xref: /netbsd-src/sys/netinet/if_arp.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_arp.c,v 1.275 2018/05/11 13:56:43 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Public Access Networks Corporation ("Panix").  It was developed under
9  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)if_ether.c	8.2 (Berkeley) 9/26/94
62  */
63 
64 /*
65  * Ethernet address resolution protocol.
66  * TODO:
67  *	add "inuse/lock" bit (or ref. count) along with valid bit
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.275 2018/05/11 13:56:43 maxv Exp $");
72 
73 #ifdef _KERNEL_OPT
74 #include "opt_ddb.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78 
79 #ifdef INET
80 
81 #include "arp.h"
82 #include "bridge.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/kmem.h>
88 #include <sys/mbuf.h>
89 #include <sys/socket.h>
90 #include <sys/time.h>
91 #include <sys/timetc.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/ioctl.h>
95 #include <sys/syslog.h>
96 #include <sys/proc.h>
97 #include <sys/protosw.h>
98 #include <sys/domain.h>
99 #include <sys/sysctl.h>
100 #include <sys/socketvar.h>
101 #include <sys/percpu.h>
102 #include <sys/cprng.h>
103 #include <sys/kmem.h>
104 
105 #include <net/ethertypes.h>
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_token.h>
109 #include <net/if_types.h>
110 #include <net/if_ether.h>
111 #include <net/if_llatbl.h>
112 #include <net/route.h>
113 #include <net/net_stats.h>
114 
115 #include <netinet/in.h>
116 #include <netinet/in_systm.h>
117 #include <netinet/in_var.h>
118 #include <netinet/ip.h>
119 #include <netinet/if_inarp.h>
120 
121 #include "arcnet.h"
122 #if NARCNET > 0
123 #include <net/if_arc.h>
124 #endif
125 #include "fddi.h"
126 #if NFDDI > 0
127 #include <net/if_fddi.h>
128 #endif
129 #include "token.h"
130 #include "carp.h"
131 #if NCARP > 0
132 #include <netinet/ip_carp.h>
133 #endif
134 
135 /*
136  * ARP trailer negotiation.  Trailer protocol is not IP specific,
137  * but ARP request/response use IP addresses.
138  */
139 #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL
140 
141 /* timer values */
142 static int arpt_keep = (20*60);	/* once resolved, good for 20 more minutes */
143 static int arpt_down = 20;		/* once declared down, don't send for 20 secs */
144 static int arp_maxhold = 1;	/* number of packets to hold per ARP entry */
145 #define	rt_expire rt_rmx.rmx_expire
146 #define	rt_pksent rt_rmx.rmx_pksent
147 
148 int ip_dad_count = PROBE_NUM;
149 #ifdef ARP_DEBUG
150 int arp_debug = 1;
151 #else
152 int arp_debug = 0;
153 #endif
154 
155 static void arp_init(void);
156 
157 static void arprequest(struct ifnet *,
158     const struct in_addr *, const struct in_addr *,
159     const uint8_t *);
160 static void arpannounce1(struct ifaddr *);
161 static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *,
162     const struct sockaddr *);
163 static void arptimer(void *);
164 static void arp_settimer(struct llentry *, int);
165 static struct llentry *arplookup(struct ifnet *,
166     const struct in_addr *, const struct sockaddr *, int);
167 static struct llentry *arpcreate(struct ifnet *,
168     const struct in_addr *, const struct sockaddr *, int);
169 static void in_arpinput(struct mbuf *);
170 static void in_revarpinput(struct mbuf *);
171 static void revarprequest(struct ifnet *);
172 
173 static void arp_drainstub(void);
174 
175 struct dadq;
176 static void arp_dad_timer(struct dadq *);
177 static void arp_dad_start(struct ifaddr *);
178 static void arp_dad_stop(struct ifaddr *);
179 static void arp_dad_duplicated(struct ifaddr *, const char *);
180 
181 static void arp_init_llentry(struct ifnet *, struct llentry *);
182 #if NTOKEN > 0
183 static void arp_free_llentry_tokenring(struct llentry *);
184 #endif
185 
186 struct ifqueue arpintrq = {
187 	.ifq_head = NULL,
188 	.ifq_tail = NULL,
189 	.ifq_len = 0,
190 	.ifq_maxlen = 50,
191 	.ifq_drops = 0,
192 };
193 static int arp_maxtries = 5;
194 static int useloopback = 1;	/* use loopback interface for local traffic */
195 
196 static percpu_t *arpstat_percpu;
197 
198 #define	ARP_STAT_GETREF()	_NET_STAT_GETREF(arpstat_percpu)
199 #define	ARP_STAT_PUTREF()	_NET_STAT_PUTREF(arpstat_percpu)
200 
201 #define	ARP_STATINC(x)		_NET_STATINC(arpstat_percpu, x)
202 #define	ARP_STATADD(x, v)	_NET_STATADD(arpstat_percpu, x, v)
203 
204 /* revarp state */
205 static struct in_addr myip, srv_ip;
206 static int myip_initialized = 0;
207 static int revarp_in_progress = 0;
208 static struct ifnet *myip_ifp = NULL;
209 
210 static int arp_drainwanted;
211 
212 static int log_movements = 1;
213 static int log_permanent_modify = 1;
214 static int log_wrong_iface = 1;
215 static int log_unknown_network = 1;
216 
217 /*
218  * this should be elsewhere.
219  */
220 
221 #define	LLA_ADDRSTRLEN	(16 * 3)
222 
223 static char *
224 lla_snprintf(char *, const u_int8_t *, int);
225 
226 static char *
227 lla_snprintf(char *dst, const u_int8_t *adrp, int len)
228 {
229 	int i;
230 	char *p;
231 
232 	p = dst;
233 
234 	*p++ = hexdigits[(*adrp) >> 4];
235 	*p++ = hexdigits[(*adrp++) & 0xf];
236 
237 	for (i = 1; i < len && i < 16; i++) {
238 		*p++ = ':';
239 		*p++ = hexdigits[(*adrp) >> 4];
240 		*p++ = hexdigits[(*adrp++) & 0xf];
241 	}
242 
243 	*p = 0;
244 	return dst;
245 }
246 
247 DOMAIN_DEFINE(arpdomain);	/* forward declare and add to link set */
248 
249 static void
250 arp_fasttimo(void)
251 {
252 	if (arp_drainwanted) {
253 		arp_drain();
254 		arp_drainwanted = 0;
255 	}
256 }
257 
258 static const struct protosw arpsw[] = {
259 	{
260 		.pr_type = 0,
261 		.pr_domain = &arpdomain,
262 		.pr_protocol = 0,
263 		.pr_flags = 0,
264 		.pr_input = 0,
265 		.pr_ctlinput = 0,
266 		.pr_ctloutput = 0,
267 		.pr_usrreqs = 0,
268 		.pr_init = arp_init,
269 		.pr_fasttimo = arp_fasttimo,
270 		.pr_slowtimo = 0,
271 		.pr_drain = arp_drainstub,
272 	}
273 };
274 
275 struct domain arpdomain = {
276 	.dom_family = PF_ARP,
277 	.dom_name = "arp",
278 	.dom_protosw = arpsw,
279 	.dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)],
280 };
281 
282 static void sysctl_net_inet_arp_setup(struct sysctllog **);
283 
284 void
285 arp_init(void)
286 {
287 
288 	sysctl_net_inet_arp_setup(NULL);
289 	arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS);
290 	IFQ_LOCK_INIT(&arpintrq);
291 }
292 
293 static void
294 arp_drainstub(void)
295 {
296 	arp_drainwanted = 1;
297 }
298 
299 /*
300  * ARP protocol drain routine.  Called when memory is in short supply.
301  * Called at splvm();  don't acquire softnet_lock as can be called from
302  * hardware interrupt handlers.
303  */
304 void
305 arp_drain(void)
306 {
307 
308 	lltable_drain(AF_INET);
309 }
310 
311 static void
312 arptimer(void *arg)
313 {
314 	struct llentry *lle = arg;
315 	struct ifnet *ifp;
316 
317 	KASSERT((lle->la_flags & LLE_STATIC) == 0);
318 
319 	LLE_WLOCK(lle);
320 
321 	/*
322 	 * This shortcut is required to avoid trying to touch ifp that may be
323 	 * being destroyed.
324 	 */
325 	if ((lle->la_flags & LLE_LINKED) == 0) {
326 		LLE_FREE_LOCKED(lle);
327 		return;
328 	}
329 
330 	ifp = lle->lle_tbl->llt_ifp;
331 
332 	/* XXX: LOR avoidance. We still have ref on lle. */
333 	LLE_WUNLOCK(lle);
334 
335 	IF_AFDATA_LOCK(ifp);
336 	LLE_WLOCK(lle);
337 
338 	/* Guard against race with other llentry_free(). */
339 	if (lle->la_flags & LLE_LINKED) {
340 		size_t pkts_dropped;
341 
342 		LLE_REMREF(lle);
343 		pkts_dropped = llentry_free(lle);
344 		ARP_STATADD(ARP_STAT_DFRDROPPED, pkts_dropped);
345 		ARP_STATADD(ARP_STAT_DFRTOTAL, pkts_dropped);
346 	} else {
347 		LLE_FREE_LOCKED(lle);
348 	}
349 
350 	IF_AFDATA_UNLOCK(ifp);
351 }
352 
353 static void
354 arp_settimer(struct llentry *la, int sec)
355 {
356 
357 	LLE_WLOCK_ASSERT(la);
358 	KASSERT((la->la_flags & LLE_STATIC) == 0);
359 
360 	/*
361 	 * We have to take care of a reference leak which occurs if
362 	 * callout_reset overwrites a pending callout schedule.  Unfortunately
363 	 * we don't have a mean to know the overwrite, so we need to know it
364 	 * using callout_stop.  We need to call callout_pending first to exclude
365 	 * the case that the callout has never been scheduled.
366 	 */
367 	if (callout_pending(&la->la_timer)) {
368 		bool expired = callout_stop(&la->la_timer);
369 		if (!expired)
370 			/* A pending callout schedule is canceled. */
371 			LLE_REMREF(la);
372 	}
373 	LLE_ADDREF(la);
374 	callout_reset(&la->la_timer, hz * sec, arptimer, la);
375 }
376 
377 /*
378  * We set the gateway for RTF_CLONING routes to a "prototype"
379  * link-layer sockaddr whose interface type (if_type) and interface
380  * index (if_index) fields are prepared.
381  */
382 static struct sockaddr *
383 arp_setgate(struct rtentry *rt, struct sockaddr *gate,
384     const struct sockaddr *netmask)
385 {
386 	const struct ifnet *ifp = rt->rt_ifp;
387 	uint8_t namelen = strlen(ifp->if_xname);
388 	uint8_t addrlen = ifp->if_addrlen;
389 
390 	/*
391 	 * XXX: If this is a manually added route to interface
392 	 * such as older version of routed or gated might provide,
393 	 * restore cloning bit.
394 	 */
395 	if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL &&
396 	    satocsin(netmask)->sin_addr.s_addr != 0xffffffff)
397 		rt->rt_flags |= RTF_CONNECTED;
398 
399 	if ((rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL))) {
400 		union {
401 			struct sockaddr sa;
402 			struct sockaddr_storage ss;
403 			struct sockaddr_dl sdl;
404 		} u;
405 		/*
406 		 * Case 1: This route should come from a route to iface.
407 		 */
408 		sockaddr_dl_init(&u.sdl, sizeof(u.ss),
409 		    ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen);
410 		rt_setgate(rt, &u.sa);
411 		gate = rt->rt_gateway;
412 	}
413 	return gate;
414 }
415 
416 static void
417 arp_init_llentry(struct ifnet *ifp, struct llentry *lle)
418 {
419 
420 	switch (ifp->if_type) {
421 #if NTOKEN > 0
422 	case IFT_ISO88025:
423 		lle->la_opaque = kmem_intr_alloc(sizeof(struct token_rif),
424 		    KM_NOSLEEP);
425 		lle->lle_ll_free = arp_free_llentry_tokenring;
426 		break;
427 #endif
428 	}
429 }
430 
431 #if NTOKEN > 0
432 static void
433 arp_free_llentry_tokenring(struct llentry *lle)
434 {
435 
436 	kmem_intr_free(lle->la_opaque, sizeof(struct token_rif));
437 }
438 #endif
439 
440 /*
441  * Parallel to llc_rtrequest.
442  */
443 void
444 arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
445 {
446 	struct sockaddr *gate = rt->rt_gateway;
447 	struct in_ifaddr *ia;
448 	struct ifaddr *ifa;
449 	struct ifnet *ifp = rt->rt_ifp;
450 	int bound;
451 	int s;
452 
453 	if (req == RTM_LLINFO_UPD) {
454 		if ((ifa = info->rti_ifa) != NULL)
455 			arpannounce1(ifa);
456 		return;
457 	}
458 
459 	if ((rt->rt_flags & RTF_GATEWAY) != 0) {
460 		if (req != RTM_ADD)
461 			return;
462 
463 		/*
464 		 * linklayers with particular link MTU limitation.
465 		 */
466 		switch(ifp->if_type) {
467 #if NFDDI > 0
468 		case IFT_FDDI:
469 			if (ifp->if_mtu > FDDIIPMTU)
470 				rt->rt_rmx.rmx_mtu = FDDIIPMTU;
471 			break;
472 #endif
473 #if NARCNET > 0
474 		case IFT_ARCNET:
475 		    {
476 			int arcipifmtu;
477 
478 			if (ifp->if_flags & IFF_LINK0)
479 				arcipifmtu = arc_ipmtu;
480 			else
481 				arcipifmtu = ARCMTU;
482 			if (ifp->if_mtu > arcipifmtu)
483 				rt->rt_rmx.rmx_mtu = arcipifmtu;
484 			break;
485 		    }
486 #endif
487 		}
488 		return;
489 	}
490 
491 	switch (req) {
492 	case RTM_SETGATE:
493 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
494 		break;
495 	case RTM_ADD:
496 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
497 		if (gate == NULL) {
498 			log(LOG_ERR, "%s: arp_setgate failed\n", __func__);
499 			break;
500 		}
501 		if ((rt->rt_flags & RTF_CONNECTED) ||
502 		    (rt->rt_flags & RTF_LOCAL)) {
503 			/*
504 			 * Give this route an expiration time, even though
505 			 * it's a "permanent" route, so that routes cloned
506 			 * from it do not need their expiration time set.
507 			 */
508 			KASSERT(time_uptime != 0);
509 			rt->rt_expire = time_uptime;
510 			/*
511 			 * linklayers with particular link MTU limitation.
512 			 */
513 			switch (ifp->if_type) {
514 #if NFDDI > 0
515 			case IFT_FDDI:
516 				if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
517 				    (rt->rt_rmx.rmx_mtu > FDDIIPMTU ||
518 				     (rt->rt_rmx.rmx_mtu == 0 &&
519 				      ifp->if_mtu > FDDIIPMTU)))
520 					rt->rt_rmx.rmx_mtu = FDDIIPMTU;
521 				break;
522 #endif
523 #if NARCNET > 0
524 			case IFT_ARCNET:
525 			    {
526 				int arcipifmtu;
527 				if (ifp->if_flags & IFF_LINK0)
528 					arcipifmtu = arc_ipmtu;
529 				else
530 					arcipifmtu = ARCMTU;
531 
532 				if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
533 				    (rt->rt_rmx.rmx_mtu > arcipifmtu ||
534 				     (rt->rt_rmx.rmx_mtu == 0 &&
535 				      ifp->if_mtu > arcipifmtu)))
536 					rt->rt_rmx.rmx_mtu = arcipifmtu;
537 				break;
538 			    }
539 #endif
540 			}
541 			if (rt->rt_flags & RTF_CONNECTED)
542 				break;
543 		}
544 
545 		bound = curlwp_bind();
546 		/* Announce a new entry if requested. */
547 		if (rt->rt_flags & RTF_ANNOUNCE) {
548 			struct psref psref;
549 			ia = in_get_ia_on_iface_psref(
550 			    satocsin(rt_getkey(rt))->sin_addr, ifp, &psref);
551 			if (ia != NULL) {
552 				arpannounce(ifp, &ia->ia_ifa,
553 				    CLLADDR(satocsdl(gate)));
554 				ia4_release(ia, &psref);
555 			}
556 		}
557 
558 		if (gate->sa_family != AF_LINK ||
559 		    gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) {
560 			log(LOG_DEBUG, "%s: bad gateway value\n", __func__);
561 			goto out;
562 		}
563 
564 		satosdl(gate)->sdl_type = ifp->if_type;
565 		satosdl(gate)->sdl_index = ifp->if_index;
566 
567 		/*
568 		 * If the route is for a broadcast address mark it as such.
569 		 * This way we can avoid an expensive call to in_broadcast()
570 		 * in ip_output() most of the time (because the route passed
571 		 * to ip_output() is almost always a host route).
572 		 */
573 		if (rt->rt_flags & RTF_HOST &&
574 		    !(rt->rt_flags & RTF_BROADCAST) &&
575 		    in_broadcast(satocsin(rt_getkey(rt))->sin_addr, rt->rt_ifp))
576 			rt->rt_flags |= RTF_BROADCAST;
577 		/* There is little point in resolving the broadcast address */
578 		if (rt->rt_flags & RTF_BROADCAST)
579 			goto out;
580 
581 		/*
582 		 * When called from rt_ifa_addlocal, we cannot depend on that
583 		 * the address (rt_getkey(rt)) exits in the address list of the
584 		 * interface. So check RTF_LOCAL instead.
585 		 */
586 		if (rt->rt_flags & RTF_LOCAL) {
587 			rt->rt_expire = 0;
588 			if (useloopback) {
589 				rt->rt_ifp = lo0ifp;
590 				rt->rt_rmx.rmx_mtu = 0;
591 			}
592 			goto out;
593 		}
594 
595 		s = pserialize_read_enter();
596 		ia = in_get_ia_on_iface(satocsin(rt_getkey(rt))->sin_addr, ifp);
597 		if (ia == NULL) {
598 			pserialize_read_exit(s);
599 			goto out;
600 		}
601 
602 		rt->rt_expire = 0;
603 		if (useloopback) {
604 			rt->rt_ifp = lo0ifp;
605 			rt->rt_rmx.rmx_mtu = 0;
606 		}
607 		rt->rt_flags |= RTF_LOCAL;
608 		/*
609 		 * make sure to set rt->rt_ifa to the interface
610 		 * address we are using, otherwise we will have trouble
611 		 * with source address selection.
612 		 */
613 		ifa = &ia->ia_ifa;
614 		if (ifa != rt->rt_ifa)
615 			/* Assume it doesn't sleep */
616 			rt_replace_ifa(rt, ifa);
617 		pserialize_read_exit(s);
618 	out:
619 		curlwp_bindx(bound);
620 		break;
621 	}
622 }
623 
624 /*
625  * Broadcast an ARP request. Caller specifies:
626  *	- arp header source ip address
627  *	- arp header target ip address
628  *	- arp header source ethernet address
629  */
630 static void
631 arprequest(struct ifnet *ifp,
632     const struct in_addr *sip, const struct in_addr *tip,
633     const uint8_t *enaddr)
634 {
635 	struct mbuf *m;
636 	struct arphdr *ah;
637 	struct sockaddr sa;
638 	uint64_t *arps;
639 
640 	KASSERT(sip != NULL);
641 	KASSERT(tip != NULL);
642 	KASSERT(enaddr != NULL);
643 
644 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
645 		return;
646 	MCLAIM(m, &arpdomain.dom_mowner);
647 	switch (ifp->if_type) {
648 	case IFT_IEEE1394:
649 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
650 		    ifp->if_addrlen;
651 		break;
652 	default:
653 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
654 		    2 * ifp->if_addrlen;
655 		break;
656 	}
657 	m->m_pkthdr.len = m->m_len;
658 	MH_ALIGN(m, m->m_len);
659 	ah = mtod(m, struct arphdr *);
660 	memset(ah, 0, m->m_len);
661 	switch (ifp->if_type) {
662 	case IFT_IEEE1394:	/* RFC2734 */
663 		/* fill it now for ar_tpa computation */
664 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
665 		break;
666 	default:
667 		/* ifp->if_output will fill ar_hrd */
668 		break;
669 	}
670 	ah->ar_pro = htons(ETHERTYPE_IP);
671 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
672 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
673 	ah->ar_op = htons(ARPOP_REQUEST);
674 	memcpy(ar_sha(ah), enaddr, ah->ar_hln);
675 	memcpy(ar_spa(ah), sip, ah->ar_pln);
676 	memcpy(ar_tpa(ah), tip, ah->ar_pln);
677 	sa.sa_family = AF_ARP;
678 	sa.sa_len = 2;
679 	m->m_flags |= M_BCAST;
680 	arps = ARP_STAT_GETREF();
681 	arps[ARP_STAT_SNDTOTAL]++;
682 	arps[ARP_STAT_SENDREQUEST]++;
683 	ARP_STAT_PUTREF();
684 	if_output_lock(ifp, ifp, m, &sa, NULL);
685 }
686 
687 void
688 arpannounce(struct ifnet *ifp, struct ifaddr *ifa, const uint8_t *enaddr)
689 {
690 	struct in_ifaddr *ia = ifatoia(ifa);
691 	struct in_addr *ip = &IA_SIN(ifa)->sin_addr;
692 
693 	if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) {
694 		ARPLOG(LOG_DEBUG, "%s not ready\n", ARPLOGADDR(ip));
695 		return;
696 	}
697 	arprequest(ifp, ip, ip, enaddr);
698 }
699 
700 static void
701 arpannounce1(struct ifaddr *ifa)
702 {
703 
704 	arpannounce(ifa->ifa_ifp, ifa, CLLADDR(ifa->ifa_ifp->if_sadl));
705 }
706 
707 /*
708  * Resolve an IP address into an ethernet address.  If success, desten is
709  * filled in. If there is no entry in arptab, set one up and broadcast a
710  * request for the IP address. Hold onto this mbuf and resend it once the
711  * address is finally resolved.
712  *
713  * A return value of 0 indicates that desten has been filled in and the packet
714  * should be sent normally; a return value of EWOULDBLOCK indicates that the
715  * packet has been held pending resolution. Any other value indicates an
716  * error.
717  */
718 int
719 arpresolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m,
720     const struct sockaddr *dst, void *desten, size_t destlen)
721 {
722 	struct llentry *la;
723 	const char *create_lookup;
724 	bool renew;
725 	int error;
726 	struct ifnet *origifp = ifp;
727 
728 #if NCARP > 0
729 	if (rt != NULL && rt->rt_ifp->if_type == IFT_CARP)
730 		ifp = rt->rt_ifp;
731 #endif
732 
733 	KASSERT(m != NULL);
734 
735 	la = arplookup(ifp, NULL, dst, 0);
736 	if (la == NULL)
737 		goto notfound;
738 
739 	if ((la->la_flags & LLE_VALID) &&
740 	    ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) {
741 		KASSERT(destlen >= ifp->if_addrlen);
742 		memcpy(desten, &la->ll_addr, ifp->if_addrlen);
743 		LLE_RUNLOCK(la);
744 		return 0;
745 	}
746 
747 notfound:
748 	if (ifp->if_flags & IFF_NOARP) {
749 		if (la != NULL)
750 			LLE_RUNLOCK(la);
751 		error = ENOTSUP;
752 		goto bad;
753 	}
754 
755 	if (la == NULL) {
756 		struct rtentry *_rt;
757 
758 		create_lookup = "create";
759 		_rt = rtalloc1(dst, 0);
760 		IF_AFDATA_WLOCK(ifp);
761 		la = lla_create(LLTABLE(ifp), LLE_EXCLUSIVE, dst, _rt);
762 		IF_AFDATA_WUNLOCK(ifp);
763 		if (_rt != NULL)
764 			rt_unref(_rt);
765 		if (la == NULL)
766 			ARP_STATINC(ARP_STAT_ALLOCFAIL);
767 		else {
768 			struct sockaddr_in sin;
769 
770 			arp_init_llentry(ifp, la);
771 			sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
772 			rt_clonedmsg(sintosa(&sin), ifp, rt);
773 		}
774 	} else if (LLE_TRY_UPGRADE(la) == 0) {
775 		create_lookup = "lookup";
776 		LLE_RUNLOCK(la);
777 		IF_AFDATA_RLOCK(ifp);
778 		la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
779 		IF_AFDATA_RUNLOCK(ifp);
780 	}
781 
782 	error = EINVAL;
783 	if (la == NULL) {
784 		log(LOG_DEBUG,
785 		    "%s: failed to %s llentry for %s on %s\n",
786 		    __func__, create_lookup, inet_ntoa(satocsin(dst)->sin_addr),
787 		    ifp->if_xname);
788 		goto bad;
789 	}
790 
791 	if ((la->la_flags & LLE_VALID) &&
792 	    ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime))
793 	{
794 		KASSERT(destlen >= ifp->if_addrlen);
795 		memcpy(desten, &la->ll_addr, ifp->if_addrlen);
796 		renew = false;
797 		/*
798 		 * If entry has an expiry time and it is approaching,
799 		 * see if we need to send an ARP request within this
800 		 * arpt_down interval.
801 		 */
802 		if (!(la->la_flags & LLE_STATIC) &&
803 		    time_uptime + la->la_preempt > la->la_expire)
804 		{
805 			renew = true;
806 			la->la_preempt--;
807 		}
808 
809 		LLE_WUNLOCK(la);
810 
811 		if (renew) {
812 			const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
813 			arprequest(origifp,
814 			    &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
815 			    &satocsin(dst)->sin_addr, enaddr);
816 		}
817 
818 		return 0;
819 	}
820 
821 	if (la->la_flags & LLE_STATIC) {   /* should not happen! */
822 		LLE_RUNLOCK(la);
823 		log(LOG_DEBUG, "%s: ouch, empty static llinfo for %s\n",
824 		    __func__, inet_ntoa(satocsin(dst)->sin_addr));
825 		error = EINVAL;
826 		goto bad;
827 	}
828 
829 	renew = (la->la_asked == 0 || la->la_expire != time_uptime);
830 
831 	/*
832 	 * There is an arptab entry, but no ethernet address
833 	 * response yet.  Add the mbuf to the list, dropping
834 	 * the oldest packet if we have exceeded the system
835 	 * setting.
836 	 */
837 	LLE_WLOCK_ASSERT(la);
838 	if (la->la_numheld >= arp_maxhold) {
839 		if (la->la_hold != NULL) {
840 			struct mbuf *next = la->la_hold->m_nextpkt;
841 			m_freem(la->la_hold);
842 			la->la_hold = next;
843 			la->la_numheld--;
844 			ARP_STATINC(ARP_STAT_DFRDROPPED);
845 			ARP_STATINC(ARP_STAT_DFRTOTAL);
846 		}
847 	}
848 	if (la->la_hold != NULL) {
849 		struct mbuf *curr = la->la_hold;
850 		while (curr->m_nextpkt != NULL)
851 			curr = curr->m_nextpkt;
852 		curr->m_nextpkt = m;
853 	} else
854 		la->la_hold = m;
855 	la->la_numheld++;
856 	if (!renew)
857 		LLE_DOWNGRADE(la);
858 
859 	/*
860 	 * Return EWOULDBLOCK if we have tried less than arp_maxtries. It
861 	 * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH
862 	 * if we have already sent arp_maxtries ARP requests. Retransmit the
863 	 * ARP request, but not faster than one request per second.
864 	 */
865 	if (la->la_asked < arp_maxtries)
866 		error = EWOULDBLOCK;	/* First request. */
867 	else
868 		error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ?
869 		    EHOSTUNREACH : EHOSTDOWN;
870 
871 	if (renew) {
872 		const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
873 		la->la_expire = time_uptime;
874 		arp_settimer(la, arpt_down);
875 		la->la_asked++;
876 		LLE_WUNLOCK(la);
877 
878 		if (rt != NULL) {
879 			arprequest(origifp,
880 			    &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
881 			    &satocsin(dst)->sin_addr, enaddr);
882 		} else {
883 			struct sockaddr_in sin;
884 			struct rtentry *_rt;
885 
886 			sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
887 
888 			/* XXX */
889 			_rt = rtalloc1((struct sockaddr *)&sin, 0);
890 			if (_rt == NULL)
891 				goto bad;
892 			arprequest(origifp,
893 			    &satocsin(_rt->rt_ifa->ifa_addr)->sin_addr,
894 			    &satocsin(dst)->sin_addr, enaddr);
895 			rt_unref(_rt);
896 		}
897 		return error;
898 	}
899 
900 	LLE_RUNLOCK(la);
901 	return error;
902 
903 bad:
904 	m_freem(m);
905 	return error;
906 }
907 
908 /*
909  * Common length and type checks are done here,
910  * then the protocol-specific routine is called.
911  */
912 void
913 arpintr(void)
914 {
915 	struct mbuf *m;
916 	struct arphdr *ar;
917 	int s;
918 	int arplen;
919 
920 	SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
921 	for (;;) {
922 		struct ifnet *rcvif;
923 
924 		IFQ_LOCK(&arpintrq);
925 		IF_DEQUEUE(&arpintrq, m);
926 		IFQ_UNLOCK(&arpintrq);
927 		if (m == NULL)
928 			goto out;
929 		if ((m->m_flags & M_PKTHDR) == 0)
930 			panic("arpintr");
931 
932 		MCLAIM(m, &arpdomain.dom_mowner);
933 		ARP_STATINC(ARP_STAT_RCVTOTAL);
934 
935 		arplen = sizeof(struct arphdr);
936 		if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
937 			goto badlen;
938 		ar = mtod(m, struct arphdr *);
939 
940 		rcvif = m_get_rcvif(m, &s);
941 		if (__predict_false(rcvif == NULL)) {
942 			ARP_STATINC(ARP_STAT_RCVNOINT);
943 			goto free;
944 		}
945 
946 		/*
947 		 * We don't want non-IEEE1394 ARP packets on IEEE1394
948 		 * interfaces, and vice versa. Our life depends on that.
949 		 */
950 		switch (rcvif->if_type) {
951 		case IFT_IEEE1394:
952 			if (ntohs(ar->ar_hrd) != ARPHRD_IEEE1394) {
953 				m_put_rcvif(rcvif, &s);
954 				ARP_STATINC(ARP_STAT_RCVBADPROTO);
955 				goto free;
956 			}
957 
958 			arplen = sizeof(struct arphdr) +
959 			    ar->ar_hln + 2 * ar->ar_pln;
960 			break;
961 		default:
962 			if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) {
963 				m_put_rcvif(rcvif, &s);
964 				ARP_STATINC(ARP_STAT_RCVBADPROTO);
965 				goto free;
966 			}
967 
968 			arplen = sizeof(struct arphdr) +
969 			    2 * ar->ar_hln + 2 * ar->ar_pln;
970 			break;
971 		}
972 
973 		m_put_rcvif(rcvif, &s);
974 
975 		if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
976 			goto badlen;
977 		ar = mtod(m, struct arphdr *);
978 
979 		switch (ntohs(ar->ar_pro)) {
980 		case ETHERTYPE_IP:
981 		case ETHERTYPE_IPTRAILERS:
982 			in_arpinput(m);
983 			continue;
984 		default:
985 			ARP_STATINC(ARP_STAT_RCVBADPROTO);
986 			goto free;
987 		}
988 
989 badlen:
990 		ARP_STATINC(ARP_STAT_RCVBADLEN);
991 free:
992 		m_freem(m);
993 	}
994 
995 out:
996 	SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
997 	return; /* XXX gcc */
998 }
999 
1000 /*
1001  * ARP for Internet protocols on 10 Mb/s Ethernet. Algorithm is that given in
1002  * RFC 826. In addition, a sanity check is performed on the sender protocol
1003  * address, to catch impersonators.
1004  *
1005  * We no longer handle negotiations for use of trailer protocol: formerly, ARP
1006  * replied for protocol type ETHERTYPE_TRAIL sent along with IP replies if we
1007  * wanted trailers sent to us, and also sent them in response to IP replies.
1008  * This allowed either end to announce the desire to receive trailer packets.
1009  *
1010  * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, but
1011  * formerly didn't normally send requests.
1012  */
1013 static void
1014 in_arpinput(struct mbuf *m)
1015 {
1016 	struct arphdr *ah;
1017 	struct ifnet *ifp, *rcvif = NULL;
1018 	struct llentry *la = NULL;
1019 	struct in_ifaddr *ia = NULL;
1020 #if NBRIDGE > 0
1021 	struct in_ifaddr *bridge_ia = NULL;
1022 #endif
1023 #if NCARP > 0
1024 	uint32_t count = 0, index = 0;
1025 #endif
1026 	struct sockaddr sa;
1027 	struct in_addr isaddr, itaddr, myaddr;
1028 	int op;
1029 	void *tha;
1030 	uint64_t *arps;
1031 	struct psref psref, psref_ia;
1032 	int s;
1033 	char llabuf[LLA_ADDRSTRLEN];
1034 	char ipbuf[INET_ADDRSTRLEN];
1035 	bool do_dad;
1036 
1037 	if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT)))
1038 		goto out;
1039 	ah = mtod(m, struct arphdr *);
1040 	op = ntohs(ah->ar_op);
1041 
1042 	if (ah->ar_pln != sizeof(struct in_addr))
1043 		goto out;
1044 
1045 	ifp = if_get_bylla(ar_sha(ah), ah->ar_hln, &psref);
1046 	if (ifp) {
1047 		/* it's from me, ignore it. */
1048 		if_put(ifp, &psref);
1049 		ARP_STATINC(ARP_STAT_RCVLOCALSHA);
1050 		goto out;
1051 	}
1052 
1053 	rcvif = ifp = m_get_rcvif_psref(m, &psref);
1054 	if (__predict_false(rcvif == NULL))
1055 		goto out;
1056 	if (rcvif->if_flags & IFF_NOARP)
1057 		goto out;
1058 
1059 	memcpy(&isaddr, ar_spa(ah), sizeof(isaddr));
1060 	memcpy(&itaddr, ar_tpa(ah), sizeof(itaddr));
1061 
1062 	if (m->m_flags & (M_BCAST|M_MCAST))
1063 		ARP_STATINC(ARP_STAT_RCVMCAST);
1064 
1065 	/*
1066 	 * Search for a matching interface address
1067 	 * or any address on the interface to use
1068 	 * as a dummy address in the rest of this function.
1069 	 *
1070 	 * If the target IP address is zero then try and find
1071 	 * the sender address for DAD.
1072 	 */
1073 	myaddr = in_nullhost(itaddr) ? isaddr : itaddr;
1074 	s = pserialize_read_enter();
1075 	IN_ADDRHASH_READER_FOREACH(ia, myaddr.s_addr) {
1076 		if (!in_hosteq(ia->ia_addr.sin_addr, myaddr))
1077 			continue;
1078 #if NCARP > 0
1079 		if (ia->ia_ifp->if_type == IFT_CARP &&
1080 		    ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) ==
1081 		    (IFF_UP|IFF_RUNNING))) {
1082 			index++;
1083 			/* XXX: ar_hln? */
1084 			if (ia->ia_ifp == rcvif && (ah->ar_hln >= 6) &&
1085 			    carp_iamatch(ia, ar_sha(ah),
1086 			    &count, index)) {
1087 				break;
1088 			}
1089 		} else
1090 #endif
1091 		if (ia->ia_ifp == rcvif)
1092 			break;
1093 #if NBRIDGE > 0
1094 		/*
1095 		 * If the interface we received the packet on
1096 		 * is part of a bridge, check to see if we need
1097 		 * to "bridge" the packet to ourselves at this
1098 		 * layer.  Note we still prefer a perfect match,
1099 		 * but allow this weaker match if necessary.
1100 		 */
1101 		if (rcvif->if_bridge != NULL &&
1102 		    rcvif->if_bridge == ia->ia_ifp->if_bridge)
1103 			bridge_ia = ia;
1104 #endif
1105 	}
1106 
1107 #if NBRIDGE > 0
1108 	if (ia == NULL && bridge_ia != NULL) {
1109 		ia = bridge_ia;
1110 		m_put_rcvif_psref(rcvif, &psref);
1111 		rcvif = NULL;
1112 		/* FIXME */
1113 		ifp = bridge_ia->ia_ifp;
1114 	}
1115 #endif
1116 	if (ia != NULL)
1117 		ia4_acquire(ia, &psref_ia);
1118 	pserialize_read_exit(s);
1119 
1120 	if (ah->ar_hln != ifp->if_addrlen) {
1121 		ARP_STATINC(ARP_STAT_RCVBADLEN);
1122 		log(LOG_WARNING,
1123 		    "arp from %s: addr len: new %d, i/f %d (ignored)\n",
1124 		    IN_PRINT(ipbuf, &isaddr), ah->ar_hln, ifp->if_addrlen);
1125 		goto out;
1126 	}
1127 
1128 	/* Only do DaD if we have a matching address. */
1129 	do_dad = (ia != NULL);
1130 
1131 	if (ia == NULL) {
1132 		ia = in_get_ia_on_iface_psref(isaddr, rcvif, &psref_ia);
1133 		if (ia == NULL) {
1134 			ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
1135 			if (ia == NULL) {
1136 				ARP_STATINC(ARP_STAT_RCVNOINT);
1137 				goto out;
1138 			}
1139 		}
1140 	}
1141 
1142 	myaddr = ia->ia_addr.sin_addr;
1143 
1144 	/* XXX checks for bridge case? */
1145 	if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) {
1146 		ARP_STATINC(ARP_STAT_RCVBCASTSHA);
1147 		log(LOG_ERR,
1148 		    "%s: arp: link address is broadcast for IP address %s!\n",
1149 		    ifp->if_xname, IN_PRINT(ipbuf, &isaddr));
1150 		goto out;
1151 	}
1152 
1153 	/*
1154 	 * If the source IP address is zero, this is an RFC 5227 ARP probe
1155 	 */
1156 	if (in_nullhost(isaddr))
1157 		ARP_STATINC(ARP_STAT_RCVZEROSPA);
1158 	else if (in_hosteq(isaddr, myaddr))
1159 		ARP_STATINC(ARP_STAT_RCVLOCALSPA);
1160 
1161 	if (in_nullhost(itaddr))
1162 		ARP_STATINC(ARP_STAT_RCVZEROTPA);
1163 
1164 	/*
1165 	 * DAD check, RFC 5227.
1166 	 * Collision on sender address is always a duplicate.
1167 	 * Collision on target address is only a duplicate IF
1168 	 * the sender address is the null host (ie a DAD probe) AND
1169 	 * our address is in the TENTATIVE state.
1170 	 * DUPLICATED state is also checked so that processing stops here
1171 	 * and an error can be logged.
1172 	 */
1173 	if (do_dad &&
1174 	    (in_hosteq(isaddr, myaddr) ||
1175 	    (in_nullhost(isaddr) && in_hosteq(itaddr, myaddr)
1176 	    && ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DUPLICATED))))
1177 	{
1178 		arp_dad_duplicated((struct ifaddr *)ia,
1179 		    lla_snprintf(llabuf, ar_sha(ah), ah->ar_hln));
1180 		goto out;
1181 	}
1182 
1183 	/*
1184 	 * If the target IP address is zero, ignore the packet.
1185 	 * This prevents the code below from trying to answer
1186 	 * when we are using IP address zero (booting).
1187 	 */
1188 	if (in_nullhost(itaddr))
1189 		goto out;
1190 
1191 	if (in_nullhost(isaddr))
1192 		goto reply;
1193 
1194 	if (in_hosteq(itaddr, myaddr))
1195 		la = arpcreate(ifp, &isaddr, NULL, 1);
1196 	else
1197 		la = arplookup(ifp, &isaddr, NULL, 1);
1198 	if (la == NULL)
1199 		goto reply;
1200 
1201 	if ((la->la_flags & LLE_VALID) &&
1202 	    memcmp(ar_sha(ah), &la->ll_addr, ifp->if_addrlen)) {
1203 		if (la->la_flags & LLE_STATIC) {
1204 			ARP_STATINC(ARP_STAT_RCVOVERPERM);
1205 			if (!log_permanent_modify)
1206 				goto out;
1207 			log(LOG_INFO,
1208 			    "%s tried to overwrite permanent arp info"
1209 			    " for %s\n",
1210 			    lla_snprintf(llabuf, ar_sha(ah), ah->ar_hln),
1211 			    IN_PRINT(ipbuf, &isaddr));
1212 			goto out;
1213 		} else if (la->lle_tbl->llt_ifp != ifp) {
1214 			/* XXX should not happen? */
1215 			ARP_STATINC(ARP_STAT_RCVOVERINT);
1216 			if (!log_wrong_iface)
1217 				goto out;
1218 			log(LOG_INFO,
1219 			    "%s on %s tried to overwrite "
1220 			    "arp info for %s on %s\n",
1221 			    lla_snprintf(llabuf, ar_sha(ah), ah->ar_hln),
1222 			    ifp->if_xname, IN_PRINT(ipbuf, &isaddr),
1223 			    la->lle_tbl->llt_ifp->if_xname);
1224 				goto out;
1225 		} else {
1226 			ARP_STATINC(ARP_STAT_RCVOVER);
1227 			if (log_movements)
1228 				log(LOG_INFO, "arp info overwritten "
1229 				    "for %s by %s\n",
1230 				    IN_PRINT(ipbuf, &isaddr),
1231 				    lla_snprintf(llabuf, ar_sha(ah),
1232 				    ah->ar_hln));
1233 		}
1234 	}
1235 
1236 	KASSERT(ifp->if_sadl->sdl_alen == ifp->if_addrlen);
1237 
1238 #if NTOKEN > 0
1239 	/*
1240 	 * XXX uses m_data and assumes the complete answer including
1241 	 * XXX token-ring headers is in the same buf
1242 	 */
1243 	if (ifp->if_type == IFT_ISO88025) {
1244 		struct token_header *trh;
1245 
1246 		trh = (struct token_header *)M_TRHSTART(m);
1247 		if (trh->token_shost[0] & TOKEN_RI_PRESENT) {
1248 			struct token_rif *rif;
1249 			size_t riflen;
1250 
1251 			rif = TOKEN_RIF(trh);
1252 			riflen = (ntohs(rif->tr_rcf) &
1253 			    TOKEN_RCF_LEN_MASK) >> 8;
1254 
1255 			if (riflen > 2 &&
1256 			    riflen < sizeof(struct token_rif) &&
1257 			    (riflen & 1) == 0) {
1258 				rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION);
1259 				rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK);
1260 				memcpy(TOKEN_RIF_LLE(la), rif, riflen);
1261 			}
1262 		}
1263 	}
1264 #endif
1265 
1266 	KASSERT(sizeof(la->ll_addr) >= ifp->if_addrlen);
1267 	memcpy(&la->ll_addr, ar_sha(ah), ifp->if_addrlen);
1268 	la->la_flags |= LLE_VALID;
1269 	if ((la->la_flags & LLE_STATIC) == 0) {
1270 		la->la_expire = time_uptime + arpt_keep;
1271 		arp_settimer(la, arpt_keep);
1272 	}
1273 	la->la_asked = 0;
1274 	/* rt->rt_flags &= ~RTF_REJECT; */
1275 
1276 	if (la->la_hold != NULL) {
1277 		int n = la->la_numheld;
1278 		struct mbuf *m_hold, *m_hold_next;
1279 		struct sockaddr_in sin;
1280 
1281 		sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
1282 
1283 		m_hold = la->la_hold;
1284 		la->la_hold = NULL;
1285 		la->la_numheld = 0;
1286 		/*
1287 		 * We have to unlock here because if_output would call
1288 		 * arpresolve
1289 		 */
1290 		LLE_WUNLOCK(la);
1291 		ARP_STATADD(ARP_STAT_DFRSENT, n);
1292 		ARP_STATADD(ARP_STAT_DFRTOTAL, n);
1293 		for (; m_hold != NULL; m_hold = m_hold_next) {
1294 			m_hold_next = m_hold->m_nextpkt;
1295 			m_hold->m_nextpkt = NULL;
1296 			if_output_lock(ifp, ifp, m_hold, sintosa(&sin), NULL);
1297 		}
1298 	} else
1299 		LLE_WUNLOCK(la);
1300 	la = NULL;
1301 
1302 reply:
1303 	if (la != NULL) {
1304 		LLE_WUNLOCK(la);
1305 		la = NULL;
1306 	}
1307 	if (op != ARPOP_REQUEST) {
1308 		if (op == ARPOP_REPLY)
1309 			ARP_STATINC(ARP_STAT_RCVREPLY);
1310 		goto out;
1311 	}
1312 	ARP_STATINC(ARP_STAT_RCVREQUEST);
1313 	if (in_hosteq(itaddr, myaddr)) {
1314 		/* If our address is unusable, don't reply */
1315 		if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED))
1316 			goto out;
1317 		/* I am the target */
1318 		tha = ar_tha(ah);
1319 		if (tha)
1320 			memcpy(tha, ar_sha(ah), ah->ar_hln);
1321 		memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1322 	} else {
1323 		/* Proxy ARP */
1324 		struct llentry *lle = NULL;
1325 		struct sockaddr_in sin;
1326 
1327 #if NCARP > 0
1328 		if (ifp->if_type == IFT_CARP) {
1329 			struct ifnet *_rcvif = m_get_rcvif(m, &s);
1330 			int iftype = 0;
1331 			if (__predict_true(_rcvif != NULL))
1332 				iftype = _rcvif->if_type;
1333 			m_put_rcvif(_rcvif, &s);
1334 			if (iftype != IFT_CARP)
1335 				goto out;
1336 		}
1337 #endif
1338 
1339 		tha = ar_tha(ah);
1340 
1341 		sockaddr_in_init(&sin, &itaddr, 0);
1342 
1343 		IF_AFDATA_RLOCK(ifp);
1344 		lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin);
1345 		IF_AFDATA_RUNLOCK(ifp);
1346 
1347 		if ((lle != NULL) && (lle->la_flags & LLE_PUB)) {
1348 			if (tha)
1349 				memcpy(tha, ar_sha(ah), ah->ar_hln);
1350 			memcpy(ar_sha(ah), &lle->ll_addr, ah->ar_hln);
1351 			LLE_RUNLOCK(lle);
1352 		} else {
1353 			if (lle != NULL)
1354 				LLE_RUNLOCK(lle);
1355 			goto out;
1356 		}
1357 	}
1358 	ia4_release(ia, &psref_ia);
1359 
1360 	/*
1361 	 * XXX XXX: Here we're recycling the mbuf. But the mbuf could have
1362 	 * other mbufs in its chain, and just overwriting m->m_pkthdr.len
1363 	 * would be wrong in this case (the length becomes smaller than the
1364 	 * real chain size).
1365 	 *
1366 	 * This can theoretically cause bugs in the lower layers (drivers,
1367 	 * and L2encap), in some corner cases.
1368 	 */
1369 	memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln);
1370 	memcpy(ar_spa(ah), &itaddr, ah->ar_pln);
1371 	ah->ar_op = htons(ARPOP_REPLY);
1372 	ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */
1373 	switch (ifp->if_type) {
1374 	case IFT_IEEE1394:
1375 		/* ieee1394 arp reply is broadcast */
1376 		m->m_flags &= ~M_MCAST;
1377 		m->m_flags |= M_BCAST;
1378 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln;
1379 		break;
1380 	default:
1381 		m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */
1382 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln);
1383 		break;
1384 	}
1385 	m->m_pkthdr.len = m->m_len;
1386 	sa.sa_family = AF_ARP;
1387 	sa.sa_len = 2;
1388 	arps = ARP_STAT_GETREF();
1389 	arps[ARP_STAT_SNDTOTAL]++;
1390 	arps[ARP_STAT_SNDREPLY]++;
1391 	ARP_STAT_PUTREF();
1392 	if_output_lock(ifp, ifp, m, &sa, NULL);
1393 	if (rcvif != NULL)
1394 		m_put_rcvif_psref(rcvif, &psref);
1395 	return;
1396 
1397 out:
1398 	if (la != NULL)
1399 		LLE_WUNLOCK(la);
1400 	if (ia != NULL)
1401 		ia4_release(ia, &psref_ia);
1402 	if (rcvif != NULL)
1403 		m_put_rcvif_psref(rcvif, &psref);
1404 	m_freem(m);
1405 }
1406 
1407 /*
1408  * Lookup or a new address in arptab.
1409  */
1410 static struct llentry *
1411 arplookup(struct ifnet *ifp, const struct in_addr *addr,
1412     const struct sockaddr *sa, int wlock)
1413 {
1414 	struct sockaddr_in sin;
1415 	struct llentry *la;
1416 	int flags = wlock ? LLE_EXCLUSIVE : 0;
1417 
1418 	if (sa == NULL) {
1419 		KASSERT(addr != NULL);
1420 		sockaddr_in_init(&sin, addr, 0);
1421 		sa = sintocsa(&sin);
1422 	}
1423 
1424 	IF_AFDATA_RLOCK(ifp);
1425 	la = lla_lookup(LLTABLE(ifp), flags, sa);
1426 	IF_AFDATA_RUNLOCK(ifp);
1427 
1428 	return la;
1429 }
1430 
1431 static struct llentry *
1432 arpcreate(struct ifnet *ifp, const struct in_addr *addr,
1433     const struct sockaddr *sa, int wlock)
1434 {
1435 	struct sockaddr_in sin;
1436 	struct llentry *la;
1437 	int flags = wlock ? LLE_EXCLUSIVE : 0;
1438 
1439 	if (sa == NULL) {
1440 		KASSERT(addr != NULL);
1441 		sockaddr_in_init(&sin, addr, 0);
1442 		sa = sintocsa(&sin);
1443 	}
1444 
1445 	la = arplookup(ifp, addr, sa, wlock);
1446 
1447 	if (la == NULL) {
1448 		struct rtentry *rt;
1449 
1450 		rt = rtalloc1(sa, 0);
1451 		IF_AFDATA_WLOCK(ifp);
1452 		la = lla_create(LLTABLE(ifp), flags, sa, rt);
1453 		IF_AFDATA_WUNLOCK(ifp);
1454 		if (rt != NULL)
1455 			rt_unref(rt);
1456 
1457 		if (la != NULL)
1458 			arp_init_llentry(ifp, la);
1459 	}
1460 
1461 	return la;
1462 }
1463 
1464 int
1465 arpioctl(u_long cmd, void *data)
1466 {
1467 
1468 	return EOPNOTSUPP;
1469 }
1470 
1471 void
1472 arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
1473 {
1474 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1475 
1476 	ifa->ifa_rtrequest = arp_rtrequest;
1477 	ifa->ifa_flags |= RTF_CONNECTED;
1478 
1479 	/* ARP will handle DAD for this address. */
1480 	if (in_nullhost(IA_SIN(ifa)->sin_addr)) {
1481 		if (ia->ia_dad_stop != NULL)	/* safety */
1482 			ia->ia_dad_stop(ifa);
1483 		ia->ia_dad_start = NULL;
1484 		ia->ia_dad_stop = NULL;
1485 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1486 	} else {
1487 		ia->ia_dad_start = arp_dad_start;
1488 		ia->ia_dad_stop = arp_dad_stop;
1489 		if (ia->ia4_flags & IN_IFF_TRYTENTATIVE && ip_dad_count > 0)
1490 			ia->ia4_flags |= IN_IFF_TENTATIVE;
1491 		else
1492 			arpannounce1(ifa);
1493 	}
1494 }
1495 
1496 TAILQ_HEAD(dadq_head, dadq);
1497 struct dadq {
1498 	TAILQ_ENTRY(dadq) dad_list;
1499 	struct ifaddr *dad_ifa;
1500 	int dad_count;		/* max ARP to send */
1501 	int dad_arp_tcount;	/* # of trials to send ARP */
1502 	int dad_arp_ocount;	/* ARP sent so far */
1503 	int dad_arp_announce;	/* max ARP announcements */
1504 	int dad_arp_acount;	/* # of announcements */
1505 	struct callout dad_timer_ch;
1506 };
1507 
1508 static struct dadq_head dadq;
1509 static int dad_init = 0;
1510 static int dad_maxtry = 15;     /* max # of *tries* to transmit DAD packet */
1511 static kmutex_t arp_dad_lock;
1512 
1513 static struct dadq *
1514 arp_dad_find(struct ifaddr *ifa)
1515 {
1516 	struct dadq *dp;
1517 
1518 	KASSERT(mutex_owned(&arp_dad_lock));
1519 
1520 	TAILQ_FOREACH(dp, &dadq, dad_list) {
1521 		if (dp->dad_ifa == ifa)
1522 			return dp;
1523 	}
1524 	return NULL;
1525 }
1526 
1527 static void
1528 arp_dad_starttimer(struct dadq *dp, int ticks)
1529 {
1530 
1531 	callout_reset(&dp->dad_timer_ch, ticks,
1532 	    (void (*)(void *))arp_dad_timer, dp);
1533 }
1534 
1535 static void
1536 arp_dad_stoptimer(struct dadq *dp)
1537 {
1538 
1539 	KASSERT(mutex_owned(&arp_dad_lock));
1540 
1541 	TAILQ_REMOVE(&dadq, dp, dad_list);
1542 	/* Tell the timer that dp is being destroyed. */
1543 	dp->dad_ifa = NULL;
1544 	callout_halt(&dp->dad_timer_ch, &arp_dad_lock);
1545 }
1546 
1547 static void
1548 arp_dad_destroytimer(struct dadq *dp)
1549 {
1550 
1551 	callout_destroy(&dp->dad_timer_ch);
1552 	KASSERT(dp->dad_ifa == NULL);
1553 	kmem_intr_free(dp, sizeof(*dp));
1554 }
1555 
1556 static void
1557 arp_dad_output(struct dadq *dp, struct ifaddr *ifa)
1558 {
1559 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1560 	struct ifnet *ifp = ifa->ifa_ifp;
1561 	struct in_addr sip;
1562 
1563 	dp->dad_arp_tcount++;
1564 	if ((ifp->if_flags & IFF_UP) == 0)
1565 		return;
1566 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1567 		return;
1568 
1569 	dp->dad_arp_tcount = 0;
1570 	dp->dad_arp_ocount++;
1571 
1572 	memset(&sip, 0, sizeof(sip));
1573 	arprequest(ifa->ifa_ifp, &sip, &ia->ia_addr.sin_addr,
1574 	    CLLADDR(ifa->ifa_ifp->if_sadl));
1575 }
1576 
1577 /*
1578  * Start Duplicate Address Detection (DAD) for specified interface address.
1579  */
1580 static void
1581 arp_dad_start(struct ifaddr *ifa)
1582 {
1583 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1584 	struct dadq *dp;
1585 	char ipbuf[INET_ADDRSTRLEN];
1586 
1587 	if (!dad_init) {
1588 		TAILQ_INIT(&dadq);
1589 		mutex_init(&arp_dad_lock, MUTEX_DEFAULT, IPL_NONE);
1590 		dad_init++;
1591 	}
1592 
1593 	/*
1594 	 * If we don't need DAD, don't do it.
1595 	 * - DAD is disabled (ip_dad_count == 0)
1596 	 */
1597 	if (!(ia->ia4_flags & IN_IFF_TENTATIVE)) {
1598 		log(LOG_DEBUG,
1599 		    "%s: called with non-tentative address %s(%s)\n", __func__,
1600 		    IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1601 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1602 		return;
1603 	}
1604 	if (!ip_dad_count) {
1605 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1606 		rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1607 		arpannounce1(ifa);
1608 		return;
1609 	}
1610 	KASSERT(ifa->ifa_ifp != NULL);
1611 	if (!(ifa->ifa_ifp->if_flags & IFF_UP))
1612 		return;
1613 
1614 	dp = kmem_intr_alloc(sizeof(*dp), KM_NOSLEEP);
1615 
1616 	mutex_enter(&arp_dad_lock);
1617 	if (arp_dad_find(ifa) != NULL) {
1618 		mutex_exit(&arp_dad_lock);
1619 		/* DAD already in progress */
1620 		if (dp != NULL)
1621 			kmem_intr_free(dp, sizeof(*dp));
1622 		return;
1623 	}
1624 
1625 	if (dp == NULL) {
1626 		mutex_exit(&arp_dad_lock);
1627 		log(LOG_ERR, "%s: memory allocation failed for %s(%s)\n",
1628 		    __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1629 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1630 		return;
1631 	}
1632 
1633 	/*
1634 	 * Send ARP packet for DAD, ip_dad_count times.
1635 	 * Note that we must delay the first transmission.
1636 	 */
1637 	callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE);
1638 	dp->dad_ifa = ifa;
1639 	ifaref(ifa);	/* just for safety */
1640 	dp->dad_count = ip_dad_count;
1641 	dp->dad_arp_announce = 0; /* Will be set when starting to announce */
1642 	dp->dad_arp_acount = dp->dad_arp_ocount = dp->dad_arp_tcount = 0;
1643 	TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list);
1644 
1645 	ARPLOG(LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp),
1646 	    ARPLOGADDR(&ia->ia_addr.sin_addr));
1647 
1648 	arp_dad_starttimer(dp, cprng_fast32() % (PROBE_WAIT * hz));
1649 
1650 	mutex_exit(&arp_dad_lock);
1651 }
1652 
1653 /*
1654  * terminate DAD unconditionally.  used for address removals.
1655  */
1656 static void
1657 arp_dad_stop(struct ifaddr *ifa)
1658 {
1659 	struct dadq *dp;
1660 
1661 	if (!dad_init)
1662 		return;
1663 
1664 	mutex_enter(&arp_dad_lock);
1665 	dp = arp_dad_find(ifa);
1666 	if (dp == NULL) {
1667 		mutex_exit(&arp_dad_lock);
1668 		/* DAD wasn't started yet */
1669 		return;
1670 	}
1671 
1672 	arp_dad_stoptimer(dp);
1673 
1674 	mutex_exit(&arp_dad_lock);
1675 
1676 	arp_dad_destroytimer(dp);
1677 	ifafree(ifa);
1678 }
1679 
1680 static void
1681 arp_dad_timer(struct dadq *dp)
1682 {
1683 	struct ifaddr *ifa;
1684 	struct in_ifaddr *ia;
1685 	char ipbuf[INET_ADDRSTRLEN];
1686 	bool need_free = false;
1687 
1688 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
1689 	mutex_enter(&arp_dad_lock);
1690 
1691 	ifa = dp->dad_ifa;
1692 	if (ifa == NULL) {
1693 		/* dp is being destroyed by someone.  Do nothing. */
1694 		goto done;
1695 	}
1696 
1697 	ia = (struct in_ifaddr *)ifa;
1698 	if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1699 		log(LOG_ERR, "%s: called with duplicate address %s(%s)\n",
1700 		    __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1701 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1702 		goto done;
1703 	}
1704 	if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0 && dp->dad_arp_acount == 0)
1705 	{
1706 		log(LOG_ERR, "%s: called with non-tentative address %s(%s)\n",
1707 		    __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1708 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1709 		goto done;
1710 	}
1711 
1712 	/* timeouted with IFF_{RUNNING,UP} check */
1713 	if (dp->dad_arp_tcount > dad_maxtry) {
1714 		ARPLOG(LOG_INFO, "%s: could not run DAD, driver problem?\n",
1715 		    if_name(ifa->ifa_ifp));
1716 
1717 		arp_dad_stoptimer(dp);
1718 		need_free = true;
1719 		goto done;
1720 	}
1721 
1722 	/* Need more checks? */
1723 	if (dp->dad_arp_ocount < dp->dad_count) {
1724 		int adelay;
1725 
1726 		/*
1727 		 * We have more ARP to go.  Send ARP packet for DAD.
1728 		 */
1729 		arp_dad_output(dp, ifa);
1730 		if (dp->dad_arp_ocount < dp->dad_count)
1731 			adelay = (PROBE_MIN * hz) +
1732 			    (cprng_fast32() %
1733 			    ((PROBE_MAX * hz) - (PROBE_MIN * hz)));
1734 		else
1735 			adelay = ANNOUNCE_WAIT * hz;
1736 		arp_dad_starttimer(dp, adelay);
1737 		goto done;
1738 	} else if (dp->dad_arp_acount == 0) {
1739 		/*
1740 		 * We are done with DAD.
1741 		 * No duplicate address found.
1742 		 */
1743 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1744 		rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1745 		ARPLOG(LOG_DEBUG,
1746 		    "%s: DAD complete for %s - no duplicates found\n",
1747 		    if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr));
1748 		dp->dad_arp_announce = ANNOUNCE_NUM;
1749 		goto announce;
1750 	} else if (dp->dad_arp_acount < dp->dad_arp_announce) {
1751 announce:
1752 		/*
1753 		 * Announce the address.
1754 		 */
1755 		arpannounce1(ifa);
1756 		dp->dad_arp_acount++;
1757 		if (dp->dad_arp_acount < dp->dad_arp_announce) {
1758 			arp_dad_starttimer(dp, ANNOUNCE_INTERVAL * hz);
1759 			goto done;
1760 		}
1761 		ARPLOG(LOG_DEBUG,
1762 		    "%s: ARP announcement complete for %s\n",
1763 		    if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr));
1764 	}
1765 
1766 	arp_dad_stoptimer(dp);
1767 	need_free = true;
1768 done:
1769 	mutex_exit(&arp_dad_lock);
1770 
1771 	if (need_free) {
1772 		arp_dad_destroytimer(dp);
1773 		KASSERT(ifa != NULL);
1774 		ifafree(ifa);
1775 	}
1776 
1777 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1778 }
1779 
1780 static void
1781 arp_dad_duplicated(struct ifaddr *ifa, const char *sha)
1782 {
1783 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1784 	struct ifnet *ifp = ifa->ifa_ifp;
1785 	char ipbuf[INET_ADDRSTRLEN];
1786 	const char *iastr;
1787 
1788 	iastr = IN_PRINT(ipbuf, &ia->ia_addr.sin_addr);
1789 
1790 	if (ia->ia4_flags & (IN_IFF_TENTATIVE|IN_IFF_DUPLICATED)) {
1791 		log(LOG_ERR,
1792 		    "%s: DAD duplicate address %s from %s\n",
1793 		    if_name(ifp), iastr, sha);
1794 	} else if (ia->ia_dad_defended == 0 ||
1795 		   ia->ia_dad_defended < time_uptime - DEFEND_INTERVAL) {
1796 		ia->ia_dad_defended = time_uptime;
1797 		arpannounce1(ifa);
1798 		log(LOG_ERR,
1799 		    "%s: DAD defended address %s from %s\n",
1800 		    if_name(ifp), iastr, sha);
1801 		return;
1802 	} else {
1803 		/* If DAD is disabled, just report the duplicate. */
1804 		if (ip_dad_count == 0) {
1805 			log(LOG_ERR,
1806 			    "%s: DAD ignoring duplicate address %s from %s\n",
1807 			    if_name(ifp), iastr, sha);
1808 			return;
1809 		}
1810 		log(LOG_ERR,
1811 		    "%s: DAD defence failed for %s from %s\n",
1812 		    if_name(ifp), iastr, sha);
1813 	}
1814 
1815 	arp_dad_stop(ifa);
1816 
1817 	ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1818 	if ((ia->ia4_flags & IN_IFF_DUPLICATED) == 0) {
1819 		ia->ia4_flags |= IN_IFF_DUPLICATED;
1820 		/* Inform the routing socket of the duplicate address */
1821 		rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1822 	}
1823 }
1824 
1825 /*
1826  * Called from 10 Mb/s Ethernet interrupt handlers
1827  * when ether packet type ETHERTYPE_REVARP
1828  * is received.  Common length and type checks are done here,
1829  * then the protocol-specific routine is called.
1830  */
1831 void
1832 revarpinput(struct mbuf *m)
1833 {
1834 	struct arphdr *ar;
1835 	int arplen;
1836 
1837 	arplen = sizeof(struct arphdr);
1838 	if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
1839 		return;
1840 	ar = mtod(m, struct arphdr *);
1841 
1842 	if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) {
1843 		goto out;
1844 	}
1845 
1846 	arplen = sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln);
1847 	if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
1848 		return;
1849 	ar = mtod(m, struct arphdr *);
1850 
1851 	switch (ntohs(ar->ar_pro)) {
1852 	case ETHERTYPE_IP:
1853 	case ETHERTYPE_IPTRAILERS:
1854 		in_revarpinput(m);
1855 		return;
1856 
1857 	default:
1858 		break;
1859 	}
1860 
1861 out:
1862 	m_freem(m);
1863 }
1864 
1865 /*
1866  * RARP for Internet protocols on 10 Mb/s Ethernet.
1867  * Algorithm is that given in RFC 903.
1868  * We are only using for bootstrap purposes to get an ip address for one of
1869  * our interfaces.  Thus we support no user-interface.
1870  *
1871  * Since the contents of the RARP reply are specific to the interface that
1872  * sent the request, this code must ensure that they are properly associated.
1873  *
1874  * Note: also supports ARP via RARP packets, per the RFC.
1875  */
1876 void
1877 in_revarpinput(struct mbuf *m)
1878 {
1879 	struct arphdr *ah;
1880 	void *tha;
1881 	int op;
1882 	struct ifnet *rcvif;
1883 	int s;
1884 
1885 	ah = mtod(m, struct arphdr *);
1886 	op = ntohs(ah->ar_op);
1887 
1888 	rcvif = m_get_rcvif(m, &s);
1889 	if (__predict_false(rcvif == NULL))
1890 		goto out;
1891 	if (rcvif->if_flags & IFF_NOARP)
1892 		goto out;
1893 
1894 	switch (rcvif->if_type) {
1895 	case IFT_IEEE1394:
1896 		/* ARP without target hardware address is not supported */
1897 		goto out;
1898 	default:
1899 		break;
1900 	}
1901 
1902 	switch (op) {
1903 	case ARPOP_REQUEST:
1904 	case ARPOP_REPLY:	/* per RFC */
1905 		m_put_rcvif(rcvif, &s);
1906 		in_arpinput(m);
1907 		return;
1908 	case ARPOP_REVREPLY:
1909 		break;
1910 	case ARPOP_REVREQUEST:	/* handled by rarpd(8) */
1911 	default:
1912 		goto out;
1913 	}
1914 	if (!revarp_in_progress)
1915 		goto out;
1916 	if (rcvif != myip_ifp) /* !same interface */
1917 		goto out;
1918 	if (myip_initialized)
1919 		goto wake;
1920 	tha = ar_tha(ah);
1921 	if (tha == NULL)
1922 		goto out;
1923 	if (ah->ar_pln != sizeof(struct in_addr))
1924 		goto out;
1925 	if (ah->ar_hln != rcvif->if_sadl->sdl_alen)
1926 		goto out;
1927 	if (memcmp(tha, CLLADDR(rcvif->if_sadl), rcvif->if_sadl->sdl_alen))
1928 		goto out;
1929 	memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip));
1930 	memcpy(&myip, ar_tpa(ah), sizeof(myip));
1931 	myip_initialized = 1;
1932 wake:	/* Do wakeup every time in case it was missed. */
1933 	wakeup((void *)&myip);
1934 
1935 out:
1936 	m_put_rcvif(rcvif, &s);
1937 	m_freem(m);
1938 }
1939 
1940 /*
1941  * Send a RARP request for the ip address of the specified interface.
1942  * The request should be RFC 903-compliant.
1943  */
1944 static void
1945 revarprequest(struct ifnet *ifp)
1946 {
1947 	struct sockaddr sa;
1948 	struct mbuf *m;
1949 	struct arphdr *ah;
1950 	void *tha;
1951 
1952 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
1953 		return;
1954 	MCLAIM(m, &arpdomain.dom_mowner);
1955 	m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) +
1956 	    2*ifp->if_addrlen;
1957 	m->m_pkthdr.len = m->m_len;
1958 	MH_ALIGN(m, m->m_len);
1959 	ah = mtod(m, struct arphdr *);
1960 	memset(ah, 0, m->m_len);
1961 	ah->ar_pro = htons(ETHERTYPE_IP);
1962 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
1963 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
1964 	ah->ar_op = htons(ARPOP_REVREQUEST);
1965 
1966 	memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1967 	tha = ar_tha(ah);
1968 	if (tha == NULL) {
1969 		m_free(m);
1970 		return;
1971 	}
1972 	memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln);
1973 
1974 	sa.sa_family = AF_ARP;
1975 	sa.sa_len = 2;
1976 	m->m_flags |= M_BCAST;
1977 
1978 	if_output_lock(ifp, ifp, m, &sa, NULL);
1979 }
1980 
1981 /*
1982  * RARP for the ip address of the specified interface, but also
1983  * save the ip address of the server that sent the answer.
1984  * Timeout if no response is received.
1985  */
1986 int
1987 revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in,
1988     struct in_addr *clnt_in)
1989 {
1990 	int result, count = 20;
1991 
1992 	myip_initialized = 0;
1993 	myip_ifp = ifp;
1994 
1995 	revarp_in_progress = 1;
1996 	while (count--) {
1997 		revarprequest(ifp);
1998 		result = tsleep((void *)&myip, PSOCK, "revarp", hz/2);
1999 		if (result != EWOULDBLOCK)
2000 			break;
2001 	}
2002 	revarp_in_progress = 0;
2003 
2004 	if (!myip_initialized)
2005 		return ENETUNREACH;
2006 
2007 	memcpy(serv_in, &srv_ip, sizeof(*serv_in));
2008 	memcpy(clnt_in, &myip, sizeof(*clnt_in));
2009 	return 0;
2010 }
2011 
2012 void
2013 arp_stat_add(int type, uint64_t count)
2014 {
2015 	ARP_STATADD(type, count);
2016 }
2017 
2018 static int
2019 sysctl_net_inet_arp_stats(SYSCTLFN_ARGS)
2020 {
2021 
2022 	return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS);
2023 }
2024 
2025 static void
2026 sysctl_net_inet_arp_setup(struct sysctllog **clog)
2027 {
2028 	const struct sysctlnode *node;
2029 
2030 	sysctl_createv(clog, 0, NULL, NULL,
2031 			CTLFLAG_PERMANENT,
2032 			CTLTYPE_NODE, "inet", NULL,
2033 			NULL, 0, NULL, 0,
2034 			CTL_NET, PF_INET, CTL_EOL);
2035 	sysctl_createv(clog, 0, NULL, &node,
2036 			CTLFLAG_PERMANENT,
2037 			CTLTYPE_NODE, "arp",
2038 			SYSCTL_DESCR("Address Resolution Protocol"),
2039 			NULL, 0, NULL, 0,
2040 			CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2041 
2042 	sysctl_createv(clog, 0, NULL, NULL,
2043 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2044 			CTLTYPE_INT, "keep",
2045 			SYSCTL_DESCR("Valid ARP entry lifetime in seconds"),
2046 			NULL, 0, &arpt_keep, 0,
2047 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2048 
2049 	sysctl_createv(clog, 0, NULL, NULL,
2050 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2051 			CTLTYPE_INT, "down",
2052 			SYSCTL_DESCR("Failed ARP entry lifetime in seconds"),
2053 			NULL, 0, &arpt_down, 0,
2054 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2055 
2056 	sysctl_createv(clog, 0, NULL, NULL,
2057 			CTLFLAG_PERMANENT,
2058 			CTLTYPE_STRUCT, "stats",
2059 			SYSCTL_DESCR("ARP statistics"),
2060 			sysctl_net_inet_arp_stats, 0, NULL, 0,
2061 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2062 
2063 	sysctl_createv(clog, 0, NULL, NULL,
2064 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2065 			CTLTYPE_INT, "log_movements",
2066 			SYSCTL_DESCR("log ARP replies from MACs different than"
2067 			    " the one in the cache"),
2068 			NULL, 0, &log_movements, 0,
2069 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2070 
2071 	sysctl_createv(clog, 0, NULL, NULL,
2072 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2073 			CTLTYPE_INT, "log_permanent_modify",
2074 			SYSCTL_DESCR("log ARP replies from MACs different than"
2075 			    " the one in the permanent arp entry"),
2076 			NULL, 0, &log_permanent_modify, 0,
2077 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2078 
2079 	sysctl_createv(clog, 0, NULL, NULL,
2080 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2081 			CTLTYPE_INT, "log_wrong_iface",
2082 			SYSCTL_DESCR("log ARP packets arriving on the wrong"
2083 			    " interface"),
2084 			NULL, 0, &log_wrong_iface, 0,
2085 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2086 
2087 	sysctl_createv(clog, 0, NULL, NULL,
2088 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2089 			CTLTYPE_INT, "log_unknown_network",
2090 			SYSCTL_DESCR("log ARP packets from non-local network"),
2091 			NULL, 0, &log_unknown_network, 0,
2092 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2093 
2094 	sysctl_createv(clog, 0, NULL, NULL,
2095 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2096 			CTLTYPE_INT, "debug",
2097 			SYSCTL_DESCR("Enable ARP DAD debug output"),
2098 			NULL, 0, &arp_debug, 0,
2099 			CTL_NET, PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2100 }
2101 
2102 #endif /* INET */
2103