1 /* $NetBSD: if_arp.c,v 1.294 2020/03/09 21:20:55 roy Exp $ */ 2 3 /* 4 * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Public Access Networks Corporation ("Panix"). It was developed under 9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)if_ether.c 8.2 (Berkeley) 9/26/94 62 */ 63 64 /* 65 * Ethernet address resolution protocol. 66 * TODO: 67 * add "inuse/lock" bit (or ref. count) along with valid bit 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.294 2020/03/09 21:20:55 roy Exp $"); 72 73 #ifdef _KERNEL_OPT 74 #include "opt_ddb.h" 75 #include "opt_inet.h" 76 #include "opt_net_mpsafe.h" 77 #endif 78 79 #ifdef INET 80 81 #include "arp.h" 82 #include "bridge.h" 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/callout.h> 87 #include <sys/kmem.h> 88 #include <sys/mbuf.h> 89 #include <sys/socket.h> 90 #include <sys/time.h> 91 #include <sys/timetc.h> 92 #include <sys/kernel.h> 93 #include <sys/errno.h> 94 #include <sys/ioctl.h> 95 #include <sys/syslog.h> 96 #include <sys/proc.h> 97 #include <sys/protosw.h> 98 #include <sys/domain.h> 99 #include <sys/sysctl.h> 100 #include <sys/socketvar.h> 101 #include <sys/percpu.h> 102 #include <sys/cprng.h> 103 #include <sys/kmem.h> 104 105 #include <net/ethertypes.h> 106 #include <net/if.h> 107 #include <net/if_dl.h> 108 #include <net/if_types.h> 109 #include <net/if_ether.h> 110 #include <net/if_llatbl.h> 111 #include <net/route.h> 112 #include <net/net_stats.h> 113 114 #include <netinet/in.h> 115 #include <netinet/in_systm.h> 116 #include <netinet/in_var.h> 117 #include <netinet/ip.h> 118 #include <netinet/if_inarp.h> 119 120 #include "arcnet.h" 121 #if NARCNET > 0 122 #include <net/if_arc.h> 123 #endif 124 #include "carp.h" 125 #if NCARP > 0 126 #include <netinet/ip_carp.h> 127 #endif 128 129 /* 130 * ARP trailer negotiation. Trailer protocol is not IP specific, 131 * but ARP request/response use IP addresses. 132 */ 133 #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL 134 135 /* timer values */ 136 static int arpt_keep = (20*60); /* once resolved, good for 20 more minutes */ 137 static int arpt_down = 20; /* once declared down, don't send for 20 secs */ 138 static int arp_maxhold = 1; /* number of packets to hold per ARP entry */ 139 #define rt_expire rt_rmx.rmx_expire 140 #define rt_pksent rt_rmx.rmx_pksent 141 142 int ip_dad_count = PROBE_NUM; 143 #ifdef ARP_DEBUG 144 int arp_debug = 1; 145 #else 146 int arp_debug = 0; 147 #endif 148 149 static void arp_init(void); 150 static void arp_dad_init(void); 151 152 static void arprequest(struct ifnet *, 153 const struct in_addr *, const struct in_addr *, 154 const uint8_t *); 155 static void arpannounce1(struct ifaddr *); 156 static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *, 157 const struct sockaddr *); 158 static void arptimer(void *); 159 static void arp_settimer(struct llentry *, int); 160 static struct llentry *arplookup(struct ifnet *, 161 const struct in_addr *, const struct sockaddr *, int); 162 static struct llentry *arpcreate(struct ifnet *, 163 const struct in_addr *, const struct sockaddr *, int); 164 static void in_arpinput(struct mbuf *); 165 static void in_revarpinput(struct mbuf *); 166 static void revarprequest(struct ifnet *); 167 168 static void arp_drainstub(void); 169 170 struct dadq; 171 static void arp_dad_timer(struct dadq *); 172 static void arp_dad_start(struct ifaddr *); 173 static void arp_dad_stop(struct ifaddr *); 174 static void arp_dad_duplicated(struct ifaddr *, const struct sockaddr_dl *); 175 176 static void arp_init_llentry(struct ifnet *, struct llentry *); 177 178 struct ifqueue arpintrq = { 179 .ifq_head = NULL, 180 .ifq_tail = NULL, 181 .ifq_len = 0, 182 .ifq_maxlen = 50, 183 .ifq_drops = 0, 184 }; 185 static int arp_maxtries = 5; 186 static int useloopback = 1; /* use loopback interface for local traffic */ 187 188 static percpu_t *arpstat_percpu; 189 190 #define ARP_STAT_GETREF() _NET_STAT_GETREF(arpstat_percpu) 191 #define ARP_STAT_PUTREF() _NET_STAT_PUTREF(arpstat_percpu) 192 193 #define ARP_STATINC(x) _NET_STATINC(arpstat_percpu, x) 194 #define ARP_STATADD(x, v) _NET_STATADD(arpstat_percpu, x, v) 195 196 /* revarp state */ 197 static struct in_addr myip, srv_ip; 198 static int myip_initialized = 0; 199 static int revarp_in_progress = 0; 200 static struct ifnet *myip_ifp = NULL; 201 202 static int arp_drainwanted; 203 204 static int log_movements = 0; 205 static int log_permanent_modify = 1; 206 static int log_wrong_iface = 1; 207 208 DOMAIN_DEFINE(arpdomain); /* forward declare and add to link set */ 209 210 static void 211 arp_fasttimo(void) 212 { 213 if (arp_drainwanted) { 214 arp_drain(); 215 arp_drainwanted = 0; 216 } 217 } 218 219 static const struct protosw arpsw[] = { 220 { 221 .pr_type = 0, 222 .pr_domain = &arpdomain, 223 .pr_protocol = 0, 224 .pr_flags = 0, 225 .pr_input = 0, 226 .pr_ctlinput = 0, 227 .pr_ctloutput = 0, 228 .pr_usrreqs = 0, 229 .pr_init = arp_init, 230 .pr_fasttimo = arp_fasttimo, 231 .pr_slowtimo = 0, 232 .pr_drain = arp_drainstub, 233 } 234 }; 235 236 struct domain arpdomain = { 237 .dom_family = PF_ARP, 238 .dom_name = "arp", 239 .dom_protosw = arpsw, 240 .dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)], 241 #ifdef MBUFTRACE 242 .dom_mowner = MOWNER_INIT("internet", "arp"), 243 #endif 244 }; 245 246 static void sysctl_net_inet_arp_setup(struct sysctllog **); 247 248 void 249 arp_init(void) 250 { 251 252 sysctl_net_inet_arp_setup(NULL); 253 arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS); 254 IFQ_LOCK_INIT(&arpintrq); 255 256 #ifdef MBUFTRACE 257 MOWNER_ATTACH(&arpdomain.dom_mowner); 258 #endif 259 260 arp_dad_init(); 261 } 262 263 static void 264 arp_drainstub(void) 265 { 266 arp_drainwanted = 1; 267 } 268 269 /* 270 * ARP protocol drain routine. Called when memory is in short supply. 271 * Called at splvm(); don't acquire softnet_lock as can be called from 272 * hardware interrupt handlers. 273 */ 274 void 275 arp_drain(void) 276 { 277 278 lltable_drain(AF_INET); 279 } 280 281 static void 282 arptimer(void *arg) 283 { 284 struct llentry *lle = arg; 285 struct ifnet *ifp; 286 287 KASSERT((lle->la_flags & LLE_STATIC) == 0); 288 289 LLE_WLOCK(lle); 290 291 /* 292 * This shortcut is required to avoid trying to touch ifp that may be 293 * being destroyed. 294 */ 295 if ((lle->la_flags & LLE_LINKED) == 0) { 296 LLE_FREE_LOCKED(lle); 297 return; 298 } 299 300 ifp = lle->lle_tbl->llt_ifp; 301 302 /* XXX: LOR avoidance. We still have ref on lle. */ 303 LLE_WUNLOCK(lle); 304 305 IF_AFDATA_LOCK(ifp); 306 LLE_WLOCK(lle); 307 308 /* Guard against race with other llentry_free(). */ 309 if (lle->la_flags & LLE_LINKED) { 310 int rt_cmd; 311 struct in_addr *in; 312 struct sockaddr_in dsin, ssin; 313 struct sockaddr *sa; 314 const char *lladdr; 315 size_t pkts_dropped; 316 317 in = &lle->r_l3addr.addr4; 318 sockaddr_in_init(&dsin, in, 0); 319 if (lle->la_flags & LLE_VALID) { 320 rt_cmd = RTM_DELETE; 321 sa = NULL; 322 lladdr = (const char *)&lle->ll_addr; 323 } else { 324 if (lle->la_hold != NULL) { 325 struct mbuf *m = lle->la_hold; 326 const struct ip *ip = mtod(m, const struct ip *); 327 328 sockaddr_in_init(&ssin, &ip->ip_src, 0); 329 sa = sintosa(&ssin); 330 } else 331 sa = NULL; 332 rt_cmd = RTM_MISS; 333 lladdr = NULL; 334 335 } 336 rt_clonedmsg(rt_cmd, sa, sintosa(&dsin), lladdr, ifp); 337 338 LLE_REMREF(lle); 339 pkts_dropped = llentry_free(lle); 340 ARP_STATADD(ARP_STAT_DFRDROPPED, pkts_dropped); 341 ARP_STATADD(ARP_STAT_DFRTOTAL, pkts_dropped); 342 } else { 343 LLE_FREE_LOCKED(lle); 344 } 345 346 IF_AFDATA_UNLOCK(ifp); 347 } 348 349 static void 350 arp_settimer(struct llentry *la, int sec) 351 { 352 353 LLE_WLOCK_ASSERT(la); 354 KASSERT((la->la_flags & LLE_STATIC) == 0); 355 356 /* 357 * We have to take care of a reference leak which occurs if 358 * callout_reset overwrites a pending callout schedule. Unfortunately 359 * we don't have a mean to know the overwrite, so we need to know it 360 * using callout_stop. We need to call callout_pending first to exclude 361 * the case that the callout has never been scheduled. 362 */ 363 if (callout_pending(&la->la_timer)) { 364 bool expired = callout_stop(&la->la_timer); 365 if (!expired) 366 /* A pending callout schedule is canceled. */ 367 LLE_REMREF(la); 368 } 369 LLE_ADDREF(la); 370 callout_reset(&la->la_timer, hz * sec, arptimer, la); 371 } 372 373 /* 374 * We set the gateway for RTF_CLONING routes to a "prototype" 375 * link-layer sockaddr whose interface type (if_type) and interface 376 * index (if_index) fields are prepared. 377 */ 378 static struct sockaddr * 379 arp_setgate(struct rtentry *rt, struct sockaddr *gate, 380 const struct sockaddr *netmask) 381 { 382 const struct ifnet *ifp = rt->rt_ifp; 383 uint8_t namelen = strlen(ifp->if_xname); 384 uint8_t addrlen = ifp->if_addrlen; 385 386 /* 387 * XXX: If this is a manually added route to interface 388 * such as older version of routed or gated might provide, 389 * restore cloning bit. 390 */ 391 if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL && 392 satocsin(netmask)->sin_addr.s_addr != 0xffffffff) 393 rt->rt_flags |= RTF_CONNECTED; 394 395 if ((rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL))) { 396 union { 397 struct sockaddr sa; 398 struct sockaddr_storage ss; 399 struct sockaddr_dl sdl; 400 } u; 401 /* 402 * Case 1: This route should come from a route to iface. 403 */ 404 sockaddr_dl_init(&u.sdl, sizeof(u.ss), 405 ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen); 406 rt_setgate(rt, &u.sa); 407 gate = rt->rt_gateway; 408 } 409 return gate; 410 } 411 412 static void 413 arp_init_llentry(struct ifnet *ifp, struct llentry *lle) 414 { 415 416 switch (ifp->if_type) { 417 default: 418 /* Nothing. */ 419 break; 420 } 421 } 422 423 /* 424 * Parallel to llc_rtrequest. 425 */ 426 void 427 arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 428 { 429 struct sockaddr *gate = rt->rt_gateway; 430 struct in_ifaddr *ia; 431 struct ifaddr *ifa; 432 struct ifnet *ifp = rt->rt_ifp; 433 int bound; 434 int s; 435 436 if (req == RTM_LLINFO_UPD) { 437 if ((ifa = info->rti_ifa) != NULL) 438 arpannounce1(ifa); 439 return; 440 } 441 442 if ((rt->rt_flags & RTF_GATEWAY) != 0) { 443 if (req != RTM_ADD) 444 return; 445 446 /* 447 * linklayers with particular link MTU limitation. 448 */ 449 switch(ifp->if_type) { 450 #if NARCNET > 0 451 case IFT_ARCNET: 452 { 453 int arcipifmtu; 454 455 if (ifp->if_flags & IFF_LINK0) 456 arcipifmtu = arc_ipmtu; 457 else 458 arcipifmtu = ARCMTU; 459 if (ifp->if_mtu > arcipifmtu) 460 rt->rt_rmx.rmx_mtu = arcipifmtu; 461 break; 462 } 463 #endif 464 } 465 return; 466 } 467 468 switch (req) { 469 case RTM_SETGATE: 470 gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); 471 break; 472 case RTM_ADD: 473 gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]); 474 if (gate == NULL) { 475 log(LOG_ERR, "%s: arp_setgate failed\n", __func__); 476 break; 477 } 478 if ((rt->rt_flags & RTF_CONNECTED) || 479 (rt->rt_flags & RTF_LOCAL)) { 480 /* 481 * Give this route an expiration time, even though 482 * it's a "permanent" route, so that routes cloned 483 * from it do not need their expiration time set. 484 */ 485 KASSERT(time_uptime != 0); 486 rt->rt_expire = time_uptime; 487 /* 488 * linklayers with particular link MTU limitation. 489 */ 490 switch (ifp->if_type) { 491 #if NARCNET > 0 492 case IFT_ARCNET: 493 { 494 int arcipifmtu; 495 if (ifp->if_flags & IFF_LINK0) 496 arcipifmtu = arc_ipmtu; 497 else 498 arcipifmtu = ARCMTU; 499 500 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && 501 (rt->rt_rmx.rmx_mtu > arcipifmtu || 502 (rt->rt_rmx.rmx_mtu == 0 && 503 ifp->if_mtu > arcipifmtu))) 504 rt->rt_rmx.rmx_mtu = arcipifmtu; 505 break; 506 } 507 #endif 508 } 509 if (rt->rt_flags & RTF_CONNECTED) 510 break; 511 } 512 513 bound = curlwp_bind(); 514 /* Announce a new entry if requested. */ 515 if (rt->rt_flags & RTF_ANNOUNCE) { 516 struct psref psref; 517 ia = in_get_ia_on_iface_psref( 518 satocsin(rt_getkey(rt))->sin_addr, ifp, &psref); 519 if (ia != NULL) { 520 arpannounce(ifp, &ia->ia_ifa, 521 CLLADDR(satocsdl(gate))); 522 ia4_release(ia, &psref); 523 } 524 } 525 526 if (gate->sa_family != AF_LINK || 527 gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) { 528 log(LOG_DEBUG, "%s: bad gateway value\n", __func__); 529 goto out; 530 } 531 532 satosdl(gate)->sdl_type = ifp->if_type; 533 satosdl(gate)->sdl_index = ifp->if_index; 534 535 /* 536 * If the route is for a broadcast address mark it as such. 537 * This way we can avoid an expensive call to in_broadcast() 538 * in ip_output() most of the time (because the route passed 539 * to ip_output() is almost always a host route). 540 */ 541 if (rt->rt_flags & RTF_HOST && 542 !(rt->rt_flags & RTF_BROADCAST) && 543 in_broadcast(satocsin(rt_getkey(rt))->sin_addr, rt->rt_ifp)) 544 rt->rt_flags |= RTF_BROADCAST; 545 /* There is little point in resolving the broadcast address */ 546 if (rt->rt_flags & RTF_BROADCAST) 547 goto out; 548 549 /* 550 * When called from rt_ifa_addlocal, we cannot depend on that 551 * the address (rt_getkey(rt)) exits in the address list of the 552 * interface. So check RTF_LOCAL instead. 553 */ 554 if (rt->rt_flags & RTF_LOCAL) { 555 rt->rt_expire = 0; 556 if (useloopback) { 557 rt->rt_ifp = lo0ifp; 558 rt->rt_rmx.rmx_mtu = 0; 559 } 560 goto out; 561 } 562 563 s = pserialize_read_enter(); 564 ia = in_get_ia_on_iface(satocsin(rt_getkey(rt))->sin_addr, ifp); 565 if (ia == NULL) { 566 pserialize_read_exit(s); 567 goto out; 568 } 569 570 rt->rt_expire = 0; 571 if (useloopback) { 572 rt->rt_ifp = lo0ifp; 573 rt->rt_rmx.rmx_mtu = 0; 574 } 575 rt->rt_flags |= RTF_LOCAL; 576 577 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) { 578 pserialize_read_exit(s); 579 goto out; 580 } 581 /* 582 * make sure to set rt->rt_ifa to the interface 583 * address we are using, otherwise we will have trouble 584 * with source address selection. 585 */ 586 ifa = &ia->ia_ifa; 587 if (ifa != rt->rt_ifa) 588 /* Assume it doesn't sleep */ 589 rt_replace_ifa(rt, ifa); 590 pserialize_read_exit(s); 591 out: 592 curlwp_bindx(bound); 593 break; 594 } 595 } 596 597 /* 598 * Broadcast an ARP request. Caller specifies: 599 * - arp header source ip address 600 * - arp header target ip address 601 * - arp header source ethernet address 602 */ 603 static void 604 arprequest(struct ifnet *ifp, 605 const struct in_addr *sip, const struct in_addr *tip, 606 const uint8_t *enaddr) 607 { 608 struct mbuf *m; 609 struct arphdr *ah; 610 struct sockaddr sa; 611 uint64_t *arps; 612 613 KASSERT(sip != NULL); 614 KASSERT(tip != NULL); 615 KASSERT(enaddr != NULL); 616 617 if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) 618 return; 619 MCLAIM(m, &arpdomain.dom_mowner); 620 switch (ifp->if_type) { 621 case IFT_IEEE1394: 622 m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 623 ifp->if_addrlen; 624 break; 625 default: 626 m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 627 2 * ifp->if_addrlen; 628 break; 629 } 630 m->m_pkthdr.len = m->m_len; 631 m_align(m, m->m_len); 632 ah = mtod(m, struct arphdr *); 633 memset(ah, 0, m->m_len); 634 switch (ifp->if_type) { 635 case IFT_IEEE1394: /* RFC2734 */ 636 /* fill it now for ar_tpa computation */ 637 ah->ar_hrd = htons(ARPHRD_IEEE1394); 638 break; 639 default: 640 /* ifp->if_output will fill ar_hrd */ 641 break; 642 } 643 ah->ar_pro = htons(ETHERTYPE_IP); 644 ah->ar_hln = ifp->if_addrlen; /* hardware address length */ 645 ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ 646 ah->ar_op = htons(ARPOP_REQUEST); 647 memcpy(ar_sha(ah), enaddr, ah->ar_hln); 648 memcpy(ar_spa(ah), sip, ah->ar_pln); 649 memcpy(ar_tpa(ah), tip, ah->ar_pln); 650 sa.sa_family = AF_ARP; 651 sa.sa_len = 2; 652 m->m_flags |= M_BCAST; 653 arps = ARP_STAT_GETREF(); 654 arps[ARP_STAT_SNDTOTAL]++; 655 arps[ARP_STAT_SENDREQUEST]++; 656 ARP_STAT_PUTREF(); 657 if_output_lock(ifp, ifp, m, &sa, NULL); 658 } 659 660 void 661 arpannounce(struct ifnet *ifp, struct ifaddr *ifa, const uint8_t *enaddr) 662 { 663 struct in_ifaddr *ia = ifatoia(ifa); 664 struct in_addr *ip = &IA_SIN(ifa)->sin_addr; 665 666 if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) { 667 ARPLOG(LOG_DEBUG, "%s not ready\n", ARPLOGADDR(ip)); 668 return; 669 } 670 arprequest(ifp, ip, ip, enaddr); 671 } 672 673 static void 674 arpannounce1(struct ifaddr *ifa) 675 { 676 677 arpannounce(ifa->ifa_ifp, ifa, CLLADDR(ifa->ifa_ifp->if_sadl)); 678 } 679 680 /* 681 * Resolve an IP address into an ethernet address. If success, desten is 682 * filled in. If there is no entry in arptab, set one up and broadcast a 683 * request for the IP address. Hold onto this mbuf and resend it once the 684 * address is finally resolved. 685 * 686 * A return value of 0 indicates that desten has been filled in and the packet 687 * should be sent normally; a return value of EWOULDBLOCK indicates that the 688 * packet has been held pending resolution. Any other value indicates an 689 * error. 690 */ 691 int 692 arpresolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, 693 const struct sockaddr *dst, void *desten, size_t destlen) 694 { 695 struct llentry *la; 696 const char *create_lookup; 697 bool renew; 698 int error; 699 struct ifnet *origifp = ifp; 700 701 #if NCARP > 0 702 if (rt != NULL && rt->rt_ifp->if_type == IFT_CARP) 703 ifp = rt->rt_ifp; 704 #endif 705 706 KASSERT(m != NULL); 707 708 la = arplookup(ifp, NULL, dst, 0); 709 if (la == NULL) 710 goto notfound; 711 712 if ((la->la_flags & LLE_VALID) && 713 ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) { 714 KASSERT(destlen >= ifp->if_addrlen); 715 memcpy(desten, &la->ll_addr, ifp->if_addrlen); 716 LLE_RUNLOCK(la); 717 return 0; 718 } 719 720 notfound: 721 if (ifp->if_flags & IFF_NOARP) { 722 if (la != NULL) 723 LLE_RUNLOCK(la); 724 error = ENOTSUP; 725 goto bad; 726 } 727 728 if (la == NULL) { 729 struct rtentry *_rt; 730 731 create_lookup = "create"; 732 _rt = rtalloc1(dst, 0); 733 IF_AFDATA_WLOCK(ifp); 734 la = lla_create(LLTABLE(ifp), LLE_EXCLUSIVE, dst, _rt); 735 IF_AFDATA_WUNLOCK(ifp); 736 if (_rt != NULL) 737 rt_unref(_rt); 738 if (la == NULL) 739 ARP_STATINC(ARP_STAT_ALLOCFAIL); 740 else 741 arp_init_llentry(ifp, la); 742 } else if (LLE_TRY_UPGRADE(la) == 0) { 743 create_lookup = "lookup"; 744 LLE_RUNLOCK(la); 745 IF_AFDATA_RLOCK(ifp); 746 la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); 747 IF_AFDATA_RUNLOCK(ifp); 748 } 749 750 error = EINVAL; 751 if (la == NULL) { 752 log(LOG_DEBUG, 753 "%s: failed to %s llentry for %s on %s\n", 754 __func__, create_lookup, inet_ntoa(satocsin(dst)->sin_addr), 755 ifp->if_xname); 756 goto bad; 757 } 758 759 if ((la->la_flags & LLE_VALID) && 760 ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) 761 { 762 KASSERT(destlen >= ifp->if_addrlen); 763 memcpy(desten, &la->ll_addr, ifp->if_addrlen); 764 renew = false; 765 /* 766 * If entry has an expiry time and it is approaching, 767 * see if we need to send an ARP request within this 768 * arpt_down interval. 769 */ 770 if (!(la->la_flags & LLE_STATIC) && 771 time_uptime + la->la_preempt > la->la_expire) 772 { 773 renew = true; 774 la->la_preempt--; 775 } 776 777 LLE_WUNLOCK(la); 778 779 if (renew) { 780 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 781 arprequest(origifp, 782 &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, 783 &satocsin(dst)->sin_addr, enaddr); 784 } 785 786 return 0; 787 } 788 789 if (la->la_flags & LLE_STATIC) { /* should not happen! */ 790 LLE_RUNLOCK(la); 791 log(LOG_DEBUG, "%s: ouch, empty static llinfo for %s\n", 792 __func__, inet_ntoa(satocsin(dst)->sin_addr)); 793 error = EINVAL; 794 goto bad; 795 } 796 797 renew = (la->la_asked == 0 || la->la_expire != time_uptime); 798 799 /* 800 * There is an arptab entry, but no ethernet address 801 * response yet. Add the mbuf to the list, dropping 802 * the oldest packet if we have exceeded the system 803 * setting. 804 */ 805 LLE_WLOCK_ASSERT(la); 806 if (la->la_numheld >= arp_maxhold) { 807 if (la->la_hold != NULL) { 808 struct mbuf *next = la->la_hold->m_nextpkt; 809 m_freem(la->la_hold); 810 la->la_hold = next; 811 la->la_numheld--; 812 ARP_STATINC(ARP_STAT_DFRDROPPED); 813 ARP_STATINC(ARP_STAT_DFRTOTAL); 814 } 815 } 816 if (la->la_hold != NULL) { 817 struct mbuf *curr = la->la_hold; 818 while (curr->m_nextpkt != NULL) 819 curr = curr->m_nextpkt; 820 curr->m_nextpkt = m; 821 } else 822 la->la_hold = m; 823 la->la_numheld++; 824 if (!renew) 825 LLE_DOWNGRADE(la); 826 827 /* 828 * Return EWOULDBLOCK if we have tried less than arp_maxtries. It 829 * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH 830 * if we have already sent arp_maxtries ARP requests. Retransmit the 831 * ARP request, but not faster than one request per second. 832 */ 833 if (la->la_asked < arp_maxtries) 834 error = EWOULDBLOCK; /* First request. */ 835 else 836 error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ? 837 EHOSTUNREACH : EHOSTDOWN; 838 839 if (renew) { 840 const uint8_t *enaddr = CLLADDR(ifp->if_sadl); 841 struct sockaddr_in sin; 842 843 la->la_expire = time_uptime; 844 arp_settimer(la, arpt_down); 845 la->la_asked++; 846 847 sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); 848 if (error != EWOULDBLOCK) { 849 const struct ip *ip = mtod(m, const struct ip *); 850 struct sockaddr_in ssin; 851 852 sockaddr_in_init(&ssin, &ip->ip_src, 0); 853 rt_clonedmsg(RTM_MISS, sintosa(&ssin), sintosa(&sin), 854 NULL, ifp); 855 } 856 857 LLE_WUNLOCK(la); 858 859 if (rt != NULL) { 860 arprequest(origifp, 861 &satocsin(rt->rt_ifa->ifa_addr)->sin_addr, 862 &satocsin(dst)->sin_addr, enaddr); 863 } else { 864 struct rtentry *_rt; 865 866 /* XXX */ 867 _rt = rtalloc1((struct sockaddr *)&sin, 0); 868 if (_rt == NULL) 869 goto bad; 870 arprequest(origifp, 871 &satocsin(_rt->rt_ifa->ifa_addr)->sin_addr, 872 &satocsin(dst)->sin_addr, enaddr); 873 rt_unref(_rt); 874 } 875 return error; 876 } 877 878 LLE_RUNLOCK(la); 879 return error; 880 881 bad: 882 m_freem(m); 883 return error; 884 } 885 886 /* 887 * Common length and type checks are done here, 888 * then the protocol-specific routine is called. 889 */ 890 void 891 arpintr(void) 892 { 893 struct mbuf *m; 894 struct arphdr *ar; 895 int s; 896 int arplen; 897 898 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 899 for (;;) { 900 struct ifnet *rcvif; 901 902 IFQ_LOCK(&arpintrq); 903 IF_DEQUEUE(&arpintrq, m); 904 IFQ_UNLOCK(&arpintrq); 905 if (m == NULL) 906 goto out; 907 if ((m->m_flags & M_PKTHDR) == 0) 908 panic("arpintr"); 909 910 MCLAIM(m, &arpdomain.dom_mowner); 911 ARP_STATINC(ARP_STAT_RCVTOTAL); 912 913 arplen = sizeof(struct arphdr); 914 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 915 goto badlen; 916 ar = mtod(m, struct arphdr *); 917 918 rcvif = m_get_rcvif(m, &s); 919 if (__predict_false(rcvif == NULL)) { 920 ARP_STATINC(ARP_STAT_RCVNOINT); 921 goto free; 922 } 923 924 /* 925 * We don't want non-IEEE1394 ARP packets on IEEE1394 926 * interfaces, and vice versa. Our life depends on that. 927 */ 928 switch (rcvif->if_type) { 929 case IFT_IEEE1394: 930 if (ntohs(ar->ar_hrd) != ARPHRD_IEEE1394) { 931 m_put_rcvif(rcvif, &s); 932 ARP_STATINC(ARP_STAT_RCVBADPROTO); 933 goto free; 934 } 935 936 arplen = sizeof(struct arphdr) + 937 ar->ar_hln + 2 * ar->ar_pln; 938 break; 939 default: 940 if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) { 941 m_put_rcvif(rcvif, &s); 942 ARP_STATINC(ARP_STAT_RCVBADPROTO); 943 goto free; 944 } 945 946 arplen = sizeof(struct arphdr) + 947 2 * ar->ar_hln + 2 * ar->ar_pln; 948 break; 949 } 950 951 m_put_rcvif(rcvif, &s); 952 953 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 954 goto badlen; 955 ar = mtod(m, struct arphdr *); 956 957 switch (ntohs(ar->ar_pro)) { 958 case ETHERTYPE_IP: 959 case ETHERTYPE_IPTRAILERS: 960 in_arpinput(m); 961 continue; 962 default: 963 ARP_STATINC(ARP_STAT_RCVBADPROTO); 964 goto free; 965 } 966 967 badlen: 968 ARP_STATINC(ARP_STAT_RCVBADLEN); 969 free: 970 m_freem(m); 971 } 972 973 out: 974 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 975 return; /* XXX gcc */ 976 } 977 978 /* 979 * ARP for Internet protocols on 10 Mb/s Ethernet. Algorithm is that given in 980 * RFC 826. In addition, a sanity check is performed on the sender protocol 981 * address, to catch impersonators. 982 * 983 * We no longer handle negotiations for use of trailer protocol: formerly, ARP 984 * replied for protocol type ETHERTYPE_TRAIL sent along with IP replies if we 985 * wanted trailers sent to us, and also sent them in response to IP replies. 986 * This allowed either end to announce the desire to receive trailer packets. 987 * 988 * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, but 989 * formerly didn't normally send requests. 990 */ 991 static void 992 in_arpinput(struct mbuf *m) 993 { 994 struct arphdr *ah; 995 struct ifnet *ifp, *rcvif = NULL; 996 struct llentry *la = NULL; 997 struct in_ifaddr *ia = NULL; 998 #if NBRIDGE > 0 999 struct in_ifaddr *bridge_ia = NULL; 1000 #endif 1001 #if NCARP > 0 1002 uint32_t count = 0, index = 0; 1003 #endif 1004 struct sockaddr sa; 1005 struct in_addr isaddr, itaddr, myaddr; 1006 int op, rt_cmd; 1007 void *tha; 1008 uint64_t *arps; 1009 struct psref psref, psref_ia; 1010 int s; 1011 char ipbuf[INET_ADDRSTRLEN]; 1012 bool find_source, do_dad; 1013 1014 if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT))) 1015 goto out; 1016 ah = mtod(m, struct arphdr *); 1017 op = ntohs(ah->ar_op); 1018 1019 if (ah->ar_pln != sizeof(struct in_addr)) 1020 goto out; 1021 1022 ifp = if_get_bylla(ar_sha(ah), ah->ar_hln, &psref); 1023 if (ifp) { 1024 /* it's from me, ignore it. */ 1025 if_put(ifp, &psref); 1026 ARP_STATINC(ARP_STAT_RCVLOCALSHA); 1027 goto out; 1028 } 1029 1030 rcvif = ifp = m_get_rcvif_psref(m, &psref); 1031 if (__predict_false(rcvif == NULL)) 1032 goto out; 1033 if (rcvif->if_flags & IFF_NOARP) 1034 goto out; 1035 1036 memcpy(&isaddr, ar_spa(ah), sizeof(isaddr)); 1037 memcpy(&itaddr, ar_tpa(ah), sizeof(itaddr)); 1038 1039 if (m->m_flags & (M_BCAST|M_MCAST)) 1040 ARP_STATINC(ARP_STAT_RCVMCAST); 1041 1042 /* 1043 * Search for a matching interface address 1044 * or any address on the interface to use 1045 * as a dummy address in the rest of this function. 1046 * 1047 * First try and find the source address for early 1048 * duplicate address detection. 1049 */ 1050 if (in_nullhost(isaddr)) { 1051 if (in_nullhost(itaddr)) /* very bogus ARP */ 1052 goto out; 1053 find_source = false; 1054 myaddr = itaddr; 1055 } else { 1056 find_source = true; 1057 myaddr = isaddr; 1058 } 1059 s = pserialize_read_enter(); 1060 again: 1061 IN_ADDRHASH_READER_FOREACH(ia, myaddr.s_addr) { 1062 if (!in_hosteq(ia->ia_addr.sin_addr, myaddr)) 1063 continue; 1064 #if NCARP > 0 1065 if (ia->ia_ifp->if_type == IFT_CARP && 1066 ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) == 1067 (IFF_UP|IFF_RUNNING))) { 1068 index++; 1069 /* XXX: ar_hln? */ 1070 if (ia->ia_ifp == rcvif && (ah->ar_hln >= 6) && 1071 carp_iamatch(ia, ar_sha(ah), 1072 &count, index)) { 1073 break; 1074 } 1075 } else 1076 #endif 1077 if (ia->ia_ifp == rcvif) 1078 break; 1079 #if NBRIDGE > 0 1080 /* 1081 * If the interface we received the packet on 1082 * is part of a bridge, check to see if we need 1083 * to "bridge" the packet to ourselves at this 1084 * layer. Note we still prefer a perfect match, 1085 * but allow this weaker match if necessary. 1086 */ 1087 if (rcvif->if_bridge != NULL && 1088 rcvif->if_bridge == ia->ia_ifp->if_bridge) 1089 bridge_ia = ia; 1090 #endif 1091 } 1092 1093 #if NBRIDGE > 0 1094 if (ia == NULL && bridge_ia != NULL) { 1095 ia = bridge_ia; 1096 m_put_rcvif_psref(rcvif, &psref); 1097 rcvif = NULL; 1098 /* FIXME */ 1099 ifp = bridge_ia->ia_ifp; 1100 } 1101 #endif 1102 1103 /* If we failed to find the source address then find 1104 * the target address. */ 1105 if (ia == NULL && find_source && !in_nullhost(itaddr)) { 1106 find_source = false; 1107 myaddr = itaddr; 1108 goto again; 1109 } 1110 1111 if (ia != NULL) 1112 ia4_acquire(ia, &psref_ia); 1113 pserialize_read_exit(s); 1114 1115 if (ah->ar_hln != ifp->if_addrlen) { 1116 ARP_STATINC(ARP_STAT_RCVBADLEN); 1117 log(LOG_WARNING, 1118 "arp from %s: addr len: new %d, i/f %d (ignored)\n", 1119 IN_PRINT(ipbuf, &isaddr), ah->ar_hln, ifp->if_addrlen); 1120 goto out; 1121 } 1122 1123 /* Only do DaD if we have a matching address. */ 1124 do_dad = (ia != NULL); 1125 1126 if (ia == NULL) { 1127 ia = in_get_ia_on_iface_psref(isaddr, rcvif, &psref_ia); 1128 if (ia == NULL) { 1129 ia = in_get_ia_from_ifp_psref(ifp, &psref_ia); 1130 if (ia == NULL) { 1131 ARP_STATINC(ARP_STAT_RCVNOINT); 1132 goto out; 1133 } 1134 } 1135 } 1136 1137 myaddr = ia->ia_addr.sin_addr; 1138 1139 /* XXX checks for bridge case? */ 1140 if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) { 1141 ARP_STATINC(ARP_STAT_RCVBCASTSHA); 1142 log(LOG_ERR, 1143 "%s: arp: link address is broadcast for IP address %s!\n", 1144 ifp->if_xname, IN_PRINT(ipbuf, &isaddr)); 1145 goto out; 1146 } 1147 1148 /* 1149 * If the source IP address is zero, this is an RFC 5227 ARP probe 1150 */ 1151 if (in_nullhost(isaddr)) 1152 ARP_STATINC(ARP_STAT_RCVZEROSPA); 1153 else if (in_hosteq(isaddr, myaddr)) 1154 ARP_STATINC(ARP_STAT_RCVLOCALSPA); 1155 1156 if (in_nullhost(itaddr)) 1157 ARP_STATINC(ARP_STAT_RCVZEROTPA); 1158 1159 /* 1160 * DAD check, RFC 5227. 1161 * Collision on sender address is always a duplicate. 1162 * Collision on target address is only a duplicate 1163 * IF the sender address is the null host (ie a DAD probe) 1164 * AND the message was broadcast 1165 * AND our address is either tentative or duplicated 1166 * If it was unicast then it's a valid Unicast Poll from RFC 1122. 1167 */ 1168 if (do_dad && 1169 (in_hosteq(isaddr, myaddr) || 1170 (in_nullhost(isaddr) && in_hosteq(itaddr, myaddr) && 1171 m->m_flags & M_BCAST && 1172 ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DUPLICATED)))) 1173 { 1174 struct sockaddr_dl sdl, *sdlp; 1175 1176 sdlp = sockaddr_dl_init(&sdl, sizeof(sdl), 1177 ifp->if_index, ifp->if_type, 1178 NULL, 0, ar_sha(ah), ah->ar_hln); 1179 arp_dad_duplicated((struct ifaddr *)ia, sdlp); 1180 goto out; 1181 } 1182 1183 /* 1184 * If the target IP address is zero, ignore the packet. 1185 * This prevents the code below from trying to answer 1186 * when we are using IP address zero (booting). 1187 */ 1188 if (in_nullhost(itaddr)) 1189 goto out; 1190 1191 if (in_nullhost(isaddr)) 1192 goto reply; 1193 1194 if (in_hosteq(itaddr, myaddr)) 1195 la = arpcreate(ifp, &isaddr, NULL, 1); 1196 else 1197 la = arplookup(ifp, &isaddr, NULL, 1); 1198 if (la == NULL) 1199 goto reply; 1200 1201 if ((la->la_flags & LLE_VALID) && 1202 memcmp(ar_sha(ah), &la->ll_addr, ifp->if_addrlen)) 1203 { 1204 char llabuf[LLA_ADDRSTRLEN], *llastr; 1205 1206 llastr = lla_snprintf(llabuf, sizeof(llabuf), 1207 ar_sha(ah), ah->ar_hln); 1208 1209 if (la->la_flags & LLE_STATIC) { 1210 ARP_STATINC(ARP_STAT_RCVOVERPERM); 1211 if (!log_permanent_modify) 1212 goto out; 1213 log(LOG_INFO, 1214 "%s tried to overwrite permanent arp info" 1215 " for %s\n", llastr, IN_PRINT(ipbuf, &isaddr)); 1216 goto out; 1217 } else if (la->lle_tbl->llt_ifp != ifp) { 1218 /* XXX should not happen? */ 1219 ARP_STATINC(ARP_STAT_RCVOVERINT); 1220 if (!log_wrong_iface) 1221 goto out; 1222 log(LOG_INFO, 1223 "%s on %s tried to overwrite " 1224 "arp info for %s on %s\n", 1225 llastr, 1226 ifp->if_xname, IN_PRINT(ipbuf, &isaddr), 1227 la->lle_tbl->llt_ifp->if_xname); 1228 goto out; 1229 } else { 1230 ARP_STATINC(ARP_STAT_RCVOVER); 1231 if (log_movements) 1232 log(LOG_INFO, "arp info overwritten " 1233 "for %s by %s\n", 1234 IN_PRINT(ipbuf, &isaddr), llastr); 1235 } 1236 rt_cmd = RTM_CHANGE; 1237 } else 1238 rt_cmd = la->la_flags & LLE_VALID ? 0 : RTM_ADD; 1239 1240 KASSERT(ifp->if_sadl->sdl_alen == ifp->if_addrlen); 1241 1242 KASSERT(sizeof(la->ll_addr) >= ifp->if_addrlen); 1243 memcpy(&la->ll_addr, ar_sha(ah), ifp->if_addrlen); 1244 la->la_flags |= LLE_VALID; 1245 if ((la->la_flags & LLE_STATIC) == 0) { 1246 la->la_expire = time_uptime + arpt_keep; 1247 arp_settimer(la, arpt_keep); 1248 } 1249 la->la_asked = 0; 1250 /* rt->rt_flags &= ~RTF_REJECT; */ 1251 1252 if (rt_cmd != 0) { 1253 struct sockaddr_in sin; 1254 1255 sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); 1256 rt_clonedmsg(rt_cmd, NULL, sintosa(&sin), ar_sha(ah), ifp); 1257 } 1258 1259 if (la->la_hold != NULL) { 1260 int n = la->la_numheld; 1261 struct mbuf *m_hold, *m_hold_next; 1262 struct sockaddr_in sin; 1263 1264 sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0); 1265 1266 m_hold = la->la_hold; 1267 la->la_hold = NULL; 1268 la->la_numheld = 0; 1269 /* 1270 * We have to unlock here because if_output would call 1271 * arpresolve 1272 */ 1273 LLE_WUNLOCK(la); 1274 ARP_STATADD(ARP_STAT_DFRSENT, n); 1275 ARP_STATADD(ARP_STAT_DFRTOTAL, n); 1276 for (; m_hold != NULL; m_hold = m_hold_next) { 1277 m_hold_next = m_hold->m_nextpkt; 1278 m_hold->m_nextpkt = NULL; 1279 if_output_lock(ifp, ifp, m_hold, sintosa(&sin), NULL); 1280 } 1281 } else 1282 LLE_WUNLOCK(la); 1283 la = NULL; 1284 1285 reply: 1286 if (la != NULL) { 1287 LLE_WUNLOCK(la); 1288 la = NULL; 1289 } 1290 if (op != ARPOP_REQUEST) { 1291 if (op == ARPOP_REPLY) 1292 ARP_STATINC(ARP_STAT_RCVREPLY); 1293 goto out; 1294 } 1295 ARP_STATINC(ARP_STAT_RCVREQUEST); 1296 if (in_hosteq(itaddr, myaddr)) { 1297 /* If our address is unusable, don't reply */ 1298 if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) 1299 goto out; 1300 /* I am the target */ 1301 tha = ar_tha(ah); 1302 if (tha) 1303 memcpy(tha, ar_sha(ah), ah->ar_hln); 1304 memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); 1305 } else { 1306 /* Proxy ARP */ 1307 struct llentry *lle = NULL; 1308 struct sockaddr_in sin; 1309 1310 #if NCARP > 0 1311 if (ifp->if_type == IFT_CARP) { 1312 struct ifnet *_rcvif = m_get_rcvif(m, &s); 1313 int iftype = 0; 1314 if (__predict_true(_rcvif != NULL)) 1315 iftype = _rcvif->if_type; 1316 m_put_rcvif(_rcvif, &s); 1317 if (iftype != IFT_CARP) 1318 goto out; 1319 } 1320 #endif 1321 1322 tha = ar_tha(ah); 1323 1324 sockaddr_in_init(&sin, &itaddr, 0); 1325 1326 IF_AFDATA_RLOCK(ifp); 1327 lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin); 1328 IF_AFDATA_RUNLOCK(ifp); 1329 1330 if ((lle != NULL) && (lle->la_flags & LLE_PUB)) { 1331 if (tha) 1332 memcpy(tha, ar_sha(ah), ah->ar_hln); 1333 memcpy(ar_sha(ah), &lle->ll_addr, ah->ar_hln); 1334 LLE_RUNLOCK(lle); 1335 } else { 1336 if (lle != NULL) 1337 LLE_RUNLOCK(lle); 1338 goto out; 1339 } 1340 } 1341 ia4_release(ia, &psref_ia); 1342 1343 /* 1344 * XXX XXX: Here we're recycling the mbuf. But the mbuf could have 1345 * other mbufs in its chain, and just overwriting m->m_pkthdr.len 1346 * would be wrong in this case (the length becomes smaller than the 1347 * real chain size). 1348 * 1349 * This can theoretically cause bugs in the lower layers (drivers, 1350 * and L2encap), in some corner cases. 1351 */ 1352 memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln); 1353 memcpy(ar_spa(ah), &itaddr, ah->ar_pln); 1354 ah->ar_op = htons(ARPOP_REPLY); 1355 ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */ 1356 switch (ifp->if_type) { 1357 case IFT_IEEE1394: 1358 /* ieee1394 arp reply is broadcast */ 1359 m->m_flags &= ~M_MCAST; 1360 m->m_flags |= M_BCAST; 1361 m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln; 1362 break; 1363 default: 1364 m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */ 1365 m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln); 1366 break; 1367 } 1368 m->m_pkthdr.len = m->m_len; 1369 sa.sa_family = AF_ARP; 1370 sa.sa_len = 2; 1371 arps = ARP_STAT_GETREF(); 1372 arps[ARP_STAT_SNDTOTAL]++; 1373 arps[ARP_STAT_SNDREPLY]++; 1374 ARP_STAT_PUTREF(); 1375 if_output_lock(ifp, ifp, m, &sa, NULL); 1376 if (rcvif != NULL) 1377 m_put_rcvif_psref(rcvif, &psref); 1378 return; 1379 1380 out: 1381 if (la != NULL) 1382 LLE_WUNLOCK(la); 1383 if (ia != NULL) 1384 ia4_release(ia, &psref_ia); 1385 if (rcvif != NULL) 1386 m_put_rcvif_psref(rcvif, &psref); 1387 m_freem(m); 1388 } 1389 1390 /* 1391 * Lookup or a new address in arptab. 1392 */ 1393 static struct llentry * 1394 arplookup(struct ifnet *ifp, const struct in_addr *addr, 1395 const struct sockaddr *sa, int wlock) 1396 { 1397 struct sockaddr_in sin; 1398 struct llentry *la; 1399 int flags = wlock ? LLE_EXCLUSIVE : 0; 1400 1401 if (sa == NULL) { 1402 KASSERT(addr != NULL); 1403 sockaddr_in_init(&sin, addr, 0); 1404 sa = sintocsa(&sin); 1405 } 1406 1407 IF_AFDATA_RLOCK(ifp); 1408 la = lla_lookup(LLTABLE(ifp), flags, sa); 1409 IF_AFDATA_RUNLOCK(ifp); 1410 1411 return la; 1412 } 1413 1414 static struct llentry * 1415 arpcreate(struct ifnet *ifp, const struct in_addr *addr, 1416 const struct sockaddr *sa, int wlock) 1417 { 1418 struct sockaddr_in sin; 1419 struct llentry *la; 1420 int flags = wlock ? LLE_EXCLUSIVE : 0; 1421 1422 if (sa == NULL) { 1423 KASSERT(addr != NULL); 1424 sockaddr_in_init(&sin, addr, 0); 1425 sa = sintocsa(&sin); 1426 } 1427 1428 la = arplookup(ifp, addr, sa, wlock); 1429 1430 if (la == NULL) { 1431 struct rtentry *rt; 1432 1433 rt = rtalloc1(sa, 0); 1434 IF_AFDATA_WLOCK(ifp); 1435 la = lla_create(LLTABLE(ifp), flags, sa, rt); 1436 IF_AFDATA_WUNLOCK(ifp); 1437 if (rt != NULL) 1438 rt_unref(rt); 1439 1440 if (la != NULL) 1441 arp_init_llentry(ifp, la); 1442 } 1443 1444 return la; 1445 } 1446 1447 int 1448 arpioctl(u_long cmd, void *data) 1449 { 1450 1451 return EOPNOTSUPP; 1452 } 1453 1454 void 1455 arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa) 1456 { 1457 struct in_ifaddr *ia = (struct in_ifaddr *)ifa; 1458 1459 ifa->ifa_rtrequest = arp_rtrequest; 1460 ifa->ifa_flags |= RTF_CONNECTED; 1461 1462 /* ARP will handle DAD for this address. */ 1463 if (in_nullhost(IA_SIN(ifa)->sin_addr)) { 1464 if (ia->ia_dad_stop != NULL) /* safety */ 1465 ia->ia_dad_stop(ifa); 1466 ia->ia_dad_start = NULL; 1467 ia->ia_dad_stop = NULL; 1468 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1469 } else { 1470 ia->ia_dad_start = arp_dad_start; 1471 ia->ia_dad_stop = arp_dad_stop; 1472 if (ia->ia4_flags & IN_IFF_TRYTENTATIVE && ip_dad_enabled()) 1473 ia->ia4_flags |= IN_IFF_TENTATIVE; 1474 else 1475 arpannounce1(ifa); 1476 } 1477 } 1478 1479 TAILQ_HEAD(dadq_head, dadq); 1480 struct dadq { 1481 TAILQ_ENTRY(dadq) dad_list; 1482 struct ifaddr *dad_ifa; 1483 int dad_count; /* max ARP to send */ 1484 int dad_arp_tcount; /* # of trials to send ARP */ 1485 int dad_arp_ocount; /* ARP sent so far */ 1486 int dad_arp_announce; /* max ARP announcements */ 1487 int dad_arp_acount; /* # of announcements */ 1488 struct callout dad_timer_ch; 1489 }; 1490 1491 static struct dadq_head dadq; 1492 static int dad_maxtry = 15; /* max # of *tries* to transmit DAD packet */ 1493 static kmutex_t arp_dad_lock; 1494 1495 static void 1496 arp_dad_init(void) 1497 { 1498 1499 TAILQ_INIT(&dadq); 1500 mutex_init(&arp_dad_lock, MUTEX_DEFAULT, IPL_NONE); 1501 } 1502 1503 static struct dadq * 1504 arp_dad_find(struct ifaddr *ifa) 1505 { 1506 struct dadq *dp; 1507 1508 KASSERT(mutex_owned(&arp_dad_lock)); 1509 1510 TAILQ_FOREACH(dp, &dadq, dad_list) { 1511 if (dp->dad_ifa == ifa) 1512 return dp; 1513 } 1514 return NULL; 1515 } 1516 1517 static void 1518 arp_dad_starttimer(struct dadq *dp, int ticks) 1519 { 1520 1521 callout_reset(&dp->dad_timer_ch, ticks, 1522 (void (*)(void *))arp_dad_timer, dp); 1523 } 1524 1525 static void 1526 arp_dad_stoptimer(struct dadq *dp) 1527 { 1528 1529 KASSERT(mutex_owned(&arp_dad_lock)); 1530 1531 TAILQ_REMOVE(&dadq, dp, dad_list); 1532 /* Tell the timer that dp is being destroyed. */ 1533 dp->dad_ifa = NULL; 1534 callout_halt(&dp->dad_timer_ch, &arp_dad_lock); 1535 } 1536 1537 static void 1538 arp_dad_destroytimer(struct dadq *dp) 1539 { 1540 1541 callout_destroy(&dp->dad_timer_ch); 1542 KASSERT(dp->dad_ifa == NULL); 1543 kmem_intr_free(dp, sizeof(*dp)); 1544 } 1545 1546 static void 1547 arp_dad_output(struct dadq *dp, struct ifaddr *ifa) 1548 { 1549 struct in_ifaddr *ia = (struct in_ifaddr *)ifa; 1550 struct ifnet *ifp = ifa->ifa_ifp; 1551 struct in_addr sip; 1552 1553 dp->dad_arp_tcount++; 1554 if ((ifp->if_flags & IFF_UP) == 0) 1555 return; 1556 if ((ifp->if_flags & IFF_RUNNING) == 0) 1557 return; 1558 1559 dp->dad_arp_tcount = 0; 1560 dp->dad_arp_ocount++; 1561 1562 memset(&sip, 0, sizeof(sip)); 1563 arprequest(ifa->ifa_ifp, &sip, &ia->ia_addr.sin_addr, 1564 CLLADDR(ifa->ifa_ifp->if_sadl)); 1565 } 1566 1567 /* 1568 * Start Duplicate Address Detection (DAD) for specified interface address. 1569 */ 1570 static void 1571 arp_dad_start(struct ifaddr *ifa) 1572 { 1573 struct in_ifaddr *ia = (struct in_ifaddr *)ifa; 1574 struct dadq *dp; 1575 char ipbuf[INET_ADDRSTRLEN]; 1576 1577 /* 1578 * If we don't need DAD, don't do it. 1579 * - DAD is disabled 1580 */ 1581 if (!(ia->ia4_flags & IN_IFF_TENTATIVE)) { 1582 log(LOG_DEBUG, 1583 "%s: called with non-tentative address %s(%s)\n", __func__, 1584 IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1585 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1586 return; 1587 } 1588 if (!ip_dad_enabled()) { 1589 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1590 rt_addrmsg(RTM_NEWADDR, ifa); 1591 arpannounce1(ifa); 1592 return; 1593 } 1594 KASSERT(ifa->ifa_ifp != NULL); 1595 if (!(ifa->ifa_ifp->if_flags & IFF_UP)) 1596 return; 1597 1598 dp = kmem_intr_alloc(sizeof(*dp), KM_NOSLEEP); 1599 1600 mutex_enter(&arp_dad_lock); 1601 if (arp_dad_find(ifa) != NULL) { 1602 mutex_exit(&arp_dad_lock); 1603 /* DAD already in progress */ 1604 if (dp != NULL) 1605 kmem_intr_free(dp, sizeof(*dp)); 1606 return; 1607 } 1608 1609 if (dp == NULL) { 1610 mutex_exit(&arp_dad_lock); 1611 log(LOG_ERR, "%s: memory allocation failed for %s(%s)\n", 1612 __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1613 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1614 return; 1615 } 1616 1617 /* 1618 * Send ARP packet for DAD, ip_dad_count times. 1619 * Note that we must delay the first transmission. 1620 */ 1621 callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE); 1622 dp->dad_ifa = ifa; 1623 ifaref(ifa); /* just for safety */ 1624 dp->dad_count = ip_dad_count; 1625 dp->dad_arp_announce = 0; /* Will be set when starting to announce */ 1626 dp->dad_arp_acount = dp->dad_arp_ocount = dp->dad_arp_tcount = 0; 1627 TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list); 1628 1629 ARPLOG(LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp), 1630 ARPLOGADDR(&ia->ia_addr.sin_addr)); 1631 1632 arp_dad_starttimer(dp, cprng_fast32() % (PROBE_WAIT * hz)); 1633 1634 mutex_exit(&arp_dad_lock); 1635 } 1636 1637 /* 1638 * terminate DAD unconditionally. used for address removals. 1639 */ 1640 static void 1641 arp_dad_stop(struct ifaddr *ifa) 1642 { 1643 struct dadq *dp; 1644 1645 mutex_enter(&arp_dad_lock); 1646 dp = arp_dad_find(ifa); 1647 if (dp == NULL) { 1648 mutex_exit(&arp_dad_lock); 1649 /* DAD wasn't started yet */ 1650 return; 1651 } 1652 1653 arp_dad_stoptimer(dp); 1654 1655 mutex_exit(&arp_dad_lock); 1656 1657 arp_dad_destroytimer(dp); 1658 ifafree(ifa); 1659 } 1660 1661 static void 1662 arp_dad_timer(struct dadq *dp) 1663 { 1664 struct ifaddr *ifa; 1665 struct in_ifaddr *ia; 1666 char ipbuf[INET_ADDRSTRLEN]; 1667 bool need_free = false; 1668 1669 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 1670 mutex_enter(&arp_dad_lock); 1671 1672 ifa = dp->dad_ifa; 1673 if (ifa == NULL) { 1674 /* dp is being destroyed by someone. Do nothing. */ 1675 goto done; 1676 } 1677 1678 ia = (struct in_ifaddr *)ifa; 1679 if (ia->ia4_flags & IN_IFF_DUPLICATED) { 1680 log(LOG_ERR, "%s: called with duplicate address %s(%s)\n", 1681 __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1682 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1683 goto done; 1684 } 1685 if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0 && dp->dad_arp_acount == 0) 1686 { 1687 log(LOG_ERR, "%s: called with non-tentative address %s(%s)\n", 1688 __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr), 1689 ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???"); 1690 goto done; 1691 } 1692 1693 /* timeouted with IFF_{RUNNING,UP} check */ 1694 if (dp->dad_arp_tcount > dad_maxtry) { 1695 ARPLOG(LOG_INFO, "%s: could not run DAD, driver problem?\n", 1696 if_name(ifa->ifa_ifp)); 1697 1698 arp_dad_stoptimer(dp); 1699 need_free = true; 1700 goto done; 1701 } 1702 1703 /* Need more checks? */ 1704 if (dp->dad_arp_ocount < dp->dad_count) { 1705 int adelay; 1706 1707 /* 1708 * We have more ARP to go. Send ARP packet for DAD. 1709 */ 1710 arp_dad_output(dp, ifa); 1711 if (dp->dad_arp_ocount < dp->dad_count) 1712 adelay = (PROBE_MIN * hz) + 1713 (cprng_fast32() % 1714 ((PROBE_MAX * hz) - (PROBE_MIN * hz))); 1715 else 1716 adelay = ANNOUNCE_WAIT * hz; 1717 arp_dad_starttimer(dp, adelay); 1718 goto done; 1719 } else if (dp->dad_arp_acount == 0) { 1720 /* 1721 * We are done with DAD. 1722 * No duplicate address found. 1723 */ 1724 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1725 rt_addrmsg(RTM_NEWADDR, ifa); 1726 ARPLOG(LOG_DEBUG, 1727 "%s: DAD complete for %s - no duplicates found\n", 1728 if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr)); 1729 dp->dad_arp_announce = ANNOUNCE_NUM; 1730 goto announce; 1731 } else if (dp->dad_arp_acount < dp->dad_arp_announce) { 1732 announce: 1733 /* 1734 * Announce the address. 1735 */ 1736 arpannounce1(ifa); 1737 dp->dad_arp_acount++; 1738 if (dp->dad_arp_acount < dp->dad_arp_announce) { 1739 arp_dad_starttimer(dp, ANNOUNCE_INTERVAL * hz); 1740 goto done; 1741 } 1742 ARPLOG(LOG_DEBUG, 1743 "%s: ARP announcement complete for %s\n", 1744 if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr)); 1745 } 1746 1747 arp_dad_stoptimer(dp); 1748 need_free = true; 1749 done: 1750 mutex_exit(&arp_dad_lock); 1751 1752 if (need_free) { 1753 arp_dad_destroytimer(dp); 1754 KASSERT(ifa != NULL); 1755 ifafree(ifa); 1756 } 1757 1758 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 1759 } 1760 1761 static void 1762 arp_dad_duplicated(struct ifaddr *ifa, const struct sockaddr_dl *from) 1763 { 1764 struct in_ifaddr *ia = ifatoia(ifa); 1765 struct ifnet *ifp = ifa->ifa_ifp; 1766 char ipbuf[INET_ADDRSTRLEN], llabuf[LLA_ADDRSTRLEN]; 1767 const char *iastr, *llastr; 1768 1769 iastr = IN_PRINT(ipbuf, &ia->ia_addr.sin_addr); 1770 if (__predict_false(from == NULL)) 1771 llastr = NULL; 1772 else 1773 llastr = lla_snprintf(llabuf, sizeof(llabuf), 1774 CLLADDR(from), from->sdl_alen); 1775 1776 if (ia->ia4_flags & (IN_IFF_TENTATIVE|IN_IFF_DUPLICATED)) { 1777 log(LOG_ERR, 1778 "%s: DAD duplicate address %s from %s\n", 1779 if_name(ifp), iastr, llastr); 1780 } else if (ia->ia_dad_defended == 0 || 1781 ia->ia_dad_defended < time_uptime - DEFEND_INTERVAL) { 1782 ia->ia_dad_defended = time_uptime; 1783 arpannounce1(ifa); 1784 log(LOG_ERR, 1785 "%s: DAD defended address %s from %s\n", 1786 if_name(ifp), iastr, llastr); 1787 return; 1788 } else { 1789 /* If DAD is disabled, just report the duplicate. */ 1790 if (!ip_dad_enabled()) { 1791 log(LOG_ERR, 1792 "%s: DAD ignoring duplicate address %s from %s\n", 1793 if_name(ifp), iastr, llastr); 1794 return; 1795 } 1796 log(LOG_ERR, 1797 "%s: DAD defence failed for %s from %s\n", 1798 if_name(ifp), iastr, llastr); 1799 } 1800 1801 arp_dad_stop(ifa); 1802 1803 ia->ia4_flags &= ~IN_IFF_TENTATIVE; 1804 if ((ia->ia4_flags & IN_IFF_DUPLICATED) == 0) { 1805 ia->ia4_flags |= IN_IFF_DUPLICATED; 1806 /* Inform the routing socket of the duplicate address */ 1807 rt_addrmsg_src(RTM_NEWADDR, ifa, (const struct sockaddr *)from); 1808 } 1809 } 1810 1811 /* 1812 * Called from 10 Mb/s Ethernet interrupt handlers 1813 * when ether packet type ETHERTYPE_REVARP 1814 * is received. Common length and type checks are done here, 1815 * then the protocol-specific routine is called. 1816 */ 1817 void 1818 revarpinput(struct mbuf *m) 1819 { 1820 struct arphdr *ar; 1821 int arplen; 1822 1823 arplen = sizeof(struct arphdr); 1824 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 1825 return; 1826 ar = mtod(m, struct arphdr *); 1827 1828 if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) { 1829 goto out; 1830 } 1831 1832 arplen = sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln); 1833 if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL) 1834 return; 1835 ar = mtod(m, struct arphdr *); 1836 1837 switch (ntohs(ar->ar_pro)) { 1838 case ETHERTYPE_IP: 1839 case ETHERTYPE_IPTRAILERS: 1840 in_revarpinput(m); 1841 return; 1842 1843 default: 1844 break; 1845 } 1846 1847 out: 1848 m_freem(m); 1849 } 1850 1851 /* 1852 * RARP for Internet protocols on 10 Mb/s Ethernet. 1853 * Algorithm is that given in RFC 903. 1854 * We are only using for bootstrap purposes to get an ip address for one of 1855 * our interfaces. Thus we support no user-interface. 1856 * 1857 * Since the contents of the RARP reply are specific to the interface that 1858 * sent the request, this code must ensure that they are properly associated. 1859 * 1860 * Note: also supports ARP via RARP packets, per the RFC. 1861 */ 1862 void 1863 in_revarpinput(struct mbuf *m) 1864 { 1865 struct arphdr *ah; 1866 void *tha; 1867 int op; 1868 struct ifnet *rcvif; 1869 int s; 1870 1871 ah = mtod(m, struct arphdr *); 1872 op = ntohs(ah->ar_op); 1873 1874 rcvif = m_get_rcvif(m, &s); 1875 if (__predict_false(rcvif == NULL)) 1876 goto out; 1877 if (rcvif->if_flags & IFF_NOARP) 1878 goto out; 1879 1880 switch (rcvif->if_type) { 1881 case IFT_IEEE1394: 1882 /* ARP without target hardware address is not supported */ 1883 goto out; 1884 default: 1885 break; 1886 } 1887 1888 switch (op) { 1889 case ARPOP_REQUEST: 1890 case ARPOP_REPLY: /* per RFC */ 1891 m_put_rcvif(rcvif, &s); 1892 in_arpinput(m); 1893 return; 1894 case ARPOP_REVREPLY: 1895 break; 1896 case ARPOP_REVREQUEST: /* handled by rarpd(8) */ 1897 default: 1898 goto out; 1899 } 1900 if (!revarp_in_progress) 1901 goto out; 1902 if (rcvif != myip_ifp) /* !same interface */ 1903 goto out; 1904 if (myip_initialized) 1905 goto wake; 1906 tha = ar_tha(ah); 1907 if (tha == NULL) 1908 goto out; 1909 if (ah->ar_pln != sizeof(struct in_addr)) 1910 goto out; 1911 if (ah->ar_hln != rcvif->if_sadl->sdl_alen) 1912 goto out; 1913 if (memcmp(tha, CLLADDR(rcvif->if_sadl), rcvif->if_sadl->sdl_alen)) 1914 goto out; 1915 memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip)); 1916 memcpy(&myip, ar_tpa(ah), sizeof(myip)); 1917 myip_initialized = 1; 1918 wake: /* Do wakeup every time in case it was missed. */ 1919 wakeup((void *)&myip); 1920 1921 out: 1922 m_put_rcvif(rcvif, &s); 1923 m_freem(m); 1924 } 1925 1926 /* 1927 * Send a RARP request for the ip address of the specified interface. 1928 * The request should be RFC 903-compliant. 1929 */ 1930 static void 1931 revarprequest(struct ifnet *ifp) 1932 { 1933 struct sockaddr sa; 1934 struct mbuf *m; 1935 struct arphdr *ah; 1936 void *tha; 1937 1938 if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) 1939 return; 1940 MCLAIM(m, &arpdomain.dom_mowner); 1941 m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) + 1942 2*ifp->if_addrlen; 1943 m->m_pkthdr.len = m->m_len; 1944 m_align(m, m->m_len); 1945 ah = mtod(m, struct arphdr *); 1946 memset(ah, 0, m->m_len); 1947 ah->ar_pro = htons(ETHERTYPE_IP); 1948 ah->ar_hln = ifp->if_addrlen; /* hardware address length */ 1949 ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ 1950 ah->ar_op = htons(ARPOP_REVREQUEST); 1951 1952 memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln); 1953 tha = ar_tha(ah); 1954 if (tha == NULL) { 1955 m_free(m); 1956 return; 1957 } 1958 memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln); 1959 1960 sa.sa_family = AF_ARP; 1961 sa.sa_len = 2; 1962 m->m_flags |= M_BCAST; 1963 1964 if_output_lock(ifp, ifp, m, &sa, NULL); 1965 } 1966 1967 /* 1968 * RARP for the ip address of the specified interface, but also 1969 * save the ip address of the server that sent the answer. 1970 * Timeout if no response is received. 1971 */ 1972 int 1973 revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in, 1974 struct in_addr *clnt_in) 1975 { 1976 int result, count = 20; 1977 1978 myip_initialized = 0; 1979 myip_ifp = ifp; 1980 1981 revarp_in_progress = 1; 1982 while (count--) { 1983 revarprequest(ifp); 1984 result = tsleep((void *)&myip, PSOCK, "revarp", hz/2); 1985 if (result != EWOULDBLOCK) 1986 break; 1987 } 1988 revarp_in_progress = 0; 1989 1990 if (!myip_initialized) 1991 return ENETUNREACH; 1992 1993 memcpy(serv_in, &srv_ip, sizeof(*serv_in)); 1994 memcpy(clnt_in, &myip, sizeof(*clnt_in)); 1995 return 0; 1996 } 1997 1998 void 1999 arp_stat_add(int type, uint64_t count) 2000 { 2001 ARP_STATADD(type, count); 2002 } 2003 2004 static int 2005 sysctl_net_inet_arp_stats(SYSCTLFN_ARGS) 2006 { 2007 2008 return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS); 2009 } 2010 2011 static void 2012 sysctl_net_inet_arp_setup(struct sysctllog **clog) 2013 { 2014 const struct sysctlnode *node; 2015 2016 sysctl_createv(clog, 0, NULL, NULL, 2017 CTLFLAG_PERMANENT, 2018 CTLTYPE_NODE, "inet", NULL, 2019 NULL, 0, NULL, 0, 2020 CTL_NET, PF_INET, CTL_EOL); 2021 sysctl_createv(clog, 0, NULL, &node, 2022 CTLFLAG_PERMANENT, 2023 CTLTYPE_NODE, "arp", 2024 SYSCTL_DESCR("Address Resolution Protocol"), 2025 NULL, 0, NULL, 0, 2026 CTL_NET, PF_INET, CTL_CREATE, CTL_EOL); 2027 2028 sysctl_createv(clog, 0, NULL, NULL, 2029 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2030 CTLTYPE_INT, "keep", 2031 SYSCTL_DESCR("Valid ARP entry lifetime in seconds"), 2032 NULL, 0, &arpt_keep, 0, 2033 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2034 2035 sysctl_createv(clog, 0, NULL, NULL, 2036 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2037 CTLTYPE_INT, "down", 2038 SYSCTL_DESCR("Failed ARP entry lifetime in seconds"), 2039 NULL, 0, &arpt_down, 0, 2040 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2041 2042 sysctl_createv(clog, 0, NULL, NULL, 2043 CTLFLAG_PERMANENT, 2044 CTLTYPE_STRUCT, "stats", 2045 SYSCTL_DESCR("ARP statistics"), 2046 sysctl_net_inet_arp_stats, 0, NULL, 0, 2047 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2048 2049 sysctl_createv(clog, 0, NULL, NULL, 2050 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2051 CTLTYPE_INT, "log_movements", 2052 SYSCTL_DESCR("log ARP replies from MACs different than" 2053 " the one in the cache"), 2054 NULL, 0, &log_movements, 0, 2055 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2056 2057 sysctl_createv(clog, 0, NULL, NULL, 2058 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2059 CTLTYPE_INT, "log_permanent_modify", 2060 SYSCTL_DESCR("log ARP replies from MACs different than" 2061 " the one in the permanent arp entry"), 2062 NULL, 0, &log_permanent_modify, 0, 2063 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2064 2065 sysctl_createv(clog, 0, NULL, NULL, 2066 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2067 CTLTYPE_INT, "log_wrong_iface", 2068 SYSCTL_DESCR("log ARP packets arriving on the wrong" 2069 " interface"), 2070 NULL, 0, &log_wrong_iface, 0, 2071 CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2072 2073 sysctl_createv(clog, 0, NULL, NULL, 2074 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2075 CTLTYPE_INT, "debug", 2076 SYSCTL_DESCR("Enable ARP DAD debug output"), 2077 NULL, 0, &arp_debug, 0, 2078 CTL_NET, PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2079 } 2080 2081 #endif /* INET */ 2082