xref: /netbsd-src/sys/netinet/if_arp.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: if_arp.c,v 1.145 2009/01/11 02:45:54 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Public Access Networks Corporation ("Panix").  It was developed under
9  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)if_ether.c	8.2 (Berkeley) 9/26/94
62  */
63 
64 /*
65  * Ethernet address resolution protocol.
66  * TODO:
67  *	add "inuse/lock" bit (or ref. count) along with valid bit
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.145 2009/01/11 02:45:54 christos Exp $");
72 
73 #include "opt_ddb.h"
74 #include "opt_inet.h"
75 
76 #ifdef INET
77 
78 #include "bridge.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/socket.h>
86 #include <sys/time.h>
87 #include <sys/timetc.h>
88 #include <sys/kernel.h>
89 #include <sys/errno.h>
90 #include <sys/ioctl.h>
91 #include <sys/syslog.h>
92 #include <sys/proc.h>
93 #include <sys/protosw.h>
94 #include <sys/domain.h>
95 #include <sys/sysctl.h>
96 #include <sys/socketvar.h>
97 #include <sys/percpu.h>
98 
99 #include <net/ethertypes.h>
100 #include <net/if.h>
101 #include <net/if_dl.h>
102 #include <net/if_token.h>
103 #include <net/if_types.h>
104 #include <net/if_ether.h>
105 #include <net/route.h>
106 #include <net/net_stats.h>
107 
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/if_inarp.h>
113 
114 #include "arcnet.h"
115 #if NARCNET > 0
116 #include <net/if_arc.h>
117 #endif
118 #include "fddi.h"
119 #if NFDDI > 0
120 #include <net/if_fddi.h>
121 #endif
122 #include "token.h"
123 #include "carp.h"
124 #if NCARP > 0
125 #include <netinet/ip_carp.h>
126 #endif
127 
128 #define SIN(s) ((struct sockaddr_in *)s)
129 #define SRP(s) ((struct sockaddr_inarp *)s)
130 
131 /*
132  * ARP trailer negotiation.  Trailer protocol is not IP specific,
133  * but ARP request/response use IP addresses.
134  */
135 #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL
136 
137 /* timer values */
138 int	arpt_prune = (5*60*1);	/* walk list every 5 minutes */
139 int	arpt_keep = (20*60);	/* once resolved, good for 20 more minutes */
140 int	arpt_down = 20;		/* once declared down, don't send for 20 secs */
141 int	arpt_refresh = (5*60);	/* time left before refreshing */
142 #define	rt_expire rt_rmx.rmx_expire
143 #define	rt_pksent rt_rmx.rmx_pksent
144 
145 static	struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *,
146 	    const struct sockaddr *);
147 static	void arptfree(struct llinfo_arp *);
148 static	void arptimer(void *);
149 static	struct llinfo_arp *arplookup1(struct mbuf *, const struct in_addr *,
150 				      int, int, struct rtentry *);
151 static	struct llinfo_arp *arplookup(struct mbuf *, const struct in_addr *,
152 					  int, int);
153 static	void in_arpinput(struct mbuf *);
154 
155 LIST_HEAD(, llinfo_arp) llinfo_arp;
156 struct	ifqueue arpintrq = {
157 	.ifq_head = NULL,
158 	.ifq_tail = NULL,
159 	.ifq_len = 0,
160 	.ifq_maxlen = 50,
161 	.ifq_drops = 0,
162 };
163 int	arp_inuse, arp_allocated, arp_intimer;
164 int	arp_maxtries = 5;
165 int	useloopback = 1;	/* use loopback interface for local traffic */
166 int	arpinit_done = 0;
167 
168 static percpu_t *arpstat_percpu;
169 
170 #define	ARP_STAT_GETREF()	_NET_STAT_GETREF(arpstat_percpu)
171 #define	ARP_STAT_PUTREF()	_NET_STAT_PUTREF(arpstat_percpu)
172 
173 #define	ARP_STATINC(x)		_NET_STATINC(arpstat_percpu, x)
174 #define	ARP_STATADD(x, v)	_NET_STATADD(arpstat_percpu, x, v)
175 
176 struct	callout arptimer_ch;
177 
178 /* revarp state */
179 struct	in_addr myip, srv_ip;
180 int	myip_initialized = 0;
181 int	revarp_in_progress = 0;
182 struct	ifnet *myip_ifp = NULL;
183 
184 #ifdef DDB
185 static void db_print_sa(const struct sockaddr *);
186 static void db_print_ifa(struct ifaddr *);
187 static void db_print_llinfo(void *);
188 static int db_show_rtentry(struct rtentry *, void *);
189 #endif
190 
191 /*
192  * this should be elsewhere.
193  */
194 
195 static char *
196 lla_snprintf(u_int8_t *, int);
197 
198 static char *
199 lla_snprintf(u_int8_t *adrp, int len)
200 {
201 #define NUMBUFS 3
202 	static char buf[NUMBUFS][16*3];
203 	static int bnum = 0;
204 
205 	int i;
206 	char *p;
207 
208 	p = buf[bnum];
209 
210 	*p++ = hexdigits[(*adrp)>>4];
211 	*p++ = hexdigits[(*adrp++)&0xf];
212 
213 	for (i=1; i<len && i<16; i++) {
214 		*p++ = ':';
215 		*p++ = hexdigits[(*adrp)>>4];
216 		*p++ = hexdigits[(*adrp++)&0xf];
217 	}
218 
219 	*p = 0;
220 	p = buf[bnum];
221 	bnum = (bnum + 1) % NUMBUFS;
222 	return p;
223 }
224 
225 DOMAIN_DEFINE(arpdomain);	/* forward declare and add to link set */
226 
227 const struct protosw arpsw[] = {
228 	{ .pr_type = 0,
229 	  .pr_domain = &arpdomain,
230 	  .pr_protocol = 0,
231 	  .pr_flags = 0,
232 	  .pr_input = 0,
233 	  .pr_output = 0,
234 	  .pr_ctlinput = 0,
235 	  .pr_ctloutput = 0,
236 	  .pr_usrreq =  0,
237 	  .pr_init = arp_init,
238 	  .pr_fasttimo = 0,
239 	  .pr_slowtimo = 0,
240 	  .pr_drain = arp_drain,
241 	}
242 };
243 
244 
245 struct domain arpdomain = {
246 	.dom_family = PF_ARP,
247 	.dom_name = "arp",
248 	.dom_protosw = arpsw,
249 	.dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)],
250 };
251 
252 /*
253  * ARP table locking.
254  *
255  * to prevent lossage vs. the arp_drain routine (which may be called at
256  * any time, including in a device driver context), we do two things:
257  *
258  * 1) manipulation of la->la_hold is done at splnet() (for all of
259  * about two instructions).
260  *
261  * 2) manipulation of the arp table's linked list is done under the
262  * protection of the ARP_LOCK; if arp_drain() or arptimer is called
263  * while the arp table is locked, we punt and try again later.
264  */
265 
266 static int	arp_locked;
267 static inline int arp_lock_try(int);
268 static inline void arp_unlock(void);
269 
270 static inline int
271 arp_lock_try(int recurse)
272 {
273 	int s;
274 
275 	/*
276 	 * Use splvm() -- we're blocking things that would cause
277 	 * mbuf allocation.
278 	 */
279 	s = splvm();
280 	if (!recurse && arp_locked) {
281 		splx(s);
282 		return 0;
283 	}
284 	arp_locked++;
285 	splx(s);
286 	return 1;
287 }
288 
289 static inline void
290 arp_unlock(void)
291 {
292 	int s;
293 
294 	s = splvm();
295 	arp_locked--;
296 	splx(s);
297 }
298 
299 #ifdef DIAGNOSTIC
300 #define	ARP_LOCK(recurse)						\
301 do {									\
302 	if (arp_lock_try(recurse) == 0) {				\
303 		printf("%s:%d: arp already locked\n", __FILE__, __LINE__); \
304 		panic("arp_lock");					\
305 	}								\
306 } while (/*CONSTCOND*/ 0)
307 #define	ARP_LOCK_CHECK()						\
308 do {									\
309 	if (arp_locked == 0) {						\
310 		printf("%s:%d: arp lock not held\n", __FILE__, __LINE__); \
311 		panic("arp lock check");				\
312 	}								\
313 } while (/*CONSTCOND*/ 0)
314 #else
315 #define	ARP_LOCK(x)		(void) arp_lock_try(x)
316 #define	ARP_LOCK_CHECK()	/* nothing */
317 #endif
318 
319 #define	ARP_UNLOCK()		arp_unlock()
320 
321 void
322 arp_init(void)
323 {
324 
325 	arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS);
326 }
327 
328 /*
329  * ARP protocol drain routine.  Called when memory is in short supply.
330  * Called at splvm();  don't acquire softnet_lock as can be called from
331  * hardware interrupt handlers.
332  */
333 void
334 arp_drain(void)
335 {
336 	struct llinfo_arp *la, *nla;
337 	int count = 0;
338 	struct mbuf *mold;
339 
340 	KERNEL_LOCK(1, NULL);
341 
342 	if (arp_lock_try(0) == 0) {
343 		KERNEL_UNLOCK_ONE(NULL);
344 		return;
345 	}
346 
347 	for (la = LIST_FIRST(&llinfo_arp); la != NULL; la = nla) {
348 		nla = LIST_NEXT(la, la_list);
349 
350 		mold = la->la_hold;
351 		la->la_hold = 0;
352 
353 		if (mold) {
354 			m_freem(mold);
355 			count++;
356 		}
357 	}
358 	ARP_UNLOCK();
359 	ARP_STATADD(ARP_STAT_DFRDROPPED, count);
360 	KERNEL_UNLOCK_ONE(NULL);
361 }
362 
363 
364 /*
365  * Timeout routine.  Age arp_tab entries periodically.
366  */
367 /* ARGSUSED */
368 static void
369 arptimer(void *arg)
370 {
371 	struct llinfo_arp *la, *nla;
372 
373 	mutex_enter(softnet_lock);
374 	KERNEL_LOCK(1, NULL);
375 
376 	if (arp_lock_try(0) == 0) {
377 		/* get it later.. */
378 		KERNEL_UNLOCK_ONE(NULL);
379 		mutex_exit(softnet_lock);
380 		return;
381 	}
382 
383 	callout_reset(&arptimer_ch, arpt_prune * hz, arptimer, NULL);
384 	for (la = LIST_FIRST(&llinfo_arp); la != NULL; la = nla) {
385 		struct rtentry *rt = la->la_rt;
386 
387 		nla = LIST_NEXT(la, la_list);
388 		if (rt->rt_expire == 0)
389 			continue;
390 		if ((rt->rt_expire - time_second) < arpt_refresh &&
391 		    rt->rt_pksent > (time_second - arpt_keep)) {
392 			/*
393 			 * If the entry has been used during since last
394 			 * refresh, try to renew it before deleting.
395 			 */
396 			arprequest(rt->rt_ifp,
397 			    &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
398 			    &satocsin(rt_getkey(rt))->sin_addr,
399 			    CLLADDR(rt->rt_ifp->if_sadl));
400 		} else if (rt->rt_expire <= time_second)
401 			arptfree(la); /* timer has expired; clear */
402 	}
403 
404 	ARP_UNLOCK();
405 
406 	KERNEL_UNLOCK_ONE(NULL);
407 	mutex_exit(softnet_lock);
408 }
409 
410 /*
411  * We set the gateway for RTF_CLONING routes to a "prototype"
412  * link-layer sockaddr whose interface type (if_type) and interface
413  * index (if_index) fields are prepared.
414  */
415 static struct sockaddr *
416 arp_setgate(struct rtentry *rt, struct sockaddr *gate,
417     const struct sockaddr *netmask)
418 {
419 	const struct ifnet *ifp = rt->rt_ifp;
420 	uint8_t namelen = strlen(ifp->if_xname);
421 	uint8_t addrlen = ifp->if_addrlen;
422 
423 	/*
424 	 * XXX: If this is a manually added route to interface
425 	 * such as older version of routed or gated might provide,
426 	 * restore cloning bit.
427 	 */
428 	if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL &&
429 	    satocsin(netmask)->sin_addr.s_addr != 0xffffffff)
430 		rt->rt_flags |= RTF_CLONING;
431 	if (rt->rt_flags & RTF_CLONING) {
432 		union {
433 			struct sockaddr sa;
434 			struct sockaddr_storage ss;
435 			struct sockaddr_dl sdl;
436 		} u;
437 		/*
438 		 * Case 1: This route should come from a route to iface.
439 		 */
440 		sockaddr_dl_init(&u.sdl, sizeof(u.ss),
441 		    ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen);
442 		rt_setgate(rt, &u.sa);
443 		gate = rt->rt_gateway;
444 	}
445 	return gate;
446 }
447 
448 /*
449  * Parallel to llc_rtrequest.
450  */
451 void
452 arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
453 {
454 	struct sockaddr *gate = rt->rt_gateway;
455 	struct llinfo_arp *la = (struct llinfo_arp *)rt->rt_llinfo;
456 	size_t allocsize;
457 	struct mbuf *mold;
458 	int s;
459 	struct in_ifaddr *ia;
460 	struct ifaddr *ifa;
461 	struct ifnet *ifp = rt->rt_ifp;
462 	uint8_t namelen = strlen(ifp->if_xname);
463 	uint8_t addrlen = ifp->if_addrlen;
464 
465 	if (!arpinit_done) {
466 		arpinit_done = 1;
467 		/*
468 		 * We generate expiration times from time_second
469 		 * so avoid accidentally creating permanent routes.
470 		 */
471 		if (time_second == 0) {
472 			struct timespec ts;
473 			ts.tv_sec = 1;
474 			ts.tv_nsec = 0;
475 			tc_setclock(&ts);
476 		}
477 		callout_init(&arptimer_ch, CALLOUT_MPSAFE);
478 		callout_reset(&arptimer_ch, hz, arptimer, NULL);
479 	}
480 
481 	if (req == RTM_LLINFO_UPD) {
482 		struct in_addr *in;
483 
484 		if ((ifa = info->rti_ifa) == NULL)
485 			return;
486 
487 		in = &ifatoia(ifa)->ia_addr.sin_addr;
488 
489 		arprequest(ifa->ifa_ifp, in, in,
490 		    CLLADDR(ifa->ifa_ifp->if_sadl));
491 		return;
492 	}
493 
494 	if ((rt->rt_flags & RTF_GATEWAY) != 0) {
495 		if (req != RTM_ADD)
496 			return;
497 
498 		/*
499 		 * linklayers with particular link MTU limitation.
500 		 */
501 		switch(ifp->if_type) {
502 #if NFDDI > 0
503 		case IFT_FDDI:
504 			if (ifp->if_mtu > FDDIIPMTU)
505 				rt->rt_rmx.rmx_mtu = FDDIIPMTU;
506 			break;
507 #endif
508 #if NARC > 0
509 		case IFT_ARCNET:
510 		    {
511 			int arcipifmtu;
512 
513 			if (ifp->if_flags & IFF_LINK0)
514 				arcipifmtu = arc_ipmtu;
515 			else
516 				arcipifmtu = ARCMTU;
517 			if (ifp->if_mtu > arcipifmtu)
518 				rt->rt_rmx.rmx_mtu = arcipifmtu;
519 			break;
520 		    }
521 #endif
522 		}
523 		return;
524 	}
525 
526 	ARP_LOCK(1);		/* we may already be locked here. */
527 
528 	switch (req) {
529 	case RTM_SETGATE:
530 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
531 		break;
532 	case RTM_ADD:
533 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
534 		if (rt->rt_flags & RTF_CLONING) {
535 			/*
536 			 * Give this route an expiration time, even though
537 			 * it's a "permanent" route, so that routes cloned
538 			 * from it do not need their expiration time set.
539 			 */
540 			rt->rt_expire = time_second;
541 			/*
542 			 * linklayers with particular link MTU limitation.
543 			 */
544 			switch (ifp->if_type) {
545 #if NFDDI > 0
546 			case IFT_FDDI:
547 				if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
548 				    (rt->rt_rmx.rmx_mtu > FDDIIPMTU ||
549 				     (rt->rt_rmx.rmx_mtu == 0 &&
550 				      ifp->if_mtu > FDDIIPMTU)))
551 					rt->rt_rmx.rmx_mtu = FDDIIPMTU;
552 				break;
553 #endif
554 #if NARC > 0
555 			case IFT_ARCNET:
556 			    {
557 				int arcipifmtu;
558 				if (ifp->if_flags & IFF_LINK0)
559 					arcipifmtu = arc_ipmtu;
560 				else
561 					arcipifmtu = ARCMTU;
562 
563 				if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
564 				    (rt->rt_rmx.rmx_mtu > arcipifmtu ||
565 				     (rt->rt_rmx.rmx_mtu == 0 &&
566 				      ifp->if_mtu > arcipifmtu)))
567 					rt->rt_rmx.rmx_mtu = arcipifmtu;
568 				break;
569 			    }
570 #endif
571 			}
572 			break;
573 		}
574 		/* Announce a new entry if requested. */
575 		if (rt->rt_flags & RTF_ANNOUNCE) {
576 			arprequest(ifp,
577 			    &satocsin(rt_getkey(rt))->sin_addr,
578 			    &satocsin(rt_getkey(rt))->sin_addr,
579 			    CLLADDR(satocsdl(gate)));
580 		}
581 		/*FALLTHROUGH*/
582 	case RTM_RESOLVE:
583 		if (gate->sa_family != AF_LINK ||
584 		    gate->sa_len < sockaddr_dl_measure(namelen, addrlen)) {
585 			log(LOG_DEBUG, "arp_rtrequest: bad gateway value\n");
586 			break;
587 		}
588 		satosdl(gate)->sdl_type = ifp->if_type;
589 		satosdl(gate)->sdl_index = ifp->if_index;
590 		if (la != NULL)
591 			break; /* This happens on a route change */
592 		/*
593 		 * Case 2:  This route may come from cloning, or a manual route
594 		 * add with a LL address.
595 		 */
596 		switch (satocsdl(gate)->sdl_type) {
597 #if NTOKEN > 0
598 		case IFT_ISO88025:
599 			allocsize = sizeof(*la) + sizeof(struct token_rif);
600 			break;
601 #endif /* NTOKEN > 0 */
602 		default:
603 			allocsize = sizeof(*la);
604 		}
605 		R_Malloc(la, struct llinfo_arp *, allocsize);
606 		rt->rt_llinfo = (void *)la;
607 		if (la == NULL) {
608 			log(LOG_DEBUG, "arp_rtrequest: malloc failed\n");
609 			break;
610 		}
611 		arp_inuse++, arp_allocated++;
612 		memset(la, 0, allocsize);
613 		la->la_rt = rt;
614 		rt->rt_flags |= RTF_LLINFO;
615 		LIST_INSERT_HEAD(&llinfo_arp, la, la_list);
616 
617 		INADDR_TO_IA(satocsin(rt_getkey(rt))->sin_addr, ia);
618 		while (ia && ia->ia_ifp != ifp)
619 			NEXT_IA_WITH_SAME_ADDR(ia);
620 		if (ia) {
621 			/*
622 			 * This test used to be
623 			 *	if (lo0ifp->if_flags & IFF_UP)
624 			 * It allowed local traffic to be forced through
625 			 * the hardware by configuring the loopback down.
626 			 * However, it causes problems during network
627 			 * configuration for boards that can't receive
628 			 * packets they send.  It is now necessary to clear
629 			 * "useloopback" and remove the route to force
630 			 * traffic out to the hardware.
631 			 *
632 			 * In 4.4BSD, the above "if" statement checked
633 			 * rt->rt_ifa against rt_getkey(rt).  It was changed
634 			 * to the current form so that we can provide a
635 			 * better support for multiple IPv4 addresses on a
636 			 * interface.
637 			 */
638 			rt->rt_expire = 0;
639 			(void)sockaddr_dl_setaddr(satosdl(gate), gate->sa_len,
640 			    CLLADDR(ifp->if_sadl), ifp->if_addrlen);
641 			if (useloopback)
642 				ifp = rt->rt_ifp = lo0ifp;
643 			/*
644 			 * make sure to set rt->rt_ifa to the interface
645 			 * address we are using, otherwise we will have trouble
646 			 * with source address selection.
647 			 */
648 			ifa = &ia->ia_ifa;
649 			if (ifa != rt->rt_ifa)
650 				rt_replace_ifa(rt, ifa);
651 		}
652 		break;
653 
654 	case RTM_DELETE:
655 		if (la == NULL)
656 			break;
657 		arp_inuse--;
658 		LIST_REMOVE(la, la_list);
659 		rt->rt_llinfo = NULL;
660 		rt->rt_flags &= ~RTF_LLINFO;
661 
662 		s = splnet();
663 		mold = la->la_hold;
664 		la->la_hold = 0;
665 		splx(s);
666 
667 		if (mold)
668 			m_freem(mold);
669 
670 		Free((void *)la);
671 	}
672 	ARP_UNLOCK();
673 }
674 
675 /*
676  * Broadcast an ARP request. Caller specifies:
677  *	- arp header source ip address
678  *	- arp header target ip address
679  *	- arp header source ethernet address
680  */
681 void
682 arprequest(struct ifnet *ifp,
683     const struct in_addr *sip, const struct in_addr *tip,
684     const u_int8_t *enaddr)
685 {
686 	struct mbuf *m;
687 	struct arphdr *ah;
688 	struct sockaddr sa;
689 	uint64_t *arps;
690 
691 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
692 		return;
693 	MCLAIM(m, &arpdomain.dom_mowner);
694 	switch (ifp->if_type) {
695 	case IFT_IEEE1394:
696 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
697 		    ifp->if_addrlen;
698 		break;
699 	default:
700 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
701 		    2 * ifp->if_addrlen;
702 		break;
703 	}
704 	m->m_pkthdr.len = m->m_len;
705 	MH_ALIGN(m, m->m_len);
706 	ah = mtod(m, struct arphdr *);
707 	memset(ah, 0, m->m_len);
708 	switch (ifp->if_type) {
709 	case IFT_IEEE1394:	/* RFC2734 */
710 		/* fill it now for ar_tpa computation */
711 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
712 		break;
713 	default:
714 		/* ifp->if_output will fill ar_hrd */
715 		break;
716 	}
717 	ah->ar_pro = htons(ETHERTYPE_IP);
718 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
719 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
720 	ah->ar_op = htons(ARPOP_REQUEST);
721 	memcpy(ar_sha(ah), enaddr, ah->ar_hln);
722 	memcpy(ar_spa(ah), sip, ah->ar_pln);
723 	memcpy(ar_tpa(ah), tip, ah->ar_pln);
724 	sa.sa_family = AF_ARP;
725 	sa.sa_len = 2;
726 	m->m_flags |= M_BCAST;
727 	arps = ARP_STAT_GETREF();
728 	arps[ARP_STAT_SNDTOTAL]++;
729 	arps[ARP_STAT_SENDREQUEST]++;
730 	ARP_STAT_PUTREF();
731 	(*ifp->if_output)(ifp, m, &sa, NULL);
732 }
733 
734 /*
735  * Resolve an IP address into an ethernet address.  If success,
736  * desten is filled in.  If there is no entry in arptab,
737  * set one up and broadcast a request for the IP address.
738  * Hold onto this mbuf and resend it once the address
739  * is finally resolved.  A return value of 1 indicates
740  * that desten has been filled in and the packet should be sent
741  * normally; a 0 return indicates that the packet has been
742  * taken over here, either now or for later transmission.
743  */
744 int
745 arpresolve(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m,
746     const struct sockaddr *dst, u_char *desten)
747 {
748 	struct llinfo_arp *la;
749 	const struct sockaddr_dl *sdl;
750 	struct mbuf *mold;
751 	int s;
752 
753 	if ((la = arplookup1(m, &satocsin(dst)->sin_addr, 1, 0, rt)) != NULL)
754 		rt = la->la_rt;
755 
756 	if (la == NULL || rt == NULL) {
757 		ARP_STATINC(ARP_STAT_ALLOCFAIL);
758 		log(LOG_DEBUG,
759 		    "arpresolve: can't allocate llinfo on %s for %s\n",
760 		    ifp->if_xname, in_fmtaddr(satocsin(dst)->sin_addr));
761 		m_freem(m);
762 		return 0;
763 	}
764 	sdl = satocsdl(rt->rt_gateway);
765 	/*
766 	 * Check the address family and length is valid, the address
767 	 * is resolved; otherwise, try to resolve.
768 	 */
769 	if ((rt->rt_expire == 0 || rt->rt_expire > time_second) &&
770 	    sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0) {
771 		memcpy(desten, CLLADDR(sdl),
772 		    min(sdl->sdl_alen, ifp->if_addrlen));
773 		rt->rt_pksent = time_second; /* Time for last pkt sent */
774 		return 1;
775 	}
776 	/*
777 	 * There is an arptab entry, but no ethernet address
778 	 * response yet.  Replace the held mbuf with this
779 	 * latest one.
780 	 */
781 
782 	ARP_STATINC(ARP_STAT_DFRTOTAL);
783 	s = splnet();
784 	mold = la->la_hold;
785 	la->la_hold = m;
786 	splx(s);
787 
788 	if (mold) {
789 		ARP_STATINC(ARP_STAT_DFRDROPPED);
790 		m_freem(mold);
791 	}
792 
793 	/*
794 	 * Re-send the ARP request when appropriate.
795 	 */
796 #ifdef	DIAGNOSTIC
797 	if (rt->rt_expire == 0) {
798 		/* This should never happen. (Should it? -gwr) */
799 		printf("arpresolve: unresolved and rt_expire == 0\n");
800 		/* Set expiration time to now (expired). */
801 		rt->rt_expire = time_second;
802 	}
803 #endif
804 	if (rt->rt_expire) {
805 		rt->rt_flags &= ~RTF_REJECT;
806 		if (la->la_asked == 0 || rt->rt_expire != time_second) {
807 			rt->rt_expire = time_second;
808 			if (la->la_asked++ < arp_maxtries) {
809 				arprequest(ifp,
810 				    &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
811 				    &satocsin(dst)->sin_addr,
812 #if NCARP > 0
813 				    (rt->rt_ifp->if_type == IFT_CARP) ?
814 				    CLLADDR(rt->rt_ifp->if_sadl):
815 #endif
816 				    CLLADDR(ifp->if_sadl));
817 			} else {
818 				rt->rt_flags |= RTF_REJECT;
819 				rt->rt_expire += arpt_down;
820 				la->la_asked = 0;
821 			}
822 		}
823 	}
824 	return 0;
825 }
826 
827 /*
828  * Common length and type checks are done here,
829  * then the protocol-specific routine is called.
830  */
831 void
832 arpintr(void)
833 {
834 	struct mbuf *m;
835 	struct arphdr *ar;
836 	int s;
837 	int arplen;
838 
839 	mutex_enter(softnet_lock);
840 	KERNEL_LOCK(1, NULL);
841 	while (arpintrq.ifq_head) {
842 		s = splnet();
843 		IF_DEQUEUE(&arpintrq, m);
844 		splx(s);
845 		if (m == 0 || (m->m_flags & M_PKTHDR) == 0)
846 			panic("arpintr");
847 
848 		MCLAIM(m, &arpdomain.dom_mowner);
849 		ARP_STATINC(ARP_STAT_RCVTOTAL);
850 
851 		/*
852 		 * First, make sure we have at least struct arphdr.
853 		 */
854 		if (m->m_len < sizeof(struct arphdr) ||
855 		    (ar = mtod(m, struct arphdr *)) == NULL)
856 			goto badlen;
857 
858 		switch (m->m_pkthdr.rcvif->if_type) {
859 		case IFT_IEEE1394:
860 			arplen = sizeof(struct arphdr) +
861 			    ar->ar_hln + 2 * ar->ar_pln;
862 			break;
863 		default:
864 			arplen = sizeof(struct arphdr) +
865 			    2 * ar->ar_hln + 2 * ar->ar_pln;
866 			break;
867 		}
868 
869 		if (/* XXX ntohs(ar->ar_hrd) == ARPHRD_ETHER && */
870 		    m->m_len >= arplen)
871 			switch (ntohs(ar->ar_pro)) {
872 			case ETHERTYPE_IP:
873 			case ETHERTYPE_IPTRAILERS:
874 				in_arpinput(m);
875 				continue;
876 			default:
877 				ARP_STATINC(ARP_STAT_RCVBADPROTO);
878 			}
879 		else {
880 badlen:
881 			ARP_STATINC(ARP_STAT_RCVBADLEN);
882 		}
883 		m_freem(m);
884 	}
885 	KERNEL_UNLOCK_ONE(NULL);
886 	mutex_exit(softnet_lock);
887 }
888 
889 /*
890  * ARP for Internet protocols on 10 Mb/s Ethernet.
891  * Algorithm is that given in RFC 826.
892  * In addition, a sanity check is performed on the sender
893  * protocol address, to catch impersonators.
894  * We no longer handle negotiations for use of trailer protocol:
895  * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent
896  * along with IP replies if we wanted trailers sent to us,
897  * and also sent them in response to IP replies.
898  * This allowed either end to announce the desire to receive
899  * trailer packets.
900  * We no longer reply to requests for ETHERTYPE_TRAIL protocol either,
901  * but formerly didn't normally send requests.
902  */
903 static void
904 in_arpinput(struct mbuf *m)
905 {
906 	struct arphdr *ah;
907 	struct ifnet *ifp = m->m_pkthdr.rcvif;
908 	struct llinfo_arp *la = NULL;
909 	struct rtentry  *rt;
910 	struct in_ifaddr *ia;
911 #if NBRIDGE > 0
912 	struct in_ifaddr *bridge_ia = NULL;
913 #endif
914 #if NCARP > 0
915 	u_int32_t count = 0, index = 0;
916 #endif
917 	struct sockaddr_dl *sdl;
918 	struct sockaddr sa;
919 	struct in_addr isaddr, itaddr, myaddr;
920 	int op;
921 	struct mbuf *mold;
922 	void *tha;
923 	int s;
924 	uint64_t *arps;
925 
926 	if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT)))
927 		goto out;
928 	ah = mtod(m, struct arphdr *);
929 	op = ntohs(ah->ar_op);
930 
931 	/*
932 	 * Fix up ah->ar_hrd if necessary, before using ar_tha() or
933 	 * ar_tpa().
934 	 */
935 	switch (ifp->if_type) {
936 	case IFT_IEEE1394:
937 		if (ntohs(ah->ar_hrd) == ARPHRD_IEEE1394)
938 			;
939 		else {
940 			/* XXX this is to make sure we compute ar_tha right */
941 			/* XXX check ar_hrd more strictly? */
942 			ah->ar_hrd = htons(ARPHRD_IEEE1394);
943 		}
944 		break;
945 	default:
946 		/* XXX check ar_hrd? */
947 		break;
948 	}
949 
950 	memcpy(&isaddr, ar_spa(ah), sizeof (isaddr));
951 	memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr));
952 
953 	if (m->m_flags & (M_BCAST|M_MCAST))
954 		ARP_STATINC(ARP_STAT_RCVMCAST);
955 
956 	/*
957 	 * If the target IP address is zero, ignore the packet.
958 	 * This prevents the code below from tring to answer
959 	 * when we are using IP address zero (booting).
960 	 */
961 	if (in_nullhost(itaddr)) {
962 		ARP_STATINC(ARP_STAT_RCVZEROTPA);
963 		goto out;
964 	}
965 
966 	/*
967 	 * If the source IP address is zero, this is most likely a
968 	 * confused host trying to use IP address zero. (Windoze?)
969 	 * XXX: Should we bother trying to reply to these?
970 	 */
971 	if (in_nullhost(isaddr)) {
972 		ARP_STATINC(ARP_STAT_RCVZEROSPA);
973 		goto out;
974 	}
975 
976 	/*
977 	 * Search for a matching interface address
978 	 * or any address on the interface to use
979 	 * as a dummy address in the rest of this function
980 	 */
981 
982 	INADDR_TO_IA(itaddr, ia);
983 	while (ia != NULL) {
984 #if NCARP > 0
985 		if (ia->ia_ifp->if_type == IFT_CARP &&
986 		    ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) ==
987 		    (IFF_UP|IFF_RUNNING))) {
988 			index++;
989 			if (ia->ia_ifp == m->m_pkthdr.rcvif &&
990 			    carp_iamatch(ia, ar_sha(ah),
991 			    &count, index)) {
992 				break;
993 				}
994 		} else
995 #endif
996 			    if (ia->ia_ifp == m->m_pkthdr.rcvif)
997 				break;
998 #if NBRIDGE > 0
999 		/*
1000 		 * If the interface we received the packet on
1001 		 * is part of a bridge, check to see if we need
1002 		 * to "bridge" the packet to ourselves at this
1003 		 * layer.  Note we still prefer a perfect match,
1004 		 * but allow this weaker match if necessary.
1005 		 */
1006 		if (m->m_pkthdr.rcvif->if_bridge != NULL &&
1007 		    m->m_pkthdr.rcvif->if_bridge == ia->ia_ifp->if_bridge)
1008 			bridge_ia = ia;
1009 #endif /* NBRIDGE > 0 */
1010 
1011 		NEXT_IA_WITH_SAME_ADDR(ia);
1012 	}
1013 
1014 #if NBRIDGE > 0
1015 	if (ia == NULL && bridge_ia != NULL) {
1016 		ia = bridge_ia;
1017 		ifp = bridge_ia->ia_ifp;
1018 	}
1019 #endif
1020 
1021 	if (ia == NULL) {
1022 		INADDR_TO_IA(isaddr, ia);
1023 		while ((ia != NULL) && ia->ia_ifp != m->m_pkthdr.rcvif)
1024 			NEXT_IA_WITH_SAME_ADDR(ia);
1025 
1026 		if (ia == NULL) {
1027 			IFP_TO_IA(ifp, ia);
1028 			if (ia == NULL) {
1029 				ARP_STATINC(ARP_STAT_RCVNOINT);
1030 				goto out;
1031 			}
1032 		}
1033 	}
1034 
1035 	myaddr = ia->ia_addr.sin_addr;
1036 
1037 	/* XXX checks for bridge case? */
1038 	if (!memcmp(ar_sha(ah), CLLADDR(ifp->if_sadl), ifp->if_addrlen)) {
1039 		ARP_STATINC(ARP_STAT_RCVLOCALSHA);
1040 		goto out;	/* it's from me, ignore it. */
1041 	}
1042 
1043 	/* XXX checks for bridge case? */
1044 	if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) {
1045 		ARP_STATINC(ARP_STAT_RCVBCASTSHA);
1046 		log(LOG_ERR,
1047 		    "%s: arp: link address is broadcast for IP address %s!\n",
1048 		    ifp->if_xname, in_fmtaddr(isaddr));
1049 		goto out;
1050 	}
1051 
1052 	if (in_hosteq(isaddr, myaddr)) {
1053 		ARP_STATINC(ARP_STAT_RCVLOCALSPA);
1054 		log(LOG_ERR,
1055 		   "duplicate IP address %s sent from link address %s\n",
1056 		   in_fmtaddr(isaddr), lla_snprintf(ar_sha(ah), ah->ar_hln));
1057 		itaddr = myaddr;
1058 		goto reply;
1059 	}
1060 	la = arplookup(m, &isaddr, in_hosteq(itaddr, myaddr), 0);
1061 	if (la != NULL && (rt = la->la_rt) && (sdl = satosdl(rt->rt_gateway))) {
1062 		if (sdl->sdl_alen &&
1063 		    memcmp(ar_sha(ah), CLLADDR(sdl), sdl->sdl_alen)) {
1064 			if (rt->rt_flags & RTF_STATIC) {
1065 				ARP_STATINC(ARP_STAT_RCVOVERPERM);
1066 				log(LOG_INFO,
1067 				    "%s tried to overwrite permanent arp info"
1068 				    " for %s\n",
1069 				    lla_snprintf(ar_sha(ah), ah->ar_hln),
1070 				    in_fmtaddr(isaddr));
1071 				goto out;
1072 			} else if (rt->rt_ifp != ifp) {
1073 				ARP_STATINC(ARP_STAT_RCVOVERINT);
1074 				log(LOG_INFO,
1075 				    "%s on %s tried to overwrite "
1076 				    "arp info for %s on %s\n",
1077 				    lla_snprintf(ar_sha(ah), ah->ar_hln),
1078 				    ifp->if_xname, in_fmtaddr(isaddr),
1079 				    rt->rt_ifp->if_xname);
1080 				    goto out;
1081 			} else {
1082 				ARP_STATINC(ARP_STAT_RCVOVER);
1083 				log(LOG_INFO,
1084 				    "arp info overwritten for %s by %s\n",
1085 				    in_fmtaddr(isaddr),
1086 				    lla_snprintf(ar_sha(ah), ah->ar_hln));
1087 			}
1088 		}
1089 		/*
1090 		 * sanity check for the address length.
1091 		 * XXX this does not work for protocols with variable address
1092 		 * length. -is
1093 		 */
1094 		if (sdl->sdl_alen &&
1095 		    sdl->sdl_alen != ah->ar_hln) {
1096 			ARP_STATINC(ARP_STAT_RCVLENCHG);
1097 			log(LOG_WARNING,
1098 			    "arp from %s: new addr len %d, was %d\n",
1099 			    in_fmtaddr(isaddr), ah->ar_hln, sdl->sdl_alen);
1100 		}
1101 		if (ifp->if_addrlen != ah->ar_hln) {
1102 			ARP_STATINC(ARP_STAT_RCVBADLEN);
1103 			log(LOG_WARNING,
1104 			    "arp from %s: addr len: new %d, i/f %d (ignored)\n",
1105 			    in_fmtaddr(isaddr), ah->ar_hln,
1106 			    ifp->if_addrlen);
1107 			goto reply;
1108 		}
1109 #if NTOKEN > 0
1110 		/*
1111 		 * XXX uses m_data and assumes the complete answer including
1112 		 * XXX token-ring headers is in the same buf
1113 		 */
1114 		if (ifp->if_type == IFT_ISO88025) {
1115 			struct token_header *trh;
1116 
1117 			trh = (struct token_header *)M_TRHSTART(m);
1118 			if (trh->token_shost[0] & TOKEN_RI_PRESENT) {
1119 				struct token_rif	*rif;
1120 				size_t	riflen;
1121 
1122 				rif = TOKEN_RIF(trh);
1123 				riflen = (ntohs(rif->tr_rcf) &
1124 				    TOKEN_RCF_LEN_MASK) >> 8;
1125 
1126 				if (riflen > 2 &&
1127 				    riflen < sizeof(struct token_rif) &&
1128 				    (riflen & 1) == 0) {
1129 					rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION);
1130 					rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK);
1131 					memcpy(TOKEN_RIF(la), rif, riflen);
1132 				}
1133 			}
1134 		}
1135 #endif /* NTOKEN > 0 */
1136 		(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, ar_sha(ah),
1137 		    ah->ar_hln);
1138 		if (rt->rt_expire)
1139 			rt->rt_expire = time_second + arpt_keep;
1140 		rt->rt_flags &= ~RTF_REJECT;
1141 		la->la_asked = 0;
1142 
1143 		s = splnet();
1144 		mold = la->la_hold;
1145 		la->la_hold = 0;
1146 		splx(s);
1147 
1148 		if (mold) {
1149 			ARP_STATINC(ARP_STAT_DFRSENT);
1150 			(*ifp->if_output)(ifp, mold, rt_getkey(rt), rt);
1151 		}
1152 	}
1153 reply:
1154 	if (op != ARPOP_REQUEST) {
1155 		if (op == ARPOP_REPLY)
1156 			ARP_STATINC(ARP_STAT_RCVREPLY);
1157 	out:
1158 		m_freem(m);
1159 		return;
1160 	}
1161 	ARP_STATINC(ARP_STAT_RCVREQUEST);
1162 	if (in_hosteq(itaddr, myaddr)) {
1163 		/* I am the target */
1164 		tha = ar_tha(ah);
1165 		if (tha)
1166 			memcpy(tha, ar_sha(ah), ah->ar_hln);
1167 		memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1168 	} else {
1169 		la = arplookup(m, &itaddr, 0, SIN_PROXY);
1170 		if (la == NULL)
1171 			goto out;
1172 		rt = la->la_rt;
1173 		if (rt->rt_ifp->if_type == IFT_CARP &&
1174 		    m->m_pkthdr.rcvif->if_type != IFT_CARP)
1175 			goto out;
1176 		tha = ar_tha(ah);
1177 		if (tha)
1178 			memcpy(tha, ar_sha(ah), ah->ar_hln);
1179 		sdl = satosdl(rt->rt_gateway);
1180 		memcpy(ar_sha(ah), CLLADDR(sdl), ah->ar_hln);
1181 	}
1182 
1183 	memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln);
1184 	memcpy(ar_spa(ah), &itaddr, ah->ar_pln);
1185 	ah->ar_op = htons(ARPOP_REPLY);
1186 	ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */
1187 	switch (ifp->if_type) {
1188 	case IFT_IEEE1394:
1189 		/*
1190 		 * ieee1394 arp reply is broadcast
1191 		 */
1192 		m->m_flags &= ~M_MCAST;
1193 		m->m_flags |= M_BCAST;
1194 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln;
1195 		break;
1196 
1197 	default:
1198 		m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */
1199 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln);
1200 		break;
1201 	}
1202 	m->m_pkthdr.len = m->m_len;
1203 	sa.sa_family = AF_ARP;
1204 	sa.sa_len = 2;
1205 	arps = ARP_STAT_GETREF();
1206 	arps[ARP_STAT_SNDTOTAL]++;
1207 	arps[ARP_STAT_SNDREPLY]++;
1208 	ARP_STAT_PUTREF();
1209 	(*ifp->if_output)(ifp, m, &sa, (struct rtentry *)0);
1210 	return;
1211 }
1212 
1213 /*
1214  * Free an arp entry.
1215  */
1216 static void arptfree(struct llinfo_arp *la)
1217 {
1218 	struct rtentry *rt = la->la_rt;
1219 	struct sockaddr_dl *sdl;
1220 
1221 	ARP_LOCK_CHECK();
1222 
1223 	if (rt == NULL)
1224 		panic("arptfree");
1225 	if (rt->rt_refcnt > 0 && (sdl = satosdl(rt->rt_gateway)) &&
1226 	    sdl->sdl_family == AF_LINK) {
1227 		sdl->sdl_alen = 0;
1228 		la->la_asked = 0;
1229 		rt->rt_flags &= ~RTF_REJECT;
1230 		return;
1231 	}
1232 	rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
1233 }
1234 
1235 static struct llinfo_arp *
1236 arplookup(struct mbuf *m, const struct in_addr *addr, int create, int proxy)
1237 {
1238 	return arplookup1(m, addr, create, proxy, NULL);
1239 }
1240 
1241 /*
1242  * Lookup or enter a new address in arptab.
1243  */
1244 static struct llinfo_arp *
1245 arplookup1(struct mbuf *m, const struct in_addr *addr, int create, int proxy,
1246     struct rtentry *rt0)
1247 {
1248 	struct arphdr *ah;
1249 	struct ifnet *ifp = m->m_pkthdr.rcvif;
1250 	struct rtentry *rt;
1251 	struct sockaddr_inarp sin;
1252 	const char *why = NULL;
1253 
1254 	ah = mtod(m, struct arphdr *);
1255 	if (rt0 == NULL) {
1256 		memset(&sin, 0, sizeof(sin));
1257 		sin.sin_len = sizeof(sin);
1258 		sin.sin_family = AF_INET;
1259 		sin.sin_addr = *addr;
1260 		sin.sin_other = proxy ? SIN_PROXY : 0;
1261 		rt = rtalloc1(sintosa(&sin), create);
1262 		if (rt == NULL)
1263 			return NULL;
1264 		rt->rt_refcnt--;
1265 	} else
1266 		rt = rt0;
1267 
1268 #define	IS_LLINFO(__rt)							  \
1269 	(((__rt)->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) == RTF_LLINFO && \
1270 	 (__rt)->rt_gateway->sa_family == AF_LINK)
1271 
1272 
1273 	if (IS_LLINFO(rt))
1274 		return (struct llinfo_arp *)rt->rt_llinfo;
1275 
1276 	if (create) {
1277 		if (rt->rt_flags & RTF_GATEWAY)
1278 			why = "host is not on local network";
1279 		else if ((rt->rt_flags & RTF_LLINFO) == 0) {
1280 			ARP_STATINC(ARP_STAT_ALLOCFAIL);
1281 			why = "could not allocate llinfo";
1282 		} else
1283 			why = "gateway route is not ours";
1284 		log(LOG_DEBUG, "arplookup: unable to enter address"
1285 		    " for %s@%s on %s (%s)\n",
1286 		    in_fmtaddr(*addr), lla_snprintf(ar_sha(ah), ah->ar_hln),
1287 		    (ifp) ? ifp->if_xname : "null", why);
1288 		if (rt->rt_refcnt <= 0 && (rt->rt_flags & RTF_CLONED) != 0) {
1289 			rtrequest(RTM_DELETE, rt_getkey(rt),
1290 		    	    rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
1291 		}
1292 	}
1293 	return NULL;
1294 }
1295 
1296 int
1297 arpioctl(u_long cmd, void *data)
1298 {
1299 
1300 	return EOPNOTSUPP;
1301 }
1302 
1303 void
1304 arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
1305 {
1306 	struct in_addr *ip;
1307 
1308 	/*
1309 	 * Warn the user if another station has this IP address,
1310 	 * but only if the interface IP address is not zero.
1311 	 */
1312 	ip = &IA_SIN(ifa)->sin_addr;
1313 	if (!in_nullhost(*ip))
1314 		arprequest(ifp, ip, ip, CLLADDR(ifp->if_sadl));
1315 
1316 	ifa->ifa_rtrequest = arp_rtrequest;
1317 	ifa->ifa_flags |= RTF_CLONING;
1318 }
1319 
1320 /*
1321  * Called from 10 Mb/s Ethernet interrupt handlers
1322  * when ether packet type ETHERTYPE_REVARP
1323  * is received.  Common length and type checks are done here,
1324  * then the protocol-specific routine is called.
1325  */
1326 void
1327 revarpinput(struct mbuf *m)
1328 {
1329 	struct arphdr *ar;
1330 
1331 	if (m->m_len < sizeof(struct arphdr))
1332 		goto out;
1333 	ar = mtod(m, struct arphdr *);
1334 #if 0 /* XXX I don't think we need this... and it will prevent other LL */
1335 	if (ntohs(ar->ar_hrd) != ARPHRD_ETHER)
1336 		goto out;
1337 #endif
1338 	if (m->m_len < sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln))
1339 		goto out;
1340 	switch (ntohs(ar->ar_pro)) {
1341 	case ETHERTYPE_IP:
1342 	case ETHERTYPE_IPTRAILERS:
1343 		in_revarpinput(m);
1344 		return;
1345 
1346 	default:
1347 		break;
1348 	}
1349 out:
1350 	m_freem(m);
1351 }
1352 
1353 /*
1354  * RARP for Internet protocols on 10 Mb/s Ethernet.
1355  * Algorithm is that given in RFC 903.
1356  * We are only using for bootstrap purposes to get an ip address for one of
1357  * our interfaces.  Thus we support no user-interface.
1358  *
1359  * Since the contents of the RARP reply are specific to the interface that
1360  * sent the request, this code must ensure that they are properly associated.
1361  *
1362  * Note: also supports ARP via RARP packets, per the RFC.
1363  */
1364 void
1365 in_revarpinput(struct mbuf *m)
1366 {
1367 	struct ifnet *ifp;
1368 	struct arphdr *ah;
1369 	void *tha;
1370 	int op;
1371 
1372 	ah = mtod(m, struct arphdr *);
1373 	op = ntohs(ah->ar_op);
1374 
1375 	switch (m->m_pkthdr.rcvif->if_type) {
1376 	case IFT_IEEE1394:
1377 		/* ARP without target hardware address is not supported */
1378 		goto out;
1379 	default:
1380 		break;
1381 	}
1382 
1383 	switch (op) {
1384 	case ARPOP_REQUEST:
1385 	case ARPOP_REPLY:	/* per RFC */
1386 		in_arpinput(m);
1387 		return;
1388 	case ARPOP_REVREPLY:
1389 		break;
1390 	case ARPOP_REVREQUEST:	/* handled by rarpd(8) */
1391 	default:
1392 		goto out;
1393 	}
1394 	if (!revarp_in_progress)
1395 		goto out;
1396 	ifp = m->m_pkthdr.rcvif;
1397 	if (ifp != myip_ifp) /* !same interface */
1398 		goto out;
1399 	if (myip_initialized)
1400 		goto wake;
1401 	tha = ar_tha(ah);
1402 	KASSERT(tha);
1403 	if (memcmp(tha, CLLADDR(ifp->if_sadl), ifp->if_sadl->sdl_alen))
1404 		goto out;
1405 	memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip));
1406 	memcpy(&myip, ar_tpa(ah), sizeof(myip));
1407 	myip_initialized = 1;
1408 wake:	/* Do wakeup every time in case it was missed. */
1409 	wakeup((void *)&myip);
1410 
1411 out:
1412 	m_freem(m);
1413 }
1414 
1415 /*
1416  * Send a RARP request for the ip address of the specified interface.
1417  * The request should be RFC 903-compliant.
1418  */
1419 void
1420 revarprequest(struct ifnet *ifp)
1421 {
1422 	struct sockaddr sa;
1423 	struct mbuf *m;
1424 	struct arphdr *ah;
1425 	void *tha;
1426 
1427 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
1428 		return;
1429 	MCLAIM(m, &arpdomain.dom_mowner);
1430 	m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) +
1431 	    2*ifp->if_addrlen;
1432 	m->m_pkthdr.len = m->m_len;
1433 	MH_ALIGN(m, m->m_len);
1434 	ah = mtod(m, struct arphdr *);
1435 	memset(ah, 0, m->m_len);
1436 	ah->ar_pro = htons(ETHERTYPE_IP);
1437 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
1438 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
1439 	ah->ar_op = htons(ARPOP_REVREQUEST);
1440 
1441 	memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1442 	tha = ar_tha(ah);
1443 	KASSERT(tha);
1444 	memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln);
1445 
1446 	sa.sa_family = AF_ARP;
1447 	sa.sa_len = 2;
1448 	m->m_flags |= M_BCAST;
1449 	(*ifp->if_output)(ifp, m, &sa, NULL);
1450 
1451 }
1452 
1453 /*
1454  * RARP for the ip address of the specified interface, but also
1455  * save the ip address of the server that sent the answer.
1456  * Timeout if no response is received.
1457  */
1458 int
1459 revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in,
1460     struct in_addr *clnt_in)
1461 {
1462 	int result, count = 20;
1463 
1464 	myip_initialized = 0;
1465 	myip_ifp = ifp;
1466 
1467 	revarp_in_progress = 1;
1468 	while (count--) {
1469 		revarprequest(ifp);
1470 		result = tsleep((void *)&myip, PSOCK, "revarp", hz/2);
1471 		if (result != EWOULDBLOCK)
1472 			break;
1473 	}
1474 	revarp_in_progress = 0;
1475 
1476 	if (!myip_initialized)
1477 		return ENETUNREACH;
1478 
1479 	memcpy(serv_in, &srv_ip, sizeof(*serv_in));
1480 	memcpy(clnt_in, &myip, sizeof(*clnt_in));
1481 	return 0;
1482 }
1483 
1484 
1485 
1486 #ifdef DDB
1487 
1488 #include <machine/db_machdep.h>
1489 #include <ddb/db_interface.h>
1490 #include <ddb/db_output.h>
1491 
1492 static void
1493 db_print_sa(const struct sockaddr *sa)
1494 {
1495 	int len;
1496 	const u_char *p;
1497 
1498 	if (sa == NULL) {
1499 		db_printf("[NULL]");
1500 		return;
1501 	}
1502 
1503 	p = (const u_char *)sa;
1504 	len = sa->sa_len;
1505 	db_printf("[");
1506 	while (len > 0) {
1507 		db_printf("%d", *p);
1508 		p++; len--;
1509 		if (len) db_printf(",");
1510 	}
1511 	db_printf("]\n");
1512 }
1513 
1514 static void
1515 db_print_ifa(struct ifaddr *ifa)
1516 {
1517 	if (ifa == NULL)
1518 		return;
1519 	db_printf("  ifa_addr=");
1520 	db_print_sa(ifa->ifa_addr);
1521 	db_printf("  ifa_dsta=");
1522 	db_print_sa(ifa->ifa_dstaddr);
1523 	db_printf("  ifa_mask=");
1524 	db_print_sa(ifa->ifa_netmask);
1525 	db_printf("  flags=0x%x,refcnt=%d,metric=%d\n",
1526 			  ifa->ifa_flags,
1527 			  ifa->ifa_refcnt,
1528 			  ifa->ifa_metric);
1529 }
1530 
1531 static void
1532 db_print_llinfo(void *li)
1533 {
1534 	struct llinfo_arp *la;
1535 
1536 	if (li == NULL)
1537 		return;
1538 	la = (struct llinfo_arp *)li;
1539 	db_printf("  la_rt=%p la_hold=%p, la_asked=0x%lx\n",
1540 			  la->la_rt, la->la_hold, la->la_asked);
1541 }
1542 
1543 /*
1544  * Function to pass to rt_walktree().
1545  * Return non-zero error to abort walk.
1546  */
1547 static int
1548 db_show_rtentry(struct rtentry *rt, void *w)
1549 {
1550 	db_printf("rtentry=%p", rt);
1551 
1552 	db_printf(" flags=0x%x refcnt=%d use=%ld expire=%lld\n",
1553 			  rt->rt_flags, rt->rt_refcnt,
1554 			  rt->rt_use, (long long)rt->rt_expire);
1555 
1556 	db_printf(" key="); db_print_sa(rt_getkey(rt));
1557 	db_printf(" mask="); db_print_sa(rt_mask(rt));
1558 	db_printf(" gw="); db_print_sa(rt->rt_gateway);
1559 
1560 	db_printf(" ifp=%p ", rt->rt_ifp);
1561 	if (rt->rt_ifp)
1562 		db_printf("(%s)", rt->rt_ifp->if_xname);
1563 	else
1564 		db_printf("(NULL)");
1565 
1566 	db_printf(" ifa=%p\n", rt->rt_ifa);
1567 	db_print_ifa(rt->rt_ifa);
1568 
1569 	db_printf(" gwroute=%p llinfo=%p\n",
1570 			  rt->rt_gwroute, rt->rt_llinfo);
1571 	db_print_llinfo(rt->rt_llinfo);
1572 
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Function to print all the route trees.
1578  * Use this from ddb:  "show arptab"
1579  */
1580 void
1581 db_show_arptab(db_expr_t addr, bool have_addr,
1582     db_expr_t count, const char *modif)
1583 {
1584 	rt_walktree(AF_INET, db_show_rtentry, NULL);
1585 }
1586 #endif
1587 
1588 static int
1589 sysctl_net_inet_arp_stats(SYSCTLFN_ARGS)
1590 {
1591 
1592 	return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS);
1593 }
1594 
1595 SYSCTL_SETUP(sysctl_net_inet_arp_setup, "sysctl net.inet.arp subtree setup")
1596 {
1597 	const struct sysctlnode *node;
1598 
1599 	sysctl_createv(clog, 0, NULL, NULL,
1600 			CTLFLAG_PERMANENT,
1601 			CTLTYPE_NODE, "net", NULL,
1602 			NULL, 0, NULL, 0,
1603 			CTL_NET, CTL_EOL);
1604 	sysctl_createv(clog, 0, NULL, NULL,
1605 			CTLFLAG_PERMANENT,
1606 			CTLTYPE_NODE, "inet", NULL,
1607 			NULL, 0, NULL, 0,
1608 			CTL_NET, PF_INET, CTL_EOL);
1609 	sysctl_createv(clog, 0, NULL, &node,
1610 			CTLFLAG_PERMANENT,
1611 			CTLTYPE_NODE, "arp",
1612 			SYSCTL_DESCR("Address Resolution Protocol"),
1613 			NULL, 0, NULL, 0,
1614 			CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
1615 
1616 	sysctl_createv(clog, 0, NULL, NULL,
1617 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1618 			CTLTYPE_INT, "prune",
1619 			SYSCTL_DESCR("ARP cache pruning interval"),
1620 			NULL, 0, &arpt_prune, 0,
1621 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
1622 
1623 	sysctl_createv(clog, 0, NULL, NULL,
1624 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1625 			CTLTYPE_INT, "keep",
1626 			SYSCTL_DESCR("Valid ARP entry lifetime"),
1627 			NULL, 0, &arpt_keep, 0,
1628 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
1629 
1630 	sysctl_createv(clog, 0, NULL, NULL,
1631 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1632 			CTLTYPE_INT, "down",
1633 			SYSCTL_DESCR("Failed ARP entry lifetime"),
1634 			NULL, 0, &arpt_down, 0,
1635 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
1636 
1637 	sysctl_createv(clog, 0, NULL, NULL,
1638 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1639 			CTLTYPE_INT, "refresh",
1640 			SYSCTL_DESCR("ARP entry refresh interval"),
1641 			NULL, 0, &arpt_refresh, 0,
1642 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
1643 
1644 	sysctl_createv(clog, 0, NULL, NULL,
1645 			CTLFLAG_PERMANENT,
1646 			CTLTYPE_STRUCT, "stats",
1647 			SYSCTL_DESCR("ARP statistics"),
1648 			sysctl_net_inet_arp_stats, 0, NULL, 0,
1649 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
1650 }
1651 
1652 #endif /* INET */
1653