1 /* $NetBSD: rfcomm_upper.c,v 1.24 2024/07/05 04:31:53 rin Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Itronix Inc. 5 * All rights reserved. 6 * 7 * Written by Iain Hibbert for Itronix Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Itronix Inc. may not be used to endorse 18 * or promote products derived from this software without specific 19 * prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.24 2024/07/05 04:31:53 rin Exp $"); 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/mbuf.h> 40 #include <sys/kmem.h> 41 #include <sys/socketvar.h> 42 #include <sys/systm.h> 43 44 #include <netbt/bluetooth.h> 45 #include <netbt/hci.h> 46 #include <netbt/l2cap.h> 47 #include <netbt/rfcomm.h> 48 49 /**************************************************************************** 50 * 51 * RFCOMM DLC - Upper Protocol API 52 * 53 * Currently the only 'Port Emulation Entity' is the RFCOMM socket code 54 * but it is should be possible to provide a pseudo-device for a direct 55 * tty interface. 56 */ 57 58 /* 59 * rfcomm_attach_pcb(handle, proto, upper) 60 * 61 * attach a new RFCOMM DLC to handle, populate with reasonable defaults 62 */ 63 int 64 rfcomm_attach_pcb(struct rfcomm_dlc **handle, 65 const struct btproto *proto, void *upper) 66 { 67 struct rfcomm_dlc *dlc; 68 69 KASSERT(handle != NULL); 70 KASSERT(proto != NULL); 71 KASSERT(upper != NULL); 72 73 dlc = kmem_intr_zalloc(sizeof(struct rfcomm_dlc), KM_NOSLEEP); 74 if (dlc == NULL) 75 return ENOMEM; 76 77 dlc->rd_state = RFCOMM_DLC_CLOSED; 78 dlc->rd_mtu = rfcomm_mtu_default; 79 80 dlc->rd_proto = proto; 81 dlc->rd_upper = upper; 82 83 dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt); 84 dlc->rd_laddr.bt_family = AF_BLUETOOTH; 85 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 86 87 dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt); 88 dlc->rd_raddr.bt_family = AF_BLUETOOTH; 89 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 90 91 dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV; 92 93 callout_init(&dlc->rd_timeout, 0); 94 callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc); 95 96 *handle = dlc; 97 return 0; 98 } 99 100 /* 101 * rfcomm_bind_pcb(dlc, sockaddr) 102 * 103 * bind DLC to local address 104 */ 105 int 106 rfcomm_bind_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 107 { 108 109 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 110 return EINVAL; 111 112 memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt)); 113 return 0; 114 } 115 116 /* 117 * rfcomm_sockaddr_pcb(dlc, sockaddr) 118 * 119 * return local address 120 */ 121 int 122 rfcomm_sockaddr_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 123 { 124 125 memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt)); 126 return 0; 127 } 128 129 /* 130 * rfcomm_connect_pcb(dlc, sockaddr) 131 * 132 * Initiate connection of RFCOMM DLC to remote address. 133 */ 134 int 135 rfcomm_connect_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest) 136 { 137 struct rfcomm_session *rs; 138 int err = 0; 139 140 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 141 return EISCONN; 142 143 memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt)); 144 145 if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN 146 || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX 147 || bdaddr_any(&dlc->rd_raddr.bt_bdaddr)) 148 return EDESTADDRREQ; 149 150 if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY) 151 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 152 else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM 153 && (dlc->rd_raddr.bt_psm < 0x1001 154 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm))) 155 return EINVAL; 156 157 /* 158 * We are allowed only one RFCOMM session between any 2 Bluetooth 159 * devices, so see if there is a session already otherwise create 160 * one and set it connecting. 161 */ 162 rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr); 163 if (rs == NULL) { 164 rs = rfcomm_session_alloc(&rfcomm_session_active, 165 &dlc->rd_laddr); 166 if (rs == NULL) 167 return ENOMEM; 168 169 rs->rs_flags |= RFCOMM_SESSION_INITIATOR; 170 rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT; 171 172 err = l2cap_connect_pcb(rs->rs_l2cap, &dlc->rd_raddr); 173 if (err) { 174 rfcomm_session_free(rs); 175 return err; 176 } 177 178 /* 179 * This session will start up automatically when its 180 * L2CAP channel is connected. 181 */ 182 } 183 184 /* construct DLC */ 185 dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel); 186 if (rfcomm_dlc_lookup(rs, dlc->rd_dlci)) 187 return EBUSY; 188 189 l2cap_sockaddr_pcb(rs->rs_l2cap, &dlc->rd_laddr); 190 191 /* 192 * attach the DLC to the session and start it off 193 */ 194 dlc->rd_session = rs; 195 dlc->rd_state = RFCOMM_DLC_WAIT_SESSION; 196 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 197 198 if (rs->rs_state == RFCOMM_SESSION_OPEN) 199 err = rfcomm_dlc_connect(dlc); 200 201 return err; 202 } 203 204 /* 205 * rfcomm_peeraddr_pcb(dlc, sockaddr) 206 * 207 * return remote address 208 */ 209 int 210 rfcomm_peeraddr_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 211 { 212 213 memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt)); 214 return 0; 215 } 216 217 /* 218 * rfcomm_disconnect_pcb(dlc, linger) 219 * 220 * disconnect RFCOMM DLC 221 */ 222 int 223 rfcomm_disconnect_pcb(struct rfcomm_dlc *dlc, int linger) 224 { 225 struct rfcomm_session *rs = dlc->rd_session; 226 int err = 0; 227 228 KASSERT(dlc != NULL); 229 230 switch (dlc->rd_state) { 231 case RFCOMM_DLC_CLOSED: 232 case RFCOMM_DLC_LISTEN: 233 return EINVAL; 234 235 case RFCOMM_DLC_WAIT_SEND_UA: 236 err = rfcomm_session_send_frame(rs, 237 RFCOMM_FRAME_DM, dlc->rd_dlci); 238 239 /* fall through */ 240 case RFCOMM_DLC_WAIT_SESSION: 241 case RFCOMM_DLC_WAIT_CONNECT: 242 case RFCOMM_DLC_WAIT_SEND_SABM: 243 rfcomm_dlc_close(dlc, 0); 244 break; 245 246 case RFCOMM_DLC_OPEN: 247 if (dlc->rd_txbuf != NULL && linger != 0) { 248 dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN; 249 break; 250 } 251 252 /* else fall through */ 253 case RFCOMM_DLC_WAIT_RECV_UA: 254 dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT; 255 err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC, 256 dlc->rd_dlci); 257 callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz); 258 break; 259 260 case RFCOMM_DLC_WAIT_DISCONNECT: 261 err = EALREADY; 262 break; 263 264 default: 265 UNKNOWN(dlc->rd_state); 266 break; 267 } 268 269 return err; 270 } 271 272 /* 273 * rfcomm_detach_pcb(handle) 274 * 275 * detach RFCOMM DLC from handle 276 */ 277 void 278 rfcomm_detach_pcb(struct rfcomm_dlc **handle) 279 { 280 struct rfcomm_dlc *dlc = *handle; 281 282 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 283 rfcomm_dlc_close(dlc, 0); 284 285 m_freem(dlc->rd_txbuf); 286 dlc->rd_txbuf = NULL; 287 288 dlc->rd_upper = NULL; 289 *handle = NULL; 290 291 /* 292 * If callout is invoking we can't free the DLC so 293 * mark it and let the callout release it. 294 */ 295 if (callout_invoking(&dlc->rd_timeout)) 296 dlc->rd_flags |= RFCOMM_DLC_DETACH; 297 else { 298 callout_destroy(&dlc->rd_timeout); 299 kmem_intr_free(dlc, sizeof(*dlc)); 300 } 301 } 302 303 /* 304 * rfcomm_listen_pcb(dlc) 305 * 306 * This DLC is a listener. We look for an existing listening session 307 * with a matching address to attach to or else create a new one on 308 * the listeners list. If the ANY channel is given, allocate the first 309 * available for the session. 310 */ 311 int 312 rfcomm_listen_pcb(struct rfcomm_dlc *dlc) 313 { 314 struct rfcomm_session *rs; 315 struct rfcomm_dlc *used; 316 struct sockaddr_bt addr; 317 int err, channel; 318 319 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 320 return EISCONN; 321 322 if (dlc->rd_laddr.bt_channel != RFCOMM_CHANNEL_ANY 323 && (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN 324 || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX)) 325 return EADDRNOTAVAIL; 326 327 if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY) 328 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 329 else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM 330 && (dlc->rd_laddr.bt_psm < 0x1001 331 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm))) 332 return EADDRNOTAVAIL; 333 334 LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) { 335 l2cap_sockaddr_pcb(rs->rs_l2cap, &addr); 336 337 if (addr.bt_psm != dlc->rd_laddr.bt_psm) 338 continue; 339 340 if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr)) 341 break; 342 } 343 344 if (rs == NULL) { 345 rs = rfcomm_session_alloc(&rfcomm_session_listen, 346 &dlc->rd_laddr); 347 if (rs == NULL) 348 return ENOMEM; 349 350 rs->rs_state = RFCOMM_SESSION_LISTEN; 351 352 err = l2cap_listen_pcb(rs->rs_l2cap); 353 if (err) { 354 rfcomm_session_free(rs); 355 return err; 356 } 357 } 358 359 if (dlc->rd_laddr.bt_channel == RFCOMM_CHANNEL_ANY) { 360 channel = RFCOMM_CHANNEL_MIN; 361 used = LIST_FIRST(&rs->rs_dlcs); 362 363 while (used != NULL) { 364 if (used->rd_laddr.bt_channel == channel) { 365 if (channel++ == RFCOMM_CHANNEL_MAX) 366 return EADDRNOTAVAIL; 367 368 used = LIST_FIRST(&rs->rs_dlcs); 369 } else { 370 used = LIST_NEXT(used, rd_next); 371 } 372 } 373 374 dlc->rd_laddr.bt_channel = channel; 375 } 376 377 dlc->rd_session = rs; 378 dlc->rd_state = RFCOMM_DLC_LISTEN; 379 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 380 381 return 0; 382 } 383 384 /* 385 * rfcomm_send_pcb(dlc, mbuf) 386 * 387 * Output data on DLC. This is streamed data, so we add it 388 * to our buffer and start the DLC, which will assemble 389 * packets and send them if it can. 390 */ 391 int 392 rfcomm_send_pcb(struct rfcomm_dlc *dlc, struct mbuf *m) 393 { 394 395 if (dlc->rd_txbuf != NULL) { 396 dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len; 397 m_cat(dlc->rd_txbuf, m); 398 } else { 399 dlc->rd_txbuf = m; 400 } 401 402 if (dlc->rd_state == RFCOMM_DLC_OPEN) 403 rfcomm_dlc_start(dlc); 404 405 return 0; 406 } 407 408 /* 409 * rfcomm_rcvd_pcb(dlc, space) 410 * 411 * Indicate space now available in receive buffer 412 * 413 * This should be used to give an initial value of the receive buffer 414 * size when the DLC is attached and anytime data is cleared from the 415 * buffer after that. 416 */ 417 int 418 rfcomm_rcvd_pcb(struct rfcomm_dlc *dlc, size_t space) 419 { 420 421 KASSERT(dlc != NULL); 422 423 dlc->rd_rxsize = space; 424 425 /* 426 * if we are using credit based flow control, we may 427 * want to send some credits.. 428 */ 429 if (dlc->rd_state == RFCOMM_DLC_OPEN 430 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 431 rfcomm_dlc_start(dlc); 432 433 return 0; 434 } 435 436 /* 437 * rfcomm_setopt(dlc, sopt) 438 * 439 * set DLC options 440 */ 441 int 442 rfcomm_setopt(struct rfcomm_dlc *dlc, const struct sockopt *sopt) 443 { 444 int mode, err = 0; 445 uint16_t mtu; 446 447 switch (sopt->sopt_name) { 448 case SO_RFCOMM_MTU: 449 err = sockopt_get(sopt, &mtu, sizeof(mtu)); 450 if (err) 451 break; 452 453 if (mtu < RFCOMM_MTU_MIN || mtu > RFCOMM_MTU_MAX) 454 err = EINVAL; 455 else if (dlc->rd_state == RFCOMM_DLC_CLOSED) 456 dlc->rd_mtu = mtu; 457 else 458 err = EBUSY; 459 460 break; 461 462 case SO_RFCOMM_LM: 463 err = sockopt_getint(sopt, &mode); 464 if (err) 465 break; 466 467 mode &= (RFCOMM_LM_SECURE | RFCOMM_LM_ENCRYPT | RFCOMM_LM_AUTH); 468 469 if (mode & RFCOMM_LM_SECURE) 470 mode |= RFCOMM_LM_ENCRYPT; 471 472 if (mode & RFCOMM_LM_ENCRYPT) 473 mode |= RFCOMM_LM_AUTH; 474 475 dlc->rd_mode = mode; 476 477 if (dlc->rd_state == RFCOMM_DLC_OPEN) 478 err = rfcomm_dlc_setmode(dlc); 479 480 break; 481 482 default: 483 err = ENOPROTOOPT; 484 break; 485 } 486 return err; 487 } 488 489 /* 490 * rfcomm_getopt(dlc, sopt) 491 * 492 * get DLC options 493 */ 494 int 495 rfcomm_getopt(struct rfcomm_dlc *dlc, struct sockopt *sopt) 496 { 497 struct rfcomm_fc_info fc; 498 499 switch (sopt->sopt_name) { 500 case SO_RFCOMM_MTU: 501 return sockopt_set(sopt, &dlc->rd_mtu, sizeof(uint16_t)); 502 503 case SO_RFCOMM_FC_INFO: 504 memset(&fc, 0, sizeof(fc)); 505 fc.lmodem = dlc->rd_lmodem; 506 fc.rmodem = dlc->rd_rmodem; 507 fc.tx_cred = uimax(dlc->rd_txcred, 0xff); 508 fc.rx_cred = uimax(dlc->rd_rxcred, 0xff); 509 if (dlc->rd_session 510 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 511 fc.cfc = 1; 512 513 return sockopt_set(sopt, &fc, sizeof(fc)); 514 515 case SO_RFCOMM_LM: 516 return sockopt_setint(sopt, dlc->rd_mode); 517 518 default: 519 break; 520 } 521 522 return ENOPROTOOPT; 523 } 524