xref: /netbsd-src/sys/netinet/if_arp.c (revision 154bfe8e089c1a0a4e9ed8414f08d3da90949162)
1 /*	$NetBSD: if_arp.c,v 1.294 2020/03/09 21:20:55 roy Exp $	*/
2 
3 /*
4  * Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Public Access Networks Corporation ("Panix").  It was developed under
9  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)if_ether.c	8.2 (Berkeley) 9/26/94
62  */
63 
64 /*
65  * Ethernet address resolution protocol.
66  * TODO:
67  *	add "inuse/lock" bit (or ref. count) along with valid bit
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.294 2020/03/09 21:20:55 roy Exp $");
72 
73 #ifdef _KERNEL_OPT
74 #include "opt_ddb.h"
75 #include "opt_inet.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78 
79 #ifdef INET
80 
81 #include "arp.h"
82 #include "bridge.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/kmem.h>
88 #include <sys/mbuf.h>
89 #include <sys/socket.h>
90 #include <sys/time.h>
91 #include <sys/timetc.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/ioctl.h>
95 #include <sys/syslog.h>
96 #include <sys/proc.h>
97 #include <sys/protosw.h>
98 #include <sys/domain.h>
99 #include <sys/sysctl.h>
100 #include <sys/socketvar.h>
101 #include <sys/percpu.h>
102 #include <sys/cprng.h>
103 #include <sys/kmem.h>
104 
105 #include <net/ethertypes.h>
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_types.h>
109 #include <net/if_ether.h>
110 #include <net/if_llatbl.h>
111 #include <net/route.h>
112 #include <net/net_stats.h>
113 
114 #include <netinet/in.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/in_var.h>
117 #include <netinet/ip.h>
118 #include <netinet/if_inarp.h>
119 
120 #include "arcnet.h"
121 #if NARCNET > 0
122 #include <net/if_arc.h>
123 #endif
124 #include "carp.h"
125 #if NCARP > 0
126 #include <netinet/ip_carp.h>
127 #endif
128 
129 /*
130  * ARP trailer negotiation.  Trailer protocol is not IP specific,
131  * but ARP request/response use IP addresses.
132  */
133 #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL
134 
135 /* timer values */
136 static int arpt_keep = (20*60);	/* once resolved, good for 20 more minutes */
137 static int arpt_down = 20;		/* once declared down, don't send for 20 secs */
138 static int arp_maxhold = 1;	/* number of packets to hold per ARP entry */
139 #define	rt_expire rt_rmx.rmx_expire
140 #define	rt_pksent rt_rmx.rmx_pksent
141 
142 int ip_dad_count = PROBE_NUM;
143 #ifdef ARP_DEBUG
144 int arp_debug = 1;
145 #else
146 int arp_debug = 0;
147 #endif
148 
149 static void arp_init(void);
150 static void arp_dad_init(void);
151 
152 static void arprequest(struct ifnet *,
153     const struct in_addr *, const struct in_addr *,
154     const uint8_t *);
155 static void arpannounce1(struct ifaddr *);
156 static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *,
157     const struct sockaddr *);
158 static void arptimer(void *);
159 static void arp_settimer(struct llentry *, int);
160 static struct llentry *arplookup(struct ifnet *,
161     const struct in_addr *, const struct sockaddr *, int);
162 static struct llentry *arpcreate(struct ifnet *,
163     const struct in_addr *, const struct sockaddr *, int);
164 static void in_arpinput(struct mbuf *);
165 static void in_revarpinput(struct mbuf *);
166 static void revarprequest(struct ifnet *);
167 
168 static void arp_drainstub(void);
169 
170 struct dadq;
171 static void arp_dad_timer(struct dadq *);
172 static void arp_dad_start(struct ifaddr *);
173 static void arp_dad_stop(struct ifaddr *);
174 static void arp_dad_duplicated(struct ifaddr *, const struct sockaddr_dl *);
175 
176 static void arp_init_llentry(struct ifnet *, struct llentry *);
177 
178 struct ifqueue arpintrq = {
179 	.ifq_head = NULL,
180 	.ifq_tail = NULL,
181 	.ifq_len = 0,
182 	.ifq_maxlen = 50,
183 	.ifq_drops = 0,
184 };
185 static int arp_maxtries = 5;
186 static int useloopback = 1;	/* use loopback interface for local traffic */
187 
188 static percpu_t *arpstat_percpu;
189 
190 #define	ARP_STAT_GETREF()	_NET_STAT_GETREF(arpstat_percpu)
191 #define	ARP_STAT_PUTREF()	_NET_STAT_PUTREF(arpstat_percpu)
192 
193 #define	ARP_STATINC(x)		_NET_STATINC(arpstat_percpu, x)
194 #define	ARP_STATADD(x, v)	_NET_STATADD(arpstat_percpu, x, v)
195 
196 /* revarp state */
197 static struct in_addr myip, srv_ip;
198 static int myip_initialized = 0;
199 static int revarp_in_progress = 0;
200 static struct ifnet *myip_ifp = NULL;
201 
202 static int arp_drainwanted;
203 
204 static int log_movements = 0;
205 static int log_permanent_modify = 1;
206 static int log_wrong_iface = 1;
207 
208 DOMAIN_DEFINE(arpdomain);	/* forward declare and add to link set */
209 
210 static void
211 arp_fasttimo(void)
212 {
213 	if (arp_drainwanted) {
214 		arp_drain();
215 		arp_drainwanted = 0;
216 	}
217 }
218 
219 static const struct protosw arpsw[] = {
220 	{
221 		.pr_type = 0,
222 		.pr_domain = &arpdomain,
223 		.pr_protocol = 0,
224 		.pr_flags = 0,
225 		.pr_input = 0,
226 		.pr_ctlinput = 0,
227 		.pr_ctloutput = 0,
228 		.pr_usrreqs = 0,
229 		.pr_init = arp_init,
230 		.pr_fasttimo = arp_fasttimo,
231 		.pr_slowtimo = 0,
232 		.pr_drain = arp_drainstub,
233 	}
234 };
235 
236 struct domain arpdomain = {
237 	.dom_family = PF_ARP,
238 	.dom_name = "arp",
239 	.dom_protosw = arpsw,
240 	.dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)],
241 #ifdef MBUFTRACE
242 	.dom_mowner = MOWNER_INIT("internet", "arp"),
243 #endif
244 };
245 
246 static void sysctl_net_inet_arp_setup(struct sysctllog **);
247 
248 void
249 arp_init(void)
250 {
251 
252 	sysctl_net_inet_arp_setup(NULL);
253 	arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS);
254 	IFQ_LOCK_INIT(&arpintrq);
255 
256 #ifdef MBUFTRACE
257 	MOWNER_ATTACH(&arpdomain.dom_mowner);
258 #endif
259 
260 	arp_dad_init();
261 }
262 
263 static void
264 arp_drainstub(void)
265 {
266 	arp_drainwanted = 1;
267 }
268 
269 /*
270  * ARP protocol drain routine.  Called when memory is in short supply.
271  * Called at splvm();  don't acquire softnet_lock as can be called from
272  * hardware interrupt handlers.
273  */
274 void
275 arp_drain(void)
276 {
277 
278 	lltable_drain(AF_INET);
279 }
280 
281 static void
282 arptimer(void *arg)
283 {
284 	struct llentry *lle = arg;
285 	struct ifnet *ifp;
286 
287 	KASSERT((lle->la_flags & LLE_STATIC) == 0);
288 
289 	LLE_WLOCK(lle);
290 
291 	/*
292 	 * This shortcut is required to avoid trying to touch ifp that may be
293 	 * being destroyed.
294 	 */
295 	if ((lle->la_flags & LLE_LINKED) == 0) {
296 		LLE_FREE_LOCKED(lle);
297 		return;
298 	}
299 
300 	ifp = lle->lle_tbl->llt_ifp;
301 
302 	/* XXX: LOR avoidance. We still have ref on lle. */
303 	LLE_WUNLOCK(lle);
304 
305 	IF_AFDATA_LOCK(ifp);
306 	LLE_WLOCK(lle);
307 
308 	/* Guard against race with other llentry_free(). */
309 	if (lle->la_flags & LLE_LINKED) {
310 		int rt_cmd;
311 		struct in_addr *in;
312 		struct sockaddr_in dsin, ssin;
313 		struct sockaddr *sa;
314 		const char *lladdr;
315 		size_t pkts_dropped;
316 
317 		in = &lle->r_l3addr.addr4;
318 		sockaddr_in_init(&dsin, in, 0);
319 		if (lle->la_flags & LLE_VALID) {
320 			rt_cmd = RTM_DELETE;
321 			sa = NULL;
322 			lladdr = (const char *)&lle->ll_addr;
323 		} else {
324 			if (lle->la_hold != NULL) {
325 				struct mbuf *m = lle->la_hold;
326 				const struct ip *ip = mtod(m, const struct ip *);
327 
328 				sockaddr_in_init(&ssin, &ip->ip_src, 0);
329 				sa = sintosa(&ssin);
330 			} else
331 				sa = NULL;
332 			rt_cmd = RTM_MISS;
333 			lladdr = NULL;
334 
335 		}
336 		rt_clonedmsg(rt_cmd, sa, sintosa(&dsin), lladdr, ifp);
337 
338 		LLE_REMREF(lle);
339 		pkts_dropped = llentry_free(lle);
340 		ARP_STATADD(ARP_STAT_DFRDROPPED, pkts_dropped);
341 		ARP_STATADD(ARP_STAT_DFRTOTAL, pkts_dropped);
342 	} else {
343 		LLE_FREE_LOCKED(lle);
344 	}
345 
346 	IF_AFDATA_UNLOCK(ifp);
347 }
348 
349 static void
350 arp_settimer(struct llentry *la, int sec)
351 {
352 
353 	LLE_WLOCK_ASSERT(la);
354 	KASSERT((la->la_flags & LLE_STATIC) == 0);
355 
356 	/*
357 	 * We have to take care of a reference leak which occurs if
358 	 * callout_reset overwrites a pending callout schedule.  Unfortunately
359 	 * we don't have a mean to know the overwrite, so we need to know it
360 	 * using callout_stop.  We need to call callout_pending first to exclude
361 	 * the case that the callout has never been scheduled.
362 	 */
363 	if (callout_pending(&la->la_timer)) {
364 		bool expired = callout_stop(&la->la_timer);
365 		if (!expired)
366 			/* A pending callout schedule is canceled. */
367 			LLE_REMREF(la);
368 	}
369 	LLE_ADDREF(la);
370 	callout_reset(&la->la_timer, hz * sec, arptimer, la);
371 }
372 
373 /*
374  * We set the gateway for RTF_CLONING routes to a "prototype"
375  * link-layer sockaddr whose interface type (if_type) and interface
376  * index (if_index) fields are prepared.
377  */
378 static struct sockaddr *
379 arp_setgate(struct rtentry *rt, struct sockaddr *gate,
380     const struct sockaddr *netmask)
381 {
382 	const struct ifnet *ifp = rt->rt_ifp;
383 	uint8_t namelen = strlen(ifp->if_xname);
384 	uint8_t addrlen = ifp->if_addrlen;
385 
386 	/*
387 	 * XXX: If this is a manually added route to interface
388 	 * such as older version of routed or gated might provide,
389 	 * restore cloning bit.
390 	 */
391 	if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL &&
392 	    satocsin(netmask)->sin_addr.s_addr != 0xffffffff)
393 		rt->rt_flags |= RTF_CONNECTED;
394 
395 	if ((rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL))) {
396 		union {
397 			struct sockaddr sa;
398 			struct sockaddr_storage ss;
399 			struct sockaddr_dl sdl;
400 		} u;
401 		/*
402 		 * Case 1: This route should come from a route to iface.
403 		 */
404 		sockaddr_dl_init(&u.sdl, sizeof(u.ss),
405 		    ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen);
406 		rt_setgate(rt, &u.sa);
407 		gate = rt->rt_gateway;
408 	}
409 	return gate;
410 }
411 
412 static void
413 arp_init_llentry(struct ifnet *ifp, struct llentry *lle)
414 {
415 
416 	switch (ifp->if_type) {
417 	default:
418 		/* Nothing. */
419 		break;
420 	}
421 }
422 
423 /*
424  * Parallel to llc_rtrequest.
425  */
426 void
427 arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
428 {
429 	struct sockaddr *gate = rt->rt_gateway;
430 	struct in_ifaddr *ia;
431 	struct ifaddr *ifa;
432 	struct ifnet *ifp = rt->rt_ifp;
433 	int bound;
434 	int s;
435 
436 	if (req == RTM_LLINFO_UPD) {
437 		if ((ifa = info->rti_ifa) != NULL)
438 			arpannounce1(ifa);
439 		return;
440 	}
441 
442 	if ((rt->rt_flags & RTF_GATEWAY) != 0) {
443 		if (req != RTM_ADD)
444 			return;
445 
446 		/*
447 		 * linklayers with particular link MTU limitation.
448 		 */
449 		switch(ifp->if_type) {
450 #if NARCNET > 0
451 		case IFT_ARCNET:
452 		    {
453 			int arcipifmtu;
454 
455 			if (ifp->if_flags & IFF_LINK0)
456 				arcipifmtu = arc_ipmtu;
457 			else
458 				arcipifmtu = ARCMTU;
459 			if (ifp->if_mtu > arcipifmtu)
460 				rt->rt_rmx.rmx_mtu = arcipifmtu;
461 			break;
462 		    }
463 #endif
464 		}
465 		return;
466 	}
467 
468 	switch (req) {
469 	case RTM_SETGATE:
470 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
471 		break;
472 	case RTM_ADD:
473 		gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
474 		if (gate == NULL) {
475 			log(LOG_ERR, "%s: arp_setgate failed\n", __func__);
476 			break;
477 		}
478 		if ((rt->rt_flags & RTF_CONNECTED) ||
479 		    (rt->rt_flags & RTF_LOCAL)) {
480 			/*
481 			 * Give this route an expiration time, even though
482 			 * it's a "permanent" route, so that routes cloned
483 			 * from it do not need their expiration time set.
484 			 */
485 			KASSERT(time_uptime != 0);
486 			rt->rt_expire = time_uptime;
487 			/*
488 			 * linklayers with particular link MTU limitation.
489 			 */
490 			switch (ifp->if_type) {
491 #if NARCNET > 0
492 			case IFT_ARCNET:
493 			    {
494 				int arcipifmtu;
495 				if (ifp->if_flags & IFF_LINK0)
496 					arcipifmtu = arc_ipmtu;
497 				else
498 					arcipifmtu = ARCMTU;
499 
500 				if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
501 				    (rt->rt_rmx.rmx_mtu > arcipifmtu ||
502 				     (rt->rt_rmx.rmx_mtu == 0 &&
503 				      ifp->if_mtu > arcipifmtu)))
504 					rt->rt_rmx.rmx_mtu = arcipifmtu;
505 				break;
506 			    }
507 #endif
508 			}
509 			if (rt->rt_flags & RTF_CONNECTED)
510 				break;
511 		}
512 
513 		bound = curlwp_bind();
514 		/* Announce a new entry if requested. */
515 		if (rt->rt_flags & RTF_ANNOUNCE) {
516 			struct psref psref;
517 			ia = in_get_ia_on_iface_psref(
518 			    satocsin(rt_getkey(rt))->sin_addr, ifp, &psref);
519 			if (ia != NULL) {
520 				arpannounce(ifp, &ia->ia_ifa,
521 				    CLLADDR(satocsdl(gate)));
522 				ia4_release(ia, &psref);
523 			}
524 		}
525 
526 		if (gate->sa_family != AF_LINK ||
527 		    gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) {
528 			log(LOG_DEBUG, "%s: bad gateway value\n", __func__);
529 			goto out;
530 		}
531 
532 		satosdl(gate)->sdl_type = ifp->if_type;
533 		satosdl(gate)->sdl_index = ifp->if_index;
534 
535 		/*
536 		 * If the route is for a broadcast address mark it as such.
537 		 * This way we can avoid an expensive call to in_broadcast()
538 		 * in ip_output() most of the time (because the route passed
539 		 * to ip_output() is almost always a host route).
540 		 */
541 		if (rt->rt_flags & RTF_HOST &&
542 		    !(rt->rt_flags & RTF_BROADCAST) &&
543 		    in_broadcast(satocsin(rt_getkey(rt))->sin_addr, rt->rt_ifp))
544 			rt->rt_flags |= RTF_BROADCAST;
545 		/* There is little point in resolving the broadcast address */
546 		if (rt->rt_flags & RTF_BROADCAST)
547 			goto out;
548 
549 		/*
550 		 * When called from rt_ifa_addlocal, we cannot depend on that
551 		 * the address (rt_getkey(rt)) exits in the address list of the
552 		 * interface. So check RTF_LOCAL instead.
553 		 */
554 		if (rt->rt_flags & RTF_LOCAL) {
555 			rt->rt_expire = 0;
556 			if (useloopback) {
557 				rt->rt_ifp = lo0ifp;
558 				rt->rt_rmx.rmx_mtu = 0;
559 			}
560 			goto out;
561 		}
562 
563 		s = pserialize_read_enter();
564 		ia = in_get_ia_on_iface(satocsin(rt_getkey(rt))->sin_addr, ifp);
565 		if (ia == NULL) {
566 			pserialize_read_exit(s);
567 			goto out;
568 		}
569 
570 		rt->rt_expire = 0;
571 		if (useloopback) {
572 			rt->rt_ifp = lo0ifp;
573 			rt->rt_rmx.rmx_mtu = 0;
574 		}
575 		rt->rt_flags |= RTF_LOCAL;
576 
577 		if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) {
578 			pserialize_read_exit(s);
579 			goto out;
580 		}
581 		/*
582 		 * make sure to set rt->rt_ifa to the interface
583 		 * address we are using, otherwise we will have trouble
584 		 * with source address selection.
585 		 */
586 		ifa = &ia->ia_ifa;
587 		if (ifa != rt->rt_ifa)
588 			/* Assume it doesn't sleep */
589 			rt_replace_ifa(rt, ifa);
590 		pserialize_read_exit(s);
591 	out:
592 		curlwp_bindx(bound);
593 		break;
594 	}
595 }
596 
597 /*
598  * Broadcast an ARP request. Caller specifies:
599  *	- arp header source ip address
600  *	- arp header target ip address
601  *	- arp header source ethernet address
602  */
603 static void
604 arprequest(struct ifnet *ifp,
605     const struct in_addr *sip, const struct in_addr *tip,
606     const uint8_t *enaddr)
607 {
608 	struct mbuf *m;
609 	struct arphdr *ah;
610 	struct sockaddr sa;
611 	uint64_t *arps;
612 
613 	KASSERT(sip != NULL);
614 	KASSERT(tip != NULL);
615 	KASSERT(enaddr != NULL);
616 
617 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
618 		return;
619 	MCLAIM(m, &arpdomain.dom_mowner);
620 	switch (ifp->if_type) {
621 	case IFT_IEEE1394:
622 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
623 		    ifp->if_addrlen;
624 		break;
625 	default:
626 		m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
627 		    2 * ifp->if_addrlen;
628 		break;
629 	}
630 	m->m_pkthdr.len = m->m_len;
631 	m_align(m, m->m_len);
632 	ah = mtod(m, struct arphdr *);
633 	memset(ah, 0, m->m_len);
634 	switch (ifp->if_type) {
635 	case IFT_IEEE1394:	/* RFC2734 */
636 		/* fill it now for ar_tpa computation */
637 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
638 		break;
639 	default:
640 		/* ifp->if_output will fill ar_hrd */
641 		break;
642 	}
643 	ah->ar_pro = htons(ETHERTYPE_IP);
644 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
645 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
646 	ah->ar_op = htons(ARPOP_REQUEST);
647 	memcpy(ar_sha(ah), enaddr, ah->ar_hln);
648 	memcpy(ar_spa(ah), sip, ah->ar_pln);
649 	memcpy(ar_tpa(ah), tip, ah->ar_pln);
650 	sa.sa_family = AF_ARP;
651 	sa.sa_len = 2;
652 	m->m_flags |= M_BCAST;
653 	arps = ARP_STAT_GETREF();
654 	arps[ARP_STAT_SNDTOTAL]++;
655 	arps[ARP_STAT_SENDREQUEST]++;
656 	ARP_STAT_PUTREF();
657 	if_output_lock(ifp, ifp, m, &sa, NULL);
658 }
659 
660 void
661 arpannounce(struct ifnet *ifp, struct ifaddr *ifa, const uint8_t *enaddr)
662 {
663 	struct in_ifaddr *ia = ifatoia(ifa);
664 	struct in_addr *ip = &IA_SIN(ifa)->sin_addr;
665 
666 	if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED)) {
667 		ARPLOG(LOG_DEBUG, "%s not ready\n", ARPLOGADDR(ip));
668 		return;
669 	}
670 	arprequest(ifp, ip, ip, enaddr);
671 }
672 
673 static void
674 arpannounce1(struct ifaddr *ifa)
675 {
676 
677 	arpannounce(ifa->ifa_ifp, ifa, CLLADDR(ifa->ifa_ifp->if_sadl));
678 }
679 
680 /*
681  * Resolve an IP address into an ethernet address.  If success, desten is
682  * filled in. If there is no entry in arptab, set one up and broadcast a
683  * request for the IP address. Hold onto this mbuf and resend it once the
684  * address is finally resolved.
685  *
686  * A return value of 0 indicates that desten has been filled in and the packet
687  * should be sent normally; a return value of EWOULDBLOCK indicates that the
688  * packet has been held pending resolution. Any other value indicates an
689  * error.
690  */
691 int
692 arpresolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m,
693     const struct sockaddr *dst, void *desten, size_t destlen)
694 {
695 	struct llentry *la;
696 	const char *create_lookup;
697 	bool renew;
698 	int error;
699 	struct ifnet *origifp = ifp;
700 
701 #if NCARP > 0
702 	if (rt != NULL && rt->rt_ifp->if_type == IFT_CARP)
703 		ifp = rt->rt_ifp;
704 #endif
705 
706 	KASSERT(m != NULL);
707 
708 	la = arplookup(ifp, NULL, dst, 0);
709 	if (la == NULL)
710 		goto notfound;
711 
712 	if ((la->la_flags & LLE_VALID) &&
713 	    ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) {
714 		KASSERT(destlen >= ifp->if_addrlen);
715 		memcpy(desten, &la->ll_addr, ifp->if_addrlen);
716 		LLE_RUNLOCK(la);
717 		return 0;
718 	}
719 
720 notfound:
721 	if (ifp->if_flags & IFF_NOARP) {
722 		if (la != NULL)
723 			LLE_RUNLOCK(la);
724 		error = ENOTSUP;
725 		goto bad;
726 	}
727 
728 	if (la == NULL) {
729 		struct rtentry *_rt;
730 
731 		create_lookup = "create";
732 		_rt = rtalloc1(dst, 0);
733 		IF_AFDATA_WLOCK(ifp);
734 		la = lla_create(LLTABLE(ifp), LLE_EXCLUSIVE, dst, _rt);
735 		IF_AFDATA_WUNLOCK(ifp);
736 		if (_rt != NULL)
737 			rt_unref(_rt);
738 		if (la == NULL)
739 			ARP_STATINC(ARP_STAT_ALLOCFAIL);
740 		else
741 			arp_init_llentry(ifp, la);
742 	} else if (LLE_TRY_UPGRADE(la) == 0) {
743 		create_lookup = "lookup";
744 		LLE_RUNLOCK(la);
745 		IF_AFDATA_RLOCK(ifp);
746 		la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst);
747 		IF_AFDATA_RUNLOCK(ifp);
748 	}
749 
750 	error = EINVAL;
751 	if (la == NULL) {
752 		log(LOG_DEBUG,
753 		    "%s: failed to %s llentry for %s on %s\n",
754 		    __func__, create_lookup, inet_ntoa(satocsin(dst)->sin_addr),
755 		    ifp->if_xname);
756 		goto bad;
757 	}
758 
759 	if ((la->la_flags & LLE_VALID) &&
760 	    ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime))
761 	{
762 		KASSERT(destlen >= ifp->if_addrlen);
763 		memcpy(desten, &la->ll_addr, ifp->if_addrlen);
764 		renew = false;
765 		/*
766 		 * If entry has an expiry time and it is approaching,
767 		 * see if we need to send an ARP request within this
768 		 * arpt_down interval.
769 		 */
770 		if (!(la->la_flags & LLE_STATIC) &&
771 		    time_uptime + la->la_preempt > la->la_expire)
772 		{
773 			renew = true;
774 			la->la_preempt--;
775 		}
776 
777 		LLE_WUNLOCK(la);
778 
779 		if (renew) {
780 			const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
781 			arprequest(origifp,
782 			    &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
783 			    &satocsin(dst)->sin_addr, enaddr);
784 		}
785 
786 		return 0;
787 	}
788 
789 	if (la->la_flags & LLE_STATIC) {   /* should not happen! */
790 		LLE_RUNLOCK(la);
791 		log(LOG_DEBUG, "%s: ouch, empty static llinfo for %s\n",
792 		    __func__, inet_ntoa(satocsin(dst)->sin_addr));
793 		error = EINVAL;
794 		goto bad;
795 	}
796 
797 	renew = (la->la_asked == 0 || la->la_expire != time_uptime);
798 
799 	/*
800 	 * There is an arptab entry, but no ethernet address
801 	 * response yet.  Add the mbuf to the list, dropping
802 	 * the oldest packet if we have exceeded the system
803 	 * setting.
804 	 */
805 	LLE_WLOCK_ASSERT(la);
806 	if (la->la_numheld >= arp_maxhold) {
807 		if (la->la_hold != NULL) {
808 			struct mbuf *next = la->la_hold->m_nextpkt;
809 			m_freem(la->la_hold);
810 			la->la_hold = next;
811 			la->la_numheld--;
812 			ARP_STATINC(ARP_STAT_DFRDROPPED);
813 			ARP_STATINC(ARP_STAT_DFRTOTAL);
814 		}
815 	}
816 	if (la->la_hold != NULL) {
817 		struct mbuf *curr = la->la_hold;
818 		while (curr->m_nextpkt != NULL)
819 			curr = curr->m_nextpkt;
820 		curr->m_nextpkt = m;
821 	} else
822 		la->la_hold = m;
823 	la->la_numheld++;
824 	if (!renew)
825 		LLE_DOWNGRADE(la);
826 
827 	/*
828 	 * Return EWOULDBLOCK if we have tried less than arp_maxtries. It
829 	 * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH
830 	 * if we have already sent arp_maxtries ARP requests. Retransmit the
831 	 * ARP request, but not faster than one request per second.
832 	 */
833 	if (la->la_asked < arp_maxtries)
834 		error = EWOULDBLOCK;	/* First request. */
835 	else
836 		error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ?
837 		    EHOSTUNREACH : EHOSTDOWN;
838 
839 	if (renew) {
840 		const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
841 		struct sockaddr_in sin;
842 
843 		la->la_expire = time_uptime;
844 		arp_settimer(la, arpt_down);
845 		la->la_asked++;
846 
847 		sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
848 		if (error != EWOULDBLOCK) {
849 			const struct ip *ip = mtod(m, const struct ip *);
850 			struct sockaddr_in ssin;
851 
852 			sockaddr_in_init(&ssin, &ip->ip_src, 0);
853 			rt_clonedmsg(RTM_MISS, sintosa(&ssin), sintosa(&sin),
854 			    NULL, ifp);
855 		}
856 
857 		LLE_WUNLOCK(la);
858 
859 		if (rt != NULL) {
860 			arprequest(origifp,
861 			    &satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
862 			    &satocsin(dst)->sin_addr, enaddr);
863 		} else {
864 			struct rtentry *_rt;
865 
866 			/* XXX */
867 			_rt = rtalloc1((struct sockaddr *)&sin, 0);
868 			if (_rt == NULL)
869 				goto bad;
870 			arprequest(origifp,
871 			    &satocsin(_rt->rt_ifa->ifa_addr)->sin_addr,
872 			    &satocsin(dst)->sin_addr, enaddr);
873 			rt_unref(_rt);
874 		}
875 		return error;
876 	}
877 
878 	LLE_RUNLOCK(la);
879 	return error;
880 
881 bad:
882 	m_freem(m);
883 	return error;
884 }
885 
886 /*
887  * Common length and type checks are done here,
888  * then the protocol-specific routine is called.
889  */
890 void
891 arpintr(void)
892 {
893 	struct mbuf *m;
894 	struct arphdr *ar;
895 	int s;
896 	int arplen;
897 
898 	SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
899 	for (;;) {
900 		struct ifnet *rcvif;
901 
902 		IFQ_LOCK(&arpintrq);
903 		IF_DEQUEUE(&arpintrq, m);
904 		IFQ_UNLOCK(&arpintrq);
905 		if (m == NULL)
906 			goto out;
907 		if ((m->m_flags & M_PKTHDR) == 0)
908 			panic("arpintr");
909 
910 		MCLAIM(m, &arpdomain.dom_mowner);
911 		ARP_STATINC(ARP_STAT_RCVTOTAL);
912 
913 		arplen = sizeof(struct arphdr);
914 		if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
915 			goto badlen;
916 		ar = mtod(m, struct arphdr *);
917 
918 		rcvif = m_get_rcvif(m, &s);
919 		if (__predict_false(rcvif == NULL)) {
920 			ARP_STATINC(ARP_STAT_RCVNOINT);
921 			goto free;
922 		}
923 
924 		/*
925 		 * We don't want non-IEEE1394 ARP packets on IEEE1394
926 		 * interfaces, and vice versa. Our life depends on that.
927 		 */
928 		switch (rcvif->if_type) {
929 		case IFT_IEEE1394:
930 			if (ntohs(ar->ar_hrd) != ARPHRD_IEEE1394) {
931 				m_put_rcvif(rcvif, &s);
932 				ARP_STATINC(ARP_STAT_RCVBADPROTO);
933 				goto free;
934 			}
935 
936 			arplen = sizeof(struct arphdr) +
937 			    ar->ar_hln + 2 * ar->ar_pln;
938 			break;
939 		default:
940 			if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) {
941 				m_put_rcvif(rcvif, &s);
942 				ARP_STATINC(ARP_STAT_RCVBADPROTO);
943 				goto free;
944 			}
945 
946 			arplen = sizeof(struct arphdr) +
947 			    2 * ar->ar_hln + 2 * ar->ar_pln;
948 			break;
949 		}
950 
951 		m_put_rcvif(rcvif, &s);
952 
953 		if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
954 			goto badlen;
955 		ar = mtod(m, struct arphdr *);
956 
957 		switch (ntohs(ar->ar_pro)) {
958 		case ETHERTYPE_IP:
959 		case ETHERTYPE_IPTRAILERS:
960 			in_arpinput(m);
961 			continue;
962 		default:
963 			ARP_STATINC(ARP_STAT_RCVBADPROTO);
964 			goto free;
965 		}
966 
967 badlen:
968 		ARP_STATINC(ARP_STAT_RCVBADLEN);
969 free:
970 		m_freem(m);
971 	}
972 
973 out:
974 	SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
975 	return; /* XXX gcc */
976 }
977 
978 /*
979  * ARP for Internet protocols on 10 Mb/s Ethernet. Algorithm is that given in
980  * RFC 826. In addition, a sanity check is performed on the sender protocol
981  * address, to catch impersonators.
982  *
983  * We no longer handle negotiations for use of trailer protocol: formerly, ARP
984  * replied for protocol type ETHERTYPE_TRAIL sent along with IP replies if we
985  * wanted trailers sent to us, and also sent them in response to IP replies.
986  * This allowed either end to announce the desire to receive trailer packets.
987  *
988  * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, but
989  * formerly didn't normally send requests.
990  */
991 static void
992 in_arpinput(struct mbuf *m)
993 {
994 	struct arphdr *ah;
995 	struct ifnet *ifp, *rcvif = NULL;
996 	struct llentry *la = NULL;
997 	struct in_ifaddr *ia = NULL;
998 #if NBRIDGE > 0
999 	struct in_ifaddr *bridge_ia = NULL;
1000 #endif
1001 #if NCARP > 0
1002 	uint32_t count = 0, index = 0;
1003 #endif
1004 	struct sockaddr sa;
1005 	struct in_addr isaddr, itaddr, myaddr;
1006 	int op, rt_cmd;
1007 	void *tha;
1008 	uint64_t *arps;
1009 	struct psref psref, psref_ia;
1010 	int s;
1011 	char ipbuf[INET_ADDRSTRLEN];
1012 	bool find_source, do_dad;
1013 
1014 	if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT)))
1015 		goto out;
1016 	ah = mtod(m, struct arphdr *);
1017 	op = ntohs(ah->ar_op);
1018 
1019 	if (ah->ar_pln != sizeof(struct in_addr))
1020 		goto out;
1021 
1022 	ifp = if_get_bylla(ar_sha(ah), ah->ar_hln, &psref);
1023 	if (ifp) {
1024 		/* it's from me, ignore it. */
1025 		if_put(ifp, &psref);
1026 		ARP_STATINC(ARP_STAT_RCVLOCALSHA);
1027 		goto out;
1028 	}
1029 
1030 	rcvif = ifp = m_get_rcvif_psref(m, &psref);
1031 	if (__predict_false(rcvif == NULL))
1032 		goto out;
1033 	if (rcvif->if_flags & IFF_NOARP)
1034 		goto out;
1035 
1036 	memcpy(&isaddr, ar_spa(ah), sizeof(isaddr));
1037 	memcpy(&itaddr, ar_tpa(ah), sizeof(itaddr));
1038 
1039 	if (m->m_flags & (M_BCAST|M_MCAST))
1040 		ARP_STATINC(ARP_STAT_RCVMCAST);
1041 
1042 	/*
1043 	 * Search for a matching interface address
1044 	 * or any address on the interface to use
1045 	 * as a dummy address in the rest of this function.
1046 	 *
1047 	 * First try and find the source address for early
1048 	 * duplicate address detection.
1049 	 */
1050 	if (in_nullhost(isaddr)) {
1051 		if (in_nullhost(itaddr)) /* very bogus ARP */
1052 			goto out;
1053 		find_source = false;
1054 		myaddr = itaddr;
1055 	} else {
1056 		find_source = true;
1057 		myaddr = isaddr;
1058 	}
1059 	s = pserialize_read_enter();
1060 again:
1061 	IN_ADDRHASH_READER_FOREACH(ia, myaddr.s_addr) {
1062 		if (!in_hosteq(ia->ia_addr.sin_addr, myaddr))
1063 			continue;
1064 #if NCARP > 0
1065 		if (ia->ia_ifp->if_type == IFT_CARP &&
1066 		    ((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) ==
1067 		    (IFF_UP|IFF_RUNNING))) {
1068 			index++;
1069 			/* XXX: ar_hln? */
1070 			if (ia->ia_ifp == rcvif && (ah->ar_hln >= 6) &&
1071 			    carp_iamatch(ia, ar_sha(ah),
1072 			    &count, index)) {
1073 				break;
1074 			}
1075 		} else
1076 #endif
1077 		if (ia->ia_ifp == rcvif)
1078 			break;
1079 #if NBRIDGE > 0
1080 		/*
1081 		 * If the interface we received the packet on
1082 		 * is part of a bridge, check to see if we need
1083 		 * to "bridge" the packet to ourselves at this
1084 		 * layer.  Note we still prefer a perfect match,
1085 		 * but allow this weaker match if necessary.
1086 		 */
1087 		if (rcvif->if_bridge != NULL &&
1088 		    rcvif->if_bridge == ia->ia_ifp->if_bridge)
1089 			bridge_ia = ia;
1090 #endif
1091 	}
1092 
1093 #if NBRIDGE > 0
1094 	if (ia == NULL && bridge_ia != NULL) {
1095 		ia = bridge_ia;
1096 		m_put_rcvif_psref(rcvif, &psref);
1097 		rcvif = NULL;
1098 		/* FIXME */
1099 		ifp = bridge_ia->ia_ifp;
1100 	}
1101 #endif
1102 
1103 	/* If we failed to find the source address then find
1104 	 * the target address. */
1105 	if (ia == NULL && find_source && !in_nullhost(itaddr)) {
1106 		find_source = false;
1107 		myaddr = itaddr;
1108 		goto again;
1109 	}
1110 
1111 	if (ia != NULL)
1112 		ia4_acquire(ia, &psref_ia);
1113 	pserialize_read_exit(s);
1114 
1115 	if (ah->ar_hln != ifp->if_addrlen) {
1116 		ARP_STATINC(ARP_STAT_RCVBADLEN);
1117 		log(LOG_WARNING,
1118 		    "arp from %s: addr len: new %d, i/f %d (ignored)\n",
1119 		    IN_PRINT(ipbuf, &isaddr), ah->ar_hln, ifp->if_addrlen);
1120 		goto out;
1121 	}
1122 
1123 	/* Only do DaD if we have a matching address. */
1124 	do_dad = (ia != NULL);
1125 
1126 	if (ia == NULL) {
1127 		ia = in_get_ia_on_iface_psref(isaddr, rcvif, &psref_ia);
1128 		if (ia == NULL) {
1129 			ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
1130 			if (ia == NULL) {
1131 				ARP_STATINC(ARP_STAT_RCVNOINT);
1132 				goto out;
1133 			}
1134 		}
1135 	}
1136 
1137 	myaddr = ia->ia_addr.sin_addr;
1138 
1139 	/* XXX checks for bridge case? */
1140 	if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) {
1141 		ARP_STATINC(ARP_STAT_RCVBCASTSHA);
1142 		log(LOG_ERR,
1143 		    "%s: arp: link address is broadcast for IP address %s!\n",
1144 		    ifp->if_xname, IN_PRINT(ipbuf, &isaddr));
1145 		goto out;
1146 	}
1147 
1148 	/*
1149 	 * If the source IP address is zero, this is an RFC 5227 ARP probe
1150 	 */
1151 	if (in_nullhost(isaddr))
1152 		ARP_STATINC(ARP_STAT_RCVZEROSPA);
1153 	else if (in_hosteq(isaddr, myaddr))
1154 		ARP_STATINC(ARP_STAT_RCVLOCALSPA);
1155 
1156 	if (in_nullhost(itaddr))
1157 		ARP_STATINC(ARP_STAT_RCVZEROTPA);
1158 
1159 	/*
1160 	 * DAD check, RFC 5227.
1161 	 * Collision on sender address is always a duplicate.
1162 	 * Collision on target address is only a duplicate
1163 	 * IF the sender address is the null host (ie a DAD probe)
1164 	 * AND the message was broadcast
1165 	 * AND our address is either tentative or duplicated
1166 	 * If it was unicast then it's a valid Unicast Poll from RFC 1122.
1167 	 */
1168 	if (do_dad &&
1169 	    (in_hosteq(isaddr, myaddr) ||
1170 	    (in_nullhost(isaddr) && in_hosteq(itaddr, myaddr) &&
1171 	     m->m_flags & M_BCAST &&
1172 	     ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DUPLICATED))))
1173 	{
1174 		struct sockaddr_dl sdl, *sdlp;
1175 
1176 		sdlp = sockaddr_dl_init(&sdl, sizeof(sdl),
1177 		    ifp->if_index, ifp->if_type,
1178 		    NULL, 0, ar_sha(ah), ah->ar_hln);
1179 		arp_dad_duplicated((struct ifaddr *)ia, sdlp);
1180 		goto out;
1181 	}
1182 
1183 	/*
1184 	 * If the target IP address is zero, ignore the packet.
1185 	 * This prevents the code below from trying to answer
1186 	 * when we are using IP address zero (booting).
1187 	 */
1188 	if (in_nullhost(itaddr))
1189 		goto out;
1190 
1191 	if (in_nullhost(isaddr))
1192 		goto reply;
1193 
1194 	if (in_hosteq(itaddr, myaddr))
1195 		la = arpcreate(ifp, &isaddr, NULL, 1);
1196 	else
1197 		la = arplookup(ifp, &isaddr, NULL, 1);
1198 	if (la == NULL)
1199 		goto reply;
1200 
1201 	if ((la->la_flags & LLE_VALID) &&
1202 	    memcmp(ar_sha(ah), &la->ll_addr, ifp->if_addrlen))
1203 	{
1204 		char llabuf[LLA_ADDRSTRLEN], *llastr;
1205 
1206 		llastr = lla_snprintf(llabuf, sizeof(llabuf),
1207 		    ar_sha(ah), ah->ar_hln);
1208 
1209 		if (la->la_flags & LLE_STATIC) {
1210 			ARP_STATINC(ARP_STAT_RCVOVERPERM);
1211 			if (!log_permanent_modify)
1212 				goto out;
1213 			log(LOG_INFO,
1214 			    "%s tried to overwrite permanent arp info"
1215 			    " for %s\n", llastr, IN_PRINT(ipbuf, &isaddr));
1216 			goto out;
1217 		} else if (la->lle_tbl->llt_ifp != ifp) {
1218 			/* XXX should not happen? */
1219 			ARP_STATINC(ARP_STAT_RCVOVERINT);
1220 			if (!log_wrong_iface)
1221 				goto out;
1222 			log(LOG_INFO,
1223 			    "%s on %s tried to overwrite "
1224 			    "arp info for %s on %s\n",
1225 			    llastr,
1226 			    ifp->if_xname, IN_PRINT(ipbuf, &isaddr),
1227 			    la->lle_tbl->llt_ifp->if_xname);
1228 				goto out;
1229 		} else {
1230 			ARP_STATINC(ARP_STAT_RCVOVER);
1231 			if (log_movements)
1232 				log(LOG_INFO, "arp info overwritten "
1233 				    "for %s by %s\n",
1234 				    IN_PRINT(ipbuf, &isaddr), llastr);
1235 		}
1236 		rt_cmd = RTM_CHANGE;
1237 	} else
1238 		rt_cmd = la->la_flags & LLE_VALID ? 0 : RTM_ADD;
1239 
1240 	KASSERT(ifp->if_sadl->sdl_alen == ifp->if_addrlen);
1241 
1242 	KASSERT(sizeof(la->ll_addr) >= ifp->if_addrlen);
1243 	memcpy(&la->ll_addr, ar_sha(ah), ifp->if_addrlen);
1244 	la->la_flags |= LLE_VALID;
1245 	if ((la->la_flags & LLE_STATIC) == 0) {
1246 		la->la_expire = time_uptime + arpt_keep;
1247 		arp_settimer(la, arpt_keep);
1248 	}
1249 	la->la_asked = 0;
1250 	/* rt->rt_flags &= ~RTF_REJECT; */
1251 
1252 	if (rt_cmd != 0) {
1253 		struct sockaddr_in sin;
1254 
1255 		sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
1256 		rt_clonedmsg(rt_cmd, NULL, sintosa(&sin), ar_sha(ah), ifp);
1257 	}
1258 
1259 	if (la->la_hold != NULL) {
1260 		int n = la->la_numheld;
1261 		struct mbuf *m_hold, *m_hold_next;
1262 		struct sockaddr_in sin;
1263 
1264 		sockaddr_in_init(&sin, &la->r_l3addr.addr4, 0);
1265 
1266 		m_hold = la->la_hold;
1267 		la->la_hold = NULL;
1268 		la->la_numheld = 0;
1269 		/*
1270 		 * We have to unlock here because if_output would call
1271 		 * arpresolve
1272 		 */
1273 		LLE_WUNLOCK(la);
1274 		ARP_STATADD(ARP_STAT_DFRSENT, n);
1275 		ARP_STATADD(ARP_STAT_DFRTOTAL, n);
1276 		for (; m_hold != NULL; m_hold = m_hold_next) {
1277 			m_hold_next = m_hold->m_nextpkt;
1278 			m_hold->m_nextpkt = NULL;
1279 			if_output_lock(ifp, ifp, m_hold, sintosa(&sin), NULL);
1280 		}
1281 	} else
1282 		LLE_WUNLOCK(la);
1283 	la = NULL;
1284 
1285 reply:
1286 	if (la != NULL) {
1287 		LLE_WUNLOCK(la);
1288 		la = NULL;
1289 	}
1290 	if (op != ARPOP_REQUEST) {
1291 		if (op == ARPOP_REPLY)
1292 			ARP_STATINC(ARP_STAT_RCVREPLY);
1293 		goto out;
1294 	}
1295 	ARP_STATINC(ARP_STAT_RCVREQUEST);
1296 	if (in_hosteq(itaddr, myaddr)) {
1297 		/* If our address is unusable, don't reply */
1298 		if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED))
1299 			goto out;
1300 		/* I am the target */
1301 		tha = ar_tha(ah);
1302 		if (tha)
1303 			memcpy(tha, ar_sha(ah), ah->ar_hln);
1304 		memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1305 	} else {
1306 		/* Proxy ARP */
1307 		struct llentry *lle = NULL;
1308 		struct sockaddr_in sin;
1309 
1310 #if NCARP > 0
1311 		if (ifp->if_type == IFT_CARP) {
1312 			struct ifnet *_rcvif = m_get_rcvif(m, &s);
1313 			int iftype = 0;
1314 			if (__predict_true(_rcvif != NULL))
1315 				iftype = _rcvif->if_type;
1316 			m_put_rcvif(_rcvif, &s);
1317 			if (iftype != IFT_CARP)
1318 				goto out;
1319 		}
1320 #endif
1321 
1322 		tha = ar_tha(ah);
1323 
1324 		sockaddr_in_init(&sin, &itaddr, 0);
1325 
1326 		IF_AFDATA_RLOCK(ifp);
1327 		lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin);
1328 		IF_AFDATA_RUNLOCK(ifp);
1329 
1330 		if ((lle != NULL) && (lle->la_flags & LLE_PUB)) {
1331 			if (tha)
1332 				memcpy(tha, ar_sha(ah), ah->ar_hln);
1333 			memcpy(ar_sha(ah), &lle->ll_addr, ah->ar_hln);
1334 			LLE_RUNLOCK(lle);
1335 		} else {
1336 			if (lle != NULL)
1337 				LLE_RUNLOCK(lle);
1338 			goto out;
1339 		}
1340 	}
1341 	ia4_release(ia, &psref_ia);
1342 
1343 	/*
1344 	 * XXX XXX: Here we're recycling the mbuf. But the mbuf could have
1345 	 * other mbufs in its chain, and just overwriting m->m_pkthdr.len
1346 	 * would be wrong in this case (the length becomes smaller than the
1347 	 * real chain size).
1348 	 *
1349 	 * This can theoretically cause bugs in the lower layers (drivers,
1350 	 * and L2encap), in some corner cases.
1351 	 */
1352 	memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln);
1353 	memcpy(ar_spa(ah), &itaddr, ah->ar_pln);
1354 	ah->ar_op = htons(ARPOP_REPLY);
1355 	ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */
1356 	switch (ifp->if_type) {
1357 	case IFT_IEEE1394:
1358 		/* ieee1394 arp reply is broadcast */
1359 		m->m_flags &= ~M_MCAST;
1360 		m->m_flags |= M_BCAST;
1361 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln;
1362 		break;
1363 	default:
1364 		m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */
1365 		m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln);
1366 		break;
1367 	}
1368 	m->m_pkthdr.len = m->m_len;
1369 	sa.sa_family = AF_ARP;
1370 	sa.sa_len = 2;
1371 	arps = ARP_STAT_GETREF();
1372 	arps[ARP_STAT_SNDTOTAL]++;
1373 	arps[ARP_STAT_SNDREPLY]++;
1374 	ARP_STAT_PUTREF();
1375 	if_output_lock(ifp, ifp, m, &sa, NULL);
1376 	if (rcvif != NULL)
1377 		m_put_rcvif_psref(rcvif, &psref);
1378 	return;
1379 
1380 out:
1381 	if (la != NULL)
1382 		LLE_WUNLOCK(la);
1383 	if (ia != NULL)
1384 		ia4_release(ia, &psref_ia);
1385 	if (rcvif != NULL)
1386 		m_put_rcvif_psref(rcvif, &psref);
1387 	m_freem(m);
1388 }
1389 
1390 /*
1391  * Lookup or a new address in arptab.
1392  */
1393 static struct llentry *
1394 arplookup(struct ifnet *ifp, const struct in_addr *addr,
1395     const struct sockaddr *sa, int wlock)
1396 {
1397 	struct sockaddr_in sin;
1398 	struct llentry *la;
1399 	int flags = wlock ? LLE_EXCLUSIVE : 0;
1400 
1401 	if (sa == NULL) {
1402 		KASSERT(addr != NULL);
1403 		sockaddr_in_init(&sin, addr, 0);
1404 		sa = sintocsa(&sin);
1405 	}
1406 
1407 	IF_AFDATA_RLOCK(ifp);
1408 	la = lla_lookup(LLTABLE(ifp), flags, sa);
1409 	IF_AFDATA_RUNLOCK(ifp);
1410 
1411 	return la;
1412 }
1413 
1414 static struct llentry *
1415 arpcreate(struct ifnet *ifp, const struct in_addr *addr,
1416     const struct sockaddr *sa, int wlock)
1417 {
1418 	struct sockaddr_in sin;
1419 	struct llentry *la;
1420 	int flags = wlock ? LLE_EXCLUSIVE : 0;
1421 
1422 	if (sa == NULL) {
1423 		KASSERT(addr != NULL);
1424 		sockaddr_in_init(&sin, addr, 0);
1425 		sa = sintocsa(&sin);
1426 	}
1427 
1428 	la = arplookup(ifp, addr, sa, wlock);
1429 
1430 	if (la == NULL) {
1431 		struct rtentry *rt;
1432 
1433 		rt = rtalloc1(sa, 0);
1434 		IF_AFDATA_WLOCK(ifp);
1435 		la = lla_create(LLTABLE(ifp), flags, sa, rt);
1436 		IF_AFDATA_WUNLOCK(ifp);
1437 		if (rt != NULL)
1438 			rt_unref(rt);
1439 
1440 		if (la != NULL)
1441 			arp_init_llentry(ifp, la);
1442 	}
1443 
1444 	return la;
1445 }
1446 
1447 int
1448 arpioctl(u_long cmd, void *data)
1449 {
1450 
1451 	return EOPNOTSUPP;
1452 }
1453 
1454 void
1455 arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
1456 {
1457 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1458 
1459 	ifa->ifa_rtrequest = arp_rtrequest;
1460 	ifa->ifa_flags |= RTF_CONNECTED;
1461 
1462 	/* ARP will handle DAD for this address. */
1463 	if (in_nullhost(IA_SIN(ifa)->sin_addr)) {
1464 		if (ia->ia_dad_stop != NULL)	/* safety */
1465 			ia->ia_dad_stop(ifa);
1466 		ia->ia_dad_start = NULL;
1467 		ia->ia_dad_stop = NULL;
1468 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1469 	} else {
1470 		ia->ia_dad_start = arp_dad_start;
1471 		ia->ia_dad_stop = arp_dad_stop;
1472 		if (ia->ia4_flags & IN_IFF_TRYTENTATIVE && ip_dad_enabled())
1473 			ia->ia4_flags |= IN_IFF_TENTATIVE;
1474 		else
1475 			arpannounce1(ifa);
1476 	}
1477 }
1478 
1479 TAILQ_HEAD(dadq_head, dadq);
1480 struct dadq {
1481 	TAILQ_ENTRY(dadq) dad_list;
1482 	struct ifaddr *dad_ifa;
1483 	int dad_count;		/* max ARP to send */
1484 	int dad_arp_tcount;	/* # of trials to send ARP */
1485 	int dad_arp_ocount;	/* ARP sent so far */
1486 	int dad_arp_announce;	/* max ARP announcements */
1487 	int dad_arp_acount;	/* # of announcements */
1488 	struct callout dad_timer_ch;
1489 };
1490 
1491 static struct dadq_head dadq;
1492 static int dad_maxtry = 15;     /* max # of *tries* to transmit DAD packet */
1493 static kmutex_t arp_dad_lock;
1494 
1495 static void
1496 arp_dad_init(void)
1497 {
1498 
1499 	TAILQ_INIT(&dadq);
1500 	mutex_init(&arp_dad_lock, MUTEX_DEFAULT, IPL_NONE);
1501 }
1502 
1503 static struct dadq *
1504 arp_dad_find(struct ifaddr *ifa)
1505 {
1506 	struct dadq *dp;
1507 
1508 	KASSERT(mutex_owned(&arp_dad_lock));
1509 
1510 	TAILQ_FOREACH(dp, &dadq, dad_list) {
1511 		if (dp->dad_ifa == ifa)
1512 			return dp;
1513 	}
1514 	return NULL;
1515 }
1516 
1517 static void
1518 arp_dad_starttimer(struct dadq *dp, int ticks)
1519 {
1520 
1521 	callout_reset(&dp->dad_timer_ch, ticks,
1522 	    (void (*)(void *))arp_dad_timer, dp);
1523 }
1524 
1525 static void
1526 arp_dad_stoptimer(struct dadq *dp)
1527 {
1528 
1529 	KASSERT(mutex_owned(&arp_dad_lock));
1530 
1531 	TAILQ_REMOVE(&dadq, dp, dad_list);
1532 	/* Tell the timer that dp is being destroyed. */
1533 	dp->dad_ifa = NULL;
1534 	callout_halt(&dp->dad_timer_ch, &arp_dad_lock);
1535 }
1536 
1537 static void
1538 arp_dad_destroytimer(struct dadq *dp)
1539 {
1540 
1541 	callout_destroy(&dp->dad_timer_ch);
1542 	KASSERT(dp->dad_ifa == NULL);
1543 	kmem_intr_free(dp, sizeof(*dp));
1544 }
1545 
1546 static void
1547 arp_dad_output(struct dadq *dp, struct ifaddr *ifa)
1548 {
1549 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1550 	struct ifnet *ifp = ifa->ifa_ifp;
1551 	struct in_addr sip;
1552 
1553 	dp->dad_arp_tcount++;
1554 	if ((ifp->if_flags & IFF_UP) == 0)
1555 		return;
1556 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1557 		return;
1558 
1559 	dp->dad_arp_tcount = 0;
1560 	dp->dad_arp_ocount++;
1561 
1562 	memset(&sip, 0, sizeof(sip));
1563 	arprequest(ifa->ifa_ifp, &sip, &ia->ia_addr.sin_addr,
1564 	    CLLADDR(ifa->ifa_ifp->if_sadl));
1565 }
1566 
1567 /*
1568  * Start Duplicate Address Detection (DAD) for specified interface address.
1569  */
1570 static void
1571 arp_dad_start(struct ifaddr *ifa)
1572 {
1573 	struct in_ifaddr *ia = (struct in_ifaddr *)ifa;
1574 	struct dadq *dp;
1575 	char ipbuf[INET_ADDRSTRLEN];
1576 
1577 	/*
1578 	 * If we don't need DAD, don't do it.
1579 	 * - DAD is disabled
1580 	 */
1581 	if (!(ia->ia4_flags & IN_IFF_TENTATIVE)) {
1582 		log(LOG_DEBUG,
1583 		    "%s: called with non-tentative address %s(%s)\n", __func__,
1584 		    IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1585 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1586 		return;
1587 	}
1588 	if (!ip_dad_enabled()) {
1589 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1590 		rt_addrmsg(RTM_NEWADDR, ifa);
1591 		arpannounce1(ifa);
1592 		return;
1593 	}
1594 	KASSERT(ifa->ifa_ifp != NULL);
1595 	if (!(ifa->ifa_ifp->if_flags & IFF_UP))
1596 		return;
1597 
1598 	dp = kmem_intr_alloc(sizeof(*dp), KM_NOSLEEP);
1599 
1600 	mutex_enter(&arp_dad_lock);
1601 	if (arp_dad_find(ifa) != NULL) {
1602 		mutex_exit(&arp_dad_lock);
1603 		/* DAD already in progress */
1604 		if (dp != NULL)
1605 			kmem_intr_free(dp, sizeof(*dp));
1606 		return;
1607 	}
1608 
1609 	if (dp == NULL) {
1610 		mutex_exit(&arp_dad_lock);
1611 		log(LOG_ERR, "%s: memory allocation failed for %s(%s)\n",
1612 		    __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1613 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1614 		return;
1615 	}
1616 
1617 	/*
1618 	 * Send ARP packet for DAD, ip_dad_count times.
1619 	 * Note that we must delay the first transmission.
1620 	 */
1621 	callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE);
1622 	dp->dad_ifa = ifa;
1623 	ifaref(ifa);	/* just for safety */
1624 	dp->dad_count = ip_dad_count;
1625 	dp->dad_arp_announce = 0; /* Will be set when starting to announce */
1626 	dp->dad_arp_acount = dp->dad_arp_ocount = dp->dad_arp_tcount = 0;
1627 	TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list);
1628 
1629 	ARPLOG(LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp),
1630 	    ARPLOGADDR(&ia->ia_addr.sin_addr));
1631 
1632 	arp_dad_starttimer(dp, cprng_fast32() % (PROBE_WAIT * hz));
1633 
1634 	mutex_exit(&arp_dad_lock);
1635 }
1636 
1637 /*
1638  * terminate DAD unconditionally.  used for address removals.
1639  */
1640 static void
1641 arp_dad_stop(struct ifaddr *ifa)
1642 {
1643 	struct dadq *dp;
1644 
1645 	mutex_enter(&arp_dad_lock);
1646 	dp = arp_dad_find(ifa);
1647 	if (dp == NULL) {
1648 		mutex_exit(&arp_dad_lock);
1649 		/* DAD wasn't started yet */
1650 		return;
1651 	}
1652 
1653 	arp_dad_stoptimer(dp);
1654 
1655 	mutex_exit(&arp_dad_lock);
1656 
1657 	arp_dad_destroytimer(dp);
1658 	ifafree(ifa);
1659 }
1660 
1661 static void
1662 arp_dad_timer(struct dadq *dp)
1663 {
1664 	struct ifaddr *ifa;
1665 	struct in_ifaddr *ia;
1666 	char ipbuf[INET_ADDRSTRLEN];
1667 	bool need_free = false;
1668 
1669 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
1670 	mutex_enter(&arp_dad_lock);
1671 
1672 	ifa = dp->dad_ifa;
1673 	if (ifa == NULL) {
1674 		/* dp is being destroyed by someone.  Do nothing. */
1675 		goto done;
1676 	}
1677 
1678 	ia = (struct in_ifaddr *)ifa;
1679 	if (ia->ia4_flags & IN_IFF_DUPLICATED) {
1680 		log(LOG_ERR, "%s: called with duplicate address %s(%s)\n",
1681 		    __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1682 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1683 		goto done;
1684 	}
1685 	if ((ia->ia4_flags & IN_IFF_TENTATIVE) == 0 && dp->dad_arp_acount == 0)
1686 	{
1687 		log(LOG_ERR, "%s: called with non-tentative address %s(%s)\n",
1688 		    __func__, IN_PRINT(ipbuf, &ia->ia_addr.sin_addr),
1689 		    ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
1690 		goto done;
1691 	}
1692 
1693 	/* timeouted with IFF_{RUNNING,UP} check */
1694 	if (dp->dad_arp_tcount > dad_maxtry) {
1695 		ARPLOG(LOG_INFO, "%s: could not run DAD, driver problem?\n",
1696 		    if_name(ifa->ifa_ifp));
1697 
1698 		arp_dad_stoptimer(dp);
1699 		need_free = true;
1700 		goto done;
1701 	}
1702 
1703 	/* Need more checks? */
1704 	if (dp->dad_arp_ocount < dp->dad_count) {
1705 		int adelay;
1706 
1707 		/*
1708 		 * We have more ARP to go.  Send ARP packet for DAD.
1709 		 */
1710 		arp_dad_output(dp, ifa);
1711 		if (dp->dad_arp_ocount < dp->dad_count)
1712 			adelay = (PROBE_MIN * hz) +
1713 			    (cprng_fast32() %
1714 			    ((PROBE_MAX * hz) - (PROBE_MIN * hz)));
1715 		else
1716 			adelay = ANNOUNCE_WAIT * hz;
1717 		arp_dad_starttimer(dp, adelay);
1718 		goto done;
1719 	} else if (dp->dad_arp_acount == 0) {
1720 		/*
1721 		 * We are done with DAD.
1722 		 * No duplicate address found.
1723 		 */
1724 		ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1725 		rt_addrmsg(RTM_NEWADDR, ifa);
1726 		ARPLOG(LOG_DEBUG,
1727 		    "%s: DAD complete for %s - no duplicates found\n",
1728 		    if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr));
1729 		dp->dad_arp_announce = ANNOUNCE_NUM;
1730 		goto announce;
1731 	} else if (dp->dad_arp_acount < dp->dad_arp_announce) {
1732 announce:
1733 		/*
1734 		 * Announce the address.
1735 		 */
1736 		arpannounce1(ifa);
1737 		dp->dad_arp_acount++;
1738 		if (dp->dad_arp_acount < dp->dad_arp_announce) {
1739 			arp_dad_starttimer(dp, ANNOUNCE_INTERVAL * hz);
1740 			goto done;
1741 		}
1742 		ARPLOG(LOG_DEBUG,
1743 		    "%s: ARP announcement complete for %s\n",
1744 		    if_name(ifa->ifa_ifp), ARPLOGADDR(&ia->ia_addr.sin_addr));
1745 	}
1746 
1747 	arp_dad_stoptimer(dp);
1748 	need_free = true;
1749 done:
1750 	mutex_exit(&arp_dad_lock);
1751 
1752 	if (need_free) {
1753 		arp_dad_destroytimer(dp);
1754 		KASSERT(ifa != NULL);
1755 		ifafree(ifa);
1756 	}
1757 
1758 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1759 }
1760 
1761 static void
1762 arp_dad_duplicated(struct ifaddr *ifa, const struct sockaddr_dl *from)
1763 {
1764 	struct in_ifaddr *ia = ifatoia(ifa);
1765 	struct ifnet *ifp = ifa->ifa_ifp;
1766 	char ipbuf[INET_ADDRSTRLEN], llabuf[LLA_ADDRSTRLEN];
1767 	const char *iastr, *llastr;
1768 
1769 	iastr = IN_PRINT(ipbuf, &ia->ia_addr.sin_addr);
1770 	if (__predict_false(from == NULL))
1771 		llastr = NULL;
1772 	else
1773 		llastr = lla_snprintf(llabuf, sizeof(llabuf),
1774 		    CLLADDR(from), from->sdl_alen);
1775 
1776 	if (ia->ia4_flags & (IN_IFF_TENTATIVE|IN_IFF_DUPLICATED)) {
1777 		log(LOG_ERR,
1778 		    "%s: DAD duplicate address %s from %s\n",
1779 		    if_name(ifp), iastr, llastr);
1780 	} else if (ia->ia_dad_defended == 0 ||
1781 		   ia->ia_dad_defended < time_uptime - DEFEND_INTERVAL) {
1782 		ia->ia_dad_defended = time_uptime;
1783 		arpannounce1(ifa);
1784 		log(LOG_ERR,
1785 		    "%s: DAD defended address %s from %s\n",
1786 		    if_name(ifp), iastr, llastr);
1787 		return;
1788 	} else {
1789 		/* If DAD is disabled, just report the duplicate. */
1790 		if (!ip_dad_enabled()) {
1791 			log(LOG_ERR,
1792 			    "%s: DAD ignoring duplicate address %s from %s\n",
1793 			    if_name(ifp), iastr, llastr);
1794 			return;
1795 		}
1796 		log(LOG_ERR,
1797 		    "%s: DAD defence failed for %s from %s\n",
1798 		    if_name(ifp), iastr, llastr);
1799 	}
1800 
1801 	arp_dad_stop(ifa);
1802 
1803 	ia->ia4_flags &= ~IN_IFF_TENTATIVE;
1804 	if ((ia->ia4_flags & IN_IFF_DUPLICATED) == 0) {
1805 		ia->ia4_flags |= IN_IFF_DUPLICATED;
1806 		/* Inform the routing socket of the duplicate address */
1807 		rt_addrmsg_src(RTM_NEWADDR, ifa, (const struct sockaddr *)from);
1808 	}
1809 }
1810 
1811 /*
1812  * Called from 10 Mb/s Ethernet interrupt handlers
1813  * when ether packet type ETHERTYPE_REVARP
1814  * is received.  Common length and type checks are done here,
1815  * then the protocol-specific routine is called.
1816  */
1817 void
1818 revarpinput(struct mbuf *m)
1819 {
1820 	struct arphdr *ar;
1821 	int arplen;
1822 
1823 	arplen = sizeof(struct arphdr);
1824 	if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
1825 		return;
1826 	ar = mtod(m, struct arphdr *);
1827 
1828 	if (ntohs(ar->ar_hrd) == ARPHRD_IEEE1394) {
1829 		goto out;
1830 	}
1831 
1832 	arplen = sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln);
1833 	if (m->m_len < arplen && (m = m_pullup(m, arplen)) == NULL)
1834 		return;
1835 	ar = mtod(m, struct arphdr *);
1836 
1837 	switch (ntohs(ar->ar_pro)) {
1838 	case ETHERTYPE_IP:
1839 	case ETHERTYPE_IPTRAILERS:
1840 		in_revarpinput(m);
1841 		return;
1842 
1843 	default:
1844 		break;
1845 	}
1846 
1847 out:
1848 	m_freem(m);
1849 }
1850 
1851 /*
1852  * RARP for Internet protocols on 10 Mb/s Ethernet.
1853  * Algorithm is that given in RFC 903.
1854  * We are only using for bootstrap purposes to get an ip address for one of
1855  * our interfaces.  Thus we support no user-interface.
1856  *
1857  * Since the contents of the RARP reply are specific to the interface that
1858  * sent the request, this code must ensure that they are properly associated.
1859  *
1860  * Note: also supports ARP via RARP packets, per the RFC.
1861  */
1862 void
1863 in_revarpinput(struct mbuf *m)
1864 {
1865 	struct arphdr *ah;
1866 	void *tha;
1867 	int op;
1868 	struct ifnet *rcvif;
1869 	int s;
1870 
1871 	ah = mtod(m, struct arphdr *);
1872 	op = ntohs(ah->ar_op);
1873 
1874 	rcvif = m_get_rcvif(m, &s);
1875 	if (__predict_false(rcvif == NULL))
1876 		goto out;
1877 	if (rcvif->if_flags & IFF_NOARP)
1878 		goto out;
1879 
1880 	switch (rcvif->if_type) {
1881 	case IFT_IEEE1394:
1882 		/* ARP without target hardware address is not supported */
1883 		goto out;
1884 	default:
1885 		break;
1886 	}
1887 
1888 	switch (op) {
1889 	case ARPOP_REQUEST:
1890 	case ARPOP_REPLY:	/* per RFC */
1891 		m_put_rcvif(rcvif, &s);
1892 		in_arpinput(m);
1893 		return;
1894 	case ARPOP_REVREPLY:
1895 		break;
1896 	case ARPOP_REVREQUEST:	/* handled by rarpd(8) */
1897 	default:
1898 		goto out;
1899 	}
1900 	if (!revarp_in_progress)
1901 		goto out;
1902 	if (rcvif != myip_ifp) /* !same interface */
1903 		goto out;
1904 	if (myip_initialized)
1905 		goto wake;
1906 	tha = ar_tha(ah);
1907 	if (tha == NULL)
1908 		goto out;
1909 	if (ah->ar_pln != sizeof(struct in_addr))
1910 		goto out;
1911 	if (ah->ar_hln != rcvif->if_sadl->sdl_alen)
1912 		goto out;
1913 	if (memcmp(tha, CLLADDR(rcvif->if_sadl), rcvif->if_sadl->sdl_alen))
1914 		goto out;
1915 	memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip));
1916 	memcpy(&myip, ar_tpa(ah), sizeof(myip));
1917 	myip_initialized = 1;
1918 wake:	/* Do wakeup every time in case it was missed. */
1919 	wakeup((void *)&myip);
1920 
1921 out:
1922 	m_put_rcvif(rcvif, &s);
1923 	m_freem(m);
1924 }
1925 
1926 /*
1927  * Send a RARP request for the ip address of the specified interface.
1928  * The request should be RFC 903-compliant.
1929  */
1930 static void
1931 revarprequest(struct ifnet *ifp)
1932 {
1933 	struct sockaddr sa;
1934 	struct mbuf *m;
1935 	struct arphdr *ah;
1936 	void *tha;
1937 
1938 	if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
1939 		return;
1940 	MCLAIM(m, &arpdomain.dom_mowner);
1941 	m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) +
1942 	    2*ifp->if_addrlen;
1943 	m->m_pkthdr.len = m->m_len;
1944 	m_align(m, m->m_len);
1945 	ah = mtod(m, struct arphdr *);
1946 	memset(ah, 0, m->m_len);
1947 	ah->ar_pro = htons(ETHERTYPE_IP);
1948 	ah->ar_hln = ifp->if_addrlen;		/* hardware address length */
1949 	ah->ar_pln = sizeof(struct in_addr);	/* protocol address length */
1950 	ah->ar_op = htons(ARPOP_REVREQUEST);
1951 
1952 	memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
1953 	tha = ar_tha(ah);
1954 	if (tha == NULL) {
1955 		m_free(m);
1956 		return;
1957 	}
1958 	memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln);
1959 
1960 	sa.sa_family = AF_ARP;
1961 	sa.sa_len = 2;
1962 	m->m_flags |= M_BCAST;
1963 
1964 	if_output_lock(ifp, ifp, m, &sa, NULL);
1965 }
1966 
1967 /*
1968  * RARP for the ip address of the specified interface, but also
1969  * save the ip address of the server that sent the answer.
1970  * Timeout if no response is received.
1971  */
1972 int
1973 revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in,
1974     struct in_addr *clnt_in)
1975 {
1976 	int result, count = 20;
1977 
1978 	myip_initialized = 0;
1979 	myip_ifp = ifp;
1980 
1981 	revarp_in_progress = 1;
1982 	while (count--) {
1983 		revarprequest(ifp);
1984 		result = tsleep((void *)&myip, PSOCK, "revarp", hz/2);
1985 		if (result != EWOULDBLOCK)
1986 			break;
1987 	}
1988 	revarp_in_progress = 0;
1989 
1990 	if (!myip_initialized)
1991 		return ENETUNREACH;
1992 
1993 	memcpy(serv_in, &srv_ip, sizeof(*serv_in));
1994 	memcpy(clnt_in, &myip, sizeof(*clnt_in));
1995 	return 0;
1996 }
1997 
1998 void
1999 arp_stat_add(int type, uint64_t count)
2000 {
2001 	ARP_STATADD(type, count);
2002 }
2003 
2004 static int
2005 sysctl_net_inet_arp_stats(SYSCTLFN_ARGS)
2006 {
2007 
2008 	return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS);
2009 }
2010 
2011 static void
2012 sysctl_net_inet_arp_setup(struct sysctllog **clog)
2013 {
2014 	const struct sysctlnode *node;
2015 
2016 	sysctl_createv(clog, 0, NULL, NULL,
2017 			CTLFLAG_PERMANENT,
2018 			CTLTYPE_NODE, "inet", NULL,
2019 			NULL, 0, NULL, 0,
2020 			CTL_NET, PF_INET, CTL_EOL);
2021 	sysctl_createv(clog, 0, NULL, &node,
2022 			CTLFLAG_PERMANENT,
2023 			CTLTYPE_NODE, "arp",
2024 			SYSCTL_DESCR("Address Resolution Protocol"),
2025 			NULL, 0, NULL, 0,
2026 			CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
2027 
2028 	sysctl_createv(clog, 0, NULL, NULL,
2029 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2030 			CTLTYPE_INT, "keep",
2031 			SYSCTL_DESCR("Valid ARP entry lifetime in seconds"),
2032 			NULL, 0, &arpt_keep, 0,
2033 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2034 
2035 	sysctl_createv(clog, 0, NULL, NULL,
2036 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2037 			CTLTYPE_INT, "down",
2038 			SYSCTL_DESCR("Failed ARP entry lifetime in seconds"),
2039 			NULL, 0, &arpt_down, 0,
2040 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2041 
2042 	sysctl_createv(clog, 0, NULL, NULL,
2043 			CTLFLAG_PERMANENT,
2044 			CTLTYPE_STRUCT, "stats",
2045 			SYSCTL_DESCR("ARP statistics"),
2046 			sysctl_net_inet_arp_stats, 0, NULL, 0,
2047 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2048 
2049 	sysctl_createv(clog, 0, NULL, NULL,
2050 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2051 			CTLTYPE_INT, "log_movements",
2052 			SYSCTL_DESCR("log ARP replies from MACs different than"
2053 			    " the one in the cache"),
2054 			NULL, 0, &log_movements, 0,
2055 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2056 
2057 	sysctl_createv(clog, 0, NULL, NULL,
2058 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2059 			CTLTYPE_INT, "log_permanent_modify",
2060 			SYSCTL_DESCR("log ARP replies from MACs different than"
2061 			    " the one in the permanent arp entry"),
2062 			NULL, 0, &log_permanent_modify, 0,
2063 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2064 
2065 	sysctl_createv(clog, 0, NULL, NULL,
2066 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2067 			CTLTYPE_INT, "log_wrong_iface",
2068 			SYSCTL_DESCR("log ARP packets arriving on the wrong"
2069 			    " interface"),
2070 			NULL, 0, &log_wrong_iface, 0,
2071 			CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2072 
2073 	sysctl_createv(clog, 0, NULL, NULL,
2074 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2075 			CTLTYPE_INT, "debug",
2076 			SYSCTL_DESCR("Enable ARP DAD debug output"),
2077 			NULL, 0, &arp_debug, 0,
2078 			CTL_NET, PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2079 }
2080 
2081 #endif /* INET */
2082