1 /* $NetBSD: rfcomm_upper.c,v 1.15 2014/05/20 18:25:54 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Itronix Inc. 5 * All rights reserved. 6 * 7 * Written by Iain Hibbert for Itronix Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Itronix Inc. may not be used to endorse 18 * or promote products derived from this software without specific 19 * prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.15 2014/05/20 18:25:54 rmind Exp $"); 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/mbuf.h> 40 #include <sys/kmem.h> 41 #include <sys/socketvar.h> 42 #include <sys/systm.h> 43 44 #include <netbt/bluetooth.h> 45 #include <netbt/hci.h> 46 #include <netbt/l2cap.h> 47 #include <netbt/rfcomm.h> 48 49 /**************************************************************************** 50 * 51 * RFCOMM DLC - Upper Protocol API 52 * 53 * Currently the only 'Port Emulation Entity' is the RFCOMM socket code 54 * but it is should be possible to provide a pseudo-device for a direct 55 * tty interface. 56 */ 57 58 /* 59 * rfcomm_attach_pcb(handle, proto, upper) 60 * 61 * attach a new RFCOMM DLC to handle, populate with reasonable defaults 62 */ 63 int 64 rfcomm_attach_pcb(struct rfcomm_dlc **handle, 65 const struct btproto *proto, void *upper) 66 { 67 struct rfcomm_dlc *dlc; 68 69 KASSERT(handle != NULL); 70 KASSERT(proto != NULL); 71 KASSERT(upper != NULL); 72 73 dlc = kmem_zalloc(sizeof(struct rfcomm_dlc), KM_SLEEP); 74 75 dlc->rd_state = RFCOMM_DLC_CLOSED; 76 dlc->rd_mtu = rfcomm_mtu_default; 77 78 dlc->rd_proto = proto; 79 dlc->rd_upper = upper; 80 81 dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt); 82 dlc->rd_laddr.bt_family = AF_BLUETOOTH; 83 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 84 85 dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt); 86 dlc->rd_raddr.bt_family = AF_BLUETOOTH; 87 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 88 89 dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV; 90 91 callout_init(&dlc->rd_timeout, 0); 92 callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc); 93 94 *handle = dlc; 95 return 0; 96 } 97 98 /* 99 * rfcomm_bind(dlc, sockaddr) 100 * 101 * bind DLC to local address 102 */ 103 int 104 rfcomm_bind(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 105 { 106 107 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 108 return EINVAL; 109 110 memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt)); 111 return 0; 112 } 113 114 /* 115 * rfcomm_sockaddr(dlc, sockaddr) 116 * 117 * return local address 118 */ 119 int 120 rfcomm_sockaddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 121 { 122 123 memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt)); 124 return 0; 125 } 126 127 /* 128 * rfcomm_connect(dlc, sockaddr) 129 * 130 * Initiate connection of RFCOMM DLC to remote address. 131 */ 132 int 133 rfcomm_connect(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest) 134 { 135 struct rfcomm_session *rs; 136 int err = 0; 137 138 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 139 return EISCONN; 140 141 memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt)); 142 143 if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN 144 || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX 145 || bdaddr_any(&dlc->rd_raddr.bt_bdaddr)) 146 return EDESTADDRREQ; 147 148 if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY) 149 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 150 else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM 151 && (dlc->rd_raddr.bt_psm < 0x1001 152 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm))) 153 return EINVAL; 154 155 /* 156 * We are allowed only one RFCOMM session between any 2 Bluetooth 157 * devices, so see if there is a session already otherwise create 158 * one and set it connecting. 159 */ 160 rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr); 161 if (rs == NULL) { 162 rs = rfcomm_session_alloc(&rfcomm_session_active, 163 &dlc->rd_laddr); 164 if (rs == NULL) 165 return ENOMEM; 166 167 rs->rs_flags |= RFCOMM_SESSION_INITIATOR; 168 rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT; 169 170 err = l2cap_connect(rs->rs_l2cap, &dlc->rd_raddr); 171 if (err) { 172 rfcomm_session_free(rs); 173 return err; 174 } 175 176 /* 177 * This session will start up automatically when its 178 * L2CAP channel is connected. 179 */ 180 } 181 182 /* construct DLC */ 183 dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel); 184 if (rfcomm_dlc_lookup(rs, dlc->rd_dlci)) 185 return EBUSY; 186 187 l2cap_sockaddr(rs->rs_l2cap, &dlc->rd_laddr); 188 189 /* 190 * attach the DLC to the session and start it off 191 */ 192 dlc->rd_session = rs; 193 dlc->rd_state = RFCOMM_DLC_WAIT_SESSION; 194 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 195 196 if (rs->rs_state == RFCOMM_SESSION_OPEN) 197 err = rfcomm_dlc_connect(dlc); 198 199 return err; 200 } 201 202 /* 203 * rfcomm_peeraddr(dlc, sockaddr) 204 * 205 * return remote address 206 */ 207 int 208 rfcomm_peeraddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 209 { 210 211 memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt)); 212 return 0; 213 } 214 215 /* 216 * rfcomm_disconnect(dlc, linger) 217 * 218 * disconnect RFCOMM DLC 219 */ 220 int 221 rfcomm_disconnect(struct rfcomm_dlc *dlc, int linger) 222 { 223 struct rfcomm_session *rs = dlc->rd_session; 224 int err = 0; 225 226 KASSERT(dlc != NULL); 227 228 switch (dlc->rd_state) { 229 case RFCOMM_DLC_CLOSED: 230 case RFCOMM_DLC_LISTEN: 231 return EINVAL; 232 233 case RFCOMM_DLC_WAIT_SEND_UA: 234 err = rfcomm_session_send_frame(rs, 235 RFCOMM_FRAME_DM, dlc->rd_dlci); 236 237 /* fall through */ 238 case RFCOMM_DLC_WAIT_SESSION: 239 case RFCOMM_DLC_WAIT_CONNECT: 240 case RFCOMM_DLC_WAIT_SEND_SABM: 241 rfcomm_dlc_close(dlc, 0); 242 break; 243 244 case RFCOMM_DLC_OPEN: 245 if (dlc->rd_txbuf != NULL && linger != 0) { 246 dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN; 247 break; 248 } 249 250 /* else fall through */ 251 case RFCOMM_DLC_WAIT_RECV_UA: 252 dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT; 253 err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC, 254 dlc->rd_dlci); 255 callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz); 256 break; 257 258 case RFCOMM_DLC_WAIT_DISCONNECT: 259 err = EALREADY; 260 break; 261 262 default: 263 UNKNOWN(dlc->rd_state); 264 break; 265 } 266 267 return err; 268 } 269 270 /* 271 * rfcomm_detach_pcb(handle) 272 * 273 * detach RFCOMM DLC from handle 274 */ 275 void 276 rfcomm_detach_pcb(struct rfcomm_dlc **handle) 277 { 278 struct rfcomm_dlc *dlc = *handle; 279 280 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 281 rfcomm_dlc_close(dlc, 0); 282 283 if (dlc->rd_txbuf != NULL) { 284 m_freem(dlc->rd_txbuf); 285 dlc->rd_txbuf = NULL; 286 } 287 288 dlc->rd_upper = NULL; 289 *handle = NULL; 290 291 /* 292 * If callout is invoking we can't free the DLC so 293 * mark it and let the callout release it. 294 */ 295 if (callout_invoking(&dlc->rd_timeout)) 296 dlc->rd_flags |= RFCOMM_DLC_DETACH; 297 else { 298 callout_destroy(&dlc->rd_timeout); 299 kmem_free(dlc, sizeof(*dlc)); 300 } 301 } 302 303 /* 304 * rfcomm_listen(dlc) 305 * 306 * This DLC is a listener. We look for an existing listening session 307 * with a matching address to attach to or else create a new one on 308 * the listeners list. If the ANY channel is given, allocate the first 309 * available for the session. 310 */ 311 int 312 rfcomm_listen(struct rfcomm_dlc *dlc) 313 { 314 struct rfcomm_session *rs; 315 struct rfcomm_dlc *used; 316 struct sockaddr_bt addr; 317 int err, channel; 318 319 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 320 return EISCONN; 321 322 if (dlc->rd_laddr.bt_channel != RFCOMM_CHANNEL_ANY 323 && (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN 324 || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX)) 325 return EADDRNOTAVAIL; 326 327 if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY) 328 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 329 else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM 330 && (dlc->rd_laddr.bt_psm < 0x1001 331 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm))) 332 return EADDRNOTAVAIL; 333 334 LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) { 335 l2cap_sockaddr(rs->rs_l2cap, &addr); 336 337 if (addr.bt_psm != dlc->rd_laddr.bt_psm) 338 continue; 339 340 if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr)) 341 break; 342 } 343 344 if (rs == NULL) { 345 rs = rfcomm_session_alloc(&rfcomm_session_listen, 346 &dlc->rd_laddr); 347 if (rs == NULL) 348 return ENOMEM; 349 350 rs->rs_state = RFCOMM_SESSION_LISTEN; 351 352 err = l2cap_listen(rs->rs_l2cap); 353 if (err) { 354 rfcomm_session_free(rs); 355 return err; 356 } 357 } 358 359 if (dlc->rd_laddr.bt_channel == RFCOMM_CHANNEL_ANY) { 360 channel = RFCOMM_CHANNEL_MIN; 361 used = LIST_FIRST(&rs->rs_dlcs); 362 363 while (used != NULL) { 364 if (used->rd_laddr.bt_channel == channel) { 365 if (channel++ == RFCOMM_CHANNEL_MAX) 366 return EADDRNOTAVAIL; 367 368 used = LIST_FIRST(&rs->rs_dlcs); 369 } else { 370 used = LIST_NEXT(used, rd_next); 371 } 372 } 373 374 dlc->rd_laddr.bt_channel = channel; 375 } 376 377 dlc->rd_session = rs; 378 dlc->rd_state = RFCOMM_DLC_LISTEN; 379 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 380 381 return 0; 382 } 383 384 /* 385 * rfcomm_send(dlc, mbuf) 386 * 387 * Output data on DLC. This is streamed data, so we add it 388 * to our buffer and start the DLC, which will assemble 389 * packets and send them if it can. 390 */ 391 int 392 rfcomm_send(struct rfcomm_dlc *dlc, struct mbuf *m) 393 { 394 395 if (dlc->rd_txbuf != NULL) { 396 dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len; 397 m_cat(dlc->rd_txbuf, m); 398 } else { 399 dlc->rd_txbuf = m; 400 } 401 402 if (dlc->rd_state == RFCOMM_DLC_OPEN) 403 rfcomm_dlc_start(dlc); 404 405 return 0; 406 } 407 408 /* 409 * rfcomm_rcvd(dlc, space) 410 * 411 * Indicate space now available in receive buffer 412 * 413 * This should be used to give an initial value of the receive buffer 414 * size when the DLC is attached and anytime data is cleared from the 415 * buffer after that. 416 */ 417 int 418 rfcomm_rcvd(struct rfcomm_dlc *dlc, size_t space) 419 { 420 421 KASSERT(dlc != NULL); 422 423 dlc->rd_rxsize = space; 424 425 /* 426 * if we are using credit based flow control, we may 427 * want to send some credits.. 428 */ 429 if (dlc->rd_state == RFCOMM_DLC_OPEN 430 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 431 rfcomm_dlc_start(dlc); 432 433 return 0; 434 } 435 436 /* 437 * rfcomm_setopt(dlc, sopt) 438 * 439 * set DLC options 440 */ 441 int 442 rfcomm_setopt(struct rfcomm_dlc *dlc, const struct sockopt *sopt) 443 { 444 int mode, err = 0; 445 uint16_t mtu; 446 447 switch (sopt->sopt_name) { 448 case SO_RFCOMM_MTU: 449 err = sockopt_get(sopt, &mtu, sizeof(mtu)); 450 if (err) 451 break; 452 453 if (mtu < RFCOMM_MTU_MIN || mtu > RFCOMM_MTU_MAX) 454 err = EINVAL; 455 else if (dlc->rd_state == RFCOMM_DLC_CLOSED) 456 dlc->rd_mtu = mtu; 457 else 458 err = EBUSY; 459 460 break; 461 462 case SO_RFCOMM_LM: 463 err = sockopt_getint(sopt, &mode); 464 if (err) 465 break; 466 467 mode &= (RFCOMM_LM_SECURE | RFCOMM_LM_ENCRYPT | RFCOMM_LM_AUTH); 468 469 if (mode & RFCOMM_LM_SECURE) 470 mode |= RFCOMM_LM_ENCRYPT; 471 472 if (mode & RFCOMM_LM_ENCRYPT) 473 mode |= RFCOMM_LM_AUTH; 474 475 dlc->rd_mode = mode; 476 477 if (dlc->rd_state == RFCOMM_DLC_OPEN) 478 err = rfcomm_dlc_setmode(dlc); 479 480 break; 481 482 default: 483 err = ENOPROTOOPT; 484 break; 485 } 486 return err; 487 } 488 489 /* 490 * rfcomm_getopt(dlc, sopt) 491 * 492 * get DLC options 493 */ 494 int 495 rfcomm_getopt(struct rfcomm_dlc *dlc, struct sockopt *sopt) 496 { 497 struct rfcomm_fc_info fc; 498 499 switch (sopt->sopt_name) { 500 case SO_RFCOMM_MTU: 501 return sockopt_set(sopt, &dlc->rd_mtu, sizeof(uint16_t)); 502 503 case SO_RFCOMM_FC_INFO: 504 memset(&fc, 0, sizeof(fc)); 505 fc.lmodem = dlc->rd_lmodem; 506 fc.rmodem = dlc->rd_rmodem; 507 fc.tx_cred = max(dlc->rd_txcred, 0xff); 508 fc.rx_cred = max(dlc->rd_rxcred, 0xff); 509 if (dlc->rd_session 510 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 511 fc.cfc = 1; 512 513 return sockopt_set(sopt, &fc, sizeof(fc)); 514 515 case SO_RFCOMM_LM: 516 return sockopt_setint(sopt, dlc->rd_mode); 517 518 default: 519 break; 520 } 521 522 return ENOPROTOOPT; 523 } 524