1 /* $NetBSD: rfcomm_upper.c,v 1.22 2014/11/16 21:34:27 plunky Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Itronix Inc. 5 * All rights reserved. 6 * 7 * Written by Iain Hibbert for Itronix Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Itronix Inc. may not be used to endorse 18 * or promote products derived from this software without specific 19 * prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.22 2014/11/16 21:34:27 plunky Exp $"); 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/mbuf.h> 40 #include <sys/kmem.h> 41 #include <sys/socketvar.h> 42 #include <sys/systm.h> 43 44 #include <netbt/bluetooth.h> 45 #include <netbt/hci.h> 46 #include <netbt/l2cap.h> 47 #include <netbt/rfcomm.h> 48 49 /**************************************************************************** 50 * 51 * RFCOMM DLC - Upper Protocol API 52 * 53 * Currently the only 'Port Emulation Entity' is the RFCOMM socket code 54 * but it is should be possible to provide a pseudo-device for a direct 55 * tty interface. 56 */ 57 58 /* 59 * rfcomm_attach_pcb(handle, proto, upper) 60 * 61 * attach a new RFCOMM DLC to handle, populate with reasonable defaults 62 */ 63 int 64 rfcomm_attach_pcb(struct rfcomm_dlc **handle, 65 const struct btproto *proto, void *upper) 66 { 67 struct rfcomm_dlc *dlc; 68 69 KASSERT(handle != NULL); 70 KASSERT(proto != NULL); 71 KASSERT(upper != NULL); 72 73 dlc = kmem_intr_zalloc(sizeof(struct rfcomm_dlc), KM_NOSLEEP); 74 if (dlc == NULL) 75 return ENOMEM; 76 77 dlc->rd_state = RFCOMM_DLC_CLOSED; 78 dlc->rd_mtu = rfcomm_mtu_default; 79 80 dlc->rd_proto = proto; 81 dlc->rd_upper = upper; 82 83 dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt); 84 dlc->rd_laddr.bt_family = AF_BLUETOOTH; 85 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 86 87 dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt); 88 dlc->rd_raddr.bt_family = AF_BLUETOOTH; 89 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 90 91 dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV; 92 93 callout_init(&dlc->rd_timeout, 0); 94 callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc); 95 96 *handle = dlc; 97 return 0; 98 } 99 100 /* 101 * rfcomm_bind_pcb(dlc, sockaddr) 102 * 103 * bind DLC to local address 104 */ 105 int 106 rfcomm_bind_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 107 { 108 109 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 110 return EINVAL; 111 112 memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt)); 113 return 0; 114 } 115 116 /* 117 * rfcomm_sockaddr_pcb(dlc, sockaddr) 118 * 119 * return local address 120 */ 121 int 122 rfcomm_sockaddr_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 123 { 124 125 memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt)); 126 return 0; 127 } 128 129 /* 130 * rfcomm_connect_pcb(dlc, sockaddr) 131 * 132 * Initiate connection of RFCOMM DLC to remote address. 133 */ 134 int 135 rfcomm_connect_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest) 136 { 137 struct rfcomm_session *rs; 138 int err = 0; 139 140 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 141 return EISCONN; 142 143 memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt)); 144 145 if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN 146 || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX 147 || bdaddr_any(&dlc->rd_raddr.bt_bdaddr)) 148 return EDESTADDRREQ; 149 150 if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY) 151 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 152 else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM 153 && (dlc->rd_raddr.bt_psm < 0x1001 154 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm))) 155 return EINVAL; 156 157 /* 158 * We are allowed only one RFCOMM session between any 2 Bluetooth 159 * devices, so see if there is a session already otherwise create 160 * one and set it connecting. 161 */ 162 rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr); 163 if (rs == NULL) { 164 rs = rfcomm_session_alloc(&rfcomm_session_active, 165 &dlc->rd_laddr); 166 if (rs == NULL) 167 return ENOMEM; 168 169 rs->rs_flags |= RFCOMM_SESSION_INITIATOR; 170 rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT; 171 172 err = l2cap_connect_pcb(rs->rs_l2cap, &dlc->rd_raddr); 173 if (err) { 174 rfcomm_session_free(rs); 175 return err; 176 } 177 178 /* 179 * This session will start up automatically when its 180 * L2CAP channel is connected. 181 */ 182 } 183 184 /* construct DLC */ 185 dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel); 186 if (rfcomm_dlc_lookup(rs, dlc->rd_dlci)) 187 return EBUSY; 188 189 l2cap_sockaddr_pcb(rs->rs_l2cap, &dlc->rd_laddr); 190 191 /* 192 * attach the DLC to the session and start it off 193 */ 194 dlc->rd_session = rs; 195 dlc->rd_state = RFCOMM_DLC_WAIT_SESSION; 196 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 197 198 if (rs->rs_state == RFCOMM_SESSION_OPEN) 199 err = rfcomm_dlc_connect(dlc); 200 201 return err; 202 } 203 204 /* 205 * rfcomm_peeraddr_pcb(dlc, sockaddr) 206 * 207 * return remote address 208 */ 209 int 210 rfcomm_peeraddr_pcb(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 211 { 212 213 memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt)); 214 return 0; 215 } 216 217 /* 218 * rfcomm_disconnect_pcb(dlc, linger) 219 * 220 * disconnect RFCOMM DLC 221 */ 222 int 223 rfcomm_disconnect_pcb(struct rfcomm_dlc *dlc, int linger) 224 { 225 struct rfcomm_session *rs = dlc->rd_session; 226 int err = 0; 227 228 KASSERT(dlc != NULL); 229 230 switch (dlc->rd_state) { 231 case RFCOMM_DLC_CLOSED: 232 case RFCOMM_DLC_LISTEN: 233 return EINVAL; 234 235 case RFCOMM_DLC_WAIT_SEND_UA: 236 err = rfcomm_session_send_frame(rs, 237 RFCOMM_FRAME_DM, dlc->rd_dlci); 238 239 /* fall through */ 240 case RFCOMM_DLC_WAIT_SESSION: 241 case RFCOMM_DLC_WAIT_CONNECT: 242 case RFCOMM_DLC_WAIT_SEND_SABM: 243 rfcomm_dlc_close(dlc, 0); 244 break; 245 246 case RFCOMM_DLC_OPEN: 247 if (dlc->rd_txbuf != NULL && linger != 0) { 248 dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN; 249 break; 250 } 251 252 /* else fall through */ 253 case RFCOMM_DLC_WAIT_RECV_UA: 254 dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT; 255 err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC, 256 dlc->rd_dlci); 257 callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz); 258 break; 259 260 case RFCOMM_DLC_WAIT_DISCONNECT: 261 err = EALREADY; 262 break; 263 264 default: 265 UNKNOWN(dlc->rd_state); 266 break; 267 } 268 269 return err; 270 } 271 272 /* 273 * rfcomm_detach_pcb(handle) 274 * 275 * detach RFCOMM DLC from handle 276 */ 277 void 278 rfcomm_detach_pcb(struct rfcomm_dlc **handle) 279 { 280 struct rfcomm_dlc *dlc = *handle; 281 282 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 283 rfcomm_dlc_close(dlc, 0); 284 285 if (dlc->rd_txbuf != NULL) { 286 m_freem(dlc->rd_txbuf); 287 dlc->rd_txbuf = NULL; 288 } 289 290 dlc->rd_upper = NULL; 291 *handle = NULL; 292 293 /* 294 * If callout is invoking we can't free the DLC so 295 * mark it and let the callout release it. 296 */ 297 if (callout_invoking(&dlc->rd_timeout)) 298 dlc->rd_flags |= RFCOMM_DLC_DETACH; 299 else { 300 callout_destroy(&dlc->rd_timeout); 301 kmem_intr_free(dlc, sizeof(*dlc)); 302 } 303 } 304 305 /* 306 * rfcomm_listen_pcb(dlc) 307 * 308 * This DLC is a listener. We look for an existing listening session 309 * with a matching address to attach to or else create a new one on 310 * the listeners list. If the ANY channel is given, allocate the first 311 * available for the session. 312 */ 313 int 314 rfcomm_listen_pcb(struct rfcomm_dlc *dlc) 315 { 316 struct rfcomm_session *rs; 317 struct rfcomm_dlc *used; 318 struct sockaddr_bt addr; 319 int err, channel; 320 321 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 322 return EISCONN; 323 324 if (dlc->rd_laddr.bt_channel != RFCOMM_CHANNEL_ANY 325 && (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN 326 || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX)) 327 return EADDRNOTAVAIL; 328 329 if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY) 330 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 331 else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM 332 && (dlc->rd_laddr.bt_psm < 0x1001 333 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm))) 334 return EADDRNOTAVAIL; 335 336 LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) { 337 l2cap_sockaddr_pcb(rs->rs_l2cap, &addr); 338 339 if (addr.bt_psm != dlc->rd_laddr.bt_psm) 340 continue; 341 342 if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr)) 343 break; 344 } 345 346 if (rs == NULL) { 347 rs = rfcomm_session_alloc(&rfcomm_session_listen, 348 &dlc->rd_laddr); 349 if (rs == NULL) 350 return ENOMEM; 351 352 rs->rs_state = RFCOMM_SESSION_LISTEN; 353 354 err = l2cap_listen_pcb(rs->rs_l2cap); 355 if (err) { 356 rfcomm_session_free(rs); 357 return err; 358 } 359 } 360 361 if (dlc->rd_laddr.bt_channel == RFCOMM_CHANNEL_ANY) { 362 channel = RFCOMM_CHANNEL_MIN; 363 used = LIST_FIRST(&rs->rs_dlcs); 364 365 while (used != NULL) { 366 if (used->rd_laddr.bt_channel == channel) { 367 if (channel++ == RFCOMM_CHANNEL_MAX) 368 return EADDRNOTAVAIL; 369 370 used = LIST_FIRST(&rs->rs_dlcs); 371 } else { 372 used = LIST_NEXT(used, rd_next); 373 } 374 } 375 376 dlc->rd_laddr.bt_channel = channel; 377 } 378 379 dlc->rd_session = rs; 380 dlc->rd_state = RFCOMM_DLC_LISTEN; 381 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 382 383 return 0; 384 } 385 386 /* 387 * rfcomm_send_pcb(dlc, mbuf) 388 * 389 * Output data on DLC. This is streamed data, so we add it 390 * to our buffer and start the DLC, which will assemble 391 * packets and send them if it can. 392 */ 393 int 394 rfcomm_send_pcb(struct rfcomm_dlc *dlc, struct mbuf *m) 395 { 396 397 if (dlc->rd_txbuf != NULL) { 398 dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len; 399 m_cat(dlc->rd_txbuf, m); 400 } else { 401 dlc->rd_txbuf = m; 402 } 403 404 if (dlc->rd_state == RFCOMM_DLC_OPEN) 405 rfcomm_dlc_start(dlc); 406 407 return 0; 408 } 409 410 /* 411 * rfcomm_rcvd_pcb(dlc, space) 412 * 413 * Indicate space now available in receive buffer 414 * 415 * This should be used to give an initial value of the receive buffer 416 * size when the DLC is attached and anytime data is cleared from the 417 * buffer after that. 418 */ 419 int 420 rfcomm_rcvd_pcb(struct rfcomm_dlc *dlc, size_t space) 421 { 422 423 KASSERT(dlc != NULL); 424 425 dlc->rd_rxsize = space; 426 427 /* 428 * if we are using credit based flow control, we may 429 * want to send some credits.. 430 */ 431 if (dlc->rd_state == RFCOMM_DLC_OPEN 432 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 433 rfcomm_dlc_start(dlc); 434 435 return 0; 436 } 437 438 /* 439 * rfcomm_setopt(dlc, sopt) 440 * 441 * set DLC options 442 */ 443 int 444 rfcomm_setopt(struct rfcomm_dlc *dlc, const struct sockopt *sopt) 445 { 446 int mode, err = 0; 447 uint16_t mtu; 448 449 switch (sopt->sopt_name) { 450 case SO_RFCOMM_MTU: 451 err = sockopt_get(sopt, &mtu, sizeof(mtu)); 452 if (err) 453 break; 454 455 if (mtu < RFCOMM_MTU_MIN || mtu > RFCOMM_MTU_MAX) 456 err = EINVAL; 457 else if (dlc->rd_state == RFCOMM_DLC_CLOSED) 458 dlc->rd_mtu = mtu; 459 else 460 err = EBUSY; 461 462 break; 463 464 case SO_RFCOMM_LM: 465 err = sockopt_getint(sopt, &mode); 466 if (err) 467 break; 468 469 mode &= (RFCOMM_LM_SECURE | RFCOMM_LM_ENCRYPT | RFCOMM_LM_AUTH); 470 471 if (mode & RFCOMM_LM_SECURE) 472 mode |= RFCOMM_LM_ENCRYPT; 473 474 if (mode & RFCOMM_LM_ENCRYPT) 475 mode |= RFCOMM_LM_AUTH; 476 477 dlc->rd_mode = mode; 478 479 if (dlc->rd_state == RFCOMM_DLC_OPEN) 480 err = rfcomm_dlc_setmode(dlc); 481 482 break; 483 484 default: 485 err = ENOPROTOOPT; 486 break; 487 } 488 return err; 489 } 490 491 /* 492 * rfcomm_getopt(dlc, sopt) 493 * 494 * get DLC options 495 */ 496 int 497 rfcomm_getopt(struct rfcomm_dlc *dlc, struct sockopt *sopt) 498 { 499 struct rfcomm_fc_info fc; 500 501 switch (sopt->sopt_name) { 502 case SO_RFCOMM_MTU: 503 return sockopt_set(sopt, &dlc->rd_mtu, sizeof(uint16_t)); 504 505 case SO_RFCOMM_FC_INFO: 506 memset(&fc, 0, sizeof(fc)); 507 fc.lmodem = dlc->rd_lmodem; 508 fc.rmodem = dlc->rd_rmodem; 509 fc.tx_cred = max(dlc->rd_txcred, 0xff); 510 fc.rx_cred = max(dlc->rd_rxcred, 0xff); 511 if (dlc->rd_session 512 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 513 fc.cfc = 1; 514 515 return sockopt_set(sopt, &fc, sizeof(fc)); 516 517 case SO_RFCOMM_LM: 518 return sockopt_setint(sopt, dlc->rd_mode); 519 520 default: 521 break; 522 } 523 524 return ENOPROTOOPT; 525 } 526