xref: /netbsd-src/sys/netbt/rfcomm_upper.c (revision fff57c5525bbe431aee7bdb3983954f0627a42cb)
1 /*	$NetBSD: rfcomm_upper.c,v 1.10 2007/11/20 20:25:57 plunky Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 Itronix Inc.
5  * All rights reserved.
6  *
7  * Written by Iain Hibbert for Itronix Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of Itronix Inc. may not be used to endorse
18  *    or promote products derived from this software without specific
19  *    prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
25  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.10 2007/11/20 20:25:57 plunky Exp $");
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/mbuf.h>
40 #include <sys/proc.h>
41 #include <sys/systm.h>
42 
43 #include <netbt/bluetooth.h>
44 #include <netbt/hci.h>
45 #include <netbt/l2cap.h>
46 #include <netbt/rfcomm.h>
47 
48 /****************************************************************************
49  *
50  *	RFCOMM DLC - Upper Protocol API
51  *
52  * Currently the only 'Port Emulation Entity' is the RFCOMM socket code
53  * but it is should be possible to provide a pseudo-device for a direct
54  * tty interface.
55  */
56 
57 /*
58  * rfcomm_attach(handle, proto, upper)
59  *
60  * attach a new RFCOMM DLC to handle, populate with reasonable defaults
61  */
62 int
63 rfcomm_attach(struct rfcomm_dlc **handle,
64 		const struct btproto *proto, void *upper)
65 {
66 	struct rfcomm_dlc *dlc;
67 
68 	KASSERT(handle != NULL);
69 	KASSERT(proto != NULL);
70 	KASSERT(upper != NULL);
71 
72 	dlc = malloc(sizeof(struct rfcomm_dlc), M_BLUETOOTH, M_NOWAIT | M_ZERO);
73 	if (dlc == NULL)
74 		return ENOMEM;
75 
76 	dlc->rd_state = RFCOMM_DLC_CLOSED;
77 	dlc->rd_mtu = rfcomm_mtu_default;
78 
79 	dlc->rd_proto = proto;
80 	dlc->rd_upper = upper;
81 
82 	dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt);
83 	dlc->rd_laddr.bt_family = AF_BLUETOOTH;
84 	dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM;
85 
86 	dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt);
87 	dlc->rd_raddr.bt_family = AF_BLUETOOTH;
88 	dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM;
89 
90 	dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV;
91 
92 	callout_init(&dlc->rd_timeout, 0);
93 	callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc);
94 
95 	*handle = dlc;
96 	return 0;
97 }
98 
99 /*
100  * rfcomm_bind(dlc, sockaddr)
101  *
102  * bind DLC to local address
103  */
104 int
105 rfcomm_bind(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr)
106 {
107 
108 	memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt));
109 	return 0;
110 }
111 
112 /*
113  * rfcomm_sockaddr(dlc, sockaddr)
114  *
115  * return local address
116  */
117 int
118 rfcomm_sockaddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr)
119 {
120 
121 	memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt));
122 	return 0;
123 }
124 
125 /*
126  * rfcomm_connect(dlc, sockaddr)
127  *
128  * Initiate connection of RFCOMM DLC to remote address.
129  */
130 int
131 rfcomm_connect(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest)
132 {
133 	struct rfcomm_session *rs;
134 	int err = 0;
135 
136 	if (dlc->rd_state != RFCOMM_DLC_CLOSED)
137 		return EISCONN;
138 
139 	memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt));
140 
141 	if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN
142 	    || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX
143 	    || bdaddr_any(&dlc->rd_raddr.bt_bdaddr))
144 		return EDESTADDRREQ;
145 
146 	if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY)
147 		dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM;
148 	else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM
149 	    && (dlc->rd_raddr.bt_psm < 0x1001
150 	    || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm)))
151 		return EINVAL;
152 
153 	/*
154 	 * We are allowed only one RFCOMM session between any 2 Bluetooth
155 	 * devices, so see if there is a session already otherwise create
156 	 * one and set it connecting.
157 	 */
158 	rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr);
159 	if (rs == NULL) {
160 		rs = rfcomm_session_alloc(&rfcomm_session_active,
161 						&dlc->rd_laddr);
162 		if (rs == NULL)
163 			return ENOMEM;
164 
165 		rs->rs_flags |= RFCOMM_SESSION_INITIATOR;
166 		rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT;
167 
168 		err = l2cap_connect(rs->rs_l2cap, &dlc->rd_raddr);
169 		if (err) {
170 			rfcomm_session_free(rs);
171 			return err;
172 		}
173 
174 		/*
175 		 * This session will start up automatically when its
176 		 * L2CAP channel is connected.
177 		 */
178 	}
179 
180 	/* construct DLC */
181 	dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel);
182 	if (rfcomm_dlc_lookup(rs, dlc->rd_dlci))
183 		return EBUSY;
184 
185 	l2cap_sockaddr(rs->rs_l2cap, &dlc->rd_laddr);
186 
187 	/*
188 	 * attach the DLC to the session and start it off
189 	 */
190 	dlc->rd_session = rs;
191 	dlc->rd_state = RFCOMM_DLC_WAIT_SESSION;
192 	LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next);
193 
194 	if (rs->rs_state == RFCOMM_SESSION_OPEN)
195 		err = rfcomm_dlc_connect(dlc);
196 
197 	return err;
198 }
199 
200 /*
201  * rfcomm_peeraddr(dlc, sockaddr)
202  *
203  * return remote address
204  */
205 int
206 rfcomm_peeraddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr)
207 {
208 
209 	memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt));
210 	return 0;
211 }
212 
213 /*
214  * rfcomm_disconnect(dlc, linger)
215  *
216  * disconnect RFCOMM DLC
217  */
218 int
219 rfcomm_disconnect(struct rfcomm_dlc *dlc, int linger)
220 {
221 	struct rfcomm_session *rs = dlc->rd_session;
222 	int err = 0;
223 
224 	KASSERT(dlc != NULL);
225 
226 	switch (dlc->rd_state) {
227 	case RFCOMM_DLC_CLOSED:
228 	case RFCOMM_DLC_LISTEN:
229 		return EINVAL;
230 
231 	case RFCOMM_DLC_WAIT_SEND_UA:
232 		err = rfcomm_session_send_frame(rs,
233 				RFCOMM_FRAME_DM, dlc->rd_dlci);
234 
235 		/* fall through */
236 	case RFCOMM_DLC_WAIT_SESSION:
237 	case RFCOMM_DLC_WAIT_CONNECT:
238 	case RFCOMM_DLC_WAIT_SEND_SABM:
239 		rfcomm_dlc_close(dlc, 0);
240 		break;
241 
242 	case RFCOMM_DLC_OPEN:
243 		if (dlc->rd_txbuf != NULL && linger != 0) {
244 			dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN;
245 			break;
246 		}
247 
248 		/* else fall through */
249 	case RFCOMM_DLC_WAIT_RECV_UA:
250 		dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT;
251 		err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC,
252 							dlc->rd_dlci);
253 		callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz);
254 		break;
255 
256 	case RFCOMM_DLC_WAIT_DISCONNECT:
257 		err = EALREADY;
258 		break;
259 
260 	default:
261 		UNKNOWN(dlc->rd_state);
262 		break;
263 	}
264 
265 	return err;
266 }
267 
268 /*
269  * rfcomm_detach(handle)
270  *
271  * detach RFCOMM DLC from handle
272  */
273 int
274 rfcomm_detach(struct rfcomm_dlc **handle)
275 {
276 	struct rfcomm_dlc *dlc = *handle;
277 
278 	if (dlc->rd_state != RFCOMM_DLC_CLOSED)
279 		rfcomm_dlc_close(dlc, 0);
280 
281 	if (dlc->rd_txbuf != NULL) {
282 		m_freem(dlc->rd_txbuf);
283 		dlc->rd_txbuf = NULL;
284 	}
285 
286 	dlc->rd_upper = NULL;
287 	*handle = NULL;
288 
289 	/*
290 	 * If callout is invoking we can't free the DLC so
291 	 * mark it and let the callout release it.
292 	 */
293 	if (callout_invoking(&dlc->rd_timeout))
294 		dlc->rd_flags |= RFCOMM_DLC_DETACH;
295 	else {
296 		callout_destroy(&dlc->rd_timeout);
297 		free(dlc, M_BLUETOOTH);
298 	}
299 
300 	return 0;
301 }
302 
303 /*
304  * rfcomm_listen(dlc)
305  *
306  * This DLC is a listener. We look for an existing listening session
307  * with a matching address to attach to or else create a new one on
308  * the listeners list. If the ANY channel is given, allocate the first
309  * available for the session.
310  */
311 int
312 rfcomm_listen(struct rfcomm_dlc *dlc)
313 {
314 	struct rfcomm_session *rs;
315 	struct rfcomm_dlc *used;
316 	struct sockaddr_bt addr;
317 	int err, channel;
318 
319 	if (dlc->rd_state != RFCOMM_DLC_CLOSED)
320 		return EISCONN;
321 
322 	if (dlc->rd_laddr.bt_channel != RFCOMM_CHANNEL_ANY
323 	    && (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN
324 	    || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX))
325 		return EADDRNOTAVAIL;
326 
327 	if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY)
328 		dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM;
329 	else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM
330 	    && (dlc->rd_laddr.bt_psm < 0x1001
331 	    || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm)))
332 		return EADDRNOTAVAIL;
333 
334 	LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) {
335 		l2cap_sockaddr(rs->rs_l2cap, &addr);
336 
337 		if (addr.bt_psm != dlc->rd_laddr.bt_psm)
338 			continue;
339 
340 		if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr))
341 			break;
342 	}
343 
344 	if (rs == NULL) {
345 		rs = rfcomm_session_alloc(&rfcomm_session_listen,
346 						&dlc->rd_laddr);
347 		if (rs == NULL)
348 			return ENOMEM;
349 
350 		rs->rs_state = RFCOMM_SESSION_LISTEN;
351 
352 		err = l2cap_listen(rs->rs_l2cap);
353 		if (err) {
354 			rfcomm_session_free(rs);
355 			return err;
356 		}
357 	}
358 
359 	if (dlc->rd_laddr.bt_channel == RFCOMM_CHANNEL_ANY) {
360 		channel = RFCOMM_CHANNEL_MIN;
361 		used = LIST_FIRST(&rs->rs_dlcs);
362 
363 		while (used != NULL) {
364 			if (used->rd_laddr.bt_channel == channel) {
365 				if (channel++ == RFCOMM_CHANNEL_MAX)
366 					return EADDRNOTAVAIL;
367 
368 				used = LIST_FIRST(&rs->rs_dlcs);
369 			} else {
370 				used = LIST_NEXT(used, rd_next);
371 			}
372 		}
373 
374 		dlc->rd_laddr.bt_channel = channel;
375 	}
376 
377 	dlc->rd_session = rs;
378 	dlc->rd_state = RFCOMM_DLC_LISTEN;
379 	LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next);
380 
381 	return 0;
382 }
383 
384 /*
385  * rfcomm_send(dlc, mbuf)
386  *
387  * Output data on DLC. This is streamed data, so we add it
388  * to our buffer and start the the DLC, which will assemble
389  * packets and send them if it can.
390  */
391 int
392 rfcomm_send(struct rfcomm_dlc *dlc, struct mbuf *m)
393 {
394 
395 	if (dlc->rd_txbuf != NULL) {
396 		dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len;
397 		m_cat(dlc->rd_txbuf, m);
398 	} else {
399 		dlc->rd_txbuf = m;
400 	}
401 
402 	if (dlc->rd_state == RFCOMM_DLC_OPEN)
403 		rfcomm_dlc_start(dlc);
404 
405 	return 0;
406 }
407 
408 /*
409  * rfcomm_rcvd(dlc, space)
410  *
411  * Indicate space now available in receive buffer
412  *
413  * This should be used to give an initial value of the receive buffer
414  * size when the DLC is attached and anytime data is cleared from the
415  * buffer after that.
416  */
417 int
418 rfcomm_rcvd(struct rfcomm_dlc *dlc, size_t space)
419 {
420 
421 	KASSERT(dlc != NULL);
422 
423 	dlc->rd_rxsize = space;
424 
425 	/*
426 	 * if we are using credit based flow control, we may
427 	 * want to send some credits..
428 	 */
429 	if (dlc->rd_state == RFCOMM_DLC_OPEN
430 	    && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC))
431 		rfcomm_dlc_start(dlc);
432 
433 	return 0;
434 }
435 
436 /*
437  * rfcomm_setopt(dlc, option, addr)
438  *
439  * set DLC options
440  */
441 int
442 rfcomm_setopt(struct rfcomm_dlc *dlc, int opt, void *addr)
443 {
444 	int mode, err = 0;
445 	uint16_t mtu;
446 
447 	switch (opt) {
448 	case SO_RFCOMM_MTU:
449 		mtu = *(uint16_t *)addr;
450 		if (mtu < RFCOMM_MTU_MIN || mtu > RFCOMM_MTU_MAX)
451 			err = EINVAL;
452 		else if (dlc->rd_state == RFCOMM_DLC_CLOSED)
453 			dlc->rd_mtu = mtu;
454 		else
455 			err = EBUSY;
456 
457 		break;
458 
459 	case SO_RFCOMM_LM:
460 		mode = *(int *)addr;
461 		mode &= (RFCOMM_LM_SECURE | RFCOMM_LM_ENCRYPT | RFCOMM_LM_AUTH);
462 
463 		if (mode & RFCOMM_LM_SECURE)
464 			mode |= RFCOMM_LM_ENCRYPT;
465 
466 		if (mode & RFCOMM_LM_ENCRYPT)
467 			mode |= RFCOMM_LM_AUTH;
468 
469 		dlc->rd_mode = mode;
470 
471 		if (dlc->rd_state == RFCOMM_DLC_OPEN)
472 			err = rfcomm_dlc_setmode(dlc);
473 
474 		break;
475 
476 	default:
477 		err = ENOPROTOOPT;
478 		break;
479 	}
480 	return err;
481 }
482 
483 /*
484  * rfcomm_getopt(dlc, option, addr)
485  *
486  * get DLC options
487  */
488 int
489 rfcomm_getopt(struct rfcomm_dlc *dlc, int opt, void *addr)
490 {
491 	struct rfcomm_fc_info *fc;
492 
493 	switch (opt) {
494 	case SO_RFCOMM_MTU:
495 		*(uint16_t *)addr = dlc->rd_mtu;
496 		return sizeof(uint16_t);
497 
498 	case SO_RFCOMM_FC_INFO:
499 		fc = addr;
500 		memset(fc, 0, sizeof(*fc));
501 		fc->lmodem = dlc->rd_lmodem;
502 		fc->rmodem = dlc->rd_rmodem;
503 		fc->tx_cred = max(dlc->rd_txcred, 0xff);
504 		fc->rx_cred = max(dlc->rd_rxcred, 0xff);
505 		if (dlc->rd_session
506 		    && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC))
507 			fc->cfc = 1;
508 
509 		return sizeof(*fc);
510 
511 	case SO_RFCOMM_LM:
512 		*(int *)addr = dlc->rd_mode;
513 		return sizeof(int);
514 
515 	default:
516 		break;
517 	}
518 
519 	return 0;
520 }
521