1 /* $NetBSD: rfcomm_upper.c,v 1.13 2010/01/04 19:20:05 plunky Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Itronix Inc. 5 * All rights reserved. 6 * 7 * Written by Iain Hibbert for Itronix Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Itronix Inc. may not be used to endorse 18 * or promote products derived from this software without specific 19 * prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.13 2010/01/04 19:20:05 plunky Exp $"); 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/mbuf.h> 40 #include <sys/proc.h> 41 #include <sys/socketvar.h> 42 #include <sys/systm.h> 43 44 #include <netbt/bluetooth.h> 45 #include <netbt/hci.h> 46 #include <netbt/l2cap.h> 47 #include <netbt/rfcomm.h> 48 49 /**************************************************************************** 50 * 51 * RFCOMM DLC - Upper Protocol API 52 * 53 * Currently the only 'Port Emulation Entity' is the RFCOMM socket code 54 * but it is should be possible to provide a pseudo-device for a direct 55 * tty interface. 56 */ 57 58 /* 59 * rfcomm_attach(handle, proto, upper) 60 * 61 * attach a new RFCOMM DLC to handle, populate with reasonable defaults 62 */ 63 int 64 rfcomm_attach(struct rfcomm_dlc **handle, 65 const struct btproto *proto, void *upper) 66 { 67 struct rfcomm_dlc *dlc; 68 69 KASSERT(handle != NULL); 70 KASSERT(proto != NULL); 71 KASSERT(upper != NULL); 72 73 dlc = malloc(sizeof(struct rfcomm_dlc), M_BLUETOOTH, M_NOWAIT | M_ZERO); 74 if (dlc == NULL) 75 return ENOMEM; 76 77 dlc->rd_state = RFCOMM_DLC_CLOSED; 78 dlc->rd_mtu = rfcomm_mtu_default; 79 80 dlc->rd_proto = proto; 81 dlc->rd_upper = upper; 82 83 dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt); 84 dlc->rd_laddr.bt_family = AF_BLUETOOTH; 85 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 86 87 dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt); 88 dlc->rd_raddr.bt_family = AF_BLUETOOTH; 89 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 90 91 dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV; 92 93 callout_init(&dlc->rd_timeout, 0); 94 callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc); 95 96 *handle = dlc; 97 return 0; 98 } 99 100 /* 101 * rfcomm_bind(dlc, sockaddr) 102 * 103 * bind DLC to local address 104 */ 105 int 106 rfcomm_bind(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 107 { 108 109 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 110 return EINVAL; 111 112 memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt)); 113 return 0; 114 } 115 116 /* 117 * rfcomm_sockaddr(dlc, sockaddr) 118 * 119 * return local address 120 */ 121 int 122 rfcomm_sockaddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 123 { 124 125 memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt)); 126 return 0; 127 } 128 129 /* 130 * rfcomm_connect(dlc, sockaddr) 131 * 132 * Initiate connection of RFCOMM DLC to remote address. 133 */ 134 int 135 rfcomm_connect(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest) 136 { 137 struct rfcomm_session *rs; 138 int err = 0; 139 140 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 141 return EISCONN; 142 143 memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt)); 144 145 if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN 146 || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX 147 || bdaddr_any(&dlc->rd_raddr.bt_bdaddr)) 148 return EDESTADDRREQ; 149 150 if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY) 151 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 152 else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM 153 && (dlc->rd_raddr.bt_psm < 0x1001 154 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm))) 155 return EINVAL; 156 157 /* 158 * We are allowed only one RFCOMM session between any 2 Bluetooth 159 * devices, so see if there is a session already otherwise create 160 * one and set it connecting. 161 */ 162 rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr); 163 if (rs == NULL) { 164 rs = rfcomm_session_alloc(&rfcomm_session_active, 165 &dlc->rd_laddr); 166 if (rs == NULL) 167 return ENOMEM; 168 169 rs->rs_flags |= RFCOMM_SESSION_INITIATOR; 170 rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT; 171 172 err = l2cap_connect(rs->rs_l2cap, &dlc->rd_raddr); 173 if (err) { 174 rfcomm_session_free(rs); 175 return err; 176 } 177 178 /* 179 * This session will start up automatically when its 180 * L2CAP channel is connected. 181 */ 182 } 183 184 /* construct DLC */ 185 dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel); 186 if (rfcomm_dlc_lookup(rs, dlc->rd_dlci)) 187 return EBUSY; 188 189 l2cap_sockaddr(rs->rs_l2cap, &dlc->rd_laddr); 190 191 /* 192 * attach the DLC to the session and start it off 193 */ 194 dlc->rd_session = rs; 195 dlc->rd_state = RFCOMM_DLC_WAIT_SESSION; 196 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 197 198 if (rs->rs_state == RFCOMM_SESSION_OPEN) 199 err = rfcomm_dlc_connect(dlc); 200 201 return err; 202 } 203 204 /* 205 * rfcomm_peeraddr(dlc, sockaddr) 206 * 207 * return remote address 208 */ 209 int 210 rfcomm_peeraddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 211 { 212 213 memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt)); 214 return 0; 215 } 216 217 /* 218 * rfcomm_disconnect(dlc, linger) 219 * 220 * disconnect RFCOMM DLC 221 */ 222 int 223 rfcomm_disconnect(struct rfcomm_dlc *dlc, int linger) 224 { 225 struct rfcomm_session *rs = dlc->rd_session; 226 int err = 0; 227 228 KASSERT(dlc != NULL); 229 230 switch (dlc->rd_state) { 231 case RFCOMM_DLC_CLOSED: 232 case RFCOMM_DLC_LISTEN: 233 return EINVAL; 234 235 case RFCOMM_DLC_WAIT_SEND_UA: 236 err = rfcomm_session_send_frame(rs, 237 RFCOMM_FRAME_DM, dlc->rd_dlci); 238 239 /* fall through */ 240 case RFCOMM_DLC_WAIT_SESSION: 241 case RFCOMM_DLC_WAIT_CONNECT: 242 case RFCOMM_DLC_WAIT_SEND_SABM: 243 rfcomm_dlc_close(dlc, 0); 244 break; 245 246 case RFCOMM_DLC_OPEN: 247 if (dlc->rd_txbuf != NULL && linger != 0) { 248 dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN; 249 break; 250 } 251 252 /* else fall through */ 253 case RFCOMM_DLC_WAIT_RECV_UA: 254 dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT; 255 err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC, 256 dlc->rd_dlci); 257 callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz); 258 break; 259 260 case RFCOMM_DLC_WAIT_DISCONNECT: 261 err = EALREADY; 262 break; 263 264 default: 265 UNKNOWN(dlc->rd_state); 266 break; 267 } 268 269 return err; 270 } 271 272 /* 273 * rfcomm_detach(handle) 274 * 275 * detach RFCOMM DLC from handle 276 */ 277 int 278 rfcomm_detach(struct rfcomm_dlc **handle) 279 { 280 struct rfcomm_dlc *dlc = *handle; 281 282 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 283 rfcomm_dlc_close(dlc, 0); 284 285 if (dlc->rd_txbuf != NULL) { 286 m_freem(dlc->rd_txbuf); 287 dlc->rd_txbuf = NULL; 288 } 289 290 dlc->rd_upper = NULL; 291 *handle = NULL; 292 293 /* 294 * If callout is invoking we can't free the DLC so 295 * mark it and let the callout release it. 296 */ 297 if (callout_invoking(&dlc->rd_timeout)) 298 dlc->rd_flags |= RFCOMM_DLC_DETACH; 299 else { 300 callout_destroy(&dlc->rd_timeout); 301 free(dlc, M_BLUETOOTH); 302 } 303 304 return 0; 305 } 306 307 /* 308 * rfcomm_listen(dlc) 309 * 310 * This DLC is a listener. We look for an existing listening session 311 * with a matching address to attach to or else create a new one on 312 * the listeners list. If the ANY channel is given, allocate the first 313 * available for the session. 314 */ 315 int 316 rfcomm_listen(struct rfcomm_dlc *dlc) 317 { 318 struct rfcomm_session *rs; 319 struct rfcomm_dlc *used; 320 struct sockaddr_bt addr; 321 int err, channel; 322 323 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 324 return EISCONN; 325 326 if (dlc->rd_laddr.bt_channel != RFCOMM_CHANNEL_ANY 327 && (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN 328 || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX)) 329 return EADDRNOTAVAIL; 330 331 if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY) 332 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 333 else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM 334 && (dlc->rd_laddr.bt_psm < 0x1001 335 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm))) 336 return EADDRNOTAVAIL; 337 338 LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) { 339 l2cap_sockaddr(rs->rs_l2cap, &addr); 340 341 if (addr.bt_psm != dlc->rd_laddr.bt_psm) 342 continue; 343 344 if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr)) 345 break; 346 } 347 348 if (rs == NULL) { 349 rs = rfcomm_session_alloc(&rfcomm_session_listen, 350 &dlc->rd_laddr); 351 if (rs == NULL) 352 return ENOMEM; 353 354 rs->rs_state = RFCOMM_SESSION_LISTEN; 355 356 err = l2cap_listen(rs->rs_l2cap); 357 if (err) { 358 rfcomm_session_free(rs); 359 return err; 360 } 361 } 362 363 if (dlc->rd_laddr.bt_channel == RFCOMM_CHANNEL_ANY) { 364 channel = RFCOMM_CHANNEL_MIN; 365 used = LIST_FIRST(&rs->rs_dlcs); 366 367 while (used != NULL) { 368 if (used->rd_laddr.bt_channel == channel) { 369 if (channel++ == RFCOMM_CHANNEL_MAX) 370 return EADDRNOTAVAIL; 371 372 used = LIST_FIRST(&rs->rs_dlcs); 373 } else { 374 used = LIST_NEXT(used, rd_next); 375 } 376 } 377 378 dlc->rd_laddr.bt_channel = channel; 379 } 380 381 dlc->rd_session = rs; 382 dlc->rd_state = RFCOMM_DLC_LISTEN; 383 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 384 385 return 0; 386 } 387 388 /* 389 * rfcomm_send(dlc, mbuf) 390 * 391 * Output data on DLC. This is streamed data, so we add it 392 * to our buffer and start the DLC, which will assemble 393 * packets and send them if it can. 394 */ 395 int 396 rfcomm_send(struct rfcomm_dlc *dlc, struct mbuf *m) 397 { 398 399 if (dlc->rd_txbuf != NULL) { 400 dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len; 401 m_cat(dlc->rd_txbuf, m); 402 } else { 403 dlc->rd_txbuf = m; 404 } 405 406 if (dlc->rd_state == RFCOMM_DLC_OPEN) 407 rfcomm_dlc_start(dlc); 408 409 return 0; 410 } 411 412 /* 413 * rfcomm_rcvd(dlc, space) 414 * 415 * Indicate space now available in receive buffer 416 * 417 * This should be used to give an initial value of the receive buffer 418 * size when the DLC is attached and anytime data is cleared from the 419 * buffer after that. 420 */ 421 int 422 rfcomm_rcvd(struct rfcomm_dlc *dlc, size_t space) 423 { 424 425 KASSERT(dlc != NULL); 426 427 dlc->rd_rxsize = space; 428 429 /* 430 * if we are using credit based flow control, we may 431 * want to send some credits.. 432 */ 433 if (dlc->rd_state == RFCOMM_DLC_OPEN 434 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 435 rfcomm_dlc_start(dlc); 436 437 return 0; 438 } 439 440 /* 441 * rfcomm_setopt(dlc, sopt) 442 * 443 * set DLC options 444 */ 445 int 446 rfcomm_setopt(struct rfcomm_dlc *dlc, const struct sockopt *sopt) 447 { 448 int mode, err = 0; 449 uint16_t mtu; 450 451 switch (sopt->sopt_name) { 452 case SO_RFCOMM_MTU: 453 err = sockopt_get(sopt, &mtu, sizeof(mtu)); 454 if (err) 455 break; 456 457 if (mtu < RFCOMM_MTU_MIN || mtu > RFCOMM_MTU_MAX) 458 err = EINVAL; 459 else if (dlc->rd_state == RFCOMM_DLC_CLOSED) 460 dlc->rd_mtu = mtu; 461 else 462 err = EBUSY; 463 464 break; 465 466 case SO_RFCOMM_LM: 467 err = sockopt_getint(sopt, &mode); 468 if (err) 469 break; 470 471 mode &= (RFCOMM_LM_SECURE | RFCOMM_LM_ENCRYPT | RFCOMM_LM_AUTH); 472 473 if (mode & RFCOMM_LM_SECURE) 474 mode |= RFCOMM_LM_ENCRYPT; 475 476 if (mode & RFCOMM_LM_ENCRYPT) 477 mode |= RFCOMM_LM_AUTH; 478 479 dlc->rd_mode = mode; 480 481 if (dlc->rd_state == RFCOMM_DLC_OPEN) 482 err = rfcomm_dlc_setmode(dlc); 483 484 break; 485 486 default: 487 err = ENOPROTOOPT; 488 break; 489 } 490 return err; 491 } 492 493 /* 494 * rfcomm_getopt(dlc, sopt) 495 * 496 * get DLC options 497 */ 498 int 499 rfcomm_getopt(struct rfcomm_dlc *dlc, struct sockopt *sopt) 500 { 501 struct rfcomm_fc_info fc; 502 503 switch (sopt->sopt_name) { 504 case SO_RFCOMM_MTU: 505 return sockopt_set(sopt, &dlc->rd_mtu, sizeof(uint16_t)); 506 507 case SO_RFCOMM_FC_INFO: 508 memset(&fc, 0, sizeof(fc)); 509 fc.lmodem = dlc->rd_lmodem; 510 fc.rmodem = dlc->rd_rmodem; 511 fc.tx_cred = max(dlc->rd_txcred, 0xff); 512 fc.rx_cred = max(dlc->rd_rxcred, 0xff); 513 if (dlc->rd_session 514 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 515 fc.cfc = 1; 516 517 return sockopt_set(sopt, &fc, sizeof(fc)); 518 519 case SO_RFCOMM_LM: 520 return sockopt_setint(sopt, dlc->rd_mode); 521 522 default: 523 break; 524 } 525 526 return ENOPROTOOPT; 527 } 528