1 /* $NetBSD: if_arp.c,v 1.275 2018/05/11 13:56:43 maxv Exp $ */ 2 3 /* 4 * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Public Access Networks Corporation ("Panix"). It was developed under 9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)if_ether.c 8.2 (Berkeley) 9/26/94 62 */ 63 64 /* 65 * Ethernet address resolution protocol. 66 * TODO: 67 * add "inuse/lock" bit (or ref. count) along with valid bit 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.275 2018/05/11 13:56:43 maxv Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_ddb.h" 75 #include "opt_inet.h" 76 #include "opt_net_mpsafe.h" 77 #endif 78 79 #ifdef INET 80 81 #include "arp.h" 82 #include "bridge.h" 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/callout.h> 87 #include <sys/kmem.h> 88 #include <sys/mbuf.h> 89 #include <sys/socket.h> 90 #include <sys/time.h> 91 #include <sys/timetc.h> 92 #include <sys/kernel.h> 93 #include <sys/errno.h> 94 #include <sys/ioctl.h> 95 #include <sys/syslog.h> 96 #include <sys/proc.h> 97 #include <sys/protosw.h> 98 #include <sys/domain.h> 99 #include <sys/sysctl.h> 100 #include <sys/socketvar.h> 101 #include <sys/percpu.h> 102 #include <sys/cprng.h> 103 #include <sys/kmem.h> 104 105 #include <net/ethertypes.h> 106 #include <net/if.h> 107 #include <net/if_dl.h> 108 #include <net/if_token.h> 109 #include <net/if_types.h> 110 #include <net/if_ether.h> 111 #include <net/if_llatbl.h> 112 #include <net/route.h> 113 #include <net/net_stats.h> 114 115 #include <netinet/in.h> 116 #include <netinet/in_systm.h> 117 #include <netinet/in_var.h> 118 #include <netinet/ip.h> 119 #include <netinet/if_inarp.h> 120 121 #include "arcnet.h" 122 #if NARCNET > 0 123 #include <net/if_arc.h> 124 #endif 125 #include "fddi.h" 126 #if NFDDI > 0 127 #include <net/if_fddi.h> 128 #endif 129 #include "token.h" 130 #include "carp.h" 131 #if NCARP > 0 132 #include <netinet/ip_carp.h> 133 #endif 134 135 /* 136 * ARP trailer negotiation. Trailer protocol is not IP specific, 137 * but ARP request/response use IP addresses. 138 */ 139 #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL 140 141 /* timer values */ 142 static int arpt_keep = (20*60); /* once resolved, good for 20 more minutes */ 143 static int arpt_down = 20; /* once declared down, don't send for 20 secs */ 144 static int arp_maxhold = 1; /* number of packets to hold per ARP entry */ 145 #define rt_expire rt_rmx.rmx_expire 146 #define rt_pksent rt_rmx.rmx_pksent 147 148 int ip_dad_count = PROBE_NUM; 149 #ifdef ARP_DEBUG 150 int arp_debug = 1; 151 #else 152 int arp_debug = 0; 153 #endif 154 155 static void arp_init(void); 156 157 static void arprequest(struct ifnet *, 158 const struct in_addr *, const struct in_addr *, 159 const uint8_t *); 160 static void arpannounce1(struct ifaddr *); 161 static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *, 162 const struct sockaddr *); 163 static void arptimer(void *); 164 static void arp_settimer(struct llentry *, int); 165 static struct llentry *arplookup(struct ifnet *, 166 const struct in_addr *, const struct sockaddr *, int); 167 static struct llentry *arpcreate(struct ifnet *, 168 const struct in_addr *, const struct sockaddr *, int); 169 static void in_arpinput(struct mbuf *); 170 static void in_revarpinput(struct mbuf *); 171 static void revarprequest(struct ifnet *); 172 173 static void arp_drainstub(void); 174 175 struct dadq; 176 static void arp_dad_timer(struct dadq *); 177 static void arp_dad_start(struct ifaddr *); 178 static void arp_dad_stop(struct ifaddr *); 179 static void arp_dad_duplicated(struct ifaddr *, const char *); 180 181 static void arp_init_llentry(struct ifnet *, struct llentry *); 182 #if NTOKEN > 0 183 static void arp_free_llentry_tokenring(struct llentry *); 184 #endif 185 186 struct ifqueue arpintrq = { 187 .ifq_head = NULL, 188 .ifq_tail = NULL, 189 .ifq_len = 0, 190 .ifq_maxlen = 50, 191 .ifq_drops = 0, 192 }; 193 static int arp_maxtries = 5; 194 static int useloopback = 1; /* use loopback interface for local traffic */ 195 196 static percpu_t *arpstat_percpu; 197 198 #define ARP_STAT_GETREF() _NET_STAT_GETREF(arpstat_percpu) 199 #define ARP_STAT_PUTREF() _NET_STAT_PUTREF(arpstat_percpu) 200 201 #define ARP_STATINC(x) _NET_STATINC(arpstat_percpu, x) 202 #define ARP_STATADD(x, v) _NET_STATADD(arpstat_percpu, x, v) 203 204 /* revarp state */ 205 static struct in_addr myip, srv_ip; 206 static int myip_initialized = 0; 207 static int revarp_in_progress = 0; 208 static struct ifnet *myip_ifp = NULL; 209 210 static int arp_drainwanted; 211 212 static int log_movements = 1; 213 static int log_permanent_modify = 1; 214 static int log_wrong_iface = 1; 215 static int log_unknown_network = 1; 216 217 /* 218 * this should be elsewhere. 219 */ 220 221 #define LLA_ADDRSTRLEN (16 * 3) 222 223 static char * 224 lla_snprintf(char *, const u_int8_t *, int); 225 226 static char * 227 lla_snprintf(char *dst, const u_int8_t *adrp, int len) 228 { 229 int i; 230 char *p; 231 232 p = dst; 233 234 *p++ = hexdigits[(*adrp) >> 4]; 235 *p++ = hexdigits[(*adrp++) & 0xf]; 236 237 for (i = 1; i < len && i < 16; i++) { 238 *p++ = ':'; 239 *p++ = hexdigits[(*adrp) >> 4]; 240 *p++ = hexdigits[(*adrp++) & 0xf]; 241 } 242 243 *p = 0; 244 return dst; 245 } 246 247 DOMAIN_DEFINE(arpdomain); /* forward declare and add to link set */ 248 249 static void 250 arp_fasttimo(void) 251 { 252 if (arp_drainwanted) { 253 arp_drain(); 254 arp_drainwanted = 0; 255 } 256 } 257 258 static const struct protosw arpsw[] = { 259 { 260 .pr_type = 0, 261 .pr_domain = &arpdomain, 262 .pr_protocol = 0, 263 .pr_flags = 0, 264 .pr_input = 0, 265 .pr_ctlinput = 0, 266 .pr_ctloutput = 0, 267 .pr_usrreqs = 0, 268 .pr_init = arp_init, 269 .pr_fasttimo = arp_fasttimo, 270 .pr_slowtimo = 0, 271 .pr_drain = arp_drainstub, 272 } 273 }; 274 275 struct domain arpdomain = { 276 .dom_family = PF_ARP, 277 .dom_name = "arp", 278 .dom_protosw = arpsw, 279 .dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)], 280 }; 281 282 static void sysctl_net_inet_arp_setup(struct sysctllog **); 283 284 void 285 arp_init(void) 286 { 287 288 sysctl_net_inet_arp_setup(NULL); 289 arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS); 290 IFQ_LOCK_INIT(&arpintrq); 291 } 292 293 static void 294 arp_drainstub(void) 295 { 296 arp_drainwanted = 1; 297 } 298 299 /* 300 * ARP protocol drain routine. Called when memory is in short supply. 301 * Called at splvm(); don't acquire softnet_lock as can be called from 302 * hardware interrupt handlers. 303 */ 304 void 305 arp_drain(void) 306 { 307 308 lltable_drain(AF_INET); 309 } 310 311 static void 312 arptimer(void *arg) 313 { 314 struct llentry *lle = arg; 315 struct ifnet *ifp; 316 317 KASSERT((lle->la_flags & LLE_STATIC) == 0); 318 319 LLE_WLOCK(lle); 320 321 /* 322 * This shortcut is required to avoid trying to touch ifp that may be 323 * being destroyed. 324 */ 325 if ((lle->la_flags & LLE_LINKED) == 0) { 326 LLE_FREE_LOCKED(lle); 327 return; 328 } 329 330 ifp = lle->lle_tbl->llt_ifp; 331 332 /* XXX: LOR avoidance. We still have ref on lle. */ 333 LLE_WUNLOCK(lle); 334 335 IF_AFDATA_LOCK(ifp); 336 LLE_WLOCK(lle); 337 338 /* Guard against race with other llentry_free(). */ 339 if (lle->la_flags & LLE_LINKED) { 340 size_t pkts_dropped; 341 342 LLE_REMREF(lle); 343 pkts_dropped = llentry_free(lle); 344 ARP_STATADD(ARP_STAT_DFRDROPPED, pkts_dropped); 345 ARP_STATADD(ARP_STAT_DFRTOTAL, pkts_dropped); 346 } else { 347 LLE_FREE_LOCKED(lle); 348 } 349 350 IF_AFDATA_UNLOCK(ifp); 351 } 352 353 static void 354 arp_settimer(struct llentry *la, int sec) 355 { 356 357 LLE_WLOCK_ASSERT(la); 358 KASSERT((la->la_flags & LLE_STATIC) == 0); 359 360 /* 361 * We have to take care of a reference leak which occurs if 362 * callout_reset overwrites a pending callout schedule. Unfortunately 363 * we don't have a mean to know the overwrite, so we need to know it 364 * using callout_stop. We need to call callout_pending first to exclude 365 * the case that the callout has never been scheduled. 366 */ 367 if (callout_pending(&la->la_timer)) { 368 bool expired = callout_stop(&la->la_timer); 369 if (!expired) 370 /* A pending callout schedule is canceled. */ 371 LLE_REMREF(la); 372 } 373 LLE_ADDREF(la); 374 callout_reset(&la->la_timer, hz * sec, arptimer, la); 375 } 376 377 /* 378 * We set the gateway for RTF_CLONING routes to a "prototype" 379 * link-layer sockaddr whose interface type (if_type) and interface 380 * index (if_index) fields are prepared. 381 */ 382 static struct sockaddr * 383 arp_setgate(struct rtentry *rt, struct sockaddr *gate, 384 const struct sockaddr *netmask) 385 { 386 const struct ifnet *ifp = rt->rt_ifp; 387 uint8_t namelen = strlen(ifp->if_xname); 388 uint8_t addrlen = ifp->if_addrlen; 389 390 /* 391 * XXX: If this is a manually added route to interface 392 * such as older version of routed or gated might provide, 393 * restore cloning bit. 394 */ 395 if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL && 396 satocsin(netmask)->sin_addr.s_addr != 0xffffffff) 397 rt->rt_flags |= RTF_CONNECTED; 398 399 if ((rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL))) { 400 union { 401 struct sockaddr sa; 402 struct sockaddr_storage ss; 403 struct sockaddr_dl sdl; 404 } u; 405 /* 406 * Case 1: This route should come from a route to iface. 407 */ 408 sockaddr_dl_init(&u.sdl, sizeof(u.ss), 409 ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen); 410 rt_setgate(rt, &u.sa); 411 gate = rt->rt_gateway; 412 } 413 return gate; 414 } 415 416 static void 417 arp_init_llentry(struct ifnet *ifp, struct llentry *lle) 418 { 419 420 switch (ifp->if_type) { 421 #if NTOKEN > 0 422 case IFT_ISO88025: 423 lle->la_opaque = kmem_intr_alloc(sizeof(struct token_rif), 424 KM_NOSLEEP); 425 lle->lle_ll_free = arp_free_llentry_tokenring; 426 break; 427 #endif 428 } 429 } 430 431 #if NTOKEN > 0 432 static void 433 arp_free_llentry_tokenring(struct llentry *lle) 434 { 435 436 kmem_intr_free(lle->la_opaque, sizeof(struct token_rif)); 437 } 438 #endif 439 440 /* 441 * Parallel to llc_rtrequest. 442 */ 443 void 444 arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 445 { 446 struct sockaddr *gate = rt->rt_gateway; 447 struct in_ifaddr *ia; 448 struct ifaddr *ifa; 449 struct ifnet *ifp = rt->rt_ifp; 450 int bound; 451 int s; 452 453 if (req == RTM_LLINFO_UPD) { 454 if ((ifa = info->rti_ifa) != NULL) 455 arpannounce1(ifa); 456 return; 457 } 458 459 if ((rt->rt_flags & RTF_GATEWAY) != 0) { 460 if (req != RTM_ADD) 461 return; 462 463 /* 464 * linklayers with particular link MTU limitation. 465 */ 466 switch(ifp->if_type) { 467 #if NFDDI > 0 468 case IFT_FDDI: 469 if (ifp->if_mtu > FDDIIPMTU) 470 rt->rt_rmx.rmx_mtu = FDDIIPMTU; 471 break; 472 #endif 473 #if NARCNET > 0 474 case IFT_ARCNET: 475 { 476 int arcipifmtu; 477 478 if (ifp->if_flags & IFF_LINK0) 479 arcipifmtu = arc_ipmtu; 480 else 481 arcipifmtu = ARCMTU; 482 if (ifp->if_mtu > arcipifmtu) 483 rt->rt_rmx.rmx_mtu = arcipifmtu; 484 break; 485 } 486 #endif 487 } 488 return; 489 } 490 491 switch (req) { 492 case RTM_SETGATE: 493 gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); 494 break; 495 case RTM_ADD: 496 gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); 497 if (gate == NULL) { 498 log(LOG_ERR, "%s: arp_setgate failed\n", __func__); 499 break; 500 } 501 if ((rt->rt_flags & RTF_CONNECTED) || 502 (rt->rt_flags & RTF_LOCAL)) { 503 /* 504 * Give this route an expiration time, even though 505 * it's a "permanent" route, so that routes cloned 506 * from it do not need their expiration time set. 507 */ 508 KASSERT(time_uptime != 0); 509 rt->rt_expire = time_uptime; 510 /* 511 * linklayers with particular link MTU limitation. 512 */ 513 switch (ifp->if_type) { 514 #if NFDDI > 0 515 case IFT_FDDI: 516 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && 517 (rt->rt_rmx.rmx_mtu > FDDIIPMTU || 518 (rt->rt_rmx.rmx_mtu == 0 && 519 ifp->if_mtu > FDDIIPMTU))) 520 rt->rt_rmx.rmx_mtu = FDDIIPMTU; 521 break; 522 #endif 523 #if NARCNET > 0 524 case IFT_ARCNET: 525 { 526 int arcipifmtu; 527 if (ifp->if_flags & IFF_LINK0) 528 arcipifmtu = arc_ipmtu; 529 else 530 arcipifmtu = ARCMTU; 531 532 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && 533 (rt->rt_rmx.rmx_mtu > arcipifmtu || 534 (rt->rt_rmx.rmx_mtu == 0 && 535 ifp->if_mtu > arcipifmtu))) 536 rt->rt_rmx.rmx_mtu = arcipifmtu; 537 break; 538 } 539 #endif 540 } 541 if (rt->rt_flags & RTF_CONNECTED) 542 break; 543 } 544 545 bound = curlwp_bind(); 546 /* Announce a new entry if requested. */ 547 if (rt->rt_flags & RTF_ANNOUNCE) { 548 struct psref psref; 549 ia = in_get_ia_on_iface_psref( 550 satocsin(rt_getkey(rt))->sin_addr, ifp, &psref); 551 if (ia != NULL) { 552 arpannounce(ifp, &ia->ia_ifa, 553 CLLADDR(satocsdl(gate))); 554 ia4_release(ia, &psref); 555 } 556 } 557 558 if (gate->sa_family != AF_LINK || 559 gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) { 560 log(LOG_DEBUG, "%s: bad gateway value\n", __func__); 561 goto out; 562 } 563 564 satosdl(gate)->sdl_type = ifp->if_type; 565 satosdl(gate)->sdl_index = ifp->if_index; 566 567 /* 568 * If the route is for a broadcast address mark it as such. 569 * This way we can avoid an expensive call to in_broadcast() 570 * in ip_output() most of the time (because the route passed 571 * to ip_output() is almost always a host route). 572 */ 573 if (rt->rt_flags & RTF_HOST && 574 !(rt->rt_flags & RTF_BROADCAST) && 575 in_broadcast(satocsin(rt_getkey(rt))->sin_addr, rt->rt_ifp)) 576 rt->rt_flags |= RTF_BROADCAST; 577 /* There is little point in resolving the broadcast address */ 578 if (rt->rt_flags & RTF_BROADCAST) 579 goto out; 580 581 /* 582 * When called from rt_ifa_addlocal, we cannot depend on that 583 * the address (rt_getkey(rt)) exits in the address list of the 584 * interface. So check RTF_LOCAL instead. 585 */ 586 if (rt->rt_flags & RTF_LOCAL) { 587 rt->rt_expire = 0; 588 if (useloopback) { 589 rt->rt_ifp = lo0ifp; 590 rt->rt_rmx.rmx_mtu = 0; 591 } 592 goto out; 593 } 594 595 s = pserialize_read_enter(); 596 ia = in_get_ia_on_iface(satocsin(rt_getkey(rt))->sin_addr, ifp); 597 if (ia == NULL) { 598 pserialize_read_exit(s); 599 goto out; 600 } 601 602 rt->rt_expire = 0; 603 if (useloopback) { 604 rt->rt_ifp = lo0ifp; 605 rt->rt_rmx.rmx_mtu = 0; 606 } 607 rt->rt_flags |= RTF_LOCAL; 608 /* 609 * make sure to set rt->rt_ifa to the interface 610 * address we are using, otherwise we will have trouble 611 * with source address selection. 612 */ 613 ifa = &ia->ia_ifa; 614 if (ifa != rt->rt_ifa) 615 /* Assume it doesn't sleep */ 616 rt_replace_ifa(rt, ifa); 617 pserialize_read_exit(s); 618 out: 619 curlwp_bindx(bound); 620 break; 621 } 622 } 623 624 /* 625 * Broadcast an ARP request. Caller specifies: 626 * - arp header source ip address 627 * - arp header target ip address 628 * - arp header source ethernet address 629 */ 630 static void 631 arprequest(struct ifnet *ifp, 632 const struct in_addr *sip, const struct in_addr *tip, 633 const uint8_t *enaddr) 634 { 635 struct mbuf *m; 636 struct arphdr *ah; 637 struct sockaddr sa; 638 uint64_t *arps; 639 640 KASSERT(sip != NULL); 641 KASSERT(tip != NULL); 642 KASSERT(enaddr != NULL); 643 644 if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) 645 return; 646 MCLAIM(m, &arpdomain.dom_mowner); 647 switch (ifp->if_type) { 648 case IFT_IEEE1394: 649 m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 650 ifp->if_addrlen; 651 break; 652 default: 653 m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 654 2 * ifp->if_addrlen; 655 break; 656 } 657 m->m_pkthdr.len = m->m_len; 658 MH_ALIGN(m, m->m_len); 659 ah = mtod(m, struct arphdr *); 660 memset(ah, 0, m->m_len); 661 switch (ifp->if_type) { 662 case IFT_IEEE1394: /* RFC2734 */ 663 /* fill it now for ar_tpa computation */ 664 ah->ar_hrd = htons(ARPHRD_IEEE1394); 665 break; 666 default: 667 /* ifp->if_output will fill ar_hrd */ 668 break; 669 } 670 ah->ar_pro = htons(ETHERTYPE_IP); 671 ah->ar_hln = ifp->if_addrlen; /* hardware address length */ 672 ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ 673 ah->ar_op = htons(ARPOP_REQUEST); 674 memcpy(ar_sha(ah), enaddr, ah->ar_hln); 675 memcpy(ar_spa(ah), sip, ah->ar_pln); 676 memcpy(ar_tpa(ah), tip, ah->ar_pln); 677 sa.sa_family = AF_ARP; 678 sa.sa_len = 2; 679 m->m_flags |= M_BCAST; 680 arps = ARP_STAT_GETREF(); 681 arps[ARP_STAT_SNDTOTAL]++; 682 arps[ARP_STAT_SENDREQUEST]++; 683 ARP_STAT_PUTREF(); 684 if_output_lock(ifp, ifp, m, &sa, NULL); 685 } 686 687 void 688 arpannounce(struct ifnet *ifp, struct ifaddr *ifa, const uint8_t *enaddr) 689 { 690 struct in_ifaddr *ia = ifatoia(ifa); 691 struct in_addr *ip = &IA_SIN(ifa)->sin_addr; 692 693 if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) { 694 ARPLOG(LOG_DEBUG, "%s not ready\n", ARPLOGADDR(ip)); 695 return; 696 } 697 arprequest(ifp, ip, ip, enaddr); 698 } 699 700 static void 701 arpannounce1(struct ifaddr *ifa) 702 { 703 704 arpannounce(ifa->ifa_ifp, ifa, CLLADDR(ifa->ifa_ifp->if_sadl)); 705 } 706 707 /* 708 * Resolve an IP address into an ethernet address. If success, desten is 709 * filled in. If there is no entry in arptab, set one up and broadcast a 710 * request for the IP address. Hold onto this mbuf and resend it once the 711 * address is finally resolved. 712 * 713 * A return value of 0 indicates that desten has been filled in and the packet 714 * should be sent normally; a return value of EWOULDBLOCK indicates that the 715 * packet has been held pending resolution. Any other value indicates an 716 * error. 717 */ 718 int 719 arpresolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, 720 const struct sockaddr *dst, void *desten, size_t destlen) 721 { 722 struct llentry *la; 723 const char *create_lookup; 724 bool renew; 725 int error; 726 struct ifnet *origifp = ifp; 727 728 #if NCARP > 0 729 if (rt != NULL && rt->rt_ifp->if_type == IFT_CARP) 730 ifp = rt->rt_ifp; 731 #endif 732 733 KASSERT(m != NULL); 734 735 la = arplookup(ifp, NULL, dst, 0); 736 if (la == NULL) 737 goto notfound; 738 739 if ((la->la_flags & LLE_VALID) && 740 ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) { 741 KASSERT(destlen >= ifp->if_addrlen); 742 memcpy(desten, &la->ll_addr, ifp->if_addrlen); 743 LLE_RUNLOCK(la); 744 return 0; 745 } 746 747 notfound: 748 if (ifp->if_flags & IFF_NOARP) { 749 if (la != NULL) 750 LLE_RUNLOCK(la); 751 error = ENOTSUP; 752 goto bad; 753 } 754 755 if (la == NULL) { 756 struct rtentry *_rt; 757 758 create_lookup = "create"; 759 _rt = rtalloc1(dst, 0); 760 IF_AFDATA_WLOCK(ifp); 761 la = lla_create(LLTABLE(ifp), LLE_EXCLUSIVE, dst, _rt); 762 IF_AFDATA_WUNLOCK(ifp); 763 if (_rt != NULL) 764 rt_unref(_rt); 765 if (la == NULL) 766 ARP_STATINC(ARP_STAT_ALLOCFAIL); 767 else { 768 struct sockaddr_in sin; 769 770 arp_init_llentry(ifp, la); 771 sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); 772 rt_clonedmsg(sintosa(&sin), ifp, rt); 773 } 774 } else if (LLE_TRY_UPGRADE(la) == 0) { 775 create_lookup = "lookup"; 776 LLE_RUNLOCK(la); 777 IF_AFDATA_RLOCK(ifp); 778 la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); 779 IF_AFDATA_RUNLOCK(ifp); 780 } 781 782 error = EINVAL; 783 if (la == NULL) { 784 log(LOG_DEBUG, 785 "%s: failed to %s llentry for %s on %s\n", 786 __func__, create_lookup, inet_ntoa(satocsin(dst)->sin_addr), 787 ifp->if_xname); 788 goto bad; 789 } 790 791 if ((la->la_flags & LLE_VALID) && 792 ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) 793 { 794 KASSERT(destlen >= ifp->if_addrlen); 795 memcpy(desten, &la->ll_addr, ifp->if_addrlen); 796 renew = false; 797 /* 798 * If entry has an expiry time and it is approaching, 799 * see if we need to send an ARP request within this 800 * arpt_down interval. 801 */ 802 if (!(la->la_flags & LLE_STATIC) && 803 time_uptime + la->la_preempt > la->la_expire) 804 { 805 renew = true; 806 la->la_preempt--; 807 } 808 809 LLE_WUNLOCK(la); 810 811 if (renew) { 812 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 813 arprequest(origifp, 814 &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, 815 &satocsin(dst)->sin_addr, enaddr); 816 } 817 818 return 0; 819 } 820 821 if (la->la_flags & LLE_STATIC) { /* should not happen! */ 822 LLE_RUNLOCK(la); 823 log(LOG_DEBUG, "%s: ouch, empty static llinfo for %s\n", 824 __func__, inet_ntoa(satocsin(dst)->sin_addr)); 825 error = EINVAL; 826 goto bad; 827 } 828 829 renew = (la->la_asked == 0 || la->la_expire != time_uptime); 830 831 /* 832 * There is an arptab entry, but no ethernet address 833 * response yet. Add the mbuf to the list, dropping 834 * the oldest packet if we have exceeded the system 835 * setting. 836 */ 837 LLE_WLOCK_ASSERT(la); 838 if (la->la_numheld >= arp_maxhold) { 839 if (la->la_hold != NULL) { 840 struct mbuf *next = la->la_hold->m_nextpkt; 841 m_freem(la->la_hold); 842 la->la_hold = next; 843 la->la_numheld--; 844 ARP_STATINC(ARP_STAT_DFRDROPPED); 845 ARP_STATINC(ARP_STAT_DFRTOTAL); 846 } 847 } 848 if (la->la_hold != NULL) { 849 struct mbuf *curr = la->la_hold; 850 while (curr->m_nextpkt != NULL) 851 curr = curr->m_nextpkt; 852 curr->m_nextpkt = m; 853 } else 854 la->la_hold = m; 855 la->la_numheld++; 856 if (!renew) 857 LLE_DOWNGRADE(la); 858 859 /* 860 * Return EWOULDBLOCK if we have tried less than arp_maxtries. It 861 * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH 862 * if we have already sent arp_maxtries ARP requests. Retransmit the 863 * ARP request, but not faster than one request per second. 864 */ 865 if (la->la_asked < arp_maxtries) 866 error = EWOULDBLOCK; /* First request. */ 867 else 868 error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ? 869 EHOSTUNREACH : EHOSTDOWN; 870 871 if (renew) { 872 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 873 la->la_expire = time_uptime; 874 arp_settimer(la, arpt_down); 875 la->la_asked++; 876 LLE_WUNLOCK(la); 877 878 if (rt != NULL) { 879 arprequest(origifp, 880 &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, 881 &satocsin(dst)->sin_addr, enaddr); 882 } else { 883 struct sockaddr_in sin; 884 struct rtentry *_rt; 885 886 sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); 887 888 /* XXX */ 889 _rt = rtalloc1((struct sockaddr *)&sin, 0); 890 if (_rt == NULL) 891 goto bad; 892 arprequest(origifp, 893 &satocsin(_rt->rt_ifa->ifa_addr)->sin_addr, 894 &satocsin(dst)->sin_addr, enaddr); 895 rt_unref(_rt); 896 } 897 return error; 898 } 899 900 LLE_RUNLOCK(la); 901 return error; 902 903 bad: 904 m_freem(m); 905 return error; 906 } 907 908 /* 909 * Common length and type checks are done here, 910 * then the protocol-specific routine is called. 911 */ 912 void 913 arpintr(void) 914 { 915 struct mbuf *m; 916 struct arphdr *ar; 917 int s; 918 int arplen; 919 920 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 921 for (;;) { 922 struct ifnet *rcvif; 923 924 IFQ_LOCK(&arpintrq); 925 IF_DEQUEUE(&arpintrq, m); 926 IFQ_UNLOCK(&arpintrq); 927 if (m == NULL) 928 goto out; 929 if ((m->m_flags & M_PKTHDR) == 0) 930 panic("arpintr"); 931 932 MCLAIM(m, &arpdomain.dom_mowner); 933 ARP_STATINC(ARP_STAT_RCVTOTAL); 934 935 arplen = sizeof(struct arphdr); 936 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 937 goto badlen; 938 ar = mtod(m, struct arphdr *); 939 940 rcvif = m_get_rcvif(m, &s); 941 if (__predict_false(rcvif == NULL)) { 942 ARP_STATINC(ARP_STAT_RCVNOINT); 943 goto free; 944 } 945 946 /* 947 * We don't want non-IEEE1394 ARP packets on IEEE1394 948 * interfaces, and vice versa. Our life depends on that. 949 */ 950 switch (rcvif->if_type) { 951 case IFT_IEEE1394: 952 if (ntohs(ar->ar_hrd) != ARPHRD_IEEE1394) { 953 m_put_rcvif(rcvif, &s); 954 ARP_STATINC(ARP_STAT_RCVBADPROTO); 955 goto free; 956 } 957 958 arplen = sizeof(struct arphdr) + 959 ar->ar_hln + 2 * ar->ar_pln; 960 break; 961 default: 962 if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) { 963 m_put_rcvif(rcvif, &s); 964 ARP_STATINC(ARP_STAT_RCVBADPROTO); 965 goto free; 966 } 967 968 arplen = sizeof(struct arphdr) + 969 2 * ar->ar_hln + 2 * ar->ar_pln; 970 break; 971 } 972 973 m_put_rcvif(rcvif, &s); 974 975 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 976 goto badlen; 977 ar = mtod(m, struct arphdr *); 978 979 switch (ntohs(ar->ar_pro)) { 980 case ETHERTYPE_IP: 981 case ETHERTYPE_IPTRAILERS: 982 in_arpinput(m); 983 continue; 984 default: 985 ARP_STATINC(ARP_STAT_RCVBADPROTO); 986 goto free; 987 } 988 989 badlen: 990 ARP_STATINC(ARP_STAT_RCVBADLEN); 991 free: 992 m_freem(m); 993 } 994 995 out: 996 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 997 return; /* XXX gcc */ 998 } 999 1000 /* 1001 * ARP for Internet protocols on 10 Mb/s Ethernet. Algorithm is that given in 1002 * RFC 826. In addition, a sanity check is performed on the sender protocol 1003 * address, to catch impersonators. 1004 * 1005 * We no longer handle negotiations for use of trailer protocol: formerly, ARP 1006 * replied for protocol type ETHERTYPE_TRAIL sent along with IP replies if we 1007 * wanted trailers sent to us, and also sent them in response to IP replies. 1008 * This allowed either end to announce the desire to receive trailer packets. 1009 * 1010 * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, but 1011 * formerly didn't normally send requests. 1012 */ 1013 static void 1014 in_arpinput(struct mbuf *m) 1015 { 1016 struct arphdr *ah; 1017 struct ifnet *ifp, *rcvif = NULL; 1018 struct llentry *la = NULL; 1019 struct in_ifaddr *ia = NULL; 1020 #if NBRIDGE > 0 1021 struct in_ifaddr *bridge_ia = NULL; 1022 #endif 1023 #if NCARP > 0 1024 uint32_t count = 0, index = 0; 1025 #endif 1026 struct sockaddr sa; 1027 struct in_addr isaddr, itaddr, myaddr; 1028 int op; 1029 void *tha; 1030 uint64_t *arps; 1031 struct psref psref, psref_ia; 1032 int s; 1033 char llabuf[LLA_ADDRSTRLEN]; 1034 char ipbuf[INET_ADDRSTRLEN]; 1035 bool do_dad; 1036 1037 if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT))) 1038 goto out; 1039 ah = mtod(m, struct arphdr *); 1040 op = ntohs(ah->ar_op); 1041 1042 if (ah->ar_pln != sizeof(struct in_addr)) 1043 goto out; 1044 1045 ifp = if_get_bylla(ar_sha(ah), ah->ar_hln, &psref); 1046 if (ifp) { 1047 /* it's from me, ignore it. */ 1048 if_put(ifp, &psref); 1049 ARP_STATINC(ARP_STAT_RCVLOCALSHA); 1050 goto out; 1051 } 1052 1053 rcvif = ifp = m_get_rcvif_psref(m, &psref); 1054 if (__predict_false(rcvif == NULL)) 1055 goto out; 1056 if (rcvif->if_flags & IFF_NOARP) 1057 goto out; 1058 1059 memcpy(&isaddr, ar_spa(ah), sizeof(isaddr)); 1060 memcpy(&itaddr, ar_tpa(ah), sizeof(itaddr)); 1061 1062 if (m->m_flags & (M_BCAST|M_MCAST)) 1063 ARP_STATINC(ARP_STAT_RCVMCAST); 1064 1065 /* 1066 * Search for a matching interface address 1067 * or any address on the interface to use 1068 * as a dummy address in the rest of this function. 1069 * 1070 * If the target IP address is zero then try and find 1071 * the sender address for DAD. 1072 */ 1073 myaddr = in_nullhost(itaddr) ? isaddr : itaddr; 1074 s = pserialize_read_enter(); 1075 IN_ADDRHASH_READER_FOREACH(ia, myaddr.s_addr) { 1076 if (!in_hosteq(ia->ia_addr.sin_addr, myaddr)) 1077 continue; 1078 #if NCARP > 0 1079 if (ia->ia_ifp->if_type == IFT_CARP && 1080 ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) == 1081 (IFF_UP|IFF_RUNNING))) { 1082 index++; 1083 /* XXX: ar_hln? */ 1084 if (ia->ia_ifp == rcvif && (ah->ar_hln >= 6) && 1085 carp_iamatch(ia, ar_sha(ah), 1086 &count, index)) { 1087 break; 1088 } 1089 } else 1090 #endif 1091 if (ia->ia_ifp == rcvif) 1092 break; 1093 #if NBRIDGE > 0 1094 /* 1095 * If the interface we received the packet on 1096 * is part of a bridge, check to see if we need 1097 * to "bridge" the packet to ourselves at this 1098 * layer. Note we still prefer a perfect match, 1099 * but allow this weaker match if necessary. 1100 */ 1101 if (rcvif->if_bridge != NULL && 1102 rcvif->if_bridge == ia->ia_ifp->if_bridge) 1103 bridge_ia = ia; 1104 #endif 1105 } 1106 1107 #if NBRIDGE > 0 1108 if (ia == NULL && bridge_ia != NULL) { 1109 ia = bridge_ia; 1110 m_put_rcvif_psref(rcvif, &psref); 1111 rcvif = NULL; 1112 /* FIXME */ 1113 ifp = bridge_ia->ia_ifp; 1114 } 1115 #endif 1116 if (ia != NULL) 1117 ia4_acquire(ia, &psref_ia); 1118 pserialize_read_exit(s); 1119 1120 if (ah->ar_hln != ifp->if_addrlen) { 1121 ARP_STATINC(ARP_STAT_RCVBADLEN); 1122 log(LOG_WARNING, 1123 "arp from %s: addr len: new %d, i/f %d (ignored)\n", 1124 IN_PRINT(ipbuf, &isaddr), ah->ar_hln, ifp->if_addrlen); 1125 goto out; 1126 } 1127 1128 /* Only do DaD if we have a matching address. */ 1129 do_dad = (ia != NULL); 1130 1131 if (ia == NULL) { 1132 ia = in_get_ia_on_iface_psref(isaddr, rcvif, &psref_ia); 1133 if (ia == NULL) { 1134 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia); 1135 if (ia == NULL) { 1136 ARP_STATINC(ARP_STAT_RCVNOINT); 1137 goto out; 1138 } 1139 } 1140 } 1141 1142 myaddr = ia->ia_addr.sin_addr; 1143 1144 /* XXX checks for bridge case? */ 1145 if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) { 1146 ARP_STATINC(ARP_STAT_RCVBCASTSHA); 1147 log(LOG_ERR, 1148 "%s: arp: link address is broadcast for IP address %s!\n", 1149 ifp->if_xname, IN_PRINT(ipbuf, &isaddr)); 1150 goto out; 1151 } 1152 1153 /* 1154 * If the source IP address is zero, this is an RFC 5227 ARP probe 1155 */ 1156 if (in_nullhost(isaddr)) 1157 ARP_STATINC(ARP_STAT_RCVZEROSPA); 1158 else if (in_hosteq(isaddr, myaddr)) 1159 ARP_STATINC(ARP_STAT_RCVLOCALSPA); 1160 1161 if (in_nullhost(itaddr)) 1162 ARP_STATINC(ARP_STAT_RCVZEROTPA); 1163 1164 /* 1165 * DAD check, RFC 5227. 1166 * Collision on sender address is always a duplicate. 1167 * Collision on target address is only a duplicate IF 1168 * the sender address is the null host (ie a DAD probe) AND 1169 * our address is in the TENTATIVE state. 1170 * DUPLICATED state is also checked so that processing stops here 1171 * and an error can be logged. 1172 */ 1173 if (do_dad && 1174 (in_hosteq(isaddr, myaddr) || 1175 (in_nullhost(isaddr) && in_hosteq(itaddr, myaddr) 1176 && ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DUPLICATED)))) 1177 { 1178 arp_dad_duplicated((struct ifaddr *)ia, 1179 lla_snprintf(llabuf, ar_sha(ah), ah->ar_hln)); 1180 goto out; 1181 } 1182 1183 /* 1184 * If the target IP address is zero, ignore the packet. 1185 * This prevents the code below from trying to answer 1186 * when we are using IP address zero (booting). 1187 */ 1188 if (in_nullhost(itaddr)) 1189 goto out; 1190 1191 if (in_nullhost(isaddr)) 1192 goto reply; 1193 1194 if (in_hosteq(itaddr, myaddr)) 1195 la = arpcreate(ifp, &isaddr, NULL, 1); 1196 else 1197 la = arplookup(ifp, &isaddr, NULL, 1); 1198 if (la == NULL) 1199 goto reply; 1200 1201 if ((la->la_flags & LLE_VALID) && 1202 memcmp(ar_sha(ah), &la->ll_addr, ifp->if_addrlen)) { 1203 if (la->la_flags & LLE_STATIC) { 1204 ARP_STATINC(ARP_STAT_RCVOVERPERM); 1205 if (!log_permanent_modify) 1206 goto out; 1207 log(LOG_INFO, 1208 "%s tried to overwrite permanent arp info" 1209 " for %s\n", 1210 lla_snprintf(llabuf, ar_sha(ah), ah->ar_hln), 1211 IN_PRINT(ipbuf, &isaddr)); 1212 goto out; 1213 } else if (la->lle_tbl->llt_ifp != ifp) { 1214 /* XXX should not happen? */ 1215 ARP_STATINC(ARP_STAT_RCVOVERINT); 1216 if (!log_wrong_iface) 1217 goto out; 1218 log(LOG_INFO, 1219 "%s on %s tried to overwrite " 1220 "arp info for %s on %s\n", 1221 lla_snprintf(llabuf, ar_sha(ah), ah->ar_hln), 1222 ifp->if_xname, IN_PRINT(ipbuf, &isaddr), 1223 la->lle_tbl->llt_ifp->if_xname); 1224 goto out; 1225 } else { 1226 ARP_STATINC(ARP_STAT_RCVOVER); 1227 if (log_movements) 1228 log(LOG_INFO, "arp info overwritten " 1229 "for %s by %s\n", 1230 IN_PRINT(ipbuf, &isaddr), 1231 lla_snprintf(llabuf, ar_sha(ah), 1232 ah->ar_hln)); 1233 } 1234 } 1235 1236 KASSERT(ifp->if_sadl->sdl_alen == ifp->if_addrlen); 1237 1238 #if NTOKEN > 0 1239 /* 1240 * XXX uses m_data and assumes the complete answer including 1241 * XXX token-ring headers is in the same buf 1242 */ 1243 if (ifp->if_type == IFT_ISO88025) { 1244 struct token_header *trh; 1245 1246 trh = (struct token_header *)M_TRHSTART(m); 1247 if (trh->token_shost[0] & TOKEN_RI_PRESENT) { 1248 struct token_rif *rif; 1249 size_t riflen; 1250 1251 rif = TOKEN_RIF(trh); 1252 riflen = (ntohs(rif->tr_rcf) & 1253 TOKEN_RCF_LEN_MASK) >> 8; 1254 1255 if (riflen > 2 && 1256 riflen < sizeof(struct token_rif) && 1257 (riflen & 1) == 0) { 1258 rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION); 1259 rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK); 1260 memcpy(TOKEN_RIF_LLE(la), rif, riflen); 1261 } 1262 } 1263 } 1264 #endif 1265 1266 KASSERT(sizeof(la->ll_addr) >= ifp->if_addrlen); 1267 memcpy(&la->ll_addr, ar_sha(ah), ifp->if_addrlen); 1268 la->la_flags |= LLE_VALID; 1269 if ((la->la_flags & LLE_STATIC) == 0) { 1270 la->la_expire = time_uptime + arpt_keep; 1271 arp_settimer(la, arpt_keep); 1272 } 1273 la->la_asked = 0; 1274 /* rt->rt_flags &= ~RTF_REJECT; */ 1275 1276 if (la->la_hold != NULL) { 1277 int n = la->la_numheld; 1278 struct mbuf *m_hold, *m_hold_next; 1279 struct sockaddr_in sin; 1280 1281 sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); 1282 1283 m_hold = la->la_hold; 1284 la->la_hold = NULL; 1285 la->la_numheld = 0; 1286 /* 1287 * We have to unlock here because if_output would call 1288 * arpresolve 1289 */ 1290 LLE_WUNLOCK(la); 1291 ARP_STATADD(ARP_STAT_DFRSENT, n); 1292 ARP_STATADD(ARP_STAT_DFRTOTAL, n); 1293 for (; m_hold != NULL; m_hold = m_hold_next) { 1294 m_hold_next = m_hold->m_nextpkt; 1295 m_hold->m_nextpkt = NULL; 1296 if_output_lock(ifp, ifp, m_hold, sintosa(&sin), NULL); 1297 } 1298 } else 1299 LLE_WUNLOCK(la); 1300 la = NULL; 1301 1302 reply: 1303 if (la != NULL) { 1304 LLE_WUNLOCK(la); 1305 la = NULL; 1306 } 1307 if (op != ARPOP_REQUEST) { 1308 if (op == ARPOP_REPLY) 1309 ARP_STATINC(ARP_STAT_RCVREPLY); 1310 goto out; 1311 } 1312 ARP_STATINC(ARP_STAT_RCVREQUEST); 1313 if (in_hosteq(itaddr, myaddr)) { 1314 /* If our address is unusable, don't reply */ 1315 if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) 1316 goto out; 1317 /* I am the target */ 1318 tha = ar_tha(ah); 1319 if (tha) 1320 memcpy(tha, ar_sha(ah), ah->ar_hln); 1321 memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); 1322 } else { 1323 /* Proxy ARP */ 1324 struct llentry *lle = NULL; 1325 struct sockaddr_in sin; 1326 1327 #if NCARP > 0 1328 if (ifp->if_type == IFT_CARP) { 1329 struct ifnet *_rcvif = m_get_rcvif(m, &s); 1330 int iftype = 0; 1331 if (__predict_true(_rcvif != NULL)) 1332 iftype = _rcvif->if_type; 1333 m_put_rcvif(_rcvif, &s); 1334 if (iftype != IFT_CARP) 1335 goto out; 1336 } 1337 #endif 1338 1339 tha = ar_tha(ah); 1340 1341 sockaddr_in_init(&sin, &itaddr, 0); 1342 1343 IF_AFDATA_RLOCK(ifp); 1344 lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin); 1345 IF_AFDATA_RUNLOCK(ifp); 1346 1347 if ((lle != NULL) && (lle->la_flags & LLE_PUB)) { 1348 if (tha) 1349 memcpy(tha, ar_sha(ah), ah->ar_hln); 1350 memcpy(ar_sha(ah), &lle->ll_addr, ah->ar_hln); 1351 LLE_RUNLOCK(lle); 1352 } else { 1353 if (lle != NULL) 1354 LLE_RUNLOCK(lle); 1355 goto out; 1356 } 1357 } 1358 ia4_release(ia, &psref_ia); 1359 1360 /* 1361 * XXX XXX: Here we're recycling the mbuf. But the mbuf could have 1362 * other mbufs in its chain, and just overwriting m->m_pkthdr.len 1363 * would be wrong in this case (the length becomes smaller than the 1364 * real chain size). 1365 * 1366 * This can theoretically cause bugs in the lower layers (drivers, 1367 * and L2encap), in some corner cases. 1368 */ 1369 memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln); 1370 memcpy(ar_spa(ah), &itaddr, ah->ar_pln); 1371 ah->ar_op = htons(ARPOP_REPLY); 1372 ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */ 1373 switch (ifp->if_type) { 1374 case IFT_IEEE1394: 1375 /* ieee1394 arp reply is broadcast */ 1376 m->m_flags &= ~M_MCAST; 1377 m->m_flags |= M_BCAST; 1378 m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln; 1379 break; 1380 default: 1381 m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */ 1382 m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln); 1383 break; 1384 } 1385 m->m_pkthdr.len = m->m_len; 1386 sa.sa_family = AF_ARP; 1387 sa.sa_len = 2; 1388 arps = ARP_STAT_GETREF(); 1389 arps[ARP_STAT_SNDTOTAL]++; 1390 arps[ARP_STAT_SNDREPLY]++; 1391 ARP_STAT_PUTREF(); 1392 if_output_lock(ifp, ifp, m, &sa, NULL); 1393 if (rcvif != NULL) 1394 m_put_rcvif_psref(rcvif, &psref); 1395 return; 1396 1397 out: 1398 if (la != NULL) 1399 LLE_WUNLOCK(la); 1400 if (ia != NULL) 1401 ia4_release(ia, &psref_ia); 1402 if (rcvif != NULL) 1403 m_put_rcvif_psref(rcvif, &psref); 1404 m_freem(m); 1405 } 1406 1407 /* 1408 * Lookup or a new address in arptab. 1409 */ 1410 static struct llentry * 1411 arplookup(struct ifnet *ifp, const struct in_addr *addr, 1412 const struct sockaddr *sa, int wlock) 1413 { 1414 struct sockaddr_in sin; 1415 struct llentry *la; 1416 int flags = wlock ? LLE_EXCLUSIVE : 0; 1417 1418 if (sa == NULL) { 1419 KASSERT(addr != NULL); 1420 sockaddr_in_init(&sin, addr, 0); 1421 sa = sintocsa(&sin); 1422 } 1423 1424 IF_AFDATA_RLOCK(ifp); 1425 la = lla_lookup(LLTABLE(ifp), flags, sa); 1426 IF_AFDATA_RUNLOCK(ifp); 1427 1428 return la; 1429 } 1430 1431 static struct llentry * 1432 arpcreate(struct ifnet *ifp, const struct in_addr *addr, 1433 const struct sockaddr *sa, int wlock) 1434 { 1435 struct sockaddr_in sin; 1436 struct llentry *la; 1437 int flags = wlock ? LLE_EXCLUSIVE : 0; 1438 1439 if (sa == NULL) { 1440 KASSERT(addr != NULL); 1441 sockaddr_in_init(&sin, addr, 0); 1442 sa = sintocsa(&sin); 1443 } 1444 1445 la = arplookup(ifp, addr, sa, wlock); 1446 1447 if (la == NULL) { 1448 struct rtentry *rt; 1449 1450 rt = rtalloc1(sa, 0); 1451 IF_AFDATA_WLOCK(ifp); 1452 la = lla_create(LLTABLE(ifp), flags, sa, rt); 1453 IF_AFDATA_WUNLOCK(ifp); 1454 if (rt != NULL) 1455 rt_unref(rt); 1456 1457 if (la != NULL) 1458 arp_init_llentry(ifp, la); 1459 } 1460 1461 return la; 1462 } 1463 1464 int 1465 arpioctl(u_long cmd, void *data) 1466 { 1467 1468 return EOPNOTSUPP; 1469 } 1470 1471 void 1472 arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa) 1473 { 1474 struct in_ifaddr *ia = (struct in_ifaddr *)ifa; 1475 1476 ifa->ifa_rtrequest = arp_rtrequest; 1477 ifa->ifa_flags |= RTF_CONNECTED; 1478 1479 /* ARP will handle DAD for this address. */ 1480 if (in_nullhost(IA_SIN(ifa)->sin_addr)) { 1481 if (ia->ia_dad_stop != NULL) /* safety */ 1482 ia->ia_dad_stop(ifa); 1483 ia->ia_dad_start = NULL; 1484 ia->ia_dad_stop = NULL; 1485 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1486 } else { 1487 ia->ia_dad_start = arp_dad_start; 1488 ia->ia_dad_stop = arp_dad_stop; 1489 if (ia->ia4_flags & IN_IFF_TRYTENTATIVE && ip_dad_count > 0) 1490 ia->ia4_flags |= IN_IFF_TENTATIVE; 1491 else 1492 arpannounce1(ifa); 1493 } 1494 } 1495 1496 TAILQ_HEAD(dadq_head, dadq); 1497 struct dadq { 1498 TAILQ_ENTRY(dadq) dad_list; 1499 struct ifaddr *dad_ifa; 1500 int dad_count; /* max ARP to send */ 1501 int dad_arp_tcount; /* # of trials to send ARP */ 1502 int dad_arp_ocount; /* ARP sent so far */ 1503 int dad_arp_announce; /* max ARP announcements */ 1504 int dad_arp_acount; /* # of announcements */ 1505 struct callout dad_timer_ch; 1506 }; 1507 1508 static struct dadq_head dadq; 1509 static int dad_init = 0; 1510 static int dad_maxtry = 15; /* max # of *tries* to transmit DAD packet */ 1511 static kmutex_t arp_dad_lock; 1512 1513 static struct dadq * 1514 arp_dad_find(struct ifaddr *ifa) 1515 { 1516 struct dadq *dp; 1517 1518 KASSERT(mutex_owned(&arp_dad_lock)); 1519 1520 TAILQ_FOREACH(dp, &dadq, dad_list) { 1521 if (dp->dad_ifa == ifa) 1522 return dp; 1523 } 1524 return NULL; 1525 } 1526 1527 static void 1528 arp_dad_starttimer(struct dadq *dp, int ticks) 1529 { 1530 1531 callout_reset(&dp->dad_timer_ch, ticks, 1532 (void (*)(void *))arp_dad_timer, dp); 1533 } 1534 1535 static void 1536 arp_dad_stoptimer(struct dadq *dp) 1537 { 1538 1539 KASSERT(mutex_owned(&arp_dad_lock)); 1540 1541 TAILQ_REMOVE(&dadq, dp, dad_list); 1542 /* Tell the timer that dp is being destroyed. */ 1543 dp->dad_ifa = NULL; 1544 callout_halt(&dp->dad_timer_ch, &arp_dad_lock); 1545 } 1546 1547 static void 1548 arp_dad_destroytimer(struct dadq *dp) 1549 { 1550 1551 callout_destroy(&dp->dad_timer_ch); 1552 KASSERT(dp->dad_ifa == NULL); 1553 kmem_intr_free(dp, sizeof(*dp)); 1554 } 1555 1556 static void 1557 arp_dad_output(struct dadq *dp, struct ifaddr *ifa) 1558 { 1559 struct in_ifaddr *ia = (struct in_ifaddr *)ifa; 1560 struct ifnet *ifp = ifa->ifa_ifp; 1561 struct in_addr sip; 1562 1563 dp->dad_arp_tcount++; 1564 if ((ifp->if_flags & IFF_UP) == 0) 1565 return; 1566 if ((ifp->if_flags & IFF_RUNNING) == 0) 1567 return; 1568 1569 dp->dad_arp_tcount = 0; 1570 dp->dad_arp_ocount++; 1571 1572 memset(&sip, 0, sizeof(sip)); 1573 arprequest(ifa->ifa_ifp, &sip, &ia->ia_addr.sin_addr, 1574 CLLADDR(ifa->ifa_ifp->if_sadl)); 1575 } 1576 1577 /* 1578 * Start Duplicate Address Detection (DAD) for specified interface address. 1579 */ 1580 static void 1581 arp_dad_start(struct ifaddr *ifa) 1582 { 1583 struct in_ifaddr *ia = (struct in_ifaddr *)ifa; 1584 struct dadq *dp; 1585 char ipbuf[INET_ADDRSTRLEN]; 1586 1587 if (!dad_init) { 1588 TAILQ_INIT(&dadq); 1589 mutex_init(&arp_dad_lock, MUTEX_DEFAULT, IPL_NONE); 1590 dad_init++; 1591 } 1592 1593 /* 1594 * If we don't need DAD, don't do it. 1595 * - DAD is disabled (ip_dad_count == 0) 1596 */ 1597 if (!(ia->ia4_flags & IN_IFF_TENTATIVE)) { 1598 log(LOG_DEBUG, 1599 "%s: called with non-tentative address %s(%s)\n", __func__, 1600 IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1601 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1602 return; 1603 } 1604 if (!ip_dad_count) { 1605 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1606 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); 1607 arpannounce1(ifa); 1608 return; 1609 } 1610 KASSERT(ifa->ifa_ifp != NULL); 1611 if (!(ifa->ifa_ifp->if_flags & IFF_UP)) 1612 return; 1613 1614 dp = kmem_intr_alloc(sizeof(*dp), KM_NOSLEEP); 1615 1616 mutex_enter(&arp_dad_lock); 1617 if (arp_dad_find(ifa) != NULL) { 1618 mutex_exit(&arp_dad_lock); 1619 /* DAD already in progress */ 1620 if (dp != NULL) 1621 kmem_intr_free(dp, sizeof(*dp)); 1622 return; 1623 } 1624 1625 if (dp == NULL) { 1626 mutex_exit(&arp_dad_lock); 1627 log(LOG_ERR, "%s: memory allocation failed for %s(%s)\n", 1628 __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1629 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1630 return; 1631 } 1632 1633 /* 1634 * Send ARP packet for DAD, ip_dad_count times. 1635 * Note that we must delay the first transmission. 1636 */ 1637 callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE); 1638 dp->dad_ifa = ifa; 1639 ifaref(ifa); /* just for safety */ 1640 dp->dad_count = ip_dad_count; 1641 dp->dad_arp_announce = 0; /* Will be set when starting to announce */ 1642 dp->dad_arp_acount = dp->dad_arp_ocount = dp->dad_arp_tcount = 0; 1643 TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list); 1644 1645 ARPLOG(LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp), 1646 ARPLOGADDR(&ia->ia_addr.sin_addr)); 1647 1648 arp_dad_starttimer(dp, cprng_fast32() % (PROBE_WAIT * hz)); 1649 1650 mutex_exit(&arp_dad_lock); 1651 } 1652 1653 /* 1654 * terminate DAD unconditionally. used for address removals. 1655 */ 1656 static void 1657 arp_dad_stop(struct ifaddr *ifa) 1658 { 1659 struct dadq *dp; 1660 1661 if (!dad_init) 1662 return; 1663 1664 mutex_enter(&arp_dad_lock); 1665 dp = arp_dad_find(ifa); 1666 if (dp == NULL) { 1667 mutex_exit(&arp_dad_lock); 1668 /* DAD wasn't started yet */ 1669 return; 1670 } 1671 1672 arp_dad_stoptimer(dp); 1673 1674 mutex_exit(&arp_dad_lock); 1675 1676 arp_dad_destroytimer(dp); 1677 ifafree(ifa); 1678 } 1679 1680 static void 1681 arp_dad_timer(struct dadq *dp) 1682 { 1683 struct ifaddr *ifa; 1684 struct in_ifaddr *ia; 1685 char ipbuf[INET_ADDRSTRLEN]; 1686 bool need_free = false; 1687 1688 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 1689 mutex_enter(&arp_dad_lock); 1690 1691 ifa = dp->dad_ifa; 1692 if (ifa == NULL) { 1693 /* dp is being destroyed by someone. Do nothing. */ 1694 goto done; 1695 } 1696 1697 ia = (struct in_ifaddr *)ifa; 1698 if (ia->ia4_flags & IN_IFF_DUPLICATED) { 1699 log(LOG_ERR, "%s: called with duplicate address %s(%s)\n", 1700 __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1701 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1702 goto done; 1703 } 1704 if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0 && dp->dad_arp_acount == 0) 1705 { 1706 log(LOG_ERR, "%s: called with non-tentative address %s(%s)\n", 1707 __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1708 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1709 goto done; 1710 } 1711 1712 /* timeouted with IFF_{RUNNING,UP} check */ 1713 if (dp->dad_arp_tcount > dad_maxtry) { 1714 ARPLOG(LOG_INFO, "%s: could not run DAD, driver problem?\n", 1715 if_name(ifa->ifa_ifp)); 1716 1717 arp_dad_stoptimer(dp); 1718 need_free = true; 1719 goto done; 1720 } 1721 1722 /* Need more checks? */ 1723 if (dp->dad_arp_ocount < dp->dad_count) { 1724 int adelay; 1725 1726 /* 1727 * We have more ARP to go. Send ARP packet for DAD. 1728 */ 1729 arp_dad_output(dp, ifa); 1730 if (dp->dad_arp_ocount < dp->dad_count) 1731 adelay = (PROBE_MIN * hz) + 1732 (cprng_fast32() % 1733 ((PROBE_MAX * hz) - (PROBE_MIN * hz))); 1734 else 1735 adelay = ANNOUNCE_WAIT * hz; 1736 arp_dad_starttimer(dp, adelay); 1737 goto done; 1738 } else if (dp->dad_arp_acount == 0) { 1739 /* 1740 * We are done with DAD. 1741 * No duplicate address found. 1742 */ 1743 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1744 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); 1745 ARPLOG(LOG_DEBUG, 1746 "%s: DAD complete for %s - no duplicates found\n", 1747 if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr)); 1748 dp->dad_arp_announce = ANNOUNCE_NUM; 1749 goto announce; 1750 } else if (dp->dad_arp_acount < dp->dad_arp_announce) { 1751 announce: 1752 /* 1753 * Announce the address. 1754 */ 1755 arpannounce1(ifa); 1756 dp->dad_arp_acount++; 1757 if (dp->dad_arp_acount < dp->dad_arp_announce) { 1758 arp_dad_starttimer(dp, ANNOUNCE_INTERVAL * hz); 1759 goto done; 1760 } 1761 ARPLOG(LOG_DEBUG, 1762 "%s: ARP announcement complete for %s\n", 1763 if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr)); 1764 } 1765 1766 arp_dad_stoptimer(dp); 1767 need_free = true; 1768 done: 1769 mutex_exit(&arp_dad_lock); 1770 1771 if (need_free) { 1772 arp_dad_destroytimer(dp); 1773 KASSERT(ifa != NULL); 1774 ifafree(ifa); 1775 } 1776 1777 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 1778 } 1779 1780 static void 1781 arp_dad_duplicated(struct ifaddr *ifa, const char *sha) 1782 { 1783 struct in_ifaddr *ia = (struct in_ifaddr *)ifa; 1784 struct ifnet *ifp = ifa->ifa_ifp; 1785 char ipbuf[INET_ADDRSTRLEN]; 1786 const char *iastr; 1787 1788 iastr = IN_PRINT(ipbuf, &ia->ia_addr.sin_addr); 1789 1790 if (ia->ia4_flags & (IN_IFF_TENTATIVE|IN_IFF_DUPLICATED)) { 1791 log(LOG_ERR, 1792 "%s: DAD duplicate address %s from %s\n", 1793 if_name(ifp), iastr, sha); 1794 } else if (ia->ia_dad_defended == 0 || 1795 ia->ia_dad_defended < time_uptime - DEFEND_INTERVAL) { 1796 ia->ia_dad_defended = time_uptime; 1797 arpannounce1(ifa); 1798 log(LOG_ERR, 1799 "%s: DAD defended address %s from %s\n", 1800 if_name(ifp), iastr, sha); 1801 return; 1802 } else { 1803 /* If DAD is disabled, just report the duplicate. */ 1804 if (ip_dad_count == 0) { 1805 log(LOG_ERR, 1806 "%s: DAD ignoring duplicate address %s from %s\n", 1807 if_name(ifp), iastr, sha); 1808 return; 1809 } 1810 log(LOG_ERR, 1811 "%s: DAD defence failed for %s from %s\n", 1812 if_name(ifp), iastr, sha); 1813 } 1814 1815 arp_dad_stop(ifa); 1816 1817 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1818 if ((ia->ia4_flags & IN_IFF_DUPLICATED) == 0) { 1819 ia->ia4_flags |= IN_IFF_DUPLICATED; 1820 /* Inform the routing socket of the duplicate address */ 1821 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL); 1822 } 1823 } 1824 1825 /* 1826 * Called from 10 Mb/s Ethernet interrupt handlers 1827 * when ether packet type ETHERTYPE_REVARP 1828 * is received. Common length and type checks are done here, 1829 * then the protocol-specific routine is called. 1830 */ 1831 void 1832 revarpinput(struct mbuf *m) 1833 { 1834 struct arphdr *ar; 1835 int arplen; 1836 1837 arplen = sizeof(struct arphdr); 1838 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 1839 return; 1840 ar = mtod(m, struct arphdr *); 1841 1842 if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) { 1843 goto out; 1844 } 1845 1846 arplen = sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln); 1847 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 1848 return; 1849 ar = mtod(m, struct arphdr *); 1850 1851 switch (ntohs(ar->ar_pro)) { 1852 case ETHERTYPE_IP: 1853 case ETHERTYPE_IPTRAILERS: 1854 in_revarpinput(m); 1855 return; 1856 1857 default: 1858 break; 1859 } 1860 1861 out: 1862 m_freem(m); 1863 } 1864 1865 /* 1866 * RARP for Internet protocols on 10 Mb/s Ethernet. 1867 * Algorithm is that given in RFC 903. 1868 * We are only using for bootstrap purposes to get an ip address for one of 1869 * our interfaces. Thus we support no user-interface. 1870 * 1871 * Since the contents of the RARP reply are specific to the interface that 1872 * sent the request, this code must ensure that they are properly associated. 1873 * 1874 * Note: also supports ARP via RARP packets, per the RFC. 1875 */ 1876 void 1877 in_revarpinput(struct mbuf *m) 1878 { 1879 struct arphdr *ah; 1880 void *tha; 1881 int op; 1882 struct ifnet *rcvif; 1883 int s; 1884 1885 ah = mtod(m, struct arphdr *); 1886 op = ntohs(ah->ar_op); 1887 1888 rcvif = m_get_rcvif(m, &s); 1889 if (__predict_false(rcvif == NULL)) 1890 goto out; 1891 if (rcvif->if_flags & IFF_NOARP) 1892 goto out; 1893 1894 switch (rcvif->if_type) { 1895 case IFT_IEEE1394: 1896 /* ARP without target hardware address is not supported */ 1897 goto out; 1898 default: 1899 break; 1900 } 1901 1902 switch (op) { 1903 case ARPOP_REQUEST: 1904 case ARPOP_REPLY: /* per RFC */ 1905 m_put_rcvif(rcvif, &s); 1906 in_arpinput(m); 1907 return; 1908 case ARPOP_REVREPLY: 1909 break; 1910 case ARPOP_REVREQUEST: /* handled by rarpd(8) */ 1911 default: 1912 goto out; 1913 } 1914 if (!revarp_in_progress) 1915 goto out; 1916 if (rcvif != myip_ifp) /* !same interface */ 1917 goto out; 1918 if (myip_initialized) 1919 goto wake; 1920 tha = ar_tha(ah); 1921 if (tha == NULL) 1922 goto out; 1923 if (ah->ar_pln != sizeof(struct in_addr)) 1924 goto out; 1925 if (ah->ar_hln != rcvif->if_sadl->sdl_alen) 1926 goto out; 1927 if (memcmp(tha, CLLADDR(rcvif->if_sadl), rcvif->if_sadl->sdl_alen)) 1928 goto out; 1929 memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip)); 1930 memcpy(&myip, ar_tpa(ah), sizeof(myip)); 1931 myip_initialized = 1; 1932 wake: /* Do wakeup every time in case it was missed. */ 1933 wakeup((void *)&myip); 1934 1935 out: 1936 m_put_rcvif(rcvif, &s); 1937 m_freem(m); 1938 } 1939 1940 /* 1941 * Send a RARP request for the ip address of the specified interface. 1942 * The request should be RFC 903-compliant. 1943 */ 1944 static void 1945 revarprequest(struct ifnet *ifp) 1946 { 1947 struct sockaddr sa; 1948 struct mbuf *m; 1949 struct arphdr *ah; 1950 void *tha; 1951 1952 if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) 1953 return; 1954 MCLAIM(m, &arpdomain.dom_mowner); 1955 m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) + 1956 2*ifp->if_addrlen; 1957 m->m_pkthdr.len = m->m_len; 1958 MH_ALIGN(m, m->m_len); 1959 ah = mtod(m, struct arphdr *); 1960 memset(ah, 0, m->m_len); 1961 ah->ar_pro = htons(ETHERTYPE_IP); 1962 ah->ar_hln = ifp->if_addrlen; /* hardware address length */ 1963 ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ 1964 ah->ar_op = htons(ARPOP_REVREQUEST); 1965 1966 memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); 1967 tha = ar_tha(ah); 1968 if (tha == NULL) { 1969 m_free(m); 1970 return; 1971 } 1972 memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln); 1973 1974 sa.sa_family = AF_ARP; 1975 sa.sa_len = 2; 1976 m->m_flags |= M_BCAST; 1977 1978 if_output_lock(ifp, ifp, m, &sa, NULL); 1979 } 1980 1981 /* 1982 * RARP for the ip address of the specified interface, but also 1983 * save the ip address of the server that sent the answer. 1984 * Timeout if no response is received. 1985 */ 1986 int 1987 revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in, 1988 struct in_addr *clnt_in) 1989 { 1990 int result, count = 20; 1991 1992 myip_initialized = 0; 1993 myip_ifp = ifp; 1994 1995 revarp_in_progress = 1; 1996 while (count--) { 1997 revarprequest(ifp); 1998 result = tsleep((void *)&myip, PSOCK, "revarp", hz/2); 1999 if (result != EWOULDBLOCK) 2000 break; 2001 } 2002 revarp_in_progress = 0; 2003 2004 if (!myip_initialized) 2005 return ENETUNREACH; 2006 2007 memcpy(serv_in, &srv_ip, sizeof(*serv_in)); 2008 memcpy(clnt_in, &myip, sizeof(*clnt_in)); 2009 return 0; 2010 } 2011 2012 void 2013 arp_stat_add(int type, uint64_t count) 2014 { 2015 ARP_STATADD(type, count); 2016 } 2017 2018 static int 2019 sysctl_net_inet_arp_stats(SYSCTLFN_ARGS) 2020 { 2021 2022 return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS); 2023 } 2024 2025 static void 2026 sysctl_net_inet_arp_setup(struct sysctllog **clog) 2027 { 2028 const struct sysctlnode *node; 2029 2030 sysctl_createv(clog, 0, NULL, NULL, 2031 CTLFLAG_PERMANENT, 2032 CTLTYPE_NODE, "inet", NULL, 2033 NULL, 0, NULL, 0, 2034 CTL_NET, PF_INET, CTL_EOL); 2035 sysctl_createv(clog, 0, NULL, &node, 2036 CTLFLAG_PERMANENT, 2037 CTLTYPE_NODE, "arp", 2038 SYSCTL_DESCR("Address Resolution Protocol"), 2039 NULL, 0, NULL, 0, 2040 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL); 2041 2042 sysctl_createv(clog, 0, NULL, NULL, 2043 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2044 CTLTYPE_INT, "keep", 2045 SYSCTL_DESCR("Valid ARP entry lifetime in seconds"), 2046 NULL, 0, &arpt_keep, 0, 2047 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2048 2049 sysctl_createv(clog, 0, NULL, NULL, 2050 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2051 CTLTYPE_INT, "down", 2052 SYSCTL_DESCR("Failed ARP entry lifetime in seconds"), 2053 NULL, 0, &arpt_down, 0, 2054 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2055 2056 sysctl_createv(clog, 0, NULL, NULL, 2057 CTLFLAG_PERMANENT, 2058 CTLTYPE_STRUCT, "stats", 2059 SYSCTL_DESCR("ARP statistics"), 2060 sysctl_net_inet_arp_stats, 0, NULL, 0, 2061 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2062 2063 sysctl_createv(clog, 0, NULL, NULL, 2064 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2065 CTLTYPE_INT, "log_movements", 2066 SYSCTL_DESCR("log ARP replies from MACs different than" 2067 " the one in the cache"), 2068 NULL, 0, &log_movements, 0, 2069 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2070 2071 sysctl_createv(clog, 0, NULL, NULL, 2072 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2073 CTLTYPE_INT, "log_permanent_modify", 2074 SYSCTL_DESCR("log ARP replies from MACs different than" 2075 " the one in the permanent arp entry"), 2076 NULL, 0, &log_permanent_modify, 0, 2077 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2078 2079 sysctl_createv(clog, 0, NULL, NULL, 2080 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2081 CTLTYPE_INT, "log_wrong_iface", 2082 SYSCTL_DESCR("log ARP packets arriving on the wrong" 2083 " interface"), 2084 NULL, 0, &log_wrong_iface, 0, 2085 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2086 2087 sysctl_createv(clog, 0, NULL, NULL, 2088 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2089 CTLTYPE_INT, "log_unknown_network", 2090 SYSCTL_DESCR("log ARP packets from non-local network"), 2091 NULL, 0, &log_unknown_network, 0, 2092 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2093 2094 sysctl_createv(clog, 0, NULL, NULL, 2095 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2096 CTLTYPE_INT, "debug", 2097 SYSCTL_DESCR("Enable ARP DAD debug output"), 2098 NULL, 0, &arp_debug, 0, 2099 CTL_NET, PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2100 } 2101 2102 #endif /* INET */ 2103