT_RCVBADPROTO);
969 			}
970 		else {
971 badlen:
972 			ARP_STATINC(ARP_STAT_RCVBADLEN);
973 		}
974 		m_freem(m);
975 	}
976 out:
977 #ifndef NET_MPSAFE
978 	KERNEL_UNLOCK_ONE(NULL);
979 	mutex_exit(softnet_lock);
980 #else
981 	return; /* XXX gcc */
982 #endif
983 }
984 
985 /*
986  * ARP for Internet protocols on 10 Mb/s Ethernet.
987  * Algorithm is that given in RFC 826.
988  * In addition, a sanity check is performed on the sender
989  * protocol address, to catch impersonators.
990  * We no longer handle negotiations for use of trailer protocol:
991  * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent
992  * along with IP replies if we wanted trailers sent to us,
993  * and also sent them in response to IP replies.
994  * This allowed either end to announce the desire to receive
995  * trailer packets.
996  * We no longer reply to requests for ETHERTYPE_TRAIL protocol either,
997  * but formerly didn't normally send requests.
998  */
999 static void
1000 in_arpinput(struct mbuf *m)
1001 {
1002 	struct arphdr *ah;
1003 	struct ifnet *ifp, *rcvif = NULL;
1004 	struct llentry *la = NULL;
1005 	struct in_ifaddr *ia = NULL;
1006 #if NBRIDGE > 0
1007 	struct in_ifaddr *bridge_ia = NULL;
1008 #endif
1009 #if NCARP > 0
1010 	u_int32_t count = 0, index = 0;
1011 #endif
1012 	struct sockaddr sa;
1013 	struct in_addr isaddr, itaddr, myaddr;
1014 	int op;
1015 	void *tha;
1016 	uint64_t *arps;
1017 	struct psref psref, psref_ia;
1018 	int s;
1019 
1020 	if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT)))
1021 		goto out;
1022 	ah = mtod(m, struct arphdr *);
1023 	op = ntohs(ah->ar_op);
1024 
1025 	rcvif = ifp = m_get_rcvif_psref(m, &psref);
1026 	if (__predict_false(rcvif == NULL))
1027 		goto drop;
1028 	/*
1029 	 * Fix up ah->ar_hrd if necessary, before using ar_tha() or
1030 	 * ar_tpa().
1031 	 */
1032 	switch (ifp->if_type) {
1033 	case IFT_IEEE1394:
1034 		if (ntohs(ah->ar_hrd) == ARPHRD_IEEE1394)
1035 			;
1036 		else {
1037 			/* XXX this is to make sure we compute ar_tha right */
1038 			/* XXX check ar_hrd more strictly? */
1039 			ah->ar_hrd = htons(ARPHRD_IEEE1394);
1040 		}
1041 		break;
1042 	default:
1043 		/* XXX check ar_hrd? */
1044 		break;
1045 	}
1046 
1047 	memcpy(&isaddr, ar_spa(ah), sizeof (isaddr));
1048 	memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr));
1049 
1050 	if (m->m_flags & (M_BCAST|M_MCAST))
1051 		ARP_STATINC(ARP_STAT_RCVMCAST);
1052 
1053 
1054 	/*
1055 	 * Search for a matching interface address
1056 	 * or any address on the interface to use
1057 	 * as a dummy address in the rest of this function
1058 	 */
1059 	s = pserialize_read_enter();
1060 	IN_ADDRHASH_READER_FOREACH(ia, itaddr.s_addr) {
1061 		if (!in_hosteq(ia->ia_addr.sin_addr, itaddr))
1062 			continue;
1063 #if NCARP > 0
1064 		if (ia->ia_ifp->if_type == IFT_CARP &&
1065 		    ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) ==
1066 		    (IFF_UP|IFF_RUNNING))) {
1067 			index++;
1068 			if (ia->ia_ifp == rcvif &&
1069 			    carp_iamatch(ia, ar_sha(ah),
1070 			    &count, index)) {
1071 				break;
1072 			}
1073 		} else
1074 #endif
1075 		if (ia->ia_ifp == rcvif)
1076 			break;
1077 #if NBRIDGE > 0
1078 		/*
1079 		 * If the interface we received the packet on
1080 		 * is part of a bridge, check to see if we need
1081 		 * to "bridge" the packet to ourselves at this
1082 		 * layer.  Note we still prefer a perfect match,
1083 		 * but allow this weaker match if necessary.
1084 		 */
1085 		if (rcvif->if_bridge != NULL &&
1086 		    rcvif->if_bridge == ia->ia_ifp->if_bridge)
1087 			bridge_ia = ia;
1088 #endif /* NBRIDGE > 0 */
1089 	}
1090 
1091 #if NBRIDGE > 0
1092 	if (ia == NULL && bridge_ia != NULL) {
1093 		ia = bridge_ia;
1094 		m_put_rcvif_psref(rcvif, &psref);
1095 		rcvif = NULL;
1096 		/* FIXME */
1097 		ifp = bridge_ia->ia_ifp;
1098 	}
1099 #endif
1100 	if (ia != NULL)
1101 		ia4_acquire(ia, &psref_ia);
1102 	pserialize_read_exit(s);
1103 
1104 	if (ia == NULL) {
1105 		ia = in_get_ia_on_iface_psref(isaddr, rcvif, &psref_ia);
1106 		if (ia == NULL) {
1107 			ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
1108 			if (ia == NULL) {
1109 				ARP_STATINC(ARP_STAT_RCVNOINT);
1110 				goto out;
1111 			}
1112 		}
1113 	}
1114 
1115 	myaddr = ia->ia_addr.sin_addr;
1116 
1117 	/* XXX checks for bridge case? */
1118 	if (!memcmp(ar_sha(ah), CLLADDR(ifp->if_sadl), ifp->if_addrlen)) {
1119 		ARP_STATINC(ARP_STAT_RCVLOCALSHA);
1120 		goto out;	/* it's from me, ignore it. */
1121 	}
1122 
1123 	/* XXX checks for bridge case? */
1124 	if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) {
1125 		ARP_STATINC(ARP_STAT_RCVBCASTSHA);
1126 		log(LOG_ERR,
1127 		    "%s: arp: link address is broadcast for IP address %s!\n",
1128 		    ifp->if_xname, in_fmtaddr(isaddr));
1129 		goto out;
1130 	}
1131 
1132 	/*
1133 	 * If the source IP address is zero, this is an RFC 5227 ARP probe
1134 	 */
1135 	if (in_nullhost(isaddr))
1136 		ARP_STATINC(ARP_STAT_RCVZEROSPA);
1137 	else if (in_hosteq(isaddr, myaddr))
1138 		ARP_STATINC(ARP_STAT_RCVLOCALSPA);
1139 
1140 	/*
1141 	 * If the target IP address is zero, ignore the packet.
1142 	 * This prevents the code below from tring to answer
1143 	 * when we are using IP address zero (booting).
1144 	 */
1145 	if (in_nullhost(itaddr)) {
1146 		ARP_STATINC(ARP_STAT_RCVZEROTPA);
1147 		goto out;
1148 	}
1149 
1150 	/* DAD check, RFC 5227 */
1151 	if (in_hosteq(isaddr, myaddr) ||
1152 	    (in_nullhost(isaddr) && in_hosteq(itaddr, myaddr)))
1153 	{
1154 		arp_dad_duplicated((struct ifaddr *)ia,
1155 		    lla_snprintf(ar_sha(ah), ah->ar_hln));
1156 		goto out;
1157 	}
1158 
1159 	if (in_nullhost(isaddr))
1160 		goto reply;
1161 
1162 	if (in_hosteq(itaddr, myaddr))
1163 		la = arpcreate(ifp, m, &isaddr, NULL, 1);
1164 	else
1165 		la = arplookup(ifp, m, &isaddr, NULL, 1);
1166 	if (la == NULL)
1167 		goto reply;
1168 
1169 	if ((la->la_flags & LLE_VALID) &&
1170 	    memcmp(ar_sha(ah), &la->ll_addr, ifp->if_addrlen)) {
1171 		if (la->la_flags & LLE_STATIC) {
1172 			ARP_STATINC(ARP_STAT_RCVOVERPERM);
1173 			if (!log_permanent_modify)
1174 				goto out;
1175 			log(LOG_INFO,
1176 			    "%s tried to overwrite permanent arp info"
1177 			    " for %s\n",
1178 			    lla_snprintf(ar_sha(ah), ah->ar_hln),
1179 			    in_fmtaddr(isaddr));
1180 			goto out;
1181 		} else if (la->lle_tbl->llt_ifp != ifp) {
1182 			/* XXX should not happen? */
1183 			ARP_STATINC(ARP_STAT_RCVOVERINT);
1184 			if (!log_wrong_iface)
1185 				goto out;
1186 			log(LOG_INFO,
1187 			    "%s on %s tried to overwrite "
1188 			    "arp info for %s on %s\n",
1189 			    lla_snprintf(ar_sha(ah), ah->ar_hln),
1190 			    ifp->if_xname, in_fmtaddr(isaddr),
1191 			    la->lle_tbl->llt_ifp->if_xname);
1192 				goto out;
1193 		} else {
1194 			ARP_STATINC(ARP_STAT_RCVOVER);
1195 			if (log_movements)
1196 				log(LOG_INFO, "arp info overwritten "
1197 				    "for %s by %s\n",
1198 				    in_fmtaddr(isaddr),
1199 				    lla_snprintf(ar_sha(ah),
1200 				    ah->ar_hln));
1201 		}
1202 	}
1203 
1204 	/* XXX llentry should have addrlen? */
1205 #if 0
1206 	/*
1207 	 * sanity check for the address length.
1208 	 * XXX this does not work for protocols with variable address
1209 	 * length. -is
1210 	 */
1211 	if (sdl->sdl_alen && sdl->sdl_alen != ah->ar_hln) {
1212 		ARP_STATINC(ARP_STAT_RCVLENCHG);
1213 		log(LOG_WARNING,
1214 		    "arp from %s: new addr len %d, was %d\n",
1215 		    in_fmtaddr(isaddr), ah->ar_hln, sdl->sdl_alen);
1216 	}
1217 #endif
1218 
1219 	if (ifp->if_addrlen != ah->ar_hln) {
1220 		ARP_STATINC(ARP_STAT_RCVBADLEN);
1221 		log(LOG_WARNING,
1222 		    "arp from %s: addr len: new %d, i/f %d (ignored)\n",
1223 		    in_fmtaddr(isaddr), ah->ar_hln,
1224 		    ifp->if_addrlen);
1225 		goto reply;
1226 	}
1227 
1228 #if NTOKEN > 0
1229 	/*
1230 	 * XXX uses m_data and assumes the complete answer including
1231 	 * XXX token-ring headers is in the same buf
1232 	 */
1233 	if (ifp->if_type == IFT_ISO88025) {
1234 		struct token_header *trh;
1235 
1236 		trh = (struct token_header *)M_TRHSTART(m);
1237 		if (trh->token_shost[0] & TOKEN_RI_PRESENT) {
1238 			struct token_rif *rif;
1239 			size_t riflen;
1240 
1241 			rif = TOKEN_RIF(trh);
1242 			riflen = (ntohs(rif->tr_rcf) &
1243 			    TOKEN_RCF_LEN_MASK) >> 8;
1244 
1245 			if (riflen > 2 &&
1246 			    riflen < sizeof(struct token_rif) &&
1247 			    (riflen & 1) == 0) {
1248 				rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION);
1249 				rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK);
1250 				memcpy(TOKEN_RIF_LLE(la), rif, riflen);
1251 			}
1252 		}
1253 	}
1254 #endif /* NTOKEN > 0 */
1255 
1256 	KASSERT(sizeof(la->ll_addr) >= ifp->if_addrlen);
1257 	(void)memcpy(&la->ll_addr, ar_sha(ah), ifp->if_addrlen);
1258 	la->la_flags |= LLE_VALID;
1259 	if ((la->la_flags & LLE_STATIC) == 0) {
1260 		la->la_expire = time_uptime + arpt_keep;
1261 		arp_settimer(la, arpt_keep);
1262 	}
1263 	la->la_asked = 0;
1264 	/* rt->rt_flags &= ~RTF_REJECT; */
1265 
1266 	if (la->la_hold != NULL) {
1267 		int n = la->la_numheld;
1268 		struct mbuf *m_hold, *m_hold_next;
1269 		struct sockaddr_in sin;
1270 
1271 		sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
1272 
1273 		m_hold = la->la_hold;
1274 		la->la_hold = NULL;
1275 		la->la_numheld = 0;
1276 		/*
1277 		 * We have to unlock here because if_output would call
1278 		 * arpresolve
1279 		 */
1280 		LLE_WUNLOCK(la);
1281 		ARP_STATADD(ARP_STAT_DFRSENT, n);
1282 		ARP_STATADD(ARP_STAT_DFRTOTAL, n);
1283 		for (; m_hold != NULL; m_hold = m_hold_next) {
1284 			m_hold_next = m_hold->m_nextpkt;
1285 			m_hold->m_nextpkt = NULL;
1286 			if_output_lock(ifp, ifp, m_hold, sintosa(&sin), NULL);
1287 		}
1288 	} else
1289 		LLE_WUNLOCK(la);
1290 	la = NULL;
1291 
1292 reply:
1293 	if (la != NULL) {
1294 		LLE_WUNLOCK(la);
1295 		la = NULL;
1296 	}
1297 	if (op != ARPOP_REQUEST) {
1298 		if (op == ARPOP_REPLY)
1299 			ARP_STATINC(ARP_STAT_RCVREPLY);
1300 		goto out;
1301 	}
1302 	ARP_STATINC(ARP_STAT_RCVREQUEST);
1303 	if (in_hosteq(itaddr, myaddr)) {
1304 		/* If our address is unuseable, don't reply */
1305 		if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED))
1306 			goto out;
1307 		/* I am the target */
1308 		tha = ar_tha(ah);
1309 		if (tha)
1310 			memcpy(tha, ar_sha(ah), ah->ar_hln);
1311 		memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1312 	} else {
1313 		/* Proxy ARP */
1314 		struct llentry *lle = NULL;
1315 		struct sockaddr_in sin;
1316 #if NCARP > 0
1317 		struct ifnet *_rcvif = m_get_rcvif(m, &s);
1318 		if (ifp->if_type == IFT_CARP && _rcvif->if_type != IFT_CARP)
1319 			goto out;
1320 		m_put_rcvif(_rcvif, &s);
1321 #endif
1322 
1323 		tha = ar_tha(ah);
1324 
1325 		sockaddr_in_init(&sin, &itaddr, 0);
1326 
1327 		IF_AFDATA_RLOCK(ifp);
1328 		lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin);
1329 		IF_AFDATA_RUNLOCK(ifp);
1330 
1331 		if ((lle != NULL) && (lle->la_flags & LLE_PUB)) {
1332 			(void)memcpy(tha, ar_sha(ah), ah->ar_hln);
1333 			(void)memcpy(ar_sha(ah), &lle->ll_addr, ah->ar_hln);
1334 			LLE_RUNLOCK(lle);
1335 		} else {
1336 			if (lle != NULL)
1337 				LLE_RUNLOCK(lle);
1338 			goto drop;
1339 		}
1340 	}
1341 	ia4_release(ia, &psref_ia);
1342 
1343 	memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln);
1344 	memcpy(ar_spa(ah), &itaddr, ah->ar_pln);
1345 	ah->ar_op = htons(ARPOP_REPLY);
1346 	ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */
1347 	switch (ifp->if_type) {
1348 	case IFT_IEEE1394:
1349 		/*
1350 		 * ieee1394 arp reply is broadcast
1351 		 */
1352 		m->m_flags &= ~M_MCAST;
1353 		m->m_flags |= M_BCAST;
1354 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln;
1355 		break;
1356 	default:
1357 		m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */
1358 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln);
1359 		break;
1360 	}
1361 	m->m_pkthdr.len = m->m_len;
1362 	sa.sa_family = AF_ARP;
1363 	sa.sa_len = 2;
1364 	arps = ARP_STAT_GETREF();
1365 	arps[ARP_STAT_SNDTOTAL]++;
1366 	arps[ARP_STAT_SNDREPLY]++;
1367 	ARP_STAT_PUTREF();
1368 	if_output_lock(ifp, ifp, m, &sa, NULL);
1369 	if (rcvif != NULL)
1370 		m_put_rcvif_psref(rcvif, &psref);
1371 	return;
1372 
1373 out:
1374 	if (la != NULL)
1375 		LLE_WUNLOCK(la);
1376 drop:
1377 	if (ia != NULL)
1378 		ia4_release(ia, &psref_ia);
1379 	if (rcvif != NULL)
1380 		m_put_rcvif_psref(rcvif, &psref);
1381 	m_freem(m);
1382 }
1383 
1384 /*
1385  * Lookup or a new address in arptab.
1386  */
1387 static struct llentry *
1388 arplookup(struct ifnet *ifp, struct mbuf *m, const struct in_addr *addr,
1389     const struct sockaddr *sa, int wlock)
1390 {
1391 	struct sockaddr_in sin;
1392 	struct llentry *la;
1393 	int flags = wlock ? LLE_EXCLUSIVE : 0;
1394 
1395 
1396 	if (sa == NULL) {
1397 		KASSERT(addr != NULL);
1398 		sockaddr_in_init(&sin, addr, 0);
1399 		sa = sintocsa(&sin);
1400 	}
1401 
1402 	IF_AFDATA_RLOCK(ifp);
1403 	la = lla_lookup(LLTABLE(ifp), flags, sa);
1404 	IF_AFDATA_RUNLOCK(ifp);
1405 
1406 	return la;
1407 }
1408 
1409 static struct llentry *
1410 arpcreate(struct ifnet *ifp, struct mbuf *m, const struct in_addr *addr,
1411     const struct sockaddr *sa, int wlock)
1412 {
1413 	struct sockaddr_in sin;
1414 	struct llentry *la;
1415 	int flags = wlock ? LLE_EXCLUSIVE : 0;
1416 
1417 	if (sa == NULL) {
1418 		KASSERT(addr != NULL);
1419 		sockaddr_in_init(&sin, addr, 0);
1420 		sa = sintocsa(&sin);
1421 	}
1422 
1423 	la = arplookup(ifp, m, addr, sa, wlock);
1424 
1425 	if (la == NULL) {
1426 		IF_AFDATA_WLOCK(ifp);
1427 		la = lla_create(LLTABLE(ifp), flags, sa);
1428 		IF_AFDATA_WUNLOCK(ifp);
1429 
1430 		if (la != NULL)
1431 			arp_init_llentry(ifp, la);
1432 	}
1433 
1434 	return la;
1435 }
1436 
1437 int
1438 arpioctl(u_long cmd, void *data)
1439 {
1440 
1441 	return EOPNOTSUPP;
1442 }
1443 
1444 void
1445 arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
1446 {
1447 	struct in_addr *ip;
1448 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1449 
1450 	/*
1451 	 * Warn the user if another station has this IP address,
1452 	 * but only if the interface IP address is not zero.
1453 	 */
1454 	ip = &IA_SIN(ifa)->sin_addr;
1455 	if (!in_nullhost(*ip) &&
1456 	    (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) == 0) {
1457 		struct llentry *lle;
1458 
1459 		/*
1460 		 * interface address is considered static entry
1461 		 * because the output of the arp utility shows
1462 		 * that L2 entry as permanent
1463 		 */
1464 		IF_AFDATA_WLOCK(ifp);
1465 		lle = lla_create(LLTABLE(ifp), (LLE_IFADDR | LLE_STATIC),
1466 				 (struct sockaddr *)IA_SIN(ifa));
1467 		IF_AFDATA_WUNLOCK(ifp);
1468 		if (lle == NULL)
1469 			log(LOG_INFO, "%s: cannot create arp entry for"
1470 			    " interface address\n", __func__);
1471 		else {
1472 			arp_init_llentry(ifp, lle);
1473 			LLE_RUNLOCK(lle);
1474 		}
1475 	}
1476 
1477 	ifa->ifa_rtrequest = arp_rtrequest;
1478 	ifa->ifa_flags |= RTF_CONNECTED;
1479 
1480 	/* ARP will handle DAD for this address. */
1481 	if (in_nullhost(*ip)) {
1482 		if (ia->ia_dad_stop != NULL)	/* safety */
1483 			ia->ia_dad_stop(ifa);
1484 		ia->ia_dad_start = NULL;
1485 		ia->ia_dad_stop = NULL;
1486 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1487 	} else {
1488 		ia->ia_dad_start = arp_dad_start;
1489 		ia->ia_dad_stop = arp_dad_stop;
1490 		if (ia->ia4_flags & IN_IFF_TRYTENTATIVE)
1491 			ia->ia4_flags |= IN_IFF_TENTATIVE;
1492 		else
1493 			arpannounce1(ifa);
1494 	}
1495 }
1496 
1497 TAILQ_HEAD(dadq_head, dadq);
1498 struct dadq {
1499 	TAILQ_ENTRY(dadq) dad_list;
1500 	struct ifaddr *dad_ifa;
1501 	int dad_count;		/* max ARP to send */
1502 	int dad_arp_tcount;	/* # of trials to send ARP */
1503 	int dad_arp_ocount;	/* ARP sent so far */
1504 	int dad_arp_announce;	/* max ARP announcements */
1505 	int dad_arp_acount;	/* # of announcements */
1506 	struct callout dad_timer_ch;
1507 };
1508 MALLOC_JUSTDEFINE(M_IPARP, "ARP DAD", "ARP DAD Structure");
1509 
1510 static struct dadq_head dadq;
1511 static int dad_init = 0;
1512 static int dad_maxtry = 15;     /* max # of *tries* to transmit DAD packet */
1513 static kmutex_t arp_dad_lock;
1514 
1515 static struct dadq *
1516 arp_dad_find(struct ifaddr *ifa)
1517 {
1518 	struct dadq *dp;
1519 
1520 	KASSERT(mutex_owned(&arp_dad_lock));
1521 
1522 	TAILQ_FOREACH(dp, &dadq, dad_list) {
1523 		if (dp->dad_ifa == ifa)
1524 			return dp;
1525 	}
1526 	return NULL;
1527 }
1528 
1529 static void
1530 arp_dad_starttimer(struct dadq *dp, int ticks)
1531 {
1532 
1533 	callout_reset(&dp->dad_timer_ch, ticks,
1534 	    (void (*)(void *))arp_dad_timer, (void *)dp->dad_ifa);
1535 }
1536 
1537 static void
1538 arp_dad_stoptimer(struct dadq *dp)
1539 {
1540 
1541 #ifdef NET_MPSAFE
1542 	callout_halt(&dp->dad_timer_ch, NULL);
1543 #else
1544 	callout_halt(&dp->dad_timer_ch, softnet_lock);
1545 #endif
1546 }
1547 
1548 static void
1549 arp_dad_output(struct dadq *dp, struct ifaddr *ifa)
1550 {
1551 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1552 	struct ifnet *ifp = ifa->ifa_ifp;
1553 	struct in_addr sip;
1554 
1555 	dp->dad_arp_tcount++;
1556 	if ((ifp->if_flags & IFF_UP) == 0)
1557 		return;
1558 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1559 		return;
1560 
1561 	dp->dad_arp_tcount = 0;
1562 	dp->dad_arp_ocount++;
1563 
1564 	memset(&sip, 0, sizeof(sip));
1565 	arprequest(ifa->ifa_ifp, &sip, &ia->ia_addr.sin_addr,
1566 	    CLLADDR(ifa->ifa_ifp->if_sadl));
1567 }
1568 
1569 /*
1570  * Start Duplicate Address Detection (DAD) for specified interface address.
1571  */
1572 static void
1573 arp_dad_start(struct ifaddr *ifa)
1574 {
1575 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1576 	struct dadq *dp;
1577 
1578 	if (!dad_init) {
1579 		TAILQ_INIT(&dadq);
1580 		mutex_init(&arp_dad_lock, MUTEX_DEFAULT, IPL_NONE);
1581 		dad_init++;
1582 	}
1583 
1584 	/*
1585 	 * If we don't need DAD, don't do it.
1586 	 * - DAD is disabled (ip_dad_count == 0)
1587 	 */
1588 	if (!(ia->ia4_flags & IN_IFF_TENTATIVE)) {
1589 		log(LOG_DEBUG,
1590 		    "%s: called with non-tentative address %s(%s)\n", __func__,
1591 		    in_fmtaddr(ia->ia_addr.sin_addr),
1592 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1593 		return;
1594 	}
1595 	if (!ip_dad_count) {
1596 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1597 		rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1598 		arpannounce1(ifa);
1599 		return;
1600 	}
1601 	KASSERT(ifa->ifa_ifp != NULL);
1602 	if (!(ifa->ifa_ifp->if_flags & IFF_UP))
1603 		return;
1604 
1605 	mutex_enter(&arp_dad_lock);
1606 	if (arp_dad_find(ifa) != NULL) {
1607 		mutex_exit(&arp_dad_lock);
1608 		/* DAD already in progress */
1609 		return;
1610 	}
1611 
1612 	dp = malloc(sizeof(*dp), M_IPARP, M_NOWAIT);
1613 	if (dp == NULL) {
1614 		mutex_exit(&arp_dad_lock);
1615 		log(LOG_ERR, "%s: memory allocation failed for %s(%s)\n",
1616 		    __func__, in_fmtaddr(ia->ia_addr.sin_addr),
1617 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1618 		return;
1619 	}
1620 	memset(dp, 0, sizeof(*dp));
1621 	callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE);
1622 
1623 	/*
1624 	 * Send ARP packet for DAD, ip_dad_count times.
1625 	 * Note that we must delay the first transmission.
1626 	 */
1627 	dp->dad_ifa = ifa;
1628 	ifaref(ifa);	/* just for safety */
1629 	dp->dad_count = ip_dad_count;
1630 	dp->dad_arp_announce = 0; /* Will be set when starting to announce */
1631 	dp->dad_arp_acount = dp->dad_arp_ocount = dp->dad_arp_tcount = 0;
1632 	TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list);
1633 
1634 	arplog(LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp),
1635 	    in_fmtaddr(ia->ia_addr.sin_addr));
1636 
1637 	arp_dad_starttimer(dp, cprng_fast32() % (PROBE_WAIT * hz));
1638 
1639 	mutex_exit(&arp_dad_lock);
1640 }
1641 
1642 /*
1643  * terminate DAD unconditionally.  used for address removals.
1644  */
1645 static void
1646 arp_dad_stop(struct ifaddr *ifa)
1647 {
1648 	struct dadq *dp;
1649 
1650 	if (!dad_init)
1651 		return;
1652 
1653 	mutex_enter(&arp_dad_lock);
1654 	dp = arp_dad_find(ifa);
1655 	if (dp == NULL) {
1656 		mutex_exit(&arp_dad_lock);
1657 		/* DAD wasn't started yet */
1658 		return;
1659 	}
1660 
1661 	/* Prevent the timer from running anymore. */
1662 	TAILQ_REMOVE(&dadq, dp, dad_list);
1663 	mutex_exit(&arp_dad_lock);
1664 
1665 	arp_dad_stoptimer(dp);
1666 
1667 	free(dp, M_IPARP);
1668 	dp = NULL;
1669 	ifafree(ifa);
1670 }
1671 
1672 static void
1673 arp_dad_timer(struct ifaddr *ifa)
1674 {
1675 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1676 	struct dadq *dp;
1677 
1678 	mutex_enter(softnet_lock);
1679 	KERNEL_LOCK(1, NULL);
1680 	mutex_enter(&arp_dad_lock);
1681 
1682 	/* Sanity check */
1683 	if (ia == NULL) {
1684 		log(LOG_ERR, "%s: called with null parameter\n", __func__);
1685 		goto done;
1686 	}
1687 	dp = arp_dad_find(ifa);
1688 	if (dp == NULL) {
1689 		/* DAD seems to be stopping, so do nothing. */
1690 		goto done;
1691 	}
1692 	if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1693 		log(LOG_ERR, "%s: called with duplicate address %s(%s)\n",
1694 		    __func__, in_fmtaddr(ia->ia_addr.sin_addr),
1695 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1696 		goto done;
1697 	}
1698 	if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0 && dp->dad_arp_acount == 0)
1699 	{
1700 		log(LOG_ERR, "%s: called with non-tentative address %s(%s)\n",
1701 		    __func__, in_fmtaddr(ia->ia_addr.sin_addr),
1702 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1703 		goto done;
1704 	}
1705 
1706 	/* timeouted with IFF_{RUNNING,UP} check */
1707 	if (dp->dad_arp_tcount > dad_maxtry) {
1708 		arplog(LOG_INFO, "%s: could not run DAD, driver problem?\n",
1709 		    if_name(ifa->ifa_ifp));
1710 
1711 		TAILQ_REMOVE(&dadq, dp, dad_list);
1712 		free(dp, M_IPARP);
1713 		dp = NULL;
1714 		ifafree(ifa);
1715 		goto done;
1716 	}
1717 
1718 	/* Need more checks? */
1719 	if (dp->dad_arp_ocount < dp->dad_count) {
1720 		int adelay;
1721 
1722 		/*
1723 		 * We have more ARP to go.  Send ARP packet for DAD.
1724 		 */
1725 		arp_dad_output(dp, ifa);
1726 		if (dp->dad_arp_ocount < dp->dad_count)
1727 			adelay = (PROBE_MIN * hz) +
1728 			    (cprng_fast32() %
1729 			    ((PROBE_MAX * hz) - (PROBE_MIN * hz)));
1730 		else
1731 			adelay = ANNOUNCE_WAIT * hz;
1732 		arp_dad_starttimer(dp, adelay);
1733 		goto done;
1734 	} else if (dp->dad_arp_acount == 0) {
1735 		/*
1736 		 * We are done with DAD.
1737 		 * No duplicate address found.
1738 		 */
1739 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1740 		rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1741 		arplog(LOG_DEBUG,
1742 		    "%s: DAD complete for %s - no duplicates found\n",
1743 		    if_name(ifa->ifa_ifp),
1744 		    in_fmtaddr(ia->ia_addr.sin_addr));
1745 		dp->dad_arp_announce = ANNOUNCE_NUM;
1746 		goto announce;
1747 	} else if (dp->dad_arp_acount < dp->dad_arp_announce) {
1748 announce:
1749 		/*
1750 		 * Announce the address.
1751 		 */
1752 		arpannounce1(ifa);
1753 		dp->dad_arp_acount++;
1754 		if (dp->dad_arp_acount < dp->dad_arp_announce) {
1755 			arp_dad_starttimer(dp, ANNOUNCE_INTERVAL * hz);
1756 			goto done;
1757 		}
1758 		arplog(LOG_DEBUG,
1759 		    "%s: ARP announcement complete for %s\n",
1760 		    if_name(ifa->ifa_ifp),
1761 		    in_fmtaddr(ia->ia_addr.sin_addr));
1762 	}
1763 
1764 	TAILQ_REMOVE(&dadq, dp, dad_list);
1765 	free(dp, M_IPARP);
1766 	dp = NULL;
1767 	ifafree(ifa);
1768 
1769 done:
1770 	mutex_exit(&arp_dad_lock);
1771 	KERNEL_UNLOCK_ONE(NULL);
1772 	mutex_exit(softnet_lock);
1773 }
1774 
1775 static void
1776 arp_dad_duplicated(struct ifaddr *ifa, const char *sha)
1777 {
1778 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1779 	struct ifnet *ifp = ifa->ifa_ifp;
1780 	const char *iastr = in_fmtaddr(ia->ia_addr.sin_addr);
1781 
1782 	if (ia->ia4_flags & (IN_IFF_TENTATIVE|IN_IFF_DUPLICATED)) {
1783 		log(LOG_ERR,
1784 		    "%s: DAD duplicate address %s from %s\n",
1785 		    if_name(ifp), iastr, sha);
1786 	} else if (ia->ia_dad_defended == 0 ||
1787 		   ia->ia_dad_defended < time_uptime - DEFEND_INTERVAL) {
1788 		ia->ia_dad_defended = time_uptime;
1789 		arpannounce1(ifa);
1790 		log(LOG_ERR,
1791 		    "%s: DAD defended address %s from %s\n",
1792 		    if_name(ifp), iastr, sha);
1793 		return;
1794 	} else {
1795 		/* If DAD is disabled, just report the duplicate. */
1796 		if (ip_dad_count == 0) {
1797 			log(LOG_ERR,
1798 			    "%s: DAD ignoring duplicate address %s from %s\n",
1799 			    if_name(ifp), iastr, sha);
1800 			return;
1801 		}
1802 		log(LOG_ERR,
1803 		    "%s: DAD defence failed for %s from %s\n",
1804 		    if_name(ifp), iastr, sha);
1805 	}
1806 
1807 	arp_dad_stop(ifa);
1808 
1809 	ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1810 	if ((ia->ia4_flags & IN_IFF_DUPLICATED) == 0) {
1811 		ia->ia4_flags |= IN_IFF_DUPLICATED;
1812 		/* Inform the routing socket of the duplicate address */
1813 		rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1814 	}
1815 }
1816 
1817 /*
1818  * Called from 10 Mb/s Ethernet interrupt handlers
1819  * when ether packet type ETHERTYPE_REVARP
1820  * is received.  Common length and type checks are done here,
1821  * then the protocol-specific routine is called.
1822  */
1823 void
1824 revarpinput(struct mbuf *m)
1825 {
1826 	struct arphdr *ar;
1827 
1828 	if (m->m_len < sizeof(struct arphdr))
1829 		goto out;
1830 	ar = mtod(m, struct arphdr *);
1831 #if 0 /* XXX I don't think we need this... and it will prevent other LL */
1832 	if (ntohs(ar->ar_hrd) != ARPHRD_ETHER)
1833 		goto out;
1834 #endif
1835 	if (m->m_len < sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln))
1836 		goto out;
1837 	switch (ntohs(ar->ar_pro)) {
1838 	case ETHERTYPE_IP:
1839 	case ETHERTYPE_IPTRAILERS:
1840 		in_revarpinput(m);
1841 		return;
1842 
1843 	default:
1844 		break;
1845 	}
1846 out:
1847 	m_freem(m);
1848 }
1849 
1850 /*
1851  * RARP for Internet protocols on 10 Mb/s Ethernet.
1852  * Algorithm is that given in RFC 903.
1853  * We are only using for bootstrap purposes to get an ip address for one of
1854  * our interfaces.  Thus we support no user-interface.
1855  *
1856  * Since the contents of the RARP reply are specific to the interface that
1857  * sent the request, this code must ensure that they are properly associated.
1858  *
1859  * Note: also supports ARP via RARP packets, per the RFC.
1860  */
1861 void
1862 in_revarpinput(struct mbuf *m)
1863 {
1864 	struct arphdr *ah;
1865 	void *tha;
1866 	int op;
1867 	struct ifnet *rcvif;
1868 	int s;
1869 
1870 	ah = mtod(m, struct arphdr *);
1871 	op = ntohs(ah->ar_op);
1872 
1873 	rcvif = m_get_rcvif(m, &s);
1874 	switch (rcvif->if_type) {
1875 	case IFT_IEEE1394:
1876 		/* ARP without target hardware address is not supported */
1877 		goto out;
1878 	default:
1879 		break;
1880 	}
1881 
1882 	switch (op) {
1883 	case ARPOP_REQUEST:
1884 	case ARPOP_REPLY:	/* per RFC */
1885 		m_put_rcvif(rcvif, &s);
1886 		in_arpinput(m);
1887 		return;
1888 	case ARPOP_REVREPLY:
1889 		break;
1890 	case ARPOP_REVREQUEST:	/* handled by rarpd(8) */
1891 	default:
1892 		goto out;
1893 	}
1894 	if (!revarp_in_progress)
1895 		goto out;
1896 	if (rcvif != myip_ifp) /* !same interface */
1897 		goto out;
1898 	if (myip_initialized)
1899 		goto wake;
1900 	tha = ar_tha(ah);
1901 	if (tha == NULL)
1902 		goto out;
1903 	if (memcmp(tha, CLLADDR(rcvif->if_sadl), rcvif->if_sadl->sdl_alen))
1904 		goto out;
1905 	memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip));
1906 	memcpy(&myip, ar_tpa(ah), sizeof(myip));
1907 	myip_initialized = 1;
1908 wake:	/* Do wakeup every time in case it was missed. */
1909 	wakeup((void *)&myip);
1910 
1911 out:
1912 	m_put_rcvif(rcvif, &s);
1913 	m_freem(m);
1914 }
1915 
1916 /*
1917  * Send a RARP request for the ip address of the specified interface.
1918  * The request should be RFC 903-compliant.
1919  */
1920 static void
1921 revarprequest(struct ifnet *ifp)
1922 {
1923 	struct sockaddr sa;
1924 	struct mbuf *m;
1925 	struct arphdr *ah;
1926 	void *tha;
1927 
1928 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
1929 		return;
1930 	MCLAIM(m, &arpdomain.dom_mowner);
1931 	m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) +
1932 	    2*ifp->if_addrlen;
1933 	m->m_pkthdr.len = m->m_len;
1934 	MH_ALIGN(m, m->m_len);
1935 	ah = mtod(m, struct arphdr *);
1936 	memset(ah, 0, m->m_len);
1937 	ah->ar_pro = htons(ETHERTYPE_IP);
1938 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
1939 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
1940 	ah->ar_op = htons(ARPOP_REVREQUEST);
1941 
1942 	memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1943 	tha = ar_tha(ah);
1944 	if (tha == NULL) {
1945 		m_free(m);
1946 		return;
1947 	}
1948 	memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln);
1949 
1950 	sa.sa_family = AF_ARP;
1951 	sa.sa_len = 2;
1952 	m->m_flags |= M_BCAST;
1953 
1954 	if_output_lock(ifp, ifp, m, &sa, NULL);
1955 }
1956 
1957 /*
1958  * RARP for the ip address of the specified interface, but also
1959  * save the ip address of the server that sent the answer.
1960  * Timeout if no response is received.
1961  */
1962 int
1963 revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in,
1964     struct in_addr *clnt_in)
1965 {
1966 	int result, count = 20;
1967 
1968 	myip_initialized = 0;
1969 	myip_ifp = ifp;
1970 
1971 	revarp_in_progress = 1;
1972 	while (count--) {
1973 		revarprequest(ifp);
1974 		result = tsleep((void *)&myip, PSOCK, "revarp", hz/2);
1975 		if (result != EWOULDBLOCK)
1976 			break;
1977 	}
1978 	revarp_in_progress = 0;
1979 
1980 	if (!myip_initialized)
1981 		return ENETUNREACH;
1982 
1983 	memcpy(serv_in, &srv_ip, sizeof(*serv_in));
1984 	memcpy(clnt_in, &myip, sizeof(*clnt_in));
1985 	return 0;
1986 }
1987 
1988 void
1989 arp_stat_add(int type, uint64_t count)
1990 {
1991 	ARP_STATADD(type, count);
1992 }
1993 
1994 static int
1995 sysctl_net_inet_arp_stats(SYSCTLFN_ARGS)
1996 {
1997 
1998 	return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS);
1999 }
2000 
2001 static void
2002 sysctl_net_inet_arp_setup(struct sysctllog **clog)
2003 {
2004 	const struct sysctlnode *node;
2005 
2006 	sysctl_createv(clog, 0, NULL, NULL,
2007 			CTLFLAG_PERMANENT,
2008 			CTLTYPE_NODE, "inet", NULL,
2009 			NULL, 0, NULL, 0,
2010 			CTL_NET, PF_INET, CTL_EOL);
2011 	sysctl_createv(clog, 0, NULL, &node,
2012 			CTLFLAG_PERMANENT,
2013 			CTLTYPE_NODE, "arp",
2014 			SYSCTL_DESCR("Address Resolution Protocol"),
2015 			NULL, 0, NULL, 0,
2016 			CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2017 
2018 	sysctl_createv(clog, 0, NULL, NULL,
2019 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2020 			CTLTYPE_INT, "keep",
2021 			SYSCTL_DESCR("Valid ARP entry lifetime in seconds"),
2022 			NULL, 0, &arpt_keep, 0,
2023 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2024 
2025 	sysctl_createv(clog, 0, NULL, NULL,
2026 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2027 			CTLTYPE_INT, "down",
2028 			SYSCTL_DESCR("Failed ARP entry lifetime in seconds"),
2029 			NULL, 0, &arpt_down, 0,
2030 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2031 
2032 	sysctl_createv(clog, 0, NULL, NULL,
2033 			CTLFLAG_PERMANENT,
2034 			CTLTYPE_STRUCT, "stats",
2035 			SYSCTL_DESCR("ARP statistics"),
2036 			sysctl_net_inet_arp_stats, 0, NULL, 0,
2037 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2038 
2039 	sysctl_createv(clog, 0, NULL, NULL,
2040 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2041 			CTLTYPE_INT, "log_movements",
2042 			SYSCTL_DESCR("log ARP replies from MACs different than"
2043 			    " the one in the cache"),
2044 			NULL, 0, &log_movements, 0,
2045 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2046 
2047 	sysctl_createv(clog, 0, NULL, NULL,
2048 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2049 			CTLTYPE_INT, "log_permanent_modify",
2050 			SYSCTL_DESCR("log ARP replies from MACs different than"
2051 			    " the one in the permanent arp entry"),
2052 			NULL, 0, &log_permanent_modify, 0,
2053 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2054 
2055 	sysctl_createv(clog, 0, NULL, NULL,
2056 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2057 			CTLTYPE_INT, "log_wrong_iface",
2058 			SYSCTL_DESCR("log ARP packets arriving on the wrong"
2059 			    " interface"),
2060 			NULL, 0, &log_wrong_iface, 0,
2061 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2062 
2063 	sysctl_createv(clog, 0, NULL, NULL,
2064 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2065 			CTLTYPE_INT, "log_unknown_network",
2066 			SYSCTL_DESCR("log ARP packets from non-local network"),
2067 			NULL, 0, &log_unknown_network, 0,
2068 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2069 
2070 	sysctl_createv(clog, 0, NULL, NULL,
2071 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2072 		       CTLTYPE_INT, "debug",
2073 		       SYSCTL_DESCR("Enable ARP DAD debug output"),
2074 		       NULL, 0, &arp_debug, 0,
2075 		       CTL_NET, PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2076 }
2077 
2078 #endif /* INET */
2079