1 /* $NetBSD: rfcomm_upper.c,v 1.1 2006/06/19 15:44:45 gdamore Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 Itronix Inc. 5 * All rights reserved. 6 * 7 * Written by Iain Hibbert for Itronix Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Itronix Inc. may not be used to endorse 18 * or promote products derived from this software without specific 19 * prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY 25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: rfcomm_upper.c,v 1.1 2006/06/19 15:44:45 gdamore Exp $"); 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/mbuf.h> 40 #include <sys/proc.h> 41 #include <sys/systm.h> 42 43 #include <netbt/bluetooth.h> 44 #include <netbt/hci.h> 45 #include <netbt/l2cap.h> 46 #include <netbt/rfcomm.h> 47 48 /**************************************************************************** 49 * 50 * RFCOMM DLC - Upper Protocol API 51 * 52 * Currently the only 'Port Emulation Entity' is the RFCOMM socket code 53 * but it is should be possible to provide a pseudo-device for a direct 54 * tty interface. 55 */ 56 57 /* 58 * rfcomm_attach(handle, proto, upper) 59 * 60 * attach a new RFCOMM DLC to handle, populate with reasonable defaults 61 */ 62 int 63 rfcomm_attach(struct rfcomm_dlc **handle, 64 const struct btproto *proto, void *upper) 65 { 66 struct rfcomm_dlc *dlc; 67 68 KASSERT(handle); 69 KASSERT(proto); 70 KASSERT(upper); 71 72 dlc = malloc(sizeof(struct rfcomm_dlc), M_BLUETOOTH, M_NOWAIT | M_ZERO); 73 if (dlc == NULL) 74 return ENOMEM; 75 76 dlc->rd_state = RFCOMM_DLC_CLOSED; 77 dlc->rd_mtu = rfcomm_mtu_default; 78 79 dlc->rd_proto = proto; 80 dlc->rd_upper = upper; 81 82 dlc->rd_laddr.bt_len = sizeof(struct sockaddr_bt); 83 dlc->rd_laddr.bt_family = AF_BLUETOOTH; 84 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 85 86 dlc->rd_raddr.bt_len = sizeof(struct sockaddr_bt); 87 dlc->rd_raddr.bt_family = AF_BLUETOOTH; 88 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 89 90 dlc->rd_lmodem = RFCOMM_MSC_RTC | RFCOMM_MSC_RTR | RFCOMM_MSC_DV; 91 92 callout_init(&dlc->rd_timeout); 93 callout_setfunc(&dlc->rd_timeout, rfcomm_dlc_timeout, dlc); 94 95 *handle = dlc; 96 return 0; 97 } 98 99 /* 100 * rfcomm_bind(dlc, sockaddr) 101 * 102 * bind DLC to local address 103 */ 104 int 105 rfcomm_bind(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 106 { 107 108 memcpy(&dlc->rd_laddr, addr, sizeof(struct sockaddr_bt)); 109 return 0; 110 } 111 112 /* 113 * rfcomm_sockaddr(dlc, sockaddr) 114 * 115 * return local address 116 */ 117 int 118 rfcomm_sockaddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 119 { 120 121 memcpy(addr, &dlc->rd_laddr, sizeof(struct sockaddr_bt)); 122 return 0; 123 } 124 125 /* 126 * rfcomm_connect(dlc, sockaddr) 127 * 128 * Initiate connection of RFCOMM DLC to remote address. 129 */ 130 int 131 rfcomm_connect(struct rfcomm_dlc *dlc, struct sockaddr_bt *dest) 132 { 133 struct rfcomm_session *rs; 134 int err = 0; 135 136 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 137 return EISCONN; 138 139 memcpy(&dlc->rd_raddr, dest, sizeof(struct sockaddr_bt)); 140 141 if (dlc->rd_raddr.bt_channel < RFCOMM_CHANNEL_MIN 142 || dlc->rd_raddr.bt_channel > RFCOMM_CHANNEL_MAX 143 || bdaddr_any(&dlc->rd_raddr.bt_bdaddr)) 144 return EDESTADDRREQ; 145 146 if (dlc->rd_raddr.bt_psm == L2CAP_PSM_ANY) 147 dlc->rd_raddr.bt_psm = L2CAP_PSM_RFCOMM; 148 else if (dlc->rd_raddr.bt_psm != L2CAP_PSM_RFCOMM 149 && (dlc->rd_raddr.bt_psm < 0x1001 150 || L2CAP_PSM_INVALID(dlc->rd_raddr.bt_psm))) 151 return EINVAL; 152 153 /* 154 * We are allowed only one RFCOMM session between any 2 Bluetooth 155 * devices, so see if there is a session already otherwise create 156 * one and set it connecting. 157 */ 158 rs = rfcomm_session_lookup(&dlc->rd_laddr, &dlc->rd_raddr); 159 if (rs == NULL) { 160 rs = rfcomm_session_alloc(&rfcomm_session_active, 161 &dlc->rd_laddr); 162 if (rs == NULL) 163 return ENOMEM; 164 165 rs->rs_flags |= RFCOMM_SESSION_INITIATOR; 166 rs->rs_state = RFCOMM_SESSION_WAIT_CONNECT; 167 168 err = l2cap_connect(rs->rs_l2cap, &dlc->rd_raddr); 169 if (err) { 170 rfcomm_session_free(rs); 171 return err; 172 } 173 174 /* 175 * This session will start up automatically when its 176 * L2CAP channel is connected. 177 */ 178 } 179 180 /* construct DLC */ 181 dlc->rd_dlci = RFCOMM_MKDLCI(IS_INITIATOR(rs) ? 0:1, dest->bt_channel); 182 if (rfcomm_dlc_lookup(rs, dlc->rd_dlci)) 183 return EBUSY; 184 185 l2cap_sockaddr(rs->rs_l2cap, &dlc->rd_laddr); 186 187 /* 188 * attach the DLC to the session and start it off 189 */ 190 dlc->rd_session = rs; 191 dlc->rd_state = RFCOMM_DLC_WAIT_SESSION; 192 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 193 194 if (rs->rs_state == RFCOMM_SESSION_OPEN) 195 err = rfcomm_dlc_connect(dlc); 196 197 return err; 198 } 199 200 /* 201 * rfcomm_peeraddr(dlc, sockaddr) 202 * 203 * return remote address 204 */ 205 int 206 rfcomm_peeraddr(struct rfcomm_dlc *dlc, struct sockaddr_bt *addr) 207 { 208 209 memcpy(addr, &dlc->rd_raddr, sizeof(struct sockaddr_bt)); 210 return 0; 211 } 212 213 /* 214 * rfcomm_disconnect(dlc, linger) 215 * 216 * disconnect RFCOMM DLC 217 */ 218 int 219 rfcomm_disconnect(struct rfcomm_dlc *dlc, int linger) 220 { 221 struct rfcomm_session *rs = dlc->rd_session; 222 int err = 0; 223 224 KASSERT(dlc != NULL); 225 226 switch (dlc->rd_state) { 227 case RFCOMM_DLC_CLOSED: 228 case RFCOMM_DLC_LISTEN: 229 return EINVAL; 230 231 case RFCOMM_DLC_WAIT_SESSION: 232 rfcomm_dlc_close(dlc, 0); 233 break; 234 235 case RFCOMM_DLC_OPEN: 236 if (dlc->rd_txbuf != NULL && linger != 0) { 237 dlc->rd_flags |= RFCOMM_DLC_SHUTDOWN; 238 break; 239 } 240 241 /* else fall through */ 242 case RFCOMM_DLC_WAIT_CONNECT: 243 dlc->rd_state = RFCOMM_DLC_WAIT_DISCONNECT; 244 err = rfcomm_session_send_frame(rs, RFCOMM_FRAME_DISC, 245 dlc->rd_dlci); 246 callout_schedule(&dlc->rd_timeout, rfcomm_ack_timeout * hz); 247 break; 248 249 case RFCOMM_DLC_WAIT_DISCONNECT: 250 err = EALREADY; 251 break; 252 253 default: 254 UNKNOWN(dlc->rd_state); 255 break; 256 } 257 258 return err; 259 } 260 261 /* 262 * rfcomm_detach(handle) 263 * 264 * detach RFCOMM DLC from handle 265 */ 266 int 267 rfcomm_detach(struct rfcomm_dlc **handle) 268 { 269 struct rfcomm_dlc *dlc = *handle; 270 271 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 272 rfcomm_dlc_close(dlc, 0); 273 274 if (dlc->rd_txbuf != NULL) { 275 m_freem(dlc->rd_txbuf); 276 dlc->rd_txbuf = NULL; 277 } 278 279 dlc->rd_upper = NULL; 280 *handle = NULL; 281 282 /* 283 * If callout is invoking we can't free the DLC so 284 * mark it and let the callout release it. 285 */ 286 if (callout_invoking(&dlc->rd_timeout)) 287 dlc->rd_flags |= RFCOMM_DLC_DETACH; 288 else 289 free(dlc, M_BLUETOOTH); 290 291 return 0; 292 } 293 294 /* 295 * rfcomm_listen(dlc) 296 * 297 * This DLC is a listener. We look for an existing listening session 298 * with a matching address to attach to or else create a new one on 299 * the listeners list. 300 */ 301 int 302 rfcomm_listen(struct rfcomm_dlc *dlc) 303 { 304 struct rfcomm_session *rs, *any, *best; 305 struct sockaddr_bt addr; 306 int err; 307 308 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 309 return EISCONN; 310 311 if (dlc->rd_laddr.bt_channel < RFCOMM_CHANNEL_MIN 312 || dlc->rd_laddr.bt_channel > RFCOMM_CHANNEL_MAX) 313 return EADDRNOTAVAIL; 314 315 if (dlc->rd_laddr.bt_psm == L2CAP_PSM_ANY) 316 dlc->rd_laddr.bt_psm = L2CAP_PSM_RFCOMM; 317 else if (dlc->rd_laddr.bt_psm != L2CAP_PSM_RFCOMM 318 && (dlc->rd_laddr.bt_psm < 0x1001 319 || L2CAP_PSM_INVALID(dlc->rd_laddr.bt_psm))) 320 return EADDRNOTAVAIL; 321 322 any = best = NULL; 323 LIST_FOREACH(rs, &rfcomm_session_listen, rs_next) { 324 l2cap_sockaddr(rs->rs_l2cap, &addr); 325 326 if (addr.bt_psm != dlc->rd_laddr.bt_psm) 327 continue; 328 329 if (bdaddr_same(&dlc->rd_laddr.bt_bdaddr, &addr.bt_bdaddr)) 330 best = rs; 331 332 if (bdaddr_any(&addr.bt_bdaddr)) 333 any = rs; 334 } 335 336 rs = best ? best : any; 337 if (rs == NULL) { 338 rs = rfcomm_session_alloc(&rfcomm_session_listen, 339 &dlc->rd_laddr); 340 if (rs == NULL) 341 return ENOMEM; 342 343 rs->rs_state = RFCOMM_SESSION_LISTEN; 344 345 err = l2cap_listen(rs->rs_l2cap); 346 if (err) { 347 rfcomm_session_free(rs); 348 return err; 349 } 350 } 351 352 dlc->rd_session = rs; 353 dlc->rd_state = RFCOMM_DLC_LISTEN; 354 LIST_INSERT_HEAD(&rs->rs_dlcs, dlc, rd_next); 355 356 return 0; 357 } 358 359 /* 360 * rfcomm_send(dlc, mbuf) 361 * 362 * Output data on DLC. This is streamed data, so we add it 363 * to our buffer and start the the DLC, which will assemble 364 * packets and send them if it can. 365 */ 366 int 367 rfcomm_send(struct rfcomm_dlc *dlc, struct mbuf *m) 368 { 369 370 if (dlc->rd_txbuf != NULL) { 371 dlc->rd_txbuf->m_pkthdr.len += m->m_pkthdr.len; 372 m_cat(dlc->rd_txbuf, m); 373 } else { 374 dlc->rd_txbuf = m; 375 } 376 377 if (dlc->rd_state == RFCOMM_DLC_OPEN) 378 rfcomm_dlc_start(dlc); 379 380 return 0; 381 } 382 383 /* 384 * rfcomm_rcvd(dlc, space) 385 * 386 * Indicate space now available in receive buffer 387 * 388 * This should be used to give an initial value of the receive buffer 389 * size when the DLC is attached and anytime data is cleared from the 390 * buffer after that. 391 */ 392 int 393 rfcomm_rcvd(struct rfcomm_dlc *dlc, size_t space) 394 { 395 396 KASSERT(dlc != NULL); 397 398 dlc->rd_rxsize = space; 399 400 /* 401 * if we are using credit based flow control, we may 402 * want to send some credits.. 403 */ 404 if (dlc->rd_state == RFCOMM_DLC_OPEN 405 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 406 rfcomm_dlc_start(dlc); 407 408 return 0; 409 } 410 411 /* 412 * rfcomm_setopt(dlc, option, addr) 413 * 414 * set DLC options 415 */ 416 int 417 rfcomm_setopt(struct rfcomm_dlc *dlc, int opt, void *addr) 418 { 419 int err = 0; 420 421 if (dlc->rd_state != RFCOMM_DLC_CLOSED) 422 return EBUSY; 423 424 switch (opt) { 425 case SO_RFCOMM_MTU: 426 dlc->rd_mtu = *(uint16_t *)addr; 427 if (dlc->rd_mtu < RFCOMM_MTU_MIN 428 || dlc->rd_mtu > RFCOMM_MTU_MAX) { 429 dlc->rd_mtu = rfcomm_mtu_default; 430 err = EINVAL; 431 } 432 break; 433 434 default: 435 err = EINVAL; 436 break; 437 } 438 return err; 439 } 440 441 /* 442 * rfcomm_getopt(dlc, option, addr) 443 * 444 * get DLC options 445 */ 446 int 447 rfcomm_getopt(struct rfcomm_dlc *dlc, int opt, void *addr) 448 { 449 struct rfcomm_fc_info *fc; 450 451 switch (opt) { 452 case SO_RFCOMM_MTU: 453 *(uint16_t *)addr = dlc->rd_mtu; 454 return sizeof(uint16_t); 455 456 case SO_RFCOMM_FC_INFO: 457 fc = addr; 458 memset(fc, 0, sizeof(*fc)); 459 fc->lmodem = dlc->rd_lmodem; 460 fc->rmodem = dlc->rd_rmodem; 461 fc->tx_cred = max(dlc->rd_txcred, 0xff); 462 fc->rx_cred = max(dlc->rd_rxcred, 0xff); 463 if (dlc->rd_session 464 && (dlc->rd_session->rs_flags & RFCOMM_SESSION_CFC)) 465 fc->cfc = 1; 466 467 return sizeof(*fc); 468 469 default: 470 break; 471 } 472 473 return 0; 474 } 475